Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.145

version 1.41.2.1, 2003/06/12 10:43:20 version 1.145, 2014/06/10 21:23:15
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.145  2014/06/10 21:23:15  brouard
      Summary: Debugging with valgrind
   This program computes Healthy Life Expectancies from    Author: Nicolas Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Lot of changes in order to output the results with some covariates
   interviewed on their health status or degree of disability (in the    After the Edimburgh REVES conference 2014, it seems mandatory to
   case of a health survey which is our main interest) -2- at least a    improve the code.
   second wave of interviews ("longitudinal") which measure each change    No more memory valgrind error but a lot has to be done in order to
   (if any) in individual health status.  Health expectancies are    continue the work of splitting the code into subroutines.
   computed from the time spent in each health state according to a    Also, decodemodel has been improved. Tricode is still not
   model. More health states you consider, more time is necessary to reach the    optimal. nbcode should be improved. Documentation has been added in
   Maximum Likelihood of the parameters involved in the model.  The    the source code.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.143  2014/01/26 09:45:38  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   complex model than "constant and age", you should modify the program    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.142  2014/01/26 03:57:36  brouard
   convergence.    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
   The advantage of this computer programme, compared to a simple    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.141  2014/01/26 02:42:01  brouard
   intermediate interview, the information is lost, but taken into    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   account using an interpolation or extrapolation.    
     Revision 1.140  2011/09/02 10:37:54  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: times.h is ok with mingw32 now.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.139  2010/06/14 07:50:17  brouard
   states. This elementary transition (by month or quarter trimester,    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   semester or year) is model as a multinomial logistic.  The hPx    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.138  2010/04/30 18:19:40  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.137  2010/04/29 18:11:38  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Checking covariates for more complex models
      than V1+V2. A lot of change to be done. Unstable.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.136  2010/04/26 20:30:53  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): merging some libgsl code. Fixing computation
   from the European Union.    of likelione (using inter/intrapolation if mle = 0) in order to
   It is copyrighted identically to a GNU software product, ie programme and    get same likelihood as if mle=1.
   software can be distributed freely for non commercial use. Latest version    Some cleaning of code and comments added.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.135  2009/10/29 15:33:14  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #include <math.h>  
 #include <stdio.h>    Revision 1.134  2009/10/29 13:18:53  brouard
 #include <stdlib.h>    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #include <unistd.h>  
     Revision 1.133  2009/07/06 10:21:25  brouard
 #define MAXLINE 256    just nforces
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.132  2009/07/06 08:22:05  brouard
 #define FILENAMELENGTH 80    Many tings
 /*#define DEBUG*/  
     Revision 1.131  2009/06/20 16:22:47  brouard
 /*#define windows*/    Some dimensions resccaled
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    lot of cleaning with variables initialized to 0. Trying to make
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
 #define NINTERVMAX 8    Revision 1.129  2007/08/31 13:49:27  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.128  2006/06/30 13:02:05  brouard
 #define MAXN 20000    (Module): Clarifications on computing e.j
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.127  2006/04/28 18:11:50  brouard
 #define AGEBASE 40    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 int erreur; /* Error number */    (Module): In order to speed up (in case of numerous covariates) we
 int nvar;    compute health expectancies (without variances) in a first step
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    and then all the health expectancies with variances or standard
 int npar=NPARMAX;    deviation (needs data from the Hessian matrices) which slows the
 int nlstate=2; /* Number of live states */    computation.
 int ndeath=1; /* Number of dead states */    In the future we should be able to stop the program is only health
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    expectancies and graph are needed without standard deviations.
 int popbased=0;  
     Revision 1.126  2006/04/28 17:23:28  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Yes the sum of survivors was wrong since
 int maxwav; /* Maxim number of waves */    imach-114 because nhstepm was no more computed in the age
 int jmin, jmax; /* min, max spacing between 2 waves */    loop. Now we define nhstepma in the age loop.
 int mle, weightopt;    Version 0.98h
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.125  2006/04/04 15:20:31  lievre
 double jmean; /* Mean space between 2 waves */    Errors in calculation of health expectancies. Age was not initialized.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Forecasting file added.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.124  2006/03/22 17:13:53  lievre
 FILE *ficgp,*ficresprob,*ficpop;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 FILE *ficreseij;    The log-likelihood is printed in the log file
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.123  2006/03/20 10:52:43  brouard
   char fileresv[FILENAMELENGTH];    * imach.c (Module): <title> changed, corresponds to .htm file
  FILE  *ficresvpl;    name. <head> headers where missing.
   char fileresvpl[FILENAMELENGTH];  
     * imach.c (Module): Weights can have a decimal point as for
 #define NR_END 1    English (a comma might work with a correct LC_NUMERIC environment,
 #define FREE_ARG char*    otherwise the weight is truncated).
 #define FTOL 1.0e-10    Modification of warning when the covariates values are not 0 or
     1.
 #define NRANSI    Version 0.98g
 #define ITMAX 200  
     Revision 1.122  2006/03/20 09:45:41  brouard
 #define TOL 2.0e-4    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define CGOLD 0.3819660    otherwise the weight is truncated).
 #define ZEPS 1.0e-10    Modification of warning when the covariates values are not 0 or
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    1.
     Version 0.98g
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.121  2006/03/16 17:45:01  lievre
 #define TINY 1.0e-20    * imach.c (Module): Comments concerning covariates added
   
 static double maxarg1,maxarg2;    * imach.c (Module): refinements in the computation of lli if
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    status=-2 in order to have more reliable computation if stepm is
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    not 1 month. Version 0.98f
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.120  2006/03/16 15:10:38  lievre
 #define rint(a) floor(a+0.5)    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 static double sqrarg;    not 1 month. Version 0.98f
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 int imx;    computed as likelihood omitting the logarithm. Version O.98e
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 int estepm;    table of variances if popbased=1 .
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 int m,nb;    (Module): Version 0.98d
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.117  2006/03/14 17:16:22  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): varevsij Comments added explaining the second
 double dateintmean=0;    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 double *weight;    (Module): Function pstamp added
 int **s; /* Status */    (Module): Version 0.98d
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    varian-covariance of ej. is needed (Saito).
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.115  2006/02/27 12:17:45  brouard
 /**************** split *************************/    (Module): One freematrix added in mlikeli! 0.98c
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.114  2006/02/26 12:57:58  brouard
    char *s;                             /* pointer */    (Module): Some improvements in processing parameter
    int  l1, l2;                         /* length counters */    filename with strsep.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.113  2006/02/24 14:20:24  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Memory leaks checks with valgrind and:
 #ifdef windows    datafile was not closed, some imatrix were not freed and on matrix
    s = strrchr( path, '\\' );           /* find last / */    allocation too.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.112  2006/01/30 09:55:26  brouard
 #endif    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.111  2006/01/25 20:38:18  brouard
       extern char       *getwd( );    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
       if ( getwd( dirc ) == NULL ) {    can be a simple dot '.'.
 #else  
       extern char       *getcwd( );    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.109  2006/01/24 19:37:15  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): Comments (lines starting with a #) are allowed in data.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.108  2006/01/19 18:05:42  lievre
    } else {                             /* strip direcotry from path */    Gnuplot problem appeared...
       s++;                              /* after this, the filename */    To be fixed
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.107  2006/01/19 16:20:37  brouard
       strcpy( name, s );                /* save file name */    Test existence of gnuplot in imach path
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.106  2006/01/19 13:24:36  brouard
    }    Some cleaning and links added in html output
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.105  2006/01/05 20:23:19  lievre
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    *** empty log message ***
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.104  2005/09/30 16:11:43  lievre
 #endif    (Module): sump fixed, loop imx fixed, and simplifications.
    s = strrchr( name, '.' );            /* find last / */    (Module): If the status is missing at the last wave but we know
    s++;    that the person is alive, then we can code his/her status as -2
    strcpy(ext,s);                       /* save extension */    (instead of missing=-1 in earlier versions) and his/her
    l1= strlen( name);    contributions to the likelihood is 1 - Prob of dying from last
    l2= strlen( s)+1;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    strncpy( finame, name, l1-l2);    the healthy state at last known wave). Version is 0.98
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.103  2005/09/30 15:54:49  lievre
 }    (Module): sump fixed, loop imx fixed, and simplifications.
   
     Revision 1.102  2004/09/15 17:31:30  brouard
 /******************************************/    Add the possibility to read data file including tab characters.
   
 void replace(char *s, char*t)    Revision 1.101  2004/09/15 10:38:38  brouard
 {    Fix on curr_time
   int i;  
   int lg=20;    Revision 1.100  2004/07/12 18:29:06  brouard
   i=0;    Add version for Mac OS X. Just define UNIX in Makefile
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.99  2004/06/05 08:57:40  brouard
     (s[i] = t[i]);    *** empty log message ***
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.98  2004/05/16 15:05:56  brouard
 }    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 int nbocc(char *s, char occ)    state at each age, but using a Gompertz model: log u =a + b*age .
 {    This is the basic analysis of mortality and should be done before any
   int i,j=0;    other analysis, in order to test if the mortality estimated from the
   int lg=20;    cross-longitudinal survey is different from the mortality estimated
   i=0;    from other sources like vital statistic data.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    The same imach parameter file can be used but the option for mle should be -3.
   if  (s[i] == occ ) j++;  
   }    Agnès, who wrote this part of the code, tried to keep most of the
   return j;    former routines in order to include the new code within the former code.
 }  
     The output is very simple: only an estimate of the intercept and of
 void cutv(char *u,char *v, char*t, char occ)    the slope with 95% confident intervals.
 {  
   int i,lg,j,p=0;    Current limitations:
   i=0;    A) Even if you enter covariates, i.e. with the
   for(j=0; j<=strlen(t)-1; j++) {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    B) There is no computation of Life Expectancy nor Life Table.
   }  
     Revision 1.97  2004/02/20 13:25:42  lievre
   lg=strlen(t);    Version 0.96d. Population forecasting command line is (temporarily)
   for(j=0; j<p; j++) {    suppressed.
     (u[j] = t[j]);  
   }    Revision 1.96  2003/07/15 15:38:55  brouard
      u[p]='\0';    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.95  2003/07/08 07:54:34  brouard
   }    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 /********************** nrerror ********************/  
     Revision 1.94  2003/06/27 13:00:02  brouard
 void nrerror(char error_text[])    Just cleaning
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.93  2003/06/25 16:33:55  brouard
   fprintf(stderr,"%s\n",error_text);    (Module): On windows (cygwin) function asctime_r doesn't
   exit(1);    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.92  2003/06/25 16:30:45  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   double *v;    exist so I changed back to asctime which exists.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.91  2003/06/25 15:30:29  brouard
   return v-nl+NR_END;    * imach.c (Repository): Duplicated warning errors corrected.
 }    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 /************************ free vector ******************/    is stamped in powell.  We created a new html file for the graphs
 void free_vector(double*v, int nl, int nh)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.90  2003/06/24 12:34:15  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /************************ivector *******************************/    of the covariance matrix to be input.
 int *ivector(long nl,long nh)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   int *v;    (Module): Some bugs corrected for windows. Also, when
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!v) nrerror("allocation failure in ivector");    of the covariance matrix to be input.
   return v-nl+NR_END;  
 }    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 /******************* imatrix *******************************/    routine fileappend.
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    current date of interview. It may happen when the death was just
   int **m;    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
   /* allocate pointers to rows */    assuming that the date of death was just one stepm after the
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    interview.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Repository): Because some people have very long ID (first column)
   m += NR_END;    we changed int to long in num[] and we added a new lvector for
   m -= nrl;    memory allocation. But we also truncated to 8 characters (left
      truncation)
      (Repository): No more line truncation errors.
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.84  2003/06/13 21:44:43  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    * imach.c (Repository): Replace "freqsummary" at a correct
   m[nrl] += NR_END;    place. It differs from routine "prevalence" which may be called
   m[nrl] -= ncl;    many times. Probs is memory consuming and must be used with
      parcimony.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
   /* return pointer to array of pointers to rows */    Revision 1.83  2003/06/10 13:39:11  lievre
   return m;    *** empty log message ***
 }  
     Revision 1.82  2003/06/05 15:57:20  brouard
 /****************** free_imatrix *************************/    Add log in  imach.c and  fullversion number is now printed.
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  */
       long nch,ncl,nrh,nrl;  /*
      /* free an int matrix allocated by imatrix() */     Interpolated Markov Chain
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Short summary of the programme:
   free((FREE_ARG) (m+nrl-NR_END));    
 }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 /******************* matrix *******************************/    first survey ("cross") where individuals from different ages are
 double **matrix(long nrl, long nrh, long ncl, long nch)    interviewed on their health status or degree of disability (in the
 {    case of a health survey which is our main interest) -2- at least a
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    second wave of interviews ("longitudinal") which measure each change
   double **m;    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    model. More health states you consider, more time is necessary to reach the
   if (!m) nrerror("allocation failure 1 in matrix()");    Maximum Likelihood of the parameters involved in the model.  The
   m += NR_END;    simplest model is the multinomial logistic model where pij is the
   m -= nrl;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    'age' is age and 'sex' is a covariate. If you want to have a more
   m[nrl] += NR_END;    complex model than "constant and age", you should modify the program
   m[nrl] -= ncl;    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    convergence.
   return m;  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /*************************free matrix ************************/    identical for each individual. Also, if a individual missed an
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    hPijx is the probability to be observed in state i at age x+h
 }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /******************* ma3x *******************************/    states. This elementary transition (by month, quarter,
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    and the contribution of each individual to the likelihood is simply
   double ***m;    hPijx.
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Also this programme outputs the covariance matrix of the parameters but also
   if (!m) nrerror("allocation failure 1 in matrix()");    of the life expectancies. It also computes the period (stable) prevalence. 
   m += NR_END;    
   m -= nrl;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    This software have been partly granted by Euro-REVES, a concerted action
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    from the European Union.
   m[nrl] += NR_END;    It is copyrighted identically to a GNU software product, ie programme and
   m[nrl] -= ncl;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    
   m[nrl][ncl] += NR_END;    **********************************************************************/
   m[nrl][ncl] -= nll;  /*
   for (j=ncl+1; j<=nch; j++)    main
     m[nrl][j]=m[nrl][j-1]+nlay;    read parameterfile
      read datafile
   for (i=nrl+1; i<=nrh; i++) {    concatwav
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    freqsummary
     for (j=ncl+1; j<=nch; j++)    if (mle >= 1)
       m[i][j]=m[i][j-1]+nlay;      mlikeli
   }    print results files
   return m;    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /*************************free ma3x ************************/        begin-prev-date,...
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    open gnuplot file
 {    open html file
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   free((FREE_ARG)(m[nrl]+ncl-NR_END));     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   free((FREE_ARG)(m+nrl-NR_END));                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 }      freexexit2 possible for memory heap.
   
 /***************** f1dim *************************/    h Pij x                         | pij_nom  ficrestpij
 extern int ncom;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 extern double *pcom,*xicom;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 extern double (*nrfunc)(double []);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
    
 double f1dim(double x)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   int j;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   double f;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   double *xt;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
    
   xt=vector(1,ncom);    forecasting if prevfcast==1 prevforecast call prevalence()
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    health expectancies
   f=(*nrfunc)(xt);    Variance-covariance of DFLE
   free_vector(xt,1,ncom);    prevalence()
   return f;     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /*****************brent *************************/    total life expectancies
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Variance of period (stable) prevalence
 {   end
   int iter;  */
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;   
   double e=0.0;  #include <math.h>
    #include <stdio.h>
   a=(ax < cx ? ax : cx);  #include <stdlib.h>
   b=(ax > cx ? ax : cx);  #include <string.h>
   x=w=v=bx;  #include <unistd.h>
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  #include <limits.h>
     xm=0.5*(a+b);  #include <sys/types.h>
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #include <sys/stat.h>
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #include <errno.h>
     printf(".");fflush(stdout);  extern int errno;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #ifdef LINUX
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #include <time.h>
 #endif  #include "timeval.h"
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #else
       *xmin=x;  #include <sys/time.h>
       return fx;  #endif
     }  
     ftemp=fu;  #ifdef GSL
     if (fabs(e) > tol1) {  #include <gsl/gsl_errno.h>
       r=(x-w)*(fx-fv);  #include <gsl/gsl_multimin.h>
       q=(x-v)*(fx-fw);  #endif
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /* #include <libintl.h> */
       if (q > 0.0) p = -p;  /* #define _(String) gettext (String) */
       q=fabs(q);  
       etemp=e;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define GNUPLOTPROGRAM "gnuplot"
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       else {  #define FILENAMELENGTH 132
         d=p/q;  
         u=x+d;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
         if (u-a < tol2 || b-u < tol2)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
           d=SIGN(tol1,xm-x);  
       }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     } else {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  #define NINTERVMAX 8
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     fu=(*f)(u);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     if (fu <= fx) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       if (u >= x) a=x; else b=x;  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       SHFT(v,w,x,u)  #define MAXN 20000
         SHFT(fv,fw,fx,fu)  #define YEARM 12. /**< Number of months per year */
         } else {  #define AGESUP 130
           if (u < x) a=u; else b=u;  #define AGEBASE 40
           if (fu <= fw || w == x) {  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
             v=w;  #ifdef UNIX
             w=u;  #define DIRSEPARATOR '/'
             fv=fw;  #define CHARSEPARATOR "/"
             fw=fu;  #define ODIRSEPARATOR '\\'
           } else if (fu <= fv || v == x || v == w) {  #else
             v=u;  #define DIRSEPARATOR '\\'
             fv=fu;  #define CHARSEPARATOR "\\"
           }  #define ODIRSEPARATOR '/'
         }  #endif
   }  
   nrerror("Too many iterations in brent");  /* $Id$ */
   *xmin=x;  /* $State$ */
   return fx;  
 }  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   char fullversion[]="$Revision$ $Date$"; 
 /****************** mnbrak ***********************/  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
             double (*func)(double))  int nvar=0, nforce=0; /* Number of variables, number of forces */
 {  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   double ulim,u,r,q, dum;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   double fu;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
    int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   *fa=(*func)(*ax);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   *fb=(*func)(*bx);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   if (*fb > *fa) {  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     SHFT(dum,*ax,*bx,dum)  int cptcov=0; /* Working variable */
       SHFT(dum,*fb,*fa,dum)  int npar=NPARMAX;
       }  int nlstate=2; /* Number of live states */
   *cx=(*bx)+GOLD*(*bx-*ax);  int ndeath=1; /* Number of dead states */
   *fc=(*func)(*cx);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   while (*fb > *fc) {  int popbased=0;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  int *wav; /* Number of waves for this individuual 0 is possible */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int maxwav=0; /* Maxim number of waves */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     if ((*bx-u)*(u-*cx) > 0.0) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       fu=(*func)(u);                     to the likelihood and the sum of weights (done by funcone)*/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int mle=1, weightopt=0;
       fu=(*func)(u);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       if (fu < *fc) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
           SHFT(*fb,*fc,fu,(*func)(u))             * wave mi and wave mi+1 is not an exact multiple of stepm. */
           }  double jmean=1; /* Mean space between 2 waves */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double **matprod2(); /* test */
       u=ulim;  double **oldm, **newm, **savm; /* Working pointers to matrices */
       fu=(*func)(u);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     } else {  /*FILE *fic ; */ /* Used in readdata only */
       u=(*cx)+GOLD*(*cx-*bx);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       fu=(*func)(u);  FILE *ficlog, *ficrespow;
     }  int globpr=0; /* Global variable for printing or not */
     SHFT(*ax,*bx,*cx,u)  double fretone; /* Only one call to likelihood */
       SHFT(*fa,*fb,*fc,fu)  long ipmx=0; /* Number of contributions */
       }  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /*************** linmin ************************/  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 int ncom;  FILE *ficresprobmorprev;
 double *pcom,*xicom;  FILE *fichtm, *fichtmcov; /* Html File */
 double (*nrfunc)(double []);  FILE *ficreseij;
    char filerese[FILENAMELENGTH];
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  FILE *ficresstdeij;
 {  char fileresstde[FILENAMELENGTH];
   double brent(double ax, double bx, double cx,  FILE *ficrescveij;
                double (*f)(double), double tol, double *xmin);  char filerescve[FILENAMELENGTH];
   double f1dim(double x);  FILE  *ficresvij;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  char fileresv[FILENAMELENGTH];
               double *fc, double (*func)(double));  FILE  *ficresvpl;
   int j;  char fileresvpl[FILENAMELENGTH];
   double xx,xmin,bx,ax;  char title[MAXLINE];
   double fx,fb,fa;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   ncom=n;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   pcom=vector(1,n);  char command[FILENAMELENGTH];
   xicom=vector(1,n);  int  outcmd=0;
   nrfunc=func;  
   for (j=1;j<=n;j++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     pcom[j]=p[j];  
     xicom[j]=xi[j];  char filelog[FILENAMELENGTH]; /* Log file */
   }  char filerest[FILENAMELENGTH];
   ax=0.0;  char fileregp[FILENAMELENGTH];
   xx=1.0;  char popfile[FILENAMELENGTH];
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 #endif  struct timezone tzp;
   for (j=1;j<=n;j++) {  extern int gettimeofday();
     xi[j] *= xmin;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     p[j] += xi[j];  long time_value;
   }  extern long time();
   free_vector(xicom,1,n);  char strcurr[80], strfor[80];
   free_vector(pcom,1,n);  
 }  char *endptr;
   long lval;
 /*************** powell ************************/  double dval;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  #define NR_END 1
 {  #define FREE_ARG char*
   void linmin(double p[], double xi[], int n, double *fret,  #define FTOL 1.0e-10
               double (*func)(double []));  
   int i,ibig,j;  #define NRANSI 
   double del,t,*pt,*ptt,*xit;  #define ITMAX 200 
   double fp,fptt;  
   double *xits;  #define TOL 2.0e-4 
   pt=vector(1,n);  
   ptt=vector(1,n);  #define CGOLD 0.3819660 
   xit=vector(1,n);  #define ZEPS 1.0e-10 
   xits=vector(1,n);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  #define GOLD 1.618034 
   for (*iter=1;;++(*iter)) {  #define GLIMIT 100.0 
     fp=(*fret);  #define TINY 1.0e-20 
     ibig=0;  
     del=0.0;  static double maxarg1,maxarg2;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     for (i=1;i<=n;i++)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       printf(" %d %.12f",i, p[i]);    
     printf("\n");  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for (i=1;i<=n;i++) {  #define rint(a) floor(a+0.5)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  static double sqrarg;
 #ifdef DEBUG  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       printf("fret=%lf \n",*fret);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #endif  int agegomp= AGEGOMP;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  int imx; 
       if (fabs(fptt-(*fret)) > del) {  int stepm=1;
         del=fabs(fptt-(*fret));  /* Stepm, step in month: minimum step interpolation*/
         ibig=i;  
       }  int estepm;
 #ifdef DEBUG  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  int m,nb;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  long *num;
         printf(" x(%d)=%.12e",j,xit[j]);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       for(j=1;j<=n;j++)  double **pmmij, ***probs;
         printf(" p=%.12e",p[j]);  double *ageexmed,*agecens;
       printf("\n");  double dateintmean=0;
 #endif  
     }  double *weight;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int **s; /* Status */
 #ifdef DEBUG  double *agedc;
       int k[2],l;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       k[0]=1;                    * covar=matrix(0,NCOVMAX,1,n); 
       k[1]=-1;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       printf("Max: %.12e",(*func)(p));  double  idx; 
       for (j=1;j<=n;j++)  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         printf(" %.12e",p[j]);  int *Ndum; /** Freq of modality (tricode */
       printf("\n");  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       for(l=0;l<=1;l++) {  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         for (j=1;j<=n;j++) {  double *lsurv, *lpop, *tpop;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         }  double ftolhess; /**< Tolerance for computing hessian */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /**************** split *************************/
 #endif  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       free_vector(xit,1,n);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       free_vector(xits,1,n);    */ 
       free_vector(ptt,1,n);    char  *ss;                            /* pointer */
       free_vector(pt,1,n);    int   l1, l2;                         /* length counters */
       return;  
     }    l1 = strlen(path );                   /* length of path */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     for (j=1;j<=n;j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       ptt[j]=2.0*p[j]-pt[j];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       xit[j]=p[j]-pt[j];      strcpy( name, path );               /* we got the fullname name because no directory */
       pt[j]=p[j];      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     fptt=(*func)(ptt);      /* get current working directory */
     if (fptt < fp) {      /*    extern  char* getcwd ( char *buf , int len);*/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       if (t < 0.0) {        return( GLOCK_ERROR_GETCWD );
         linmin(p,xit,n,fret,func);      }
         for (j=1;j<=n;j++) {      /* got dirc from getcwd*/
           xi[j][ibig]=xi[j][n];      printf(" DIRC = %s \n",dirc);
           xi[j][n]=xit[j];    } else {                              /* strip direcotry from path */
         }      ss++;                               /* after this, the filename */
 #ifdef DEBUG      l2 = strlen( ss );                  /* length of filename */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         for(j=1;j<=n;j++)      strcpy( name, ss );         /* save file name */
           printf(" %.12e",xit[j]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         printf("\n");      dirc[l1-l2] = 0;                    /* add zero */
 #endif      printf(" DIRC2 = %s \n",dirc);
       }    }
     }    /* We add a separator at the end of dirc if not exists */
   }    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /**** Prevalence limit ****************/      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    }
 {    ss = strrchr( name, '.' );            /* find last / */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    if (ss >0){
      matrix by transitions matrix until convergence is reached */      ss++;
       strcpy(ext,ss);                     /* save extension */
   int i, ii,j,k;      l1= strlen( name);
   double min, max, maxmin, maxmax,sumnew=0.;      l2= strlen(ss)+1;
   double **matprod2();      strncpy( finame, name, l1-l2);
   double **out, cov[NCOVMAX], **pmij();      finame[l1-l2]= 0;
   double **newm;    }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
     return( 0 );                          /* we're done */
   for (ii=1;ii<=nlstate+ndeath;ii++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /******************************************/
   
    cov[1]=1.;  void replace_back_to_slash(char *s, char*t)
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int i;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    int lg=0;
     newm=savm;    i=0;
     /* Covariates have to be included here again */    lg=strlen(t);
      cov[2]=agefin;    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
       for (k=1; k<=cptcovn;k++) {      if (t[i]== '\\') s[i]='/';
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  }
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char *trimbb(char *out, char *in)
       for (k=1; k<=cptcovprod;k++)  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    char *s;
     s=out;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    while (*in != '\0'){
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        in++;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      }
       *out++ = *in++;
     savm=oldm;    }
     oldm=newm;    *out='\0';
     maxmax=0.;    return s;
     for(j=1;j<=nlstate;j++){  }
       min=1.;  
       max=0.;  char *cutl(char *blocc, char *alocc, char *in, char occ)
       for(i=1; i<=nlstate; i++) {  {
         sumnew=0;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         prlim[i][j]= newm[i][j]/(1-sumnew);       gives blocc="abcdef2ghi" and alocc="j".
         max=FMAX(max,prlim[i][j]);       If occ is not found blocc is null and alocc is equal to in. Returns blocc
         min=FMIN(min,prlim[i][j]);    */
       }    char *s, *t, *bl;
       maxmin=max-min;    t=in;s=in;
       maxmax=FMAX(maxmax,maxmin);    while ((*in != occ) && (*in != '\0')){
     }      *alocc++ = *in++;
     if(maxmax < ftolpl){    }
       return prlim;    if( *in == occ){
     }      *(alocc)='\0';
   }      s=++in;
 }    }
    
 /*************** transition probabilities ***************/    if (s == t) {/* occ not found */
       *(alocc-(in-s))='\0';
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      in=s;
 {    }
   double s1, s2;    while ( *in != '\0'){
   /*double t34;*/      *blocc++ = *in++;
   int i,j,j1, nc, ii, jj;    }
   
     for(i=1; i<= nlstate; i++){    *blocc='\0';
     for(j=1; j<i;j++){    return t;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         /*s2 += param[i][j][nc]*cov[nc];*/  char *cutv(char *blocc, char *alocc, char *in, char occ)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       ps[i][j]=s2;       gives blocc="abcdef2ghi" and alocc="j".
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     }    */
     for(j=i+1; j<=nlstate+ndeath;j++){    char *s, *t;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    t=in;s=in;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    while (*in != '\0'){
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      while( *in == occ){
       }        *blocc++ = *in++;
       ps[i][j]=s2;        s=in;
     }      }
   }      *blocc++ = *in++;
     /*ps[3][2]=1;*/    }
     if (s == t) /* occ not found */
   for(i=1; i<= nlstate; i++){      *(blocc-(in-s))='\0';
      s1=0;    else
     for(j=1; j<i; j++)      *(blocc-(in-s)-1)='\0';
       s1+=exp(ps[i][j]);    in=s;
     for(j=i+1; j<=nlstate+ndeath; j++)    while ( *in != '\0'){
       s1+=exp(ps[i][j]);      *alocc++ = *in++;
     ps[i][i]=1./(s1+1.);    }
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *alocc='\0';
     for(j=i+1; j<=nlstate+ndeath; j++)    return s;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  int nbocc(char *s, char occ)
   {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    int i,j=0;
     for(jj=1; jj<= nlstate+ndeath; jj++){    int lg=20;
       ps[ii][jj]=0;    i=0;
       ps[ii][ii]=1;    lg=strlen(s);
     }    for(i=0; i<= lg; i++) {
   }    if  (s[i] == occ ) j++;
     }
     return j;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /* void cutv(char *u,char *v, char*t, char occ) */
    }  /* { */
     printf("\n ");  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     printf("\n ");printf("%lf ",cov[2]);*/  /*      gives u="abcdef2ghi" and v="j" *\/ */
 /*  /*   int i,lg,j,p=0; */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*   i=0; */
   goto end;*/  /*   lg=strlen(t); */
     return ps;  /*   for(j=0; j<=lg-1; j++) { */
 }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
 /**************** Product of 2 matrices ******************/  
   /*   for(j=0; j<p; j++) { */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*     (u[j] = t[j]); */
 {  /*   } */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /*      u[p]='\0'; */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /*    for(j=0; j<= lg; j++) { */
      before: only the contents of out is modified. The function returns  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
      a pointer to pointers identical to out */  /*   } */
   long i, j, k;  /* } */
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  /********************** nrerror ********************/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  void nrerror(char error_text[])
   {
   return out;    fprintf(stderr,"ERREUR ...\n");
 }    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   }
 /************* Higher Matrix Product ***************/  /*********************** vector *******************/
   double *vector(int nl, int nh)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  {
 {    double *v;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      duration (i.e. until    if (!v) nrerror("allocation failure in vector");
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    return v-nl+NR_END;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  }
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /************************ free vector ******************/
      included manually here.  void free_vector(double*v, int nl, int nh)
   {
      */    free((FREE_ARG)(v+nl-NR_END));
   }
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /************************ivector *******************************/
   double **newm;  int *ivector(long nl,long nh)
   {
   /* Hstepm could be zero and should return the unit matrix */    int *v;
   for (i=1;i<=nlstate+ndeath;i++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!v) nrerror("allocation failure in ivector");
       oldm[i][j]=(i==j ? 1.0 : 0.0);    return v-nl+NR_END;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /******************free ivector **************************/
   for(h=1; h <=nhstepm; h++){  void free_ivector(int *v, long nl, long nh)
     for(d=1; d <=hstepm; d++){  {
       newm=savm;    free((FREE_ARG)(v+nl-NR_END));
       /* Covariates have to be included here again */  }
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /************************lvector *******************************/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  long *lvector(long nl,long nh)
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    long *v;
       for (k=1; k<=cptcovprod;k++)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /******************free lvector **************************/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  void free_lvector(long *v, long nl, long nh)
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  {
       savm=oldm;    free((FREE_ARG)(v+nl-NR_END));
       oldm=newm;  }
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /******************* imatrix *******************************/
       for(j=1;j<=nlstate+ndeath;j++) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         po[i][j][h]=newm[i][j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  { 
          */    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
   } /* end h */    
   return po;    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 /*************** log-likelihood *************/    m -= nrl; 
 double func( double *x)    
 {    
   int i, ii, j, k, mi, d, kk;    /* allocate rows and set pointers to them */ 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double **out;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double sw; /* Sum of weights */    m[nrl] += NR_END; 
   double lli; /* Individual log likelihood */    m[nrl] -= ncl; 
   long ipmx;    
   /*extern weight */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   /* We are differentiating ll according to initial status */    
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* return pointer to array of pointers to rows */ 
   /*for(i=1;i<imx;i++)    return m; 
     printf(" %d\n",s[4][i]);  } 
   */  
   cov[1]=1.;  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
   for(k=1; k<=nlstate; k++) ll[k]=0.;        int **m;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        long nch,ncl,nrh,nrl; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       /* free an int matrix allocated by imatrix() */ 
     for(mi=1; mi<= wav[i]-1; mi++){  { 
       for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG) (m+nrl-NR_END)); 
       for(d=0; d<dh[mi][i]; d++){  } 
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /******************* matrix *******************************/
         for (kk=1; kk<=cptcovage;kk++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
         }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
            double **m;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         savm=oldm;    if (!m) nrerror("allocation failure 1 in matrix()");
         oldm=newm;    m += NR_END;
            m -= nrl;
          
       } /* end mult */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
          if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    m[nrl] += NR_END;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    m[nrl] -= ncl;
       ipmx +=1;  
       sw += weight[i];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    return m;
     } /* end of wave */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   } /* end of individual */  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];     */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /*********** Maximum Likelihood Estimation ***************/    free((FREE_ARG)(m+nrl-NR_END));
   }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  /******************* ma3x *******************************/
   int i,j, iter;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double **xi,*delti;  {
   double fret;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   xi=matrix(1,npar,1,npar);    double ***m;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       xi[i][j]=(i==j ? 1.0 : 0.0);    if (!m) nrerror("allocation failure 1 in matrix()");
   printf("Powell\n");    m += NR_END;
   powell(p,xi,npar,ftol,&iter,&fret,func);    m -= nrl;
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /**** Computes Hessian and covariance matrix ***/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double  **a,**y,*x,pd;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double **hess;    m[nrl][ncl] += NR_END;
   int i, j,jk;    m[nrl][ncl] -= nll;
   int *indx;    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
   double hessii(double p[], double delta, int theta, double delti[]);    
   double hessij(double p[], double delti[], int i, int j);    for (i=nrl+1; i<=nrh; i++) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   hess=matrix(1,npar,1,npar);    }
     return m; 
   printf("\nCalculation of the hessian matrix. Wait...\n");    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   for (i=1;i<=npar;i++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     printf("%d",i);fflush(stdout);    */
     hess[i][i]=hessii(p,ftolhess,i,delti);  }
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  /*************************free ma3x ************************/
   }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
   for (i=1;i<=npar;i++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for (j=1;j<=npar;j++)  {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       if (j>i) {    free((FREE_ARG)(m+nrl-NR_END));
         printf(".%d%d",i,j);fflush(stdout);  }
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      /*************** function subdirf ***********/
         /*printf(" %lf ",hess[i][j]);*/  char *subdirf(char fileres[])
       }  {
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
   printf("\n");    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    return tmpout;
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  /*************** function subdirf2 ***********/
   x=vector(1,npar);  char *subdirf2(char fileres[], char *preop)
   indx=ivector(1,npar);  {
   for (i=1;i<=npar;i++)    
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    /* Caution optionfilefiname is hidden */
   ludcmp(a,npar,indx,&pd);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   for (j=1;j<=npar;j++) {    strcat(tmpout,preop);
     for (i=1;i<=npar;i++) x[i]=0;    strcat(tmpout,fileres);
     x[j]=1;    return tmpout;
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
   }  {
     
   printf("\n#Hessian matrix#\n");    /* Caution optionfilefiname is hidden */
   for (i=1;i<=npar;i++) {    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=npar;j++) {    strcat(tmpout,"/");
       printf("%.3e ",hess[i][j]);    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     printf("\n");    strcat(tmpout,fileres);
   }    return tmpout;
   }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /***************** f1dim *************************/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  extern int ncom; 
   ludcmp(a,npar,indx,&pd);  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
   /*  printf("\n#Hessian matrix recomputed#\n");   
   double f1dim(double x) 
   for (j=1;j<=npar;j++) {  { 
     for (i=1;i<=npar;i++) x[i]=0;    int j; 
     x[j]=1;    double f;
     lubksb(a,npar,indx,x);    double *xt; 
     for (i=1;i<=npar;i++){   
       y[i][j]=x[i];    xt=vector(1,ncom); 
       printf("%.3e ",y[i][j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
     printf("\n");    free_vector(xt,1,ncom); 
   }    return f; 
   */  } 
   
   free_matrix(a,1,npar,1,npar);  /*****************brent *************************/
   free_matrix(y,1,npar,1,npar);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   free_vector(x,1,npar);  { 
   free_ivector(indx,1,npar);    int iter; 
   free_matrix(hess,1,npar,1,npar);    double a,b,d,etemp;
     double fu,fv,fw,fx;
     double ftemp;
 }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
 /*************** hessian matrix ****************/   
 double hessii( double x[], double delta, int theta, double delti[])    a=(ax < cx ? ax : cx); 
 {    b=(ax > cx ? ax : cx); 
   int i;    x=w=v=bx; 
   int l=1, lmax=20;    fw=fv=fx=(*f)(x); 
   double k1,k2;    for (iter=1;iter<=ITMAX;iter++) { 
   double p2[NPARMAX+1];      xm=0.5*(a+b); 
   double res;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double fx;      printf(".");fflush(stdout);
   int k=0,kmax=10;      fprintf(ficlog,".");fflush(ficlog);
   double l1;  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   fx=func(x);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (i=1;i<=npar;i++) p2[i]=x[i];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for(l=0 ; l <=lmax; l++){  #endif
     l1=pow(10,l);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     delts=delt;        *xmin=x; 
     for(k=1 ; k <kmax; k=k+1){        return fx; 
       delt = delta*(l1*k);      } 
       p2[theta]=x[theta] +delt;      ftemp=fu;
       k1=func(p2)-fx;      if (fabs(e) > tol1) { 
       p2[theta]=x[theta]-delt;        r=(x-w)*(fx-fv); 
       k2=func(p2)-fx;        q=(x-v)*(fx-fw); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        p=(x-v)*q-(x-w)*r; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        q=2.0*(q-r); 
              if (q > 0.0) p = -p; 
 #ifdef DEBUG        q=fabs(q); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        etemp=e; 
 #endif        e=d; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         k=kmax;        else { 
       }          d=p/q; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          u=x+d; 
         k=kmax; l=lmax*10.;          if (u-a < tol2 || b-u < tol2) 
       }            d=SIGN(tol1,xm-x); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        } 
         delts=delt;      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   delti[theta]=delts;      fu=(*f)(u); 
   return res;      if (fu <= fx) { 
          if (u >= x) a=x; else b=x; 
 }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 double hessij( double x[], double delti[], int thetai,int thetaj)          } else { 
 {            if (u < x) a=u; else b=u; 
   int i;            if (fu <= fw || w == x) { 
   int l=1, l1, lmax=20;              v=w; 
   double k1,k2,k3,k4,res,fx;              w=u; 
   double p2[NPARMAX+1];              fv=fw; 
   int k;              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
   fx=func(x);              v=u; 
   for (k=1; k<=2; k++) {              fv=fu; 
     for (i=1;i<=npar;i++) p2[i]=x[i];            } 
     p2[thetai]=x[thetai]+delti[thetai]/k;          } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    } 
     k1=func(p2)-fx;    nrerror("Too many iterations in brent"); 
      *xmin=x; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    return fx; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  } 
     k2=func(p2)-fx;  
    /****************** mnbrak ***********************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     k3=func(p2)-fx;              double (*func)(double)) 
    { 
     p2[thetai]=x[thetai]-delti[thetai]/k;    double ulim,u,r,q, dum;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double fu; 
     k4=func(p2)-fx;   
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    *fa=(*func)(*ax); 
 #ifdef DEBUG    *fb=(*func)(*bx); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    if (*fb > *fa) { 
 #endif      SHFT(dum,*ax,*bx,dum) 
   }        SHFT(dum,*fb,*fa,dum) 
   return res;        } 
 }    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 /************** Inverse of matrix **************/    while (*fb > *fc) { 
 void ludcmp(double **a, int n, int *indx, double *d)      r=(*bx-*ax)*(*fb-*fc); 
 {      q=(*bx-*cx)*(*fb-*fa); 
   int i,imax,j,k;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double big,dum,sum,temp;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double *vv;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
        if ((*bx-u)*(u-*cx) > 0.0) { 
   vv=vector(1,n);        fu=(*func)(u); 
   *d=1.0;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for (i=1;i<=n;i++) {        fu=(*func)(u); 
     big=0.0;        if (fu < *fc) { 
     for (j=1;j<=n;j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       if ((temp=fabs(a[i][j])) > big) big=temp;            SHFT(*fb,*fc,fu,(*func)(u)) 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            } 
     vv[i]=1.0/big;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   }        u=ulim; 
   for (j=1;j<=n;j++) {        fu=(*func)(u); 
     for (i=1;i<j;i++) {      } else { 
       sum=a[i][j];        u=(*cx)+GOLD*(*cx-*bx); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        fu=(*func)(u); 
       a[i][j]=sum;      } 
     }      SHFT(*ax,*bx,*cx,u) 
     big=0.0;        SHFT(*fa,*fb,*fc,fu) 
     for (i=j;i<=n;i++) {        } 
       sum=a[i][j];  } 
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /*************** linmin ************************/
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  int ncom; 
         big=dum;  double *pcom,*xicom;
         imax=i;  double (*nrfunc)(double []); 
       }   
     }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     if (j != imax) {  { 
       for (k=1;k<=n;k++) {    double brent(double ax, double bx, double cx, 
         dum=a[imax][k];                 double (*f)(double), double tol, double *xmin); 
         a[imax][k]=a[j][k];    double f1dim(double x); 
         a[j][k]=dum;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       }                double *fc, double (*func)(double)); 
       *d = -(*d);    int j; 
       vv[imax]=vv[j];    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
     indx[j]=imax;   
     if (a[j][j] == 0.0) a[j][j]=TINY;    ncom=n; 
     if (j != n) {    pcom=vector(1,n); 
       dum=1.0/(a[j][j]);    xicom=vector(1,n); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    nrfunc=func; 
     }    for (j=1;j<=n;j++) { 
   }      pcom[j]=p[j]; 
   free_vector(vv,1,n);  /* Doesn't work */      xicom[j]=xi[j]; 
 ;    } 
 }    ax=0.0; 
     xx=1.0; 
 void lubksb(double **a, int n, int *indx, double b[])    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   int i,ii=0,ip,j;  #ifdef DEBUG
   double sum;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=n;i++) {  #endif
     ip=indx[i];    for (j=1;j<=n;j++) { 
     sum=b[ip];      xi[j] *= xmin; 
     b[ip]=b[i];      p[j] += xi[j]; 
     if (ii)    } 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    free_vector(xicom,1,n); 
     else if (sum) ii=i;    free_vector(pcom,1,n); 
     b[i]=sum;  } 
   }  
   for (i=n;i>=1;i--) {  char *asc_diff_time(long time_sec, char ascdiff[])
     sum=b[i];  {
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    long sec_left, days, hours, minutes;
     b[i]=sum/a[i][i];    days = (time_sec) / (60*60*24);
   }    sec_left = (time_sec) % (60*60*24);
 }    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
 /************ Frequencies ********************/    minutes = (sec_left) /60;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    sec_left = (sec_left) % (60);
 {  /* Some frequencies */    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
      return ascdiff;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp;  /*************** powell ************************/
   double pos, k2, dateintsum=0,k2cpt=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   FILE *ficresp;              double (*func)(double [])) 
   char fileresp[FILENAMELENGTH];  { 
      void linmin(double p[], double xi[], int n, double *fret, 
   pp=vector(1,nlstate);                double (*func)(double [])); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i,ibig,j; 
   strcpy(fileresp,"p");    double del,t,*pt,*ptt,*xit;
   strcat(fileresp,fileres);    double fp,fptt;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double *xits;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    int niterf, itmp;
     exit(0);  
   }    pt=vector(1,n); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    ptt=vector(1,n); 
   j1=0;    xit=vector(1,n); 
      xits=vector(1,n); 
   j=cptcoveff;    *fret=(*func)(p); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (j=1;j<=n;j++) pt[j]=p[j]; 
      for (*iter=1;;++(*iter)) { 
   for(k1=1; k1<=j;k1++){      fp=(*fret); 
     for(i1=1; i1<=ncodemax[k1];i1++){      ibig=0; 
       j1++;      del=0.0; 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      last_time=curr_time;
         scanf("%d", i);*/      (void) gettimeofday(&curr_time,&tzp);
       for (i=-1; i<=nlstate+ndeath; i++)        printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         for (jk=-1; jk<=nlstate+ndeath; jk++)        fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
           for(m=agemin; m <= agemax+3; m++)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
             freq[i][jk][m]=0;     for (i=1;i<=n;i++) {
              printf(" %d %.12f",i, p[i]);
       dateintsum=0;        fprintf(ficlog," %d %.12lf",i, p[i]);
       k2cpt=0;        fprintf(ficrespow," %.12lf", p[i]);
       for (i=1; i<=imx; i++) {      }
         bool=1;      printf("\n");
         if  (cptcovn>0) {      fprintf(ficlog,"\n");
           for (z1=1; z1<=cptcoveff; z1++)      fprintf(ficrespow,"\n");fflush(ficrespow);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      if(*iter <=3){
               bool=0;        tm = *localtime(&curr_time.tv_sec);
         }        strcpy(strcurr,asctime(&tm));
         if (bool==1) {  /*       asctime_r(&tm,strcurr); */
           for(m=firstpass; m<=lastpass; m++){        forecast_time=curr_time; 
             k2=anint[m][i]+(mint[m][i]/12.);        itmp = strlen(strcurr);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          strcurr[itmp-1]='\0';
               if(agev[m][i]==1) agev[m][i]=agemax+2;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
               if (m<lastpass) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(niterf=10;niterf<=30;niterf+=10){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
               }          tmf = *localtime(&forecast_time.tv_sec);
                /*      asctime_r(&tmf,strfor); */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          strcpy(strfor,asctime(&tmf));
                 dateintsum=dateintsum+k2;          itmp = strlen(strfor);
                 k2cpt++;          if(strfor[itmp-1]=='\n')
               }          strfor[itmp-1]='\0';
             }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }        }
       }      }
              for (i=1;i<=n;i++) { 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
       if  (cptcovn>0) {  #ifdef DEBUG
         fprintf(ficresp, "\n#********** Variable ");        printf("fret=%lf \n",*fret);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficlog,"fret=%lf \n",*fret);
         fprintf(ficresp, "**********\n#");  #endif
       }        printf("%d",i);fflush(stdout);
       for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%d",i);fflush(ficlog);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        linmin(p,xit,n,fret,func); 
       fprintf(ficresp, "\n");        if (fabs(fptt-(*fret)) > del) { 
                del=fabs(fptt-(*fret)); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ibig=i; 
         if(i==(int)agemax+3)        } 
           printf("Total");  #ifdef DEBUG
         else        printf("%d %.12e",i,(*fret));
           printf("Age %d", i);        fprintf(ficlog,"%d %.12e",i,(*fret));
         for(jk=1; jk <=nlstate ; jk++){        for (j=1;j<=n;j++) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
             pp[jk] += freq[jk][m][i];          printf(" x(%d)=%.12e",j,xit[j]);
         }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pos=0; m <=0 ; m++)        for(j=1;j<=n;j++) {
             pos += freq[jk][m][i];          printf(" p=%.12e",p[j]);
           if(pp[jk]>=1.e-10)          fprintf(ficlog," p=%.12e",p[j]);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
           else        printf("\n");
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        fprintf(ficlog,"\n");
         }  #endif
       } 
         for(jk=1; jk <=nlstate ; jk++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  #ifdef DEBUG
             pp[jk] += freq[jk][m][i];        int k[2],l;
         }        k[0]=1;
         k[1]=-1;
         for(jk=1,pos=0; jk <=nlstate ; jk++)        printf("Max: %.12e",(*func)(p));
           pos += pp[jk];        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for(jk=1; jk <=nlstate ; jk++){        for (j=1;j<=n;j++) {
           if(pos>=1.e-5)          printf(" %.12e",p[j]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          fprintf(ficlog," %.12e",p[j]);
           else        }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        printf("\n");
           if( i <= (int) agemax){        fprintf(ficlog,"\n");
             if(pos>=1.e-5){        for(l=0;l<=1;l++) {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for (j=1;j<=n;j++) {
               probs[i][jk][j1]= pp[jk]/pos;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             else          }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }        }
          #endif
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        free_vector(xit,1,n); 
         if(i <= (int) agemax)        free_vector(xits,1,n); 
           fprintf(ficresp,"\n");        free_vector(ptt,1,n); 
         printf("\n");        free_vector(pt,1,n); 
       }        return; 
     }      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   dateintmean=dateintsum/k2cpt;      for (j=1;j<=n;j++) { 
          ptt[j]=2.0*p[j]-pt[j]; 
   fclose(ficresp);        xit[j]=p[j]-pt[j]; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        pt[j]=p[j]; 
   free_vector(pp,1,nlstate);      } 
        fptt=(*func)(ptt); 
   /* End of Freq */      if (fptt < fp) { 
 }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 /************ Prevalence ********************/          linmin(p,xit,n,fret,func); 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for (j=1;j<=n;j++) { 
 {  /* Some frequencies */            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          }
   double ***freq; /* Frequencies */  #ifdef DEBUG
   double *pp;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double pos, k2;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   pp=vector(1,nlstate);            printf(" %.12e",xit[j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficlog," %.12e",xit[j]);
            }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          printf("\n");
   j1=0;          fprintf(ficlog,"\n");
    #endif
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      } 
      } 
  for(k1=1; k1<=j;k1++){  } 
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /**** Prevalence limit (stable or period prevalence)  ****************/
    
       for (i=-1; i<=nlstate+ndeath; i++)    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         for (jk=-1; jk<=nlstate+ndeath; jk++)    {
           for(m=agemin; m <= agemax+3; m++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             freq[i][jk][m]=0;       matrix by transitions matrix until convergence is reached */
        
       for (i=1; i<=imx; i++) {    int i, ii,j,k;
         bool=1;    double min, max, maxmin, maxmax,sumnew=0.;
         if  (cptcovn>0) {    /* double **matprod2(); */ /* test */
           for (z1=1; z1<=cptcoveff; z1++)    double **out, cov[NCOVMAX+1], **pmij();
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **newm;
               bool=0;    double agefin, delaymax=50 ; /* Max number of years to converge */
         }  
         if (bool==1) {    for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=firstpass; m<=lastpass; m++){      for (j=1;j<=nlstate+ndeath;j++){
             k2=anint[m][i]+(mint[m][i]/12.);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      }
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;     cov[1]=1.;
               if (m<lastpass)   
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               else    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      newm=savm;
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      /* Covariates have to be included here again */
             }      cov[2]=agefin;
           }      
         }      for (k=1; k<=cptcovn;k++) {
       }        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for(i=(int)agemin; i <= (int)agemax+3; i++){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
           for(jk=1; jk <=nlstate ; jk++){      }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
               pp[jk] += freq[jk][m][i];      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
           }      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
           for(jk=1; jk <=nlstate ; jk++){      
             for(m=-1, pos=0; m <=0 ; m++)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
             pos += freq[jk][m][i];      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
              /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
          for(jk=1; jk <=nlstate ; jk++){      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
              pp[jk] += freq[jk][m][i];      
          }      savm=oldm;
                oldm=newm;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      maxmax=0.;
       for(j=1;j<=nlstate;j++){
          for(jk=1; jk <=nlstate ; jk++){                  min=1.;
            if( i <= (int) agemax){        max=0.;
              if(pos>=1.e-5){        for(i=1; i<=nlstate; i++) {
                probs[i][jk][j1]= pp[jk]/pos;          sumnew=0;
              }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            }          prlim[i][j]= newm[i][j]/(1-sumnew);
          }          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
                    max=FMAX(max,prlim[i][j]);
         }          min=FMIN(min,prlim[i][j]);
     }        }
   }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
        }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      if(maxmax < ftolpl){
   free_vector(pp,1,nlstate);        return prlim;
        }
 }  /* End of Freq */    }
   }
 /************* Waves Concatenation ***************/  
   /*************** transition probabilities ***************/ 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  {
      Death is a valid wave (if date is known).    /* According to parameters values stored in x and the covariate's values stored in cov,
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       computes the probability to be observed in state j being in state i by appying the
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]       model to the ncovmodel covariates (including constant and age).
      and mw[mi+1][i]. dh depends on stepm.       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
      */       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        ncth covariate in the global vector x is given by the formula:
   int i, mi, m;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      double sum=0., jmean=0.;*/       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   int j, k=0,jk, ju, jl;       Outputs ps[i][j] the probability to be observed in j being in j according to
   double sum=0.;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   jmin=1e+5;    */
   jmax=-1;    double s1, lnpijopii;
   jmean=0.;    /*double t34;*/
   for(i=1; i<=imx; i++){    int i,j,j1, nc, ii, jj;
     mi=0;  
     m=firstpass;      for(i=1; i<= nlstate; i++){
     while(s[m][i] <= nlstate){        for(j=1; j<i;j++){
       if(s[m][i]>=1)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         mw[++mi][i]=m;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
       if(m >=lastpass)            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         break;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       else          }
         m++;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     }/* end while */  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     if (s[m][i] > nlstate){        }
       mi++;     /* Death is another wave */        for(j=i+1; j<=nlstate+ndeath;j++){
       /* if(mi==0)  never been interviewed correctly before death */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
          /* Only death is a correct wave */            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
       mw[mi][i]=m;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     }  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
     wav[i]=mi;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     if(mi==0)        }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      }
   }      
       for(i=1; i<= nlstate; i++){
   for(i=1; i<=imx; i++){        s1=0;
     for(mi=1; mi<wav[i];mi++){        for(j=1; j<i; j++){
       if (stepm <=0)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         dh[mi][i]=1;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       else{        }
         if (s[mw[mi+1][i]][i] > nlstate) {        for(j=i+1; j<=nlstate+ndeath; j++){
           if (agedc[i] < 2*AGESUP) {          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           if(j==0) j=1;  /* Survives at least one month after exam */        }
           k=k+1;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
           if (j >= jmax) jmax=j;        ps[i][i]=1./(s1+1.);
           if (j <= jmin) jmin=j;        /* Computing other pijs */
           sum=sum+j;        for(j=1; j<i; j++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          ps[i][j]= exp(ps[i][j])*ps[i][i];
           }        for(j=i+1; j<=nlstate+ndeath; j++)
         }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         else{        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      } /* end i */
           k=k+1;      
           if (j >= jmax) jmax=j;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           else if (j <= jmin)jmin=j;        for(jj=1; jj<= nlstate+ndeath; jj++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          ps[ii][jj]=0;
           sum=sum+j;          ps[ii][ii]=1;
         }        }
         jk= j/stepm;      }
         jl= j -jk*stepm;      
         ju= j -(jk+1)*stepm;      
         if(jl <= -ju)      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
           dh[mi][i]=jk;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         else      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
           dh[mi][i]=jk+1;      /*   } */
         if(dh[mi][i]==0)      /*   printf("\n "); */
           dh[mi][i]=1; /* At least one step */      /* } */
       }      /* printf("\n ");printf("%lf ",cov[2]);*/
     }      /*
   }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   jmean=sum/k;        goto end;*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      return ps;
  }  }
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  /**************** Product of 2 matrices ******************/
 {  
   int Ndum[20],ij=1, k, j, i;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   int cptcode=0;  {
   cptcoveff=0;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (k=0; k<19; k++) Ndum[k]=0;    /* in, b, out are matrice of pointers which should have been initialized 
   for (k=1; k<=7; k++) ncodemax[k]=0;       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int i, j, k;
     for (i=1; i<=imx; i++) {    for(i=nrl; i<= nrh; i++)
       ij=(int)(covar[Tvar[j]][i]);      for(k=ncolol; k<=ncoloh; k++){
       Ndum[ij]++;        out[i][k]=0.;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for(j=ncl; j<=nch; j++)
       if (ij > cptcode) cptcode=ij;          out[i][k] +=in[i][j]*b[j][k];
     }      }
     return out;
     for (i=0; i<=cptcode; i++) {  }
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  
     ij=1;  /************* Higher Matrix Product ***************/
   
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for (i=1; i<=ncodemax[j]; i++) {  {
       for (k=0; k<=19; k++) {    /* Computes the transition matrix starting at age 'age' over 
         if (Ndum[k] != 0) {       'nhstepm*hstepm*stepm' months (i.e. until
           nbcode[Tvar[j]][ij]=k;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                 nhstepm*hstepm matrices. 
           ij++;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         }       (typically every 2 years instead of every month which is too big 
         if (ij > ncodemax[j]) break;       for the memory).
       }         Model is determined by parameters x and covariates have to be 
     }       included manually here. 
   }    
        */
  for (k=0; k<19; k++) Ndum[k]=0;  
     int i, j, d, h, k;
  for (i=1; i<=ncovmodel-2; i++) {    double **out, cov[NCOVMAX+1];
       ij=Tvar[i];    double **newm;
       Ndum[ij]++;  
     }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
  ij=1;      for (j=1;j<=nlstate+ndeath;j++){
  for (i=1; i<=10; i++) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
    if((Ndum[i]!=0) && (i<=ncovcol)){        po[i][j][0]=(i==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;      }
      ij++;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
    }    for(h=1; h <=nhstepm; h++){
  }      for(d=1; d <=hstepm; d++){
          newm=savm;
     cptcoveff=ij-1;        /* Covariates have to be included here again */
 }        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 /*********** Health Expectancies ****************/        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   /* Health expectancies */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;  
   double ***p3mat,***varhe;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double **dnewm,**doldm;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double *xp;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double **gp, **gm;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***gradg, ***trgradg;        savm=oldm;
   int theta;        oldm=newm;
       }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      for(i=1; i<=nlstate+ndeath; i++)
   xp=vector(1,npar);        for(j=1;j<=nlstate+ndeath;j++) {
   dnewm=matrix(1,nlstate*2,1,npar);          po[i][j][h]=newm[i][j];
   doldm=matrix(1,nlstate*2,1,nlstate*2);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
          }
   fprintf(ficreseij,"# Health expectancies\n");      /*printf("h=%d ",h);*/
   fprintf(ficreseij,"# Age");    } /* end h */
   for(i=1; i<=nlstate;i++)  /*     printf("\n H=%d \n",h); */
     for(j=1; j<=nlstate;j++)    return po;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  }
   fprintf(ficreseij,"\n");  
   
   if(estepm < stepm){  /*************** log-likelihood *************/
     printf ("Problem %d lower than %d\n",estepm, stepm);  double func( double *x)
   }  {
   else  hstepm=estepm;      int i, ii, j, k, mi, d, kk;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
    * This is mainly to measure the difference between two models: for example    double **out;
    * if stepm=24 months pijx are given only every 2 years and by summing them    double sw; /* Sum of weights */
    * we are calculating an estimate of the Life Expectancy assuming a linear    double lli; /* Individual log likelihood */
    * progression inbetween and thus overestimating or underestimating according    int s1, s2;
    * to the curvature of the survival function. If, for the same date, we    double bbh, survp;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    long ipmx;
    * to compare the new estimate of Life expectancy with the same linear    /*extern weight */
    * hypothesis. A more precise result, taking into account a more precise    /* We are differentiating ll according to initial status */
    * curvature will be obtained if estepm is as small as stepm. */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   /* For example we decided to compute the life expectancy with the smallest unit */      printf(" %d\n",s[4][i]);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    */
      nhstepm is the number of hstepm from age to agelim    cov[1]=1.;
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    for(k=1; k<=nlstate; k++) ll[k]=0.;
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    if(mle==1){
      survival function given by stepm (the optimization length). Unfortunately it      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      means that if the survival funtion is printed only each two years of age and if        /* Computes the values of the ncovmodel covariates of the model
      you sum them up and add 1 year (area under the trapezoids) you won't get the same           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
      results. So we changed our mind and took the option of the best precision.           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   */           to be observed in j being in i according to the model.
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */         */
         for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   agelim=AGESUP;          cov[2+k]=covar[Tvar[k]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     /* nhstepm age range expressed in number of stepm */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */           has been calculated etc */
     /* if (stepm >= YEARM) hstepm=1;*/        for(mi=1; mi<= wav[i]-1; mi++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          for (ii=1;ii<=nlstate+ndeath;ii++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (j=1;j<=nlstate+ndeath;j++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=matrix(0,nhstepm,1,nlstate*2);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate*2);            }
           for(d=0; d<dh[mi][i]; d++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            newm=savm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* Computing Variances of health expectancies */            savm=oldm;
             oldm=newm;
      for(theta=1; theta <=npar; theta++){          } /* end mult */
       for(i=1; i<=npar; i++){        
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias at large stepm.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);             * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
       cptj=0;           * the nearest (and in case of equal distance, to the lowest) interval but now
       for(j=1; j<= nlstate; j++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for(i=1; i<=nlstate; i++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           cptj=cptj+1;           * probability in order to take into account the bias as a fraction of the way
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;           * -stepm/2 to stepm/2 .
           }           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
       }           */
                s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       for(i=1; i<=npar; i++)          bbh=(double)bh[mi][i]/(double)stepm; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          /* bias bh is positive if real duration
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);             * is higher than the multiple of stepm and negative otherwise.
                 */
       cptj=0;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(j=1; j<= nlstate; j++){          if( s2 > nlstate){ 
         for(i=1;i<=nlstate;i++){            /* i.e. if s2 is a death state and if the date of death is known 
           cptj=cptj+1;               then the contribution to the likelihood is the probability to 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){               die between last step unit time and current  step unit time, 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;               which is also equal to probability to die before dh 
           }               minus probability to die before dh-stepm . 
         }               In version up to 0.92 likelihood was computed
       }          as if date of death was unknown. Death was treated as any other
                health state: the date of the interview describes the actual state
              and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
       for(j=1; j<= nlstate*2; j++)          (healthy, disable or death) and IMaCh was corrected; but when we
         for(h=0; h<=nhstepm-1; h++){          introduced the exact date of death then we should have modified
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          the contribution of an exact death to the likelihood. This new
         }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
      }          and month of death but the probability to survive from last
              interview up to one month before death multiplied by the
 /* End theta */          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
      for(h=0; h<=nhstepm-1; h++)          lower mortality.
       for(j=1; j<=nlstate*2;j++)            */
         for(theta=1; theta <=npar; theta++)            lli=log(out[s1][s2] - savm[s1][s2]);
         trgradg[h][j][theta]=gradg[h][theta][j];  
   
           } else if  (s2==-2) {
      for(i=1;i<=nlstate*2;i++)            for (j=1,survp=0. ; j<=nlstate; j++) 
       for(j=1;j<=nlstate*2;j++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         varhe[i][j][(int)age] =0.;            /*survp += out[s1][j]; */
             lli= log(survp);
     for(h=0;h<=nhstepm-1;h++){          }
       for(k=0;k<=nhstepm-1;k++){          
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          else if  (s2==-4) { 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);            for (j=3,survp=0. ; j<=nlstate; j++)  
         for(i=1;i<=nlstate*2;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for(j=1;j<=nlstate*2;j++)            lli= log(survp); 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          } 
       }  
     }          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
                    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* Computing expectancies */            lli= log(survp); 
     for(i=1; i<=nlstate;i++)          } 
       for(j=1; j<=nlstate;j++)          
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          else{
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                      /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     fprintf(ficreseij,"%3.0f",age );          ipmx +=1;
     cptj=0;          sw += weight[i];
     for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++){        } /* end of wave */
         cptj++;      } /* end of individual */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficreseij,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
     free_matrix(gm,0,nhstepm,1,nlstate*2);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_matrix(gp,0,nhstepm,1,nlstate*2);            for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   }          for(d=0; d<=dh[mi][i]; d++){
   free_vector(xp,1,npar);            newm=savm;
   free_matrix(dnewm,1,nlstate*2,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            for (kk=1; kk<=cptcovage;kk++) {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Variance ******************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)            savm=oldm;
 {            oldm=newm;
   /* Variance of health expectancies */          } /* end mult */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   double **newm;          s1=s[mw[mi][i]][i];
   double **dnewm,**doldm;          s2=s[mw[mi+1][i]][i];
   int i, j, nhstepm, hstepm, h, nstepm ;          bbh=(double)bh[mi][i]/(double)stepm; 
   int k, cptcode;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double *xp;          ipmx +=1;
   double **gp, **gm;          sw += weight[i];
   double ***gradg, ***trgradg;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***p3mat;        } /* end of wave */
   double age,agelim, hf;      } /* end of individual */
   int theta;    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresvij,"# Age");        for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvij,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   xp=vector(1,npar);          for(d=0; d<dh[mi][i]; d++){
   dnewm=matrix(1,nlstate,1,npar);            newm=savm;
   doldm=matrix(1,nlstate,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   if(estepm < stepm){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   else  hstepm=estepm;                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* For example we decided to compute the life expectancy with the smallest unit */            savm=oldm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            oldm=newm;
      nhstepm is the number of hstepm from age to agelim          } /* end mult */
      nstepm is the number of stepm from age to agelin.        
      Look at hpijx to understand the reason of that which relies in memory size          s1=s[mw[mi][i]][i];
      and note for a fixed period like k years */          s2=s[mw[mi+1][i]][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          bbh=(double)bh[mi][i]/(double)stepm; 
      survival function given by stepm (the optimization length). Unfortunately it          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      means that if the survival funtion is printed only each two years of age and if          ipmx +=1;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          sw += weight[i];
      results. So we changed our mind and took the option of the best precision.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   */        } /* end of wave */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      } /* end of individual */
   agelim = AGESUP;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for(mi=1; mi<= wav[i]-1; mi++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (ii=1;ii<=nlstate+ndeath;ii++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     gp=matrix(0,nhstepm,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(theta=1; theta <=npar; theta++){          for(d=0; d<dh[mi][i]; d++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            newm=savm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
           
       if (popbased==1) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           prlim[i][i]=probs[(int)age][i][ij];            savm=oldm;
       }            oldm=newm;
            } /* end mult */
       for(j=1; j<= nlstate; j++){        
         for(h=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
       }          }else{
                lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ipmx +=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            sw += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if (popbased==1) {        } /* end of wave */
         for(i=1; i<=nlstate;i++)      } /* end of individual */
           prlim[i][i]=probs[(int)age][i][ij];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<= nlstate; j++){        for(mi=1; mi<= wav[i]-1; mi++){
         for(h=0; h<=nhstepm; h++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
           for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<= nlstate; j++)            newm=savm;
         for(h=0; h<=nhstepm; h++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     } /* End theta */            }
           
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(h=0; h<=nhstepm; h++)            savm=oldm;
       for(j=1; j<=nlstate;j++)            oldm=newm;
         for(theta=1; theta <=npar; theta++)          } /* end mult */
           trgradg[h][j][theta]=gradg[h][theta][j];        
           s1=s[mw[mi][i]][i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          s2=s[mw[mi+1][i]][i];
     for(i=1;i<=nlstate;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1;j<=nlstate;j++)          ipmx +=1;
         vareij[i][j][(int)age] =0.;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(h=0;h<=nhstepm;h++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(k=0;k<=nhstepm;k++){        } /* end of wave */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      } /* end of individual */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    } /* End of if */
         for(i=1;i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           for(j=1;j<=nlstate;j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    return -l;
     }  }
   
     fprintf(ficresvij,"%.0f ",age );  /*************** log-likelihood *************/
     for(i=1; i<=nlstate;i++)  double funcone( double *x)
       for(j=1; j<=nlstate;j++){  {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    /* Same as likeli but slower because of a lot of printf and if */
       }    int i, ii, j, k, mi, d, kk;
     fprintf(ficresvij,"\n");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     free_matrix(gp,0,nhstepm,1,nlstate);    double **out;
     free_matrix(gm,0,nhstepm,1,nlstate);    double lli; /* Individual log likelihood */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double llt;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int s1, s2;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double bbh, survp;
   } /* End age */    /*extern weight */
      /* We are differentiating ll according to initial status */
   free_vector(xp,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_matrix(doldm,1,nlstate,1,npar);    /*for(i=1;i<imx;i++) 
   free_matrix(dnewm,1,nlstate,1,nlstate);      printf(" %d\n",s[4][i]);
     */
 }    cov[1]=1.;
   
 /************ Variance of prevlim ******************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Variance of prevalence limit */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(mi=1; mi<= wav[i]-1; mi++){
   double **newm;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double **dnewm,**doldm;          for (j=1;j<=nlstate+ndeath;j++){
   int i, j, nhstepm, hstepm;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k, cptcode;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;          }
   double *gp, *gm;        for(d=0; d<dh[mi][i]; d++){
   double **gradg, **trgradg;          newm=savm;
   double age,agelim;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int theta;          for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          }
   fprintf(ficresvpl,"# Age");          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   for(i=1; i<=nlstate;i++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresvpl," %1d-%1d",i,i);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresvpl,"\n");          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   xp=vector(1,npar);          savm=oldm;
   dnewm=matrix(1,nlstate,1,npar);          oldm=newm;
   doldm=matrix(1,nlstate,1,nlstate);        } /* end mult */
          
   hstepm=1*YEARM; /* Every year of age */        s1=s[mw[mi][i]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        s2=s[mw[mi+1][i]][i];
   agelim = AGESUP;        bbh=(double)bh[mi][i]/(double)stepm; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /* bias is positive if real duration
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         * is higher than the multiple of stepm and negative otherwise.
     if (stepm >= YEARM) hstepm=1;         */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     gradg=matrix(1,npar,1,nlstate);          lli=log(out[s1][s2] - savm[s1][s2]);
     gp=vector(1,nlstate);        } else if  (s2==-2) {
     gm=vector(1,nlstate);          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(theta=1; theta <=npar; theta++){          lli= log(survp);
       for(i=1; i<=npar; i++){ /* Computes gradient */        }else if (mle==1){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }        } else if(mle==2){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(i=1;i<=nlstate;i++)        } else if(mle==3){  /* exponential inter-extrapolation */
         gp[i] = prlim[i][i];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(i=1; i<=npar; i++) /* Computes gradient */          lli=log(out[s1][s2]); /* Original formula */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } else{  /* mle=0 back to 1 */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(i=1;i<=nlstate;i++)          /*lli=log(out[s1][s2]); */ /* Original formula */
         gm[i] = prlim[i][i];        } /* End of if */
         ipmx +=1;
       for(i=1;i<=nlstate;i++)        sw += weight[i];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     } /* End theta */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     trgradg =matrix(1,nlstate,1,npar);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
     for(j=1; j<=nlstate;j++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(theta=1; theta <=npar; theta++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         trgradg[j][theta]=gradg[theta][j];          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     for(i=1;i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       varpl[i][(int)age] =0.;          }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          fprintf(ficresilk," %10.6f\n", -llt);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)      } /* end of wave */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     fprintf(ficresvpl,"%.0f ",age );    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(i=1; i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    if(globpr==0){ /* First time we count the contributions and weights */
     fprintf(ficresvpl,"\n");      gipmx=ipmx;
     free_vector(gp,1,nlstate);      gsw=sw;
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    return -l;
     free_matrix(trgradg,1,nlstate,1,npar);  }
   } /* End age */  
   
   free_vector(xp,1,npar);  /*************** function likelione ***********/
   free_matrix(doldm,1,nlstate,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_matrix(dnewm,1,nlstate,1,nlstate);  {
     /* This routine should help understanding what is done with 
 }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 /************ Variance of one-step probabilities  ******************/       Plotting could be done.
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)     */
 {    int k;
   int i, j, i1, k1, j1, z1;  
   int k=0, cptcode;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **dnewm,**doldm;      strcpy(fileresilk,"ilk"); 
   double *xp;      strcat(fileresilk,fileres);
   double *gp, *gm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double **gradg, **trgradg;        printf("Problem with resultfile: %s\n", fileresilk);
   double age,agelim, cov[NCOVMAX];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int theta;      }
   char fileresprob[FILENAMELENGTH];      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   strcpy(fileresprob,"prob");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   strcat(fileresprob,fileres);      for(k=1; k<=nlstate; k++) 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     printf("Problem with resultfile: %s\n", fileresprob);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
      *fretone=(*funcone)(p);
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    if(*globpri !=0){
   fprintf(ficresprob,"# Age");      fclose(ficresilk);
   for(i=1; i<=nlstate;i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for(j=1; j<=(nlstate+ndeath);j++)      fflush(fichtm); 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    } 
     return;
   }
   fprintf(ficresprob,"\n");  
   
   /*********** Maximum Likelihood Estimation ***************/
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  {
      int i,j, iter;
   cov[1]=1;    double **xi;
   j=cptcoveff;    double fret;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double fretone; /* Only one call to likelihood */
   j1=0;    /*  char filerespow[FILENAMELENGTH];*/
   for(k1=1; k1<=1;k1++){    xi=matrix(1,npar,1,npar);
     for(i1=1; i1<=ncodemax[k1];i1++){    for (i=1;i<=npar;i++)
     j1++;      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     if  (cptcovn>0) {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       fprintf(ficresprob, "\n#********** Variable ");    strcpy(filerespow,"pow"); 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    strcat(filerespow,fileres);
       fprintf(ficresprob, "**********\n#");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", filerespow);
          fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for (age=bage; age<=fage; age ++){    }
         cov[2]=age;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         for (k=1; k<=cptcovn;k++) {    for (i=1;i<=nlstate;i++)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      for(j=1;j<=nlstate+ndeath;j++)
                  if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         }    fprintf(ficrespow,"\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)    powell(p,xi,npar,ftol,&iter,&fret,func);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
            free_matrix(xi,1,npar,1,npar);
         gradg=matrix(1,npar,1,9);    fclose(ficrespow);
         trgradg=matrix(1,9,1,npar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      
         for(theta=1; theta <=npar; theta++){  }
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  /**** Computes Hessian and covariance matrix ***/
            void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  {
              double  **a,**y,*x,pd;
           k=0;    double **hess;
           for(i=1; i<= (nlstate+ndeath); i++){    int i, j,jk;
             for(j=1; j<=(nlstate+ndeath);j++){    int *indx;
               k=k+1;  
               gp[k]=pmmij[i][j];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
             }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           }    void lubksb(double **a, int npar, int *indx, double b[]) ;
              void ludcmp(double **a, int npar, int *indx, double *d) ;
           for(i=1; i<=npar; i++)    double gompertz(double p[]);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    hess=matrix(1,npar,1,npar);
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    printf("\nCalculation of the hessian matrix. Wait...\n");
           k=0;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           for(i=1; i<=(nlstate+ndeath); i++){    for (i=1;i<=npar;i++){
             for(j=1; j<=(nlstate+ndeath);j++){      printf("%d",i);fflush(stdout);
               k=k+1;      fprintf(ficlog,"%d",i);fflush(ficlog);
               gm[k]=pmmij[i][j];     
             }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           }      
            /*  printf(" %f ",p[i]);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      }
         }    
     for (i=1;i<=npar;i++) {
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      for (j=1;j<=npar;j++)  {
           for(theta=1; theta <=npar; theta++)        if (j>i) { 
             trgradg[j][theta]=gradg[theta][j];          printf(".%d%d",i,j);fflush(stdout);
                  fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          hess[i][j]=hessij(p,delti,i,j,func,npar);
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          
                  hess[j][i]=hess[i][j];    
         pmij(pmmij,cov,ncovmodel,x,nlstate);          /*printf(" %lf ",hess[i][j]);*/
                }
         k=0;      }
         for(i=1; i<=(nlstate+ndeath); i++){    }
           for(j=1; j<=(nlstate+ndeath);j++){    printf("\n");
             k=k+1;    fprintf(ficlog,"\n");
             gm[k]=pmmij[i][j];  
           }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
          
      /*printf("\n%d ",(int)age);    a=matrix(1,npar,1,npar);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    y=matrix(1,npar,1,npar);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    x=vector(1,npar);
      }*/    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
         fprintf(ficresprob,"\n%d ",(int)age);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)  
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
     }      lubksb(a,npar,indx,x);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<=npar;i++){ 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        matcov[i][j]=x[i];
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    }
   }  
   free_vector(xp,1,npar);    printf("\n#Hessian matrix#\n");
   fclose(ficresprob);    fprintf(ficlog,"\n#Hessian matrix#\n");
      for (i=1;i<=npar;i++) { 
 }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
 /******************* Printing html file ***********/        fprintf(ficlog,"%.3e ",hess[i][j]);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      }
  int lastpass, int stepm, int weightopt, char model[],\      printf("\n");
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \      fprintf(ficlog,"\n");
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    }
  char version[], int popforecast, int estepm ){  
   int jj1, k1, i1, cpt;    /* Recompute Inverse */
   FILE *fichtm;    for (i=1;i<=npar;i++)
   /*char optionfilehtm[FILENAMELENGTH];*/      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");    /*  printf("\n#Hessian matrix recomputed#\n");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    for (j=1;j<=npar;j++) {
   }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      lubksb(a,npar,indx,x);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for (i=1;i<=npar;i++){ 
 \n        y[i][j]=x[i];
 Total number of observations=%d <br>\n        printf("%.3e ",y[i][j]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        fprintf(ficlog,"%.3e ",y[i][j]);
 <hr  size=\"2\" color=\"#EC5E5E\">      }
  <ul><li>Outputs files<br>\n      printf("\n");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      fprintf(ficlog,"\n");
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    free_matrix(a,1,npar,1,npar);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
  fprintf(fichtm,"\n    free_ivector(indx,1,npar);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    free_matrix(hess,1,npar,1,npar);
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  }
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
   /*************** hessian matrix ****************/
  if(popforecast==1) fprintf(fichtm,"\n  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  {
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    int i;
         <br>",fileres,fileres,fileres,fileres);    int l=1, lmax=20;
  else    double k1,k2;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    double p2[MAXPARM+1]; /* identical to x */
 fprintf(fichtm," <li>Graphs</li><p>");    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
  m=cptcoveff;    double fx;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int k=0,kmax=10;
     double l1;
  jj1=0;  
  for(k1=1; k1<=m;k1++){    fx=func(x);
    for(i1=1; i1<=ncodemax[k1];i1++){    for (i=1;i<=npar;i++) p2[i]=x[i];
        jj1++;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
        if (cptcovn > 0) {      l1=pow(10,l);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      delts=delt;
          for (cpt=1; cpt<=cptcoveff;cpt++)      for(k=1 ; k <kmax; k=k+1){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        delt = delta*(l1*k);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        p2[theta]=x[theta] +delt;
        }        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        p2[theta]=x[theta]-delt;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            k2=func(p2)-fx;
        for(cpt=1; cpt<nlstate;cpt++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        
        }  #ifdef DEBUGHESS
     for(cpt=1; cpt<=nlstate;cpt++) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 interval) in state (%d): v%s%d%d.gif <br>  #endif
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
      for(cpt=1; cpt<=nlstate;cpt++) {          k=kmax;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      }          k=kmax; l=lmax*10.;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        }
 health expectancies in states (1) and (2): e%s%d.gif<br>        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          delts=delt;
 fprintf(fichtm,"\n</body>");        }
    }      }
    }    }
 fclose(fichtm);    delti[theta]=delts;
 }    return res; 
     
 /******************* Gnuplot file **************/  }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  {
     int i;
   strcpy(optionfilegnuplot,optionfilefiname);    int l=1, l1, lmax=20;
   strcat(optionfilegnuplot,".gp.txt");    double k1,k2,k3,k4,res,fx;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    double p2[MAXPARM+1];
     printf("Problem with file %s",optionfilegnuplot);    int k;
   }  
     fx=func(x);
 #ifdef windows    for (k=1; k<=2; k++) {
     fprintf(ficgp,"cd \"%s\" \n",pathc);      for (i=1;i<=npar;i++) p2[i]=x[i];
 #endif      p2[thetai]=x[thetai]+delti[thetai]/k;
 m=pow(2,cptcoveff);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
  /* 1eme*/    
   for (cpt=1; cpt<= nlstate ; cpt ++) {      p2[thetai]=x[thetai]+delti[thetai]/k;
    for (k1=1; k1<= m ; k1 ++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    
       p2[thetai]=x[thetai]-delti[thetai]/k;
 for (i=1; i<= nlstate ; i ++) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      k3=func(p2)-fx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for (i=1; i<= nlstate ; i ++) {      k4=func(p2)-fx;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  #ifdef DEBUG
 }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      for (i=1; i<= nlstate ; i ++) {  #endif
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    return res;
 }    }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
   /************** Inverse of matrix **************/
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void ludcmp(double **a, int n, int *indx, double *d) 
    }  { 
   }    int i,imax,j,k; 
   /*2 eme*/    double big,dum,sum,temp; 
     double *vv; 
   for (k1=1; k1<= m ; k1 ++) {   
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    vv=vector(1,n); 
        *d=1.0; 
     for (i=1; i<= nlstate+1 ; i ++) {    for (i=1;i<=n;i++) { 
       k=2*i;      big=0.0; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for (j=1;j<=n;j++) 
       for (j=1; j<= nlstate+1 ; j ++) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      vv[i]=1.0/big; 
 }      } 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    for (j=1;j<=n;j++) { 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for (i=1;i<j;i++) { 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        sum=a[i][j]; 
       for (j=1; j<= nlstate+1 ; j ++) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        a[i][j]=sum; 
         else fprintf(ficgp," \%%*lf (\%%*lf)");      } 
 }        big=0.0; 
       fprintf(ficgp,"\" t\"\" w l 0,");      for (i=j;i<=n;i++) { 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        sum=a[i][j]; 
       for (j=1; j<= nlstate+1 ; j ++) {        for (k=1;k<j;k++) 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          sum -= a[i][k]*a[k][j]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        a[i][j]=sum; 
 }          if ( (dum=vv[i]*fabs(sum)) >= big) { 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          big=dum; 
       else fprintf(ficgp,"\" t\"\" w l 0,");          imax=i; 
     }        } 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      } 
   }      if (j != imax) { 
          for (k=1;k<=n;k++) { 
   /*3eme*/          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
   for (k1=1; k1<= m ; k1 ++) {          a[j][k]=dum; 
     for (cpt=1; cpt<= nlstate ; cpt ++) {        } 
       k=2+nlstate*(2*cpt-2);        *d = -(*d); 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        vv[imax]=vv[j]; 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      } 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      indx[j]=imax; 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      if (a[j][j] == 0.0) a[j][j]=TINY; 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      if (j != n) { 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        dum=1.0/(a[j][j]); 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
 */    } 
       for (i=1; i< nlstate ; i ++) {    free_vector(vv,1,n);  /* Doesn't work */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  ;
   } 
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void lubksb(double **a, int n, int *indx, double b[]) 
     }  { 
     }    int i,ii=0,ip,j; 
      double sum; 
   /* CV preval stat */   
     for (k1=1; k1<= m ; k1 ++) {    for (i=1;i<=n;i++) { 
     for (cpt=1; cpt<nlstate ; cpt ++) {      ip=indx[i]; 
       k=3;      sum=b[ip]; 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      b[ip]=b[i]; 
       if (ii) 
       for (i=1; i< nlstate ; i ++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficgp,"+$%d",k+i+1);      else if (sum) ii=i; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      b[i]=sum; 
          } 
       l=3+(nlstate+ndeath)*cpt;    for (i=n;i>=1;i--) { 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      sum=b[i]; 
       for (i=1; i< nlstate ; i ++) {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         l=3+(nlstate+ndeath)*cpt;      b[i]=sum/a[i][i]; 
         fprintf(ficgp,"+$%d",l+i+1);    } 
       }  } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void pstamp(FILE *fichier)
     }  {
   }      fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
    }
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){  /************ Frequencies ********************/
     for(k=1; k <=(nlstate+ndeath); k++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       if (k != i) {  {  /* Some frequencies */
         for(j=1; j <=ncovmodel; j++){    
            int i, m, jk, k1,i1, j1, bool, z1,j;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    int first;
           jk++;    double ***freq; /* Frequencies */
           fprintf(ficgp,"\n");    double *pp, **prop;
         }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       }    char fileresp[FILENAMELENGTH];
     }    
     }    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     for(jk=1; jk <=m; jk++) {    strcpy(fileresp,"p");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    strcat(fileresp,fileres);
    i=1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
    for(k2=1; k2<=nlstate; k2++) {      printf("Problem with prevalence resultfile: %s\n", fileresp);
      k3=i;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
      for(k=1; k<=(nlstate+ndeath); k++) {      exit(0);
        if (k != k2){    }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 ij=1;    j1=0;
         for(j=3; j <=ncovmodel; j++) {    
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    j=cptcoveff;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             ij++;  
           }    first=1;
           else  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
         }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
           fprintf(ficgp,")/(1");    /*    j1++;
          */
         for(k1=1; k1 <=nlstate; k1++){      for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 ij=1;          scanf("%d", i);*/
           for(j=3; j <=ncovmodel; j++){        for (i=-5; i<=nlstate+ndeath; i++)  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            for(m=iagemin; m <= iagemax+3; m++)
             ij++;              freq[i][jk][m]=0;
           }        
           else        for (i=1; i<=nlstate; i++)  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(m=iagemin; m <= iagemax+3; m++)
           }            prop[i][m]=0;
           fprintf(ficgp,")");        
         }        dateintsum=0;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        k2cpt=0;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for (i=1; i<=imx; i++) {
         i=i+ncovmodel;          bool=1;
        }          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
      }            for (z1=1; z1<=cptcoveff; z1++)       
    }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
    }                bool=0;
                    /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   fclose(ficgp);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 }  /* end gnuplot */                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                 /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
               } 
 /*************** Moving average **************/          }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){   
           if (bool==1){
   int i, cpt, cptcod;            for(m=firstpass; m<=lastpass; m++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              k2=anint[m][i]+(mint[m][i]/12.);
       for (i=1; i<=nlstate;i++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           mobaverage[(int)agedeb][i][cptcod]=0.;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                if (m<lastpass) {
       for (i=1; i<=nlstate;i++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           for (cpt=0;cpt<=4;cpt++){                }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                
           }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                  dateintsum=dateintsum+k2;
         }                  k2cpt++;
       }                }
     }                /*}*/
                }
 }          }
         } /* end i */
          
 /************** Forecasting ******************/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        pstamp(ficresp);
          if  (cptcovn>0) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficresp, "\n#********** Variable "); 
   int *popage;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficresp, "**********\n#");
   double *popeffectif,*popcount;          fprintf(ficlog, "\n#********** Variable "); 
   double ***p3mat;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char fileresf[FILENAMELENGTH];          fprintf(ficlog, "**********\n#");
         }
  agelim=AGESUP;        for(i=1; i<=nlstate;i++) 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        
          for(i=iagemin; i <= iagemax+3; i++){
            if(i==iagemax+3){
   strcpy(fileresf,"f");            fprintf(ficlog,"Total");
   strcat(fileresf,fileres);          }else{
   if((ficresf=fopen(fileresf,"w"))==NULL) {            if(first==1){
     printf("Problem with forecast resultfile: %s\n", fileresf);              first=0;
   }              printf("See log file for details...\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);            }
             fprintf(ficlog,"Age %d", i);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }
           for(jk=1; jk <=nlstate ; jk++){
   if (mobilav==1) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              pp[jk] += freq[jk][m][i]; 
     movingaverage(agedeb, fage, ageminpar, mobaverage);          }
   }          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;              pos += freq[jk][m][i];
   if (stepm<=12) stepsize=1;            if(pp[jk]>=1.e-10){
                if(first==1){
   agelim=AGESUP;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }
   hstepm=1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   hstepm=hstepm/stepm;            }else{
   yp1=modf(dateintmean,&yp);              if(first==1)
   anprojmean=yp;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   yp2=modf((yp1*12),&yp);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   mprojmean=yp;            }
   yp1=modf((yp2*30.5),&yp);          }
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;          for(jk=1; jk <=nlstate ; jk++){
   if(mprojmean==0) jprojmean=1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                pp[jk] += freq[jk][m][i];
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          }       
            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   for(cptcov=1;cptcov<=i2;cptcov++){            pos += pp[jk];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            posprop += prop[jk][i];
       k=k+1;          }
       fprintf(ficresf,"\n#******");          for(jk=1; jk <=nlstate ; jk++){
       for(j=1;j<=cptcoveff;j++) {            if(pos>=1.e-5){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficresf,"******\n");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficresf,"# StartingAge FinalAge");            }else{
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              if(first==1)
                      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            }
         fprintf(ficresf,"\n");            if( i <= iagemax){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                /*probs[i][jk][j1]= pp[jk]/pos;*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           nhstepm = nhstepm/hstepm;              }
                        else
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
                  
           for (h=0; h<=nhstepm; h++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
             if (h==(int) (calagedate+YEARM*cpt)) {            for(m=-1; m <=nlstate+ndeath; m++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              if(freq[jk][m][i] !=0 ) {
             }              if(first==1)
             for(j=1; j<=nlstate+ndeath;j++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               kk1=0.;kk2=0;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               for(i=1; i<=nlstate;i++) {                            }
                 if (mobilav==1)          if(i <= iagemax)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            fprintf(ficresp,"\n");
                 else {          if(first==1)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            printf("Others in log...\n");
                 }          fprintf(ficlog,"\n");
                        }
               }        /*}*/
               if (h==(int)(calagedate+12*cpt)){    }
                 fprintf(ficresf," %.3f", kk1);    dateintmean=dateintsum/k2cpt; 
                           
               }    fclose(ficresp);
             }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           }    free_vector(pp,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         }    /* End of Freq */
       }  }
     }  
   }  /************ Prevalence ********************/
          void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fclose(ficresf);       in each health status at the date of interview (if between dateprev1 and dateprev2).
 }       We still use firstpass and lastpass as another selection.
 /************** Forecasting ******************/    */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   
      int i, m, jk, k1, i1, j1, bool, z1,j;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double ***freq; /* Frequencies */
   int *popage;    double *pp, **prop;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double pos,posprop; 
   double *popeffectif,*popcount;    double  y2; /* in fractional years */
   double ***p3mat,***tabpop,***tabpopprev;    int iagemin, iagemax;
   char filerespop[FILENAMELENGTH];    int first; /** to stop verbosity which is redirected to log file */
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    iagemin= (int) agemin;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    iagemax= (int) agemax;
   agelim=AGESUP;    /*pp=vector(1,nlstate);*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    j1=0;
      
      /*j=cptcoveff;*/
   strcpy(filerespop,"pop");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   strcat(filerespop,fileres);    
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    first=1;
     printf("Problem with forecast resultfile: %s\n", filerespop);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   }      /*for(i1=1; i1<=ncodemax[k1];i1++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);        j1++;*/
         
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   if (mobilav==1) {            prop[i][m]=0.0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
           if  (cptcovn>0) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for (z1=1; z1<=cptcoveff; z1++) 
   if (stepm<=12) stepsize=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   agelim=AGESUP;          } 
            if (bool==1) { 
   hstepm=1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   hstepm=hstepm/stepm;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if (popforecast==1) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     if((ficpop=fopen(popfile,"r"))==NULL) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       printf("Problem with population file : %s\n",popfile);exit(0);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     popage=ivector(0,AGESUP);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     popeffectif=vector(0,AGESUP);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     popcount=vector(0,AGESUP);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                    } 
     i=1;                }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            } /* end selection of waves */
              }
     imx=i;        }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(i=iagemin; i <= iagemax+3; i++){  
   }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   for(cptcov=1;cptcov<=i2;cptcov++){          } 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          
       k=k+1;          for(jk=1; jk <=nlstate ; jk++){     
       fprintf(ficrespop,"\n#******");            if( i <=  iagemax){ 
       for(j=1;j<=cptcoveff;j++) {              if(posprop>=1.e-5){ 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                probs[i][jk][j1]= prop[jk][i]/posprop;
       }              } else{
       fprintf(ficrespop,"******\n");                if(first==1){
       fprintf(ficrespop,"# Age");                  first=0;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
       if (popforecast==1)  fprintf(ficrespop," [Population]");                }
                    }
       for (cpt=0; cpt<=0;cpt++) {            } 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }/* end jk */ 
                }/* end i */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /*} *//* end i1 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    } /* end j1 */
           nhstepm = nhstepm/hstepm;    
              /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*free_vector(pp,1,nlstate);*/
           oldm=oldms;savm=savms;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    }  /* End of prevalence */
          
           for (h=0; h<=nhstepm; h++){  /************* Waves Concatenation ***************/
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             }  {
             for(j=1; j<=nlstate+ndeath;j++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               kk1=0.;kk2=0;       Death is a valid wave (if date is known).
               for(i=1; i<=nlstate;i++) {                     mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                 if (mobilav==1)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       and mw[mi+1][i]. dh depends on stepm.
                 else {       */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    int i, mi, m;
               }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               if (h==(int)(calagedate+12*cpt)){       double sum=0., jmean=0.;*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    int first;
                   /*fprintf(ficrespop," %.3f", kk1);    int j, k=0,jk, ju, jl;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    double sum=0.;
               }    first=0;
             }    jmin=1e+5;
             for(i=1; i<=nlstate;i++){    jmax=-1;
               kk1=0.;    jmean=0.;
                 for(j=1; j<=nlstate;j++){    for(i=1; i<=imx; i++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      mi=0;
                 }      m=firstpass;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      while(s[m][i] <= nlstate){
             }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        if(m >=lastpass)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          break;
           }        else
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          m++;
         }      }/* end while */
       }      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   /******/        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        mw[mi][i]=m;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      wav[i]=mi;
           nhstepm = nhstepm/hstepm;      if(mi==0){
                  nbwarn++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(first==0){
           oldm=oldms;savm=savms;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            first=1;
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {        if(first==1){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {      } /* end mi==0 */
               kk1=0.;kk2=0;    } /* End individuals */
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        for(i=1; i<=imx; i++){
               }      for(mi=1; mi<wav[i];mi++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        if (stepm <=0)
             }          dh[mi][i]=1;
           }        else{
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         }            if (agedc[i] < 2*AGESUP) {
       }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    }              if(j==0) j=1;  /* Survives at least one month after exam */
   }              else if(j<0){
                  nberr++;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
   if (popforecast==1) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_ivector(popage,0,AGESUP);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(popeffectif,0,AGESUP);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_vector(popcount,0,AGESUP);              }
   }              k=k+1;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if (j >= jmax){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                jmax=j;
   fclose(ficrespop);                ijmax=i;
 }              }
               if (j <= jmin){
 /***********************************************/                jmin=j;
 /**************** Main Program *****************/                ijmin=i;
 /***********************************************/              }
               sum=sum+j;
 int main(int argc, char *argv[])              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          }
   double agedeb, agefin,hf;          else{
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   double fret;  
   double **xi,tmp,delta;            k=k+1;
             if (j >= jmax) {
   double dum; /* Dummy variable */              jmax=j;
   double ***p3mat;              ijmax=i;
   int *indx;            }
   char line[MAXLINE], linepar[MAXLINE];            else if (j <= jmin){
   char title[MAXLINE];              jmin=j;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];              ijmin=i;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            }
              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   char filerest[FILENAMELENGTH];              nberr++;
   char fileregp[FILENAMELENGTH];              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char popfile[FILENAMELENGTH];              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            }
   int firstobs=1, lastobs=10;            sum=sum+j;
   int sdeb, sfin; /* Status at beginning and end */          }
   int c,  h , cpt,l;          jk= j/stepm;
   int ju,jl, mi;          jl= j -jk*stepm;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          ju= j -(jk+1)*stepm;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   int mobilav=0,popforecast=0;            if(jl==0){
   int hstepm, nhstepm;              dh[mi][i]=jk;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   double bage, fage, age, agelim, agebase;                    * to avoid the price of an extra matrix product in likelihood */
   double ftolpl=FTOL;              dh[mi][i]=jk+1;
   double **prlim;              bh[mi][i]=ju;
   double *severity;            }
   double ***param; /* Matrix of parameters */          }else{
   double  *p;            if(jl <= -ju){
   double **matcov; /* Matrix of covariance */              dh[mi][i]=jk;
   double ***delti3; /* Scale */              bh[mi][i]=jl;       /* bias is positive if real duration
   double *delti; /* Scale */                                   * is higher than the multiple of stepm and negative otherwise.
   double ***eij, ***vareij;                                   */
   double **varpl; /* Variances of prevalence limits by age */            }
   double *epj, vepp;            else{
   double kk1, kk2;              dh[mi][i]=jk+1;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;              bh[mi][i]=ju;
              }
             if(dh[mi][i]==0){
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";              dh[mi][i]=1; /* At least one step */
   char *alph[]={"a","a","b","c","d","e"}, str[4];              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   char z[1]="c", occ;          } /* end if mle */
 #include <sys/time.h>        }
 #include <time.h>      } /* end wave */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    }
      jmean=sum/k;
   /* long total_usecs;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   struct timeval start_time, end_time;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   printf("\n%s",version);  {
   if(argc <=1){    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     printf("\nEnter the parameter file name: ");    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     scanf("%s",pathtot);    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
   }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   else{    /* nbcode[Tvar[j]][1]= 
     strcpy(pathtot,argv[1]);    */
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   /*cygwin_split_path(pathtot,path,optionfile);    int modmaxcovj=0; /* Modality max of covariates j */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int cptcode=0; /* Modality max of covariates j */
   /* cutv(path,optionfile,pathtot,'\\');*/    int modmincovj=0; /* Modality min of covariates j */
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    cptcoveff=0; 
   chdir(path);   
   replace(pathc,path);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 /*-------- arguments in the command line --------*/  
     /* Loop on covariates without age and products */
   strcpy(fileres,"r");    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
   strcat(fileres, optionfilefiname);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
   strcat(fileres,".txt");    /* Other files have txt extension */                                 modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   /*---------arguments file --------*/                                      * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     printf("Problem with optionfile %s\n",optionfile);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     goto end;                                        modality of the nth covariate of individual i. */
   }        if (ij > modmaxcovj)
           modmaxcovj=ij; 
   strcpy(filereso,"o");        else if (ij < modmincovj) 
   strcat(filereso,fileres);          modmincovj=ij; 
   if((ficparo=fopen(filereso,"w"))==NULL) {        if ((ij < -1) && (ij > NCOVMAX)){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   }          exit(1);
         }else
   /* Reads comments: lines beginning with '#' */        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   while((c=getc(ficpar))=='#' && c!= EOF){        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     ungetc(c,ficpar);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     fgets(line, MAXLINE, ficpar);        /* getting the maximum value of the modality of the covariate
     puts(line);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     fputs(line,ficparo);           female is 1, then modmaxcovj=1.*/
   }      }
   ungetc(c,ficpar);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       cptcode=modmaxcovj;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);     /*for (i=0; i<=cptcode; i++) {*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 while((c=getc(ficpar))=='#' && c!= EOF){        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     ungetc(c,ficpar);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     fgets(line, MAXLINE, ficpar);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     puts(line);        }
     fputs(line,ficparo);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   }           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   ungetc(c,ficpar);      } /* Ndum[-1] number of undefined modalities */
    
          /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   covar=matrix(0,NCOVMAX,1,n);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
   cptcovn=0;      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;         modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
   ncovmodel=2+cptcovn;         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */         variables V1_1 and V1_2.
           nbcode[Tvar[j]][ij]=k;
   /* Read guess parameters */         nbcode[Tvar[j]][1]=0;
   /* Reads comments: lines beginning with '#' */         nbcode[Tvar[j]][2]=1;
   while((c=getc(ficpar))=='#' && c!= EOF){         nbcode[Tvar[j]][3]=2;
     ungetc(c,ficpar);      */
     fgets(line, MAXLINE, ficpar);      ij=1; /* ij is similar to i but can jumps over null modalities */
     puts(line);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
     fputs(line,ficparo);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   }          /*recode from 0 */
   ungetc(c,ficpar);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
              nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                                       k is a modality. If we have model=V1+V1*sex 
     for(i=1; i <=nlstate; i++)                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     for(j=1; j <=nlstate+ndeath-1; j++){            ij++;
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }
       fprintf(ficparo,"%1d%1d",i1,j1);          if (ij > ncodemax[j]) break; 
       printf("%1d%1d",i,j);        }  /* end of loop on */
       for(k=1; k<=ncovmodel;k++){      } /* end of loop on modality */ 
         fscanf(ficpar," %lf",&param[i][j][k]);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         printf(" %lf",param[i][j][k]);    
         fprintf(ficparo," %lf",param[i][j][k]);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
       }    
       fscanf(ficpar,"\n");    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       printf("\n");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       fprintf(ficparo,"\n");     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
     }     Ndum[ij]++; 
     } 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
    ij=1;
   p=param[1][1];   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   /* Reads comments: lines beginning with '#' */     if((Ndum[i]!=0) && (i<=ncovcol)){
   while((c=getc(ficpar))=='#' && c!= EOF){       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     ungetc(c,ficpar);       Tvaraff[ij]=i; /*For printing (unclear) */
     fgets(line, MAXLINE, ficpar);       ij++;
     puts(line);     }else
     fputs(line,ficparo);         Tvaraff[ij]=0;
   }   }
   ungetc(c,ficpar);   ij--;
    cptcoveff=ij; /*Number of total covariates*/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  }
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /*********** Health Expectancies ****************/
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  {
         printf(" %le",delti3[i][j][k]);    /* Health expectancies, no variances */
         fprintf(ficparo," %le",delti3[i][j][k]);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       }    int nhstepma, nstepma; /* Decreasing with age */
       fscanf(ficpar,"\n");    double age, agelim, hf;
       printf("\n");    double ***p3mat;
       fprintf(ficparo,"\n");    double eip;
     }  
   }    pstamp(ficreseij);
   delti=delti3[1][1];    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      fprintf(ficreseij,"# Age");
   /* Reads comments: lines beginning with '#' */    for(i=1; i<=nlstate;i++){
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);        fprintf(ficreseij," e%1d%1d ",i,j);
     fgets(line, MAXLINE, ficpar);      }
     puts(line);      fprintf(ficreseij," e%1d. ",i);
     fputs(line,ficparo);    }
   }    fprintf(ficreseij,"\n");
   ungetc(c,ficpar);  
      
   matcov=matrix(1,npar,1,npar);    if(estepm < stepm){
   for(i=1; i <=npar; i++){      printf ("Problem %d lower than %d\n",estepm, stepm);
     fscanf(ficpar,"%s",&str);    }
     printf("%s",str);    else  hstepm=estepm;   
     fprintf(ficparo,"%s",str);    /* We compute the life expectancy from trapezoids spaced every estepm months
     for(j=1; j <=i; j++){     * This is mainly to measure the difference between two models: for example
       fscanf(ficpar," %le",&matcov[i][j]);     * if stepm=24 months pijx are given only every 2 years and by summing them
       printf(" %.5le",matcov[i][j]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficparo," %.5le",matcov[i][j]);     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
     fscanf(ficpar,"\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     printf("\n");     * to compare the new estimate of Life expectancy with the same linear 
     fprintf(ficparo,"\n");     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)    /* For example we decided to compute the life expectancy with the smallest unit */
       matcov[i][j]=matcov[j][i];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
   printf("\n");       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /*-------- Rewriting paramater file ----------*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      strcpy(rfileres,"r");    /* "Rparameterfile */       survival function given by stepm (the optimization length). Unfortunately it
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/       means that if the survival funtion is printed only each two years of age and if
      strcat(rfileres,".");    /* */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */       results. So we changed our mind and took the option of the best precision.
     if((ficres =fopen(rfileres,"w"))==NULL) {    */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }  
     fprintf(ficres,"#%s\n",version);    agelim=AGESUP;
        /* If stepm=6 months */
     /*-------- data file ----------*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     if((fic=fopen(datafile,"r"))==NULL)    {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       printf("Problem with datafile: %s\n", datafile);goto end;      
     }  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     n= lastobs;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     severity = vector(1,maxwav);    /* if (stepm >= YEARM) hstepm=1;*/
     outcome=imatrix(1,maxwav+1,1,n);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     num=ivector(1,n);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     moisnais=vector(1,n);  
     annais=vector(1,n);    for (age=bage; age<=fage; age ++){ 
     moisdc=vector(1,n);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     andc=vector(1,n);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     agedc=vector(1,n);      /* if (stepm >= YEARM) hstepm=1;*/
     cod=ivector(1,n);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      /* If stepm=6 months */
     mint=matrix(1,maxwav,1,n);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     anint=matrix(1,maxwav,1,n);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     s=imatrix(1,maxwav+1,1,n);      
     adl=imatrix(1,maxwav+1,1,n);          hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     tab=ivector(1,NCOVMAX);      
     ncodemax=ivector(1,8);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
     i=1;      printf("%d|",(int)age);fflush(stdout);
     while (fgets(line, MAXLINE, fic) != NULL)    {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       if ((i >= firstobs) && (i <=lastobs)) {      
              /* Computing expectancies */
         for (j=maxwav;j>=1;j--){      for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        for(j=1; j<=nlstate;j++)
           strcpy(line,stra);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            
         }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
       fprintf(ficreseij,"%3.0f",age );
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1; i<=nlstate;i++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        eip=0;
         for(j=1; j<=nlstate;j++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          eip +=eij[i][j][(int)age];
         for (j=ncovcol;j>=1;j--){          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
         }        fprintf(ficreseij,"%9.4f", eip );
         num[i]=atol(stra);      }
              fprintf(ficreseij,"\n");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         i=i+1;    printf("\n");
       }    fprintf(ficlog,"\n");
     }    
     /* printf("ii=%d", ij);  }
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   /* for (i=1; i<=imx; i++){  {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    /* Covariances of health expectancies eij and of total life expectancies according
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;     to initial status i, ei. .
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    */
     }*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
    /*  for (i=1; i<=imx; i++){    int nhstepma, nstepma; /* Decreasing with age */
      if (s[4][i]==9)  s[4][i]=-1;    double age, agelim, hf;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    double ***p3matp, ***p3matm, ***varhe;
      double **dnewm,**doldm;
      double *xp, *xm;
   /* Calculation of the number of parameter from char model*/    double **gp, **gm;
   Tvar=ivector(1,15);    double ***gradg, ***trgradg;
   Tprod=ivector(1,15);    int theta;
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);    double eip, vip;
   Tage=ivector(1,15);        
        varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   if (strlen(model) >1){    xp=vector(1,npar);
     j=0, j1=0, k1=1, k2=1;    xm=vector(1,npar);
     j=nbocc(model,'+');    dnewm=matrix(1,nlstate*nlstate,1,npar);
     j1=nbocc(model,'*');    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     cptcovn=j+1;    
     cptcovprod=j1;    pstamp(ficresstdeij);
        fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     strcpy(modelsav,model);    fprintf(ficresstdeij,"# Age");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    for(i=1; i<=nlstate;i++){
       printf("Error. Non available option model=%s ",model);      for(j=1; j<=nlstate;j++)
       goto end;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     }      fprintf(ficresstdeij," e%1d. ",i);
        }
     for(i=(j+1); i>=1;i--){    fprintf(ficresstdeij,"\n");
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    pstamp(ficrescveij);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       /*scanf("%d",i);*/    fprintf(ficrescveij,"# Age");
       if (strchr(strb,'*')) {    for(i=1; i<=nlstate;i++)
         cutv(strd,strc,strb,'*');      for(j=1; j<=nlstate;j++){
         if (strcmp(strc,"age")==0) {        cptj= (j-1)*nlstate+i;
           cptcovprod--;        for(i2=1; i2<=nlstate;i2++)
           cutv(strb,stre,strd,'V');          for(j2=1; j2<=nlstate;j2++){
           Tvar[i]=atoi(stre);            cptj2= (j2-1)*nlstate+i2;
           cptcovage++;            if(cptj2 <= cptj)
             Tage[cptcovage]=i;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             /*printf("stre=%s ", stre);*/          }
         }      }
         else if (strcmp(strd,"age")==0) {    fprintf(ficrescveij,"\n");
           cptcovprod--;    
           cutv(strb,stre,strc,'V');    if(estepm < stepm){
           Tvar[i]=atoi(stre);      printf ("Problem %d lower than %d\n",estepm, stepm);
           cptcovage++;    }
           Tage[cptcovage]=i;    else  hstepm=estepm;   
         }    /* We compute the life expectancy from trapezoids spaced every estepm months
         else {     * This is mainly to measure the difference between two models: for example
           cutv(strb,stre,strc,'V');     * if stepm=24 months pijx are given only every 2 years and by summing them
           Tvar[i]=ncovcol+k1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
           cutv(strb,strc,strd,'V');     * progression in between and thus overestimating or underestimating according
           Tprod[k1]=i;     * to the curvature of the survival function. If, for the same date, we 
           Tvard[k1][1]=atoi(strc);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           Tvard[k1][2]=atoi(stre);     * to compare the new estimate of Life expectancy with the same linear 
           Tvar[cptcovn+k2]=Tvard[k1][1];     * hypothesis. A more precise result, taking into account a more precise
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     * curvature will be obtained if estepm is as small as stepm. */
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    /* For example we decided to compute the life expectancy with the smallest unit */
           k1++;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           k2=k2+2;       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
       else {       and note for a fixed period like estepm months */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        /*  scanf("%d",i);*/       survival function given by stepm (the optimization length). Unfortunately it
       cutv(strd,strc,strb,'V');       means that if the survival funtion is printed only each two years of age and if
       Tvar[i]=atoi(strc);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       strcpy(modelsav,stra);      */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         scanf("%d",i);*/  
     }    /* If stepm=6 months */
 }    /* nhstepm age range expressed in number of stepm */
      agelim=AGESUP;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   printf("cptcovprod=%d ", cptcovprod);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   scanf("%d ",i);*/    /* if (stepm >= YEARM) hstepm=1;*/
     fclose(fic);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     /*  if(mle==1){*/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if (weightopt != 1) { /* Maximisation without weights*/    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1;i<=n;i++) weight[i]=1.0;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     /*-calculation of age at interview from date of interview and age at death -*/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     agev=matrix(1,maxwav,1,imx);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (i=1; i<=imx; i++) {    for (age=bage; age<=fage; age ++){ 
       for(m=2; (m<= maxwav); m++) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          anint[m][i]=9999;      /* if (stepm >= YEARM) hstepm=1;*/
          s[m][i]=-1;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      /* If stepm=6 months */
       }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
     for (i=1; i<=imx; i++)  {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){      /* Computing  Variances of health expectancies */
         if(s[m][i] >0){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           if (s[m][i] >= nlstate+1) {         decrease memory allocation */
             if(agedc[i]>0)      for(theta=1; theta <=npar; theta++){
               if(moisdc[i]!=99 && andc[i]!=9999)        for(i=1; i<=npar; i++){ 
                 agev[m][i]=agedc[i];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          xm[i] = x[i] - (i==theta ?delti[theta]:0);
            else {        }
               if (andc[i]!=9999){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
               agev[m][i]=-1;    
               }        for(j=1; j<= nlstate; j++){
             }          for(i=1; i<=nlstate; i++){
           }            for(h=0; h<=nhstepm-1; h++){
           else if(s[m][i] !=9){ /* Should no more exist */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             if(mint[m][i]==99 || anint[m][i]==9999)            }
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){        }
               agemin=agev[m][i];       
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        for(ij=1; ij<= nlstate*nlstate; ij++)
             }          for(h=0; h<=nhstepm-1; h++){
             else if(agev[m][i] >agemax){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
               agemax=agev[m][i];          }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      }/* End theta */
             }      
             /*agev[m][i]=anint[m][i]-annais[i];*/      
             /*   agev[m][i] = age[i]+2*m;*/      for(h=0; h<=nhstepm-1; h++)
           }        for(j=1; j<=nlstate*nlstate;j++)
           else { /* =9 */          for(theta=1; theta <=npar; theta++)
             agev[m][i]=1;            trgradg[h][j][theta]=gradg[h][theta][j];
             s[m][i]=-1;      
           }  
         }       for(ij=1;ij<=nlstate*nlstate;ij++)
         else /*= 0 Unknown */        for(ji=1;ji<=nlstate*nlstate;ji++)
           agev[m][i]=1;          varhe[ij][ji][(int)age] =0.;
       }  
           printf("%d|",(int)age);fflush(stdout);
     }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for (i=1; i<=imx; i++)  {       for(h=0;h<=nhstepm-1;h++){
       for(m=1; (m<= maxwav); m++){        for(k=0;k<=nhstepm-1;k++){
         if (s[m][i] > (nlstate+ndeath)) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           printf("Error: Wrong value in nlstate or ndeath\n");            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           goto end;          for(ij=1;ij<=nlstate*nlstate;ij++)
         }            for(ji=1;ji<=nlstate*nlstate;ji++)
       }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     }        }
       }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
       /* Computing expectancies */
     free_vector(severity,1,maxwav);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     free_imatrix(outcome,1,maxwav+1,1,n);      for(i=1; i<=nlstate;i++)
     free_vector(moisnais,1,n);        for(j=1; j<=nlstate;j++)
     free_vector(annais,1,n);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     /* free_matrix(mint,1,maxwav,1,n);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
        free_matrix(anint,1,maxwav,1,n);*/            
     free_vector(moisdc,1,n);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     free_vector(andc,1,n);  
           }
      
     wav=ivector(1,imx);      fprintf(ficresstdeij,"%3.0f",age );
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for(i=1; i<=nlstate;i++){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        eip=0.;
            vip=0.;
     /* Concatenates waves */        for(j=1; j<=nlstate;j++){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       Tcode=ivector(1,100);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        }
       ncodemax[1]=1;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      }
            fprintf(ficresstdeij,"\n");
    codtab=imatrix(1,100,1,10);  
    h=0;      fprintf(ficrescveij,"%3.0f",age );
    m=pow(2,cptcoveff);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
    for(k=1;k<=cptcoveff; k++){          cptj= (j-1)*nlstate+i;
      for(i=1; i <=(m/pow(2,k));i++){          for(i2=1; i2<=nlstate;i2++)
        for(j=1; j <= ncodemax[k]; j++){            for(j2=1; j2<=nlstate;j2++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              cptj2= (j2-1)*nlstate+i2;
            h++;              if(cptj2 <= cptj)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            }
          }        }
        }      fprintf(ficrescveij,"\n");
      }     
    }    }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       codtab[1][2]=1;codtab[2][2]=2; */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
    /* for(i=1; i <=m ;i++){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       for(k=1; k <=cptcovn; k++){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("\n");    printf("\n");
       }    fprintf(ficlog,"\n");
       scanf("%d",i);*/  
        free_vector(xm,1,npar);
    /* Calculates basic frequencies. Computes observed prevalence at single age    free_vector(xp,1,npar);
        and prints on file fileres'p'. */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
        free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************ Variance ******************/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* Variance of health expectancies */
          /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* For Powell, parameters are in a vector p[] starting at p[1]    /* double **newm;*/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double **dnewm,**doldm;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     if(mle==1){    int k, cptcode;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double *xp;
     }    double **gp, **gm;  /* for var eij */
        double ***gradg, ***trgradg; /*for var eij */
     /*--------- results files --------------*/    double **gradgp, **trgradgp; /* for var p point j */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
    jk=1;    double age,agelim, hf;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double ***mobaverage;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int theta;
    for(i=1,jk=1; i <=nlstate; i++){    char digit[4];
      for(k=1; k <=(nlstate+ndeath); k++){    char digitp[25];
        if (k != i)  
          {    char fileresprobmorprev[FILENAMELENGTH];
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);    if(popbased==1){
            for(j=1; j <=ncovmodel; j++){      if(mobilav!=0)
              printf("%f ",p[jk]);        strcpy(digitp,"-populbased-mobilav-");
              fprintf(ficres,"%f ",p[jk]);      else strcpy(digitp,"-populbased-nomobil-");
              jk++;    }
            }    else 
            printf("\n");      strcpy(digitp,"-stablbased-");
            fprintf(ficres,"\n");  
          }    if (mobilav!=0) {
      }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  if(mle==1){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     /* Computing hessian and covariance matrix */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     ftolhess=ftol; /* Usually correct */      }
     hesscov(matcov, p, npar, delti, ftolhess, func);    }
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    strcpy(fileresprobmorprev,"prmorprev"); 
     printf("# Scales (for hessian or gradient estimation)\n");    sprintf(digit,"%-d",ij);
      for(i=1,jk=1; i <=nlstate; i++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       for(j=1; j <=nlstate+ndeath; j++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         if (j!=i) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           fprintf(ficres,"%1d%1d",i,j);    strcat(fileresprobmorprev,fileres);
           printf("%1d%1d",i,j);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           for(k=1; k<=ncovmodel;k++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             printf(" %.5e",delti[jk]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             fprintf(ficres," %.5e",delti[jk]);    }
             jk++;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }   
           printf("\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           fprintf(ficres,"\n");    pstamp(ficresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," p.%-d SE",j);
     k=1;      for(i=1; i<=nlstate;i++)
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }  
     for(i=1;i<=npar;i++){    fprintf(ficresprobmorprev,"\n");
       /*  if (k>nlstate) k=1;    fprintf(ficgp,"\n# Routine varevsij");
       i1=(i-1)/(ncovmodel*nlstate)+1;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       printf("%s%d%d",alph[k],i1,tab[i]);*/    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficres,"%3d",i);  /*   } */
       printf("%3d",i);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(j=1; j<=i;j++){    pstamp(ficresvij);
         fprintf(ficres," %.5e",matcov[i][j]);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         printf(" %.5e",matcov[i][j]);    if(popbased==1)
       }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       fprintf(ficres,"\n");    else
       printf("\n");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       k++;    fprintf(ficresvij,"# Age");
     }    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
     while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       ungetc(c,ficpar);    fprintf(ficresvij,"\n");
       fgets(line, MAXLINE, ficpar);  
       puts(line);    xp=vector(1,npar);
       fputs(line,ficparo);    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     ungetc(c,ficpar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     estepm=0;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     if (fage <= 2) {    gpp=vector(nlstate+1,nlstate+ndeath);
       bage = ageminpar;    gmp=vector(nlstate+1,nlstate+ndeath);
       fage = agemaxpar;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     }    
        if(estepm < stepm){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
     while((c=getc(ficpar))=='#' && c!= EOF){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
     fgets(line, MAXLINE, ficpar);       nstepm is the number of stepm from age to agelin. 
     puts(line);       Look at function hpijx to understand why (it is linked to memory size questions) */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   ungetc(c,ficpar);       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       results. So we changed our mind and took the option of the best precision.
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          agelim = AGESUP;
   while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     ungetc(c,ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fgets(line, MAXLINE, ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     puts(line);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      gm=matrix(0,nhstepm,1,nlstate);
    
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      for(theta=1; theta <=npar; theta++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }
   fprintf(ficparo,"pop_based=%d\n",popbased);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficres,"pop_based=%d\n",popbased);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   while((c=getc(ficpar))=='#' && c!= EOF){        if (popbased==1) {
     ungetc(c,ficpar);          if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        /* This for computing probability of death (h=1 means
     fputs(line,ficparo);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   ungetc(c,ficpar);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }    
         /* end probability of death */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 /*------------ gnuplot -------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /*------------ free_vector  -------------*/   
  chdir(path);        if (popbased==1) {
            if(mobilav ==0){
  free_ivector(wav,1,imx);            for(i=1; i<=nlstate;i++)
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              prlim[i][i]=probs[(int)age][i][ij];
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            }else{ /* mobilav */ 
  free_ivector(num,1,n);            for(i=1; i<=nlstate;i++)
  free_vector(agedc,1,n);              prlim[i][i]=mobaverage[(int)age][i][ij];
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          }
  fclose(ficparo);        }
  fclose(ficres);  
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 /*--------- index.htm --------*/          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
          }
   /*--------------- Prevalence limit --------------*/        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   strcpy(filerespl,"pl");           as a weighted average of prlim.
   strcat(filerespl,fileres);        */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }    
   fprintf(ficrespl,"#Prevalence limit\n");        /* end probability of death */
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(j=1; j<= nlstate; j++) /* vareij */
   fprintf(ficrespl,"\n");          for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   prlim=matrix(1,nlstate,1,nlstate);          }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;      } /* End theta */
   agebase=ageminpar;  
   agelim=agemaxpar;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   ftolpl=1.e-10;  
   i1=cptcoveff;      for(h=0; h<=nhstepm; h++) /* veij */
   if (cptcovn < 1){i1=1;}        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   for(cptcov=1;cptcov<=i1;cptcov++){            trgradg[h][j][theta]=gradg[h][theta][j];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(theta=1; theta <=npar; theta++)
         fprintf(ficrespl,"\n#******");          trgradgp[j][theta]=gradgp[theta][j];
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              for(i=1;i<=nlstate;i++)
         for (age=agebase; age<=agelim; age++){        for(j=1;j<=nlstate;j++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          vareij[i][j][(int)age] =0.;
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)      for(h=0;h<=nhstepm;h++){
           fprintf(ficrespl," %.5f", prlim[i][i]);        for(k=0;k<=nhstepm;k++){
           fprintf(ficrespl,"\n");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
   fclose(ficrespl);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   /*------------- h Pij x at various ages ------------*/      }
      
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      /* pptj */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   printf("Computing pij: result on file '%s' \n", filerespij);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
   stepsize=(int) (stepm+YEARM-1)/YEARM;      /* end ppptj */
   /*if (stepm<=24) stepsize=2;*/      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   agelim=AGESUP;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   hstepm=stepsize*YEARM; /* Every year of age */   
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      if (popbased==1) {
          if(mobilav ==0){
   k=0;          for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){            prlim[i][i]=probs[(int)age][i][ij];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }else{ /* mobilav */ 
       k=k+1;          for(i=1; i<=nlstate;i++)
         fprintf(ficrespij,"\n#****** ");            prlim[i][i]=mobaverage[(int)age][i][ij];
         for(j=1;j<=cptcoveff;j++)        }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
         fprintf(ficrespij,"******\n");               
              /* This for computing probability of death (h=1 means
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         as a weighted average of prlim.
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           oldm=oldms;savm=savms;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           fprintf(ficrespij,"# Age");      }    
           for(i=1; i<=nlstate;i++)      /* end probability of death */
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           fprintf(ficrespij,"\n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            for (h=0; h<=nhstepm; h++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for(i=1; i<=nlstate;i++){
             for(i=1; i<=nlstate;i++)          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               for(j=1; j<=nlstate+ndeath;j++)        }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      } 
             fprintf(ficrespij,"\n");      fprintf(ficresprobmorprev,"\n");
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficrespij,"\n");      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
     }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   }        }
       fprintf(ficresvij,"\n");
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
   fclose(ficrespij);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------- Forecasting ------------------*/    } /* End age */
   if((stepm == 1) && (strcmp(model,".")==0)){    free_vector(gpp,nlstate+1,nlstate+ndeath);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   else{    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     erreur=108;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*---------- Health expectancies and variances ------------*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   strcpy(filerest,"t");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
   strcat(filerest,fileres);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   }  */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   strcpy(filerese,"e");    free_vector(xp,1,npar);
   strcat(filerese,fileres);    free_matrix(doldm,1,nlstate,1,nlstate);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    free_matrix(dnewm,1,nlstate,1,npar);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcpy(fileresv,"v");    fclose(ficresprobmorprev);
   strcat(fileresv,fileres);    fflush(ficgp);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    fflush(fichtm); 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  }  /* end varevsij */
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /************ Variance of prevlim ******************/
   calagedate=-1;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  {
     /* Variance of prevalence limit */
   k=0;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   for(cptcov=1;cptcov<=i1;cptcov++){    double **newm;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double **dnewm,**doldm;
       k=k+1;    int i, j, nhstepm, hstepm;
       fprintf(ficrest,"\n#****** ");    int k, cptcode;
       for(j=1;j<=cptcoveff;j++)    double *xp;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *gp, *gm;
       fprintf(ficrest,"******\n");    double **gradg, **trgradg;
     double age,agelim;
       fprintf(ficreseij,"\n#****** ");    int theta;
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    pstamp(ficresvpl);
       fprintf(ficreseij,"******\n");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
       fprintf(ficresvij,"\n#****** ");    for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresvpl," %1d-%1d",i,i);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresvpl,"\n");
       fprintf(ficresvij,"******\n");  
     xp=vector(1,npar);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    dnewm=matrix(1,nlstate,1,npar);
       oldm=oldms;savm=savms;    doldm=matrix(1,nlstate,1,nlstate);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      
      hstepm=1*YEARM; /* Every year of age */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       oldm=oldms;savm=savms;    agelim = AGESUP;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      gradg=matrix(1,npar,1,nlstate);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      gp=vector(1,nlstate);
       fprintf(ficrest,"\n");      gm=vector(1,nlstate);
   
       epj=vector(1,nlstate+1);      for(theta=1; theta <=npar; theta++){
       for(age=bage; age <=fage ;age++){        for(i=1; i<=npar; i++){ /* Computes gradient */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         if (popbased==1) {        }
           for(i=1; i<=nlstate;i++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             prlim[i][i]=probs[(int)age][i][k];        for(i=1;i<=nlstate;i++)
         }          gp[i] = prlim[i][i];
              
         fprintf(ficrest," %4.0f",age);        for(i=1; i<=npar; i++) /* Computes gradient */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        for(i=1;i<=nlstate;i++)
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          gm[i] = prlim[i][i];
           }  
           epj[nlstate+1] +=epj[j];        for(i=1;i<=nlstate;i++)
         }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)      trgradg =matrix(1,nlstate,1,npar);
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      for(j=1; j<=nlstate;j++)
         for(j=1;j <=nlstate;j++){        for(theta=1; theta <=npar; theta++)
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          trgradg[j][theta]=gradg[theta][j];
         }  
         fprintf(ficrest,"\n");      for(i=1;i<=nlstate;i++)
       }        varpl[i][(int)age] =0.;
     }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 free_matrix(mint,1,maxwav,1,n);      for(i=1;i<=nlstate;i++)
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     free_vector(weight,1,n);  
   fclose(ficreseij);      fprintf(ficresvpl,"%.0f ",age );
   fclose(ficresvij);      for(i=1; i<=nlstate;i++)
   fclose(ficrest);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   fclose(ficpar);      fprintf(ficresvpl,"\n");
   free_vector(epj,1,nlstate+1);      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
   /*------- Variance limit prevalence------*/        free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   strcpy(fileresvpl,"vpl");    } /* End age */
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    free_vector(xp,1,npar);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    free_matrix(doldm,1,nlstate,1,npar);
     exit(0);    free_matrix(dnewm,1,nlstate,1,nlstate);
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  }
   
   k=0;  /************ Variance of one-step probabilities  ******************/
   for(cptcov=1;cptcov<=i1;cptcov++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  {
       k=k+1;    int i, j=0,  i1, k1, l1, t, tj;
       fprintf(ficresvpl,"\n#****** ");    int k2, l2, j1,  z1;
       for(j=1;j<=cptcoveff;j++)    int k=0,l, cptcode;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int first=1, first1, first2;
       fprintf(ficresvpl,"******\n");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
          double **dnewm,**doldm;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    double *xp;
       oldm=oldms;savm=savms;    double *gp, *gm;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double **gradg, **trgradg;
     }    double **mu;
  }    double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fclose(ficresvpl);    int theta;
     char fileresprob[FILENAMELENGTH];
   /*---------- End : free ----------------*/    char fileresprobcov[FILENAMELENGTH];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    char fileresprobcor[FILENAMELENGTH];
      double ***varpij;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      printf("Problem with resultfile: %s\n", fileresprob);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    strcpy(fileresprobcov,"probcov"); 
      strcat(fileresprobcov,fileres);
   free_matrix(matcov,1,npar,1,npar);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   free_vector(delti,1,npar);      printf("Problem with resultfile: %s\n", fileresprobcov);
   free_matrix(agev,1,maxwav,1,imx);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    }
     strcpy(fileresprobcor,"probcor"); 
   if(erreur >0)    strcat(fileresprobcor,fileres);
     printf("End of Imach with error or warning %d\n",erreur);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   else   printf("End of Imach\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   /*------ End -----------*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  end:    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /* chdir(pathcd);*/    pstamp(ficresprob);
  /*system("wgnuplot graph.plt");*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fprintf(ficresprob,"# Age");
  /*system("cd ../gp37mgw");*/    pstamp(ficresprobcov);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
  strcpy(plotcmd,GNUPLOTPROGRAM);    fprintf(ficresprobcov,"# Age");
  strcat(plotcmd," ");    pstamp(ficresprobcor);
  strcat(plotcmd,optionfilegnuplot);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  system(plotcmd);    fprintf(ficresprobcor,"# Age");
   
  /*#ifdef windows*/  
   while (z[0] != 'q') {    for(i=1; i<=nlstate;i++)
     /* chdir(path); */      for(j=1; j<=(nlstate+ndeath);j++){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     scanf("%s",z);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     if (z[0] == 'c') system("./imach");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     else if (z[0] == 'e') system(optionfilehtm);      }  
     else if (z[0] == 'g') system(plotcmd);   /* fprintf(ficresprob,"\n");
     else if (z[0] == 'q') exit(0);    fprintf(ficresprobcov,"\n");
   }    fprintf(ficresprobcor,"\n");
   /*#endif */   */
 }    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.145


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>