Diff for /imach/src/imach.c between versions 1.49 and 1.145

version 1.49, 2002/06/20 14:03:39 version 1.145, 2014/06/10 21:23:15
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.145  2014/06/10 21:23:15  brouard
      Summary: Debugging with valgrind
   This program computes Healthy Life Expectancies from    Author: Nicolas Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Lot of changes in order to output the results with some covariates
   interviewed on their health status or degree of disability (in the    After the Edimburgh REVES conference 2014, it seems mandatory to
   case of a health survey which is our main interest) -2- at least a    improve the code.
   second wave of interviews ("longitudinal") which measure each change    No more memory valgrind error but a lot has to be done in order to
   (if any) in individual health status.  Health expectancies are    continue the work of splitting the code into subroutines.
   computed from the time spent in each health state according to a    Also, decodemodel has been improved. Tricode is still not
   model. More health states you consider, more time is necessary to reach the    optimal. nbcode should be improved. Documentation has been added in
   Maximum Likelihood of the parameters involved in the model.  The    the source code.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.143  2014/01/26 09:45:38  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   complex model than "constant and age", you should modify the program    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.142  2014/01/26 03:57:36  brouard
   convergence.    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
   The advantage of this computer programme, compared to a simple    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.141  2014/01/26 02:42:01  brouard
   intermediate interview, the information is lost, but taken into    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   account using an interpolation or extrapolation.    
     Revision 1.140  2011/09/02 10:37:54  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: times.h is ok with mingw32 now.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.139  2010/06/14 07:50:17  brouard
   states. This elementary transition (by month or quarter trimester,    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   semester or year) is model as a multinomial logistic.  The hPx    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.138  2010/04/30 18:19:40  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.137  2010/04/29 18:11:38  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Checking covariates for more complex models
      than V1+V2. A lot of change to be done. Unstable.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.136  2010/04/26 20:30:53  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): merging some libgsl code. Fixing computation
   from the European Union.    of likelione (using inter/intrapolation if mle = 0) in order to
   It is copyrighted identically to a GNU software product, ie programme and    get same likelihood as if mle=1.
   software can be distributed freely for non commercial use. Latest version    Some cleaning of code and comments added.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.135  2009/10/29 15:33:14  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #include <math.h>  
 #include <stdio.h>    Revision 1.134  2009/10/29 13:18:53  brouard
 #include <stdlib.h>    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #include <unistd.h>  
     Revision 1.133  2009/07/06 10:21:25  brouard
 #define MAXLINE 256    just nforces
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.132  2009/07/06 08:22:05  brouard
 #define FILENAMELENGTH 80    Many tings
 /*#define DEBUG*/  
 #define windows    Revision 1.131  2009/06/20 16:22:47  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Some dimensions resccaled
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.130  2009/05/26 06:44:34  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Max Covariate is now set to 20 instead of 8. A
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.129  2007/08/31 13:49:27  lievre
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.128  2006/06/30 13:02:05  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Clarifications on computing e.j
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.127  2006/04/28 18:11:50  brouard
 #ifdef windows    (Module): Yes the sum of survivors was wrong since
 #define DIRSEPARATOR '\\'    imach-114 because nhstepm was no more computed in the age
 #else    loop. Now we define nhstepma in the age loop.
 #define DIRSEPARATOR '/'    (Module): In order to speed up (in case of numerous covariates) we
 #endif    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    deviation (needs data from the Hessian matrices) which slows the
 int erreur; /* Error number */    computation.
 int nvar;    In the future we should be able to stop the program is only health
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    expectancies and graph are needed without standard deviations.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.126  2006/04/28 17:23:28  brouard
 int ndeath=1; /* Number of dead states */    (Module): Yes the sum of survivors was wrong since
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    imach-114 because nhstepm was no more computed in the age
 int popbased=0;    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.125  2006/04/04 15:20:31  lievre
 int jmin, jmax; /* min, max spacing between 2 waves */    Errors in calculation of health expectancies. Age was not initialized.
 int mle, weightopt;    Forecasting file added.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.124  2006/03/22 17:13:53  lievre
 double jmean; /* Mean space between 2 waves */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 double **oldm, **newm, **savm; /* Working pointers to matrices */    The log-likelihood is printed in the log file
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.123  2006/03/20 10:52:43  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    * imach.c (Module): <title> changed, corresponds to .htm file
 FILE *fichtm; /* Html File */    name. <head> headers where missing.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    * imach.c (Module): Weights can have a decimal point as for
 FILE  *ficresvij;    English (a comma might work with a correct LC_NUMERIC environment,
 char fileresv[FILENAMELENGTH];    otherwise the weight is truncated).
 FILE  *ficresvpl;    Modification of warning when the covariates values are not 0 or
 char fileresvpl[FILENAMELENGTH];    1.
 char title[MAXLINE];    Version 0.98g
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 char filerest[FILENAMELENGTH];    Modification of warning when the covariates values are not 0 or
 char fileregp[FILENAMELENGTH];    1.
 char popfile[FILENAMELENGTH];    Version 0.98g
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 #define NR_END 1  
 #define FREE_ARG char*    * imach.c (Module): refinements in the computation of lli if
 #define FTOL 1.0e-10    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define NRANSI  
 #define ITMAX 200    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 #define TOL 2.0e-4    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.119  2006/03/15 17:42:26  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.118  2006/03/14 18:20:07  brouard
 #define TINY 1.0e-20    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 static double maxarg1,maxarg2;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Function pstamp added
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Version 0.98d
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.117  2006/03/14 17:16:22  brouard
 #define rint(a) floor(a+0.5)    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 static double sqrarg;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Function pstamp added
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Version 0.98d
   
 int imx;    Revision 1.116  2006/03/06 10:29:27  brouard
 int stepm;    (Module): Variance-covariance wrong links and
 /* Stepm, step in month: minimum step interpolation*/    varian-covariance of ej. is needed (Saito).
   
 int estepm;    Revision 1.115  2006/02/27 12:17:45  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): One freematrix added in mlikeli! 0.98c
   
 int m,nb;    Revision 1.114  2006/02/26 12:57:58  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Some improvements in processing parameter
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    filename with strsep.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 double *weight;    datafile was not closed, some imatrix were not freed and on matrix
 int **s; /* Status */    allocation too.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /**************** split *************************/    (Module): Comments can be added in data file. Missing date values
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    can be a simple dot '.'.
 {  
    char *s;                             /* pointer */    Revision 1.110  2006/01/25 00:51:50  brouard
    int  l1, l2;                         /* length counters */    (Module): Lots of cleaning and bugs added (Gompertz)
   
    l1 = strlen( path );                 /* length of path */    Revision 1.109  2006/01/24 19:37:15  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Comments (lines starting with a #) are allowed in data.
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.108  2006/01/19 18:05:42  lievre
 #if     defined(__bsd__)                /* get current working directory */    Gnuplot problem appeared...
       extern char       *getwd( );    To be fixed
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.107  2006/01/19 16:20:37  brouard
 #else    Test existence of gnuplot in imach path
       extern char       *getcwd( );  
     Revision 1.106  2006/01/19 13:24:36  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Some cleaning and links added in html output
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.105  2006/01/05 20:23:19  lievre
       }    *** empty log message ***
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.104  2005/09/30 16:11:43  lievre
       s++;                              /* after this, the filename */    (Module): sump fixed, loop imx fixed, and simplifications.
       l2 = strlen( s );                 /* length of filename */    (Module): If the status is missing at the last wave but we know
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    that the person is alive, then we can code his/her status as -2
       strcpy( name, s );                /* save file name */    (instead of missing=-1 in earlier versions) and his/her
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    contributions to the likelihood is 1 - Prob of dying from last
       dirc[l1-l2] = 0;                  /* add zero */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    }    the healthy state at last known wave). Version is 0.98
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.103  2005/09/30 15:54:49  lievre
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): sump fixed, loop imx fixed, and simplifications.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.102  2004/09/15 17:31:30  brouard
 #endif    Add the possibility to read data file including tab characters.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.101  2004/09/15 10:38:38  brouard
    strcpy(ext,s);                       /* save extension */    Fix on curr_time
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.100  2004/07/12 18:29:06  brouard
    strncpy( finame, name, l1-l2);    Add version for Mac OS X. Just define UNIX in Makefile
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.99  2004/06/05 08:57:40  brouard
 }    *** empty log message ***
   
     Revision 1.98  2004/05/16 15:05:56  brouard
 /******************************************/    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 void replace(char *s, char*t)    state at each age, but using a Gompertz model: log u =a + b*age .
 {    This is the basic analysis of mortality and should be done before any
   int i;    other analysis, in order to test if the mortality estimated from the
   int lg=20;    cross-longitudinal survey is different from the mortality estimated
   i=0;    from other sources like vital statistic data.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    The same imach parameter file can be used but the option for mle should be -3.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Agnès, who wrote this part of the code, tried to keep most of the
   }    former routines in order to include the new code within the former code.
 }  
     The output is very simple: only an estimate of the intercept and of
 int nbocc(char *s, char occ)    the slope with 95% confident intervals.
 {  
   int i,j=0;    Current limitations:
   int lg=20;    A) Even if you enter covariates, i.e. with the
   i=0;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   lg=strlen(s);    B) There is no computation of Life Expectancy nor Life Table.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.97  2004/02/20 13:25:42  lievre
   }    Version 0.96d. Population forecasting command line is (temporarily)
   return j;    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
 void cutv(char *u,char *v, char*t, char occ)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   int i,lg,j,p=0;  
   i=0;    Revision 1.95  2003/07/08 07:54:34  brouard
   for(j=0; j<=strlen(t)-1; j++) {    * imach.c (Repository):
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Repository): Using imachwizard code to output a more meaningful covariance
   }    matrix (cov(a12,c31) instead of numbers.
   
   lg=strlen(t);    Revision 1.94  2003/06/27 13:00:02  brouard
   for(j=0; j<p; j++) {    Just cleaning
     (u[j] = t[j]);  
   }    Revision 1.93  2003/06/25 16:33:55  brouard
      u[p]='\0';    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
    for(j=0; j<= lg; j++) {    (Module): Version 0.96b
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /********************** nrerror ********************/  
     Revision 1.91  2003/06/25 15:30:29  brouard
 void nrerror(char error_text[])    * imach.c (Repository): Duplicated warning errors corrected.
 {    (Repository): Elapsed time after each iteration is now output. It
   fprintf(stderr,"ERREUR ...\n");    helps to forecast when convergence will be reached. Elapsed time
   fprintf(stderr,"%s\n",error_text);    is stamped in powell.  We created a new html file for the graphs
   exit(1);    concerning matrix of covariance. It has extension -cov.htm.
 }  
 /*********************** vector *******************/    Revision 1.90  2003/06/24 12:34:15  brouard
 double *vector(int nl, int nh)    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   double *v;    of the covariance matrix to be input.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.89  2003/06/24 12:30:52  brouard
   return v-nl+NR_END;    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   int *v;    routine fileappend.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.85  2003/06/17 13:12:43  brouard
   return v-nl+NR_END;    * imach.c (Repository): Check when date of death was earlier that
 }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 /******************free ivector **************************/    was wrong (infinity). We still send an "Error" but patch by
 void free_ivector(int *v, long nl, long nh)    assuming that the date of death was just one stepm after the
 {    interview.
   free((FREE_ARG)(v+nl-NR_END));    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /******************* imatrix *******************************/    truncation)
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Repository): No more line truncation errors.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    * imach.c (Repository): Replace "freqsummary" at a correct
   int **m;    place. It differs from routine "prevalence" which may be called
      many times. Probs is memory consuming and must be used with
   /* allocate pointers to rows */    parcimony.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.83  2003/06/10 13:39:11  lievre
   m -= nrl;    *** empty log message ***
    
      Revision 1.82  2003/06/05 15:57:20  brouard
   /* allocate rows and set pointers to them */    Add log in  imach.c and  fullversion number is now printed.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  */
   m[nrl] += NR_END;  /*
   m[nrl] -= ncl;     Interpolated Markov Chain
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Short summary of the programme:
      
   /* return pointer to array of pointers to rows */    This program computes Healthy Life Expectancies from
   return m;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /****************** free_imatrix *************************/    case of a health survey which is our main interest) -2- at least a
 void free_imatrix(m,nrl,nrh,ncl,nch)    second wave of interviews ("longitudinal") which measure each change
       int **m;    (if any) in individual health status.  Health expectancies are
       long nch,ncl,nrh,nrl;    computed from the time spent in each health state according to a
      /* free an int matrix allocated by imatrix() */    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    simplest model is the multinomial logistic model where pij is the
   free((FREE_ARG) (m+nrl-NR_END));    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /******************* matrix *******************************/    'age' is age and 'sex' is a covariate. If you want to have a more
 double **matrix(long nrl, long nrh, long ncl, long nch)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    you to do it.  More covariates you add, slower the
   double **m;    convergence.
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    The advantage of this computer programme, compared to a simple
   if (!m) nrerror("allocation failure 1 in matrix()");    multinomial logistic model, is clear when the delay between waves is not
   m += NR_END;    identical for each individual. Also, if a individual missed an
   m -= nrl;    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    hPijx is the probability to be observed in state i at age x+h
   m[nrl] += NR_END;    conditional to the observed state i at age x. The delay 'h' can be
   m[nrl] -= ncl;    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    semester or year) is modelled as a multinomial logistic.  The hPx
   return m;    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the period (stable) prevalence. 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    
   free((FREE_ARG)(m+nrl-NR_END));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /******************* ma3x *******************************/    from the European Union.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    can be accessed at http://euroreves.ined.fr/imach .
   double ***m;  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    **********************************************************************/
   m -= nrl;  /*
     main
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    read parameterfile
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    read datafile
   m[nrl] += NR_END;    concatwav
   m[nrl] -= ncl;    freqsummary
     if (mle >= 1)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      mlikeli
     print results files
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if mle==1 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");       computes hessian
   m[nrl][ncl] += NR_END;    read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl][ncl] -= nll;        begin-prev-date,...
   for (j=ncl+1; j<=nch; j++)    open gnuplot file
     m[nrl][j]=m[nrl][j-1]+nlay;    open html file
      period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   for (i=nrl+1; i<=nrh; i++) {     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     for (j=ncl+1; j<=nch; j++)      freexexit2 possible for memory heap.
       m[i][j]=m[i][j-1]+nlay;  
   }    h Pij x                         | pij_nom  ficrestpij
   return m;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 }         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
          1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   free((FREE_ARG)(m[nrl]+ncl-NR_END));     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   free((FREE_ARG)(m+nrl-NR_END));     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 }  
     forecasting if prevfcast==1 prevforecast call prevalence()
 /***************** f1dim *************************/    health expectancies
 extern int ncom;    Variance-covariance of DFLE
 extern double *pcom,*xicom;    prevalence()
 extern double (*nrfunc)(double []);     movingaverage()
      varevsij() 
 double f1dim(double x)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   int j;    Variance of period (stable) prevalence
   double f;   end
   double *xt;  */
    
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);   
   free_vector(xt,1,ncom);  #include <math.h>
   return f;  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /*****************brent *************************/  #include <unistd.h>
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  #include <limits.h>
   int iter;  #include <sys/types.h>
   double a,b,d,etemp;  #include <sys/stat.h>
   double fu,fv,fw,fx;  #include <errno.h>
   double ftemp;  extern int errno;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  #ifdef LINUX
    #include <time.h>
   a=(ax < cx ? ax : cx);  #include "timeval.h"
   b=(ax > cx ? ax : cx);  #else
   x=w=v=bx;  #include <sys/time.h>
   fw=fv=fx=(*f)(x);  #endif
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  #ifdef GSL
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #include <gsl/gsl_errno.h>
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #include <gsl/gsl_multimin.h>
     printf(".");fflush(stdout);  #endif
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /* #include <libintl.h> */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /* #define _(String) gettext (String) */
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       *xmin=x;  
       return fx;  #define GNUPLOTPROGRAM "gnuplot"
     }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     ftemp=fu;  #define FILENAMELENGTH 132
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       q=(x-v)*(fx-fw);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       if (q > 0.0) p = -p;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       q=fabs(q);  
       etemp=e;  #define NINTERVMAX 8
       e=d;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       else {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
         d=p/q;  #define MAXN 20000
         u=x+d;  #define YEARM 12. /**< Number of months per year */
         if (u-a < tol2 || b-u < tol2)  #define AGESUP 130
           d=SIGN(tol1,xm-x);  #define AGEBASE 40
       }  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
     } else {  #ifdef UNIX
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define DIRSEPARATOR '/'
     }  #define CHARSEPARATOR "/"
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define ODIRSEPARATOR '\\'
     fu=(*f)(u);  #else
     if (fu <= fx) {  #define DIRSEPARATOR '\\'
       if (u >= x) a=x; else b=x;  #define CHARSEPARATOR "\\"
       SHFT(v,w,x,u)  #define ODIRSEPARATOR '/'
         SHFT(fv,fw,fx,fu)  #endif
         } else {  
           if (u < x) a=u; else b=u;  /* $Id$ */
           if (fu <= fw || w == x) {  /* $State$ */
             v=w;  
             w=u;  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
             fv=fw;  char fullversion[]="$Revision$ $Date$"; 
             fw=fu;  char strstart[80];
           } else if (fu <= fv || v == x || v == w) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
             v=u;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
             fv=fu;  int nvar=0, nforce=0; /* Number of variables, number of forces */
           }  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   }  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   nrerror("Too many iterations in brent");  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   *xmin=x;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   return fx;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int cptcov=0; /* Working variable */
 /****************** mnbrak ***********************/  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int ndeath=1; /* Number of dead states */
             double (*func)(double))  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   double ulim,u,r,q, dum;  
   double fu;  int *wav; /* Number of waves for this individuual 0 is possible */
    int maxwav=0; /* Maxim number of waves */
   *fa=(*func)(*ax);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   *fb=(*func)(*bx);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   if (*fb > *fa) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     SHFT(dum,*ax,*bx,dum)                     to the likelihood and the sum of weights (done by funcone)*/
       SHFT(dum,*fb,*fa,dum)  int mle=1, weightopt=0;
       }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   *cx=(*bx)+GOLD*(*bx-*ax);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   *fc=(*func)(*cx);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   while (*fb > *fc) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     r=(*bx-*ax)*(*fb-*fc);  double jmean=1; /* Mean space between 2 waves */
     q=(*bx-*cx)*(*fb-*fa);  double **matprod2(); /* test */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double **oldm, **newm, **savm; /* Working pointers to matrices */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /*FILE *fic ; */ /* Used in readdata only */
     if ((*bx-u)*(u-*cx) > 0.0) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       fu=(*func)(u);  FILE *ficlog, *ficrespow;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int globpr=0; /* Global variable for printing or not */
       fu=(*func)(u);  double fretone; /* Only one call to likelihood */
       if (fu < *fc) {  long ipmx=0; /* Number of contributions */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double sw; /* Sum of weights */
           SHFT(*fb,*fc,fu,(*func)(u))  char filerespow[FILENAMELENGTH];
           }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  FILE *ficresilk;
       u=ulim;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       fu=(*func)(u);  FILE *ficresprobmorprev;
     } else {  FILE *fichtm, *fichtmcov; /* Html File */
       u=(*cx)+GOLD*(*cx-*bx);  FILE *ficreseij;
       fu=(*func)(u);  char filerese[FILENAMELENGTH];
     }  FILE *ficresstdeij;
     SHFT(*ax,*bx,*cx,u)  char fileresstde[FILENAMELENGTH];
       SHFT(*fa,*fb,*fc,fu)  FILE *ficrescveij;
       }  char filerescve[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /*************** linmin ************************/  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 int ncom;  char title[MAXLINE];
 double *pcom,*xicom;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double (*nrfunc)(double []);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
    char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  char filelog[FILENAMELENGTH]; /* Log file */
               double *fc, double (*func)(double));  char filerest[FILENAMELENGTH];
   int j;  char fileregp[FILENAMELENGTH];
   double xx,xmin,bx,ax;  char popfile[FILENAMELENGTH];
   double fx,fb,fa;  
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   ncom=n;  
   pcom=vector(1,n);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   xicom=vector(1,n);  struct timezone tzp;
   nrfunc=func;  extern int gettimeofday();
   for (j=1;j<=n;j++) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     pcom[j]=p[j];  long time_value;
     xicom[j]=xi[j];  extern long time();
   }  char strcurr[80], strfor[80];
   ax=0.0;  
   xx=1.0;  char *endptr;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  long lval;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double dval;
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define NR_END 1
 #endif  #define FREE_ARG char*
   for (j=1;j<=n;j++) {  #define FTOL 1.0e-10
     xi[j] *= xmin;  
     p[j] += xi[j];  #define NRANSI 
   }  #define ITMAX 200 
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /*************** powell ************************/  #define ZEPS 1.0e-10 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
             double (*func)(double []))  
 {  #define GOLD 1.618034 
   void linmin(double p[], double xi[], int n, double *fret,  #define GLIMIT 100.0 
               double (*func)(double []));  #define TINY 1.0e-20 
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  static double maxarg1,maxarg2;
   double fp,fptt;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double *xits;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   pt=vector(1,n);    
   ptt=vector(1,n);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   xit=vector(1,n);  #define rint(a) floor(a+0.5)
   xits=vector(1,n);  
   *fret=(*func)(p);  static double sqrarg;
   for (j=1;j<=n;j++) pt[j]=p[j];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (*iter=1;;++(*iter)) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     fp=(*fret);  int agegomp= AGEGOMP;
     ibig=0;  
     del=0.0;  int imx; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int stepm=1;
     for (i=1;i<=n;i++)  /* Stepm, step in month: minimum step interpolation*/
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  int estepm;
     for (i=1;i<=n;i++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  int m,nb;
 #ifdef DEBUG  long *num;
       printf("fret=%lf \n",*fret);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 #endif  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       printf("%d",i);fflush(stdout);  double **pmmij, ***probs;
       linmin(p,xit,n,fret,func);  double *ageexmed,*agecens;
       if (fabs(fptt-(*fret)) > del) {  double dateintmean=0;
         del=fabs(fptt-(*fret));  
         ibig=i;  double *weight;
       }  int **s; /* Status */
 #ifdef DEBUG  double *agedc;
       printf("%d %.12e",i,(*fret));  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       for (j=1;j<=n;j++) {                    * covar=matrix(0,NCOVMAX,1,n); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
         printf(" x(%d)=%.12e",j,xit[j]);  double  idx; 
       }  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       for(j=1;j<=n;j++)  int *Ndum; /** Freq of modality (tricode */
         printf(" p=%.12e",p[j]);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       printf("\n");  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
 #endif  double *lsurv, *lpop, *tpop;
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 #ifdef DEBUG  double ftolhess; /**< Tolerance for computing hessian */
       int k[2],l;  
       k[0]=1;  /**************** split *************************/
       k[1]=-1;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       printf("Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         printf(" %.12e",p[j]);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       printf("\n");    */ 
       for(l=0;l<=1;l++) {    char  *ss;                            /* pointer */
         for (j=1;j<=n;j++) {    int   l1, l2;                         /* length counters */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    l1 = strlen(path );                   /* length of path */
         }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 #endif      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       free_vector(xit,1,n);      /* get current working directory */
       free_vector(xits,1,n);      /*    extern  char* getcwd ( char *buf , int len);*/
       free_vector(ptt,1,n);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       free_vector(pt,1,n);        return( GLOCK_ERROR_GETCWD );
       return;      }
     }      /* got dirc from getcwd*/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      printf(" DIRC = %s \n",dirc);
     for (j=1;j<=n;j++) {    } else {                              /* strip direcotry from path */
       ptt[j]=2.0*p[j]-pt[j];      ss++;                               /* after this, the filename */
       xit[j]=p[j]-pt[j];      l2 = strlen( ss );                  /* length of filename */
       pt[j]=p[j];      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     }      strcpy( name, ss );         /* save file name */
     fptt=(*func)(ptt);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (fptt < fp) {      dirc[l1-l2] = 0;                    /* add zero */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      printf(" DIRC2 = %s \n",dirc);
       if (t < 0.0) {    }
         linmin(p,xit,n,fret,func);    /* We add a separator at the end of dirc if not exists */
         for (j=1;j<=n;j++) {    l1 = strlen( dirc );                  /* length of directory */
           xi[j][ibig]=xi[j][n];    if( dirc[l1-1] != DIRSEPARATOR ){
           xi[j][n]=xit[j];      dirc[l1] =  DIRSEPARATOR;
         }      dirc[l1+1] = 0; 
 #ifdef DEBUG      printf(" DIRC3 = %s \n",dirc);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    }
         for(j=1;j<=n;j++)    ss = strrchr( name, '.' );            /* find last / */
           printf(" %.12e",xit[j]);    if (ss >0){
         printf("\n");      ss++;
 #endif      strcpy(ext,ss);                     /* save extension */
       }      l1= strlen( name);
     }      l2= strlen(ss)+1;
   }      strncpy( finame, name, l1-l2);
 }      finame[l1-l2]= 0;
     }
 /**** Prevalence limit ****************/  
     return( 0 );                          /* we're done */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /******************************************/
   
   int i, ii,j,k;  void replace_back_to_slash(char *s, char*t)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    int i;
   double **out, cov[NCOVMAX], **pmij();    int lg=0;
   double **newm;    i=0;
   double agefin, delaymax=50 ; /* Max number of years to converge */    lg=strlen(t);
     for(i=0; i<= lg; i++) {
   for (ii=1;ii<=nlstate+ndeath;ii++)      (s[i] = t[i]);
     for (j=1;j<=nlstate+ndeath;j++){      if (t[i]== '\\') s[i]='/';
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
     }  }
   
    cov[1]=1.;  char *trimbb(char *out, char *in)
    { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    char *s;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    s=out;
     newm=savm;    while (*in != '\0'){
     /* Covariates have to be included here again */      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
      cov[2]=agefin;        in++;
        }
       for (k=1; k<=cptcovn;k++) {      *out++ = *in++;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    *out='\0';
       }    return s;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/       gives blocc="abcdef2ghi" and alocc="j".
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     */
     savm=oldm;    char *s, *t, *bl;
     oldm=newm;    t=in;s=in;
     maxmax=0.;    while ((*in != occ) && (*in != '\0')){
     for(j=1;j<=nlstate;j++){      *alocc++ = *in++;
       min=1.;    }
       max=0.;    if( *in == occ){
       for(i=1; i<=nlstate; i++) {      *(alocc)='\0';
         sumnew=0;      s=++in;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    }
         prlim[i][j]= newm[i][j]/(1-sumnew);   
         max=FMAX(max,prlim[i][j]);    if (s == t) {/* occ not found */
         min=FMIN(min,prlim[i][j]);      *(alocc-(in-s))='\0';
       }      in=s;
       maxmin=max-min;    }
       maxmax=FMAX(maxmax,maxmin);    while ( *in != '\0'){
     }      *blocc++ = *in++;
     if(maxmax < ftolpl){    }
       return prlim;  
     }    *blocc='\0';
   }    return t;
 }  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
 /*************** transition probabilities ***************/  {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 {       gives blocc="abcdef2ghi" and alocc="j".
   double s1, s2;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   /*double t34;*/    */
   int i,j,j1, nc, ii, jj;    char *s, *t;
     t=in;s=in;
     for(i=1; i<= nlstate; i++){    while (*in != '\0'){
     for(j=1; j<i;j++){      while( *in == occ){
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        *blocc++ = *in++;
         /*s2 += param[i][j][nc]*cov[nc];*/        s=in;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      *blocc++ = *in++;
       }    }
       ps[i][j]=s2;    if (s == t) /* occ not found */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      *(blocc-(in-s))='\0';
     }    else
     for(j=i+1; j<=nlstate+ndeath;j++){      *(blocc-(in-s)-1)='\0';
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    in=s;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    while ( *in != '\0'){
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      *alocc++ = *in++;
       }    }
       ps[i][j]=s2;  
     }    *alocc='\0';
   }    return s;
     /*ps[3][2]=1;*/  }
   
   for(i=1; i<= nlstate; i++){  int nbocc(char *s, char occ)
      s1=0;  {
     for(j=1; j<i; j++)    int i,j=0;
       s1+=exp(ps[i][j]);    int lg=20;
     for(j=i+1; j<=nlstate+ndeath; j++)    i=0;
       s1+=exp(ps[i][j]);    lg=strlen(s);
     ps[i][i]=1./(s1+1.);    for(i=0; i<= lg; i++) {
     for(j=1; j<i; j++)    if  (s[i] == occ ) j++;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    }
     for(j=i+1; j<=nlstate+ndeath; j++)    return j;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       ps[ii][jj]=0;  /*      gives u="abcdef2ghi" and v="j" *\/ */
       ps[ii][ii]=1;  /*   int i,lg,j,p=0; */
     }  /*   i=0; */
   }  /*   lg=strlen(t); */
   /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*   } */
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /*   for(j=0; j<p; j++) { */
    }  /*     (u[j] = t[j]); */
     printf("\n ");  /*   } */
     }  /*      u[p]='\0'; */
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /*    for(j=0; j<= lg; j++) { */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   goto end;*/  /*   } */
     return ps;  /* } */
 }  
   /********************** nrerror ********************/
 /**************** Product of 2 matrices ******************/  
   void nrerror(char error_text[])
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  {
 {    fprintf(stderr,"ERREUR ...\n");
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    fprintf(stderr,"%s\n",error_text);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    exit(EXIT_FAILURE);
   /* in, b, out are matrice of pointers which should have been initialized  }
      before: only the contents of out is modified. The function returns  /*********************** vector *******************/
      a pointer to pointers identical to out */  double *vector(int nl, int nh)
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    double *v;
     for(k=ncolol; k<=ncoloh; k++)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if (!v) nrerror("allocation failure in vector");
         out[i][k] +=in[i][j]*b[j][k];    return v-nl+NR_END;
   }
   return out;  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   {
 /************* Higher Matrix Product ***************/    free((FREE_ARG)(v+nl-NR_END));
   }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /************************ivector *******************************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  int *ivector(long nl,long nh)
      duration (i.e. until  {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    int *v;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      (typically every 2 years instead of every month which is too big).    if (!v) nrerror("allocation failure in ivector");
      Model is determined by parameters x and covariates have to be    return v-nl+NR_END;
      included manually here.  }
   
      */  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    free((FREE_ARG)(v+nl-NR_END));
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /************************lvector *******************************/
   for (i=1;i<=nlstate+ndeath;i++)  long *lvector(long nl,long nh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    long *v;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     }    if (!v) nrerror("allocation failure in ivector");
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return v-nl+NR_END;
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /******************free lvector **************************/
       /* Covariates have to be included here again */  void free_lvector(long *v, long nl, long nh)
       cov[1]=1.;  {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    free((FREE_ARG)(v+nl-NR_END));
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /******************* imatrix *******************************/
       for (k=1; k<=cptcovprod;k++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    int **m; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    /* allocate pointers to rows */ 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       savm=oldm;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       oldm=newm;    m += NR_END; 
     }    m -= nrl; 
     for(i=1; i<=nlstate+ndeath; i++)    
       for(j=1;j<=nlstate+ndeath;j++) {    
         po[i][j][h]=newm[i][j];    /* allocate rows and set pointers to them */ 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
          */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       }    m[nrl] += NR_END; 
   } /* end h */    m[nrl] -= ncl; 
   return po;    
 }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
     /* return pointer to array of pointers to rows */ 
 /*************** log-likelihood *************/    return m; 
 double func( double *x)  } 
 {  
   int i, ii, j, k, mi, d, kk;  /****************** free_imatrix *************************/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  void free_imatrix(m,nrl,nrh,ncl,nch)
   double **out;        int **m;
   double sw; /* Sum of weights */        long nch,ncl,nrh,nrl; 
   double lli; /* Individual log likelihood */       /* free an int matrix allocated by imatrix() */ 
   long ipmx;  { 
   /*extern weight */    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   /* We are differentiating ll according to initial status */    free((FREE_ARG) (m+nrl-NR_END)); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  } 
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  /******************* matrix *******************************/
   */  double **matrix(long nrl, long nrh, long ncl, long nch)
   cov[1]=1.;  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double **m;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(mi=1; mi<= wav[i]-1; mi++){    if (!m) nrerror("allocation failure 1 in matrix()");
       for (ii=1;ii<=nlstate+ndeath;ii++)    m += NR_END;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m -= nrl;
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         for (kk=1; kk<=cptcovage;kk++) {    m[nrl] += NR_END;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    m[nrl] -= ncl;
         }  
            for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    return m;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
         savm=oldm;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
         oldm=newm;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
             */
          }
       } /* end mult */  
        /*************************free matrix ************************/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  {
       ipmx +=1;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       sw += weight[i];    free((FREE_ARG)(m+nrl-NR_END));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  }
     } /* end of wave */  
   } /* end of individual */  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double ***m;
   return -l;  
 }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*********** Maximum Likelihood Estimation ***************/    m -= nrl;
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int i,j, iter;    m[nrl] += NR_END;
   double **xi,*delti;    m[nrl] -= ncl;
   double fret;  
   xi=matrix(1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       xi[i][j]=(i==j ? 1.0 : 0.0);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   printf("Powell\n");    m[nrl][ncl] += NR_END;
   powell(p,xi,npar,ftol,&iter,&fret,func);    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      m[nrl][j]=m[nrl][j-1]+nlay;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    
     for (i=nrl+1; i<=nrh; i++) {
 }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
 /**** Computes Hessian and covariance matrix ***/        m[i][j]=m[i][j-1]+nlay;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    }
 {    return m; 
   double  **a,**y,*x,pd;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double **hess;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   int i, j,jk;    */
   int *indx;  }
   
   double hessii(double p[], double delta, int theta, double delti[]);  /*************************free ma3x ************************/
   double hessij(double p[], double delti[], int i, int j);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   void lubksb(double **a, int npar, int *indx, double b[]) ;  {
   void ludcmp(double **a, int npar, int *indx, double *d) ;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   hess=matrix(1,npar,1,npar);    free((FREE_ARG)(m+nrl-NR_END));
   }
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  /*************** function subdirf ***********/
     printf("%d",i);fflush(stdout);  char *subdirf(char fileres[])
     hess[i][i]=hessii(p,ftolhess,i,delti);  {
     /*printf(" %f ",p[i]);*/    /* Caution optionfilefiname is hidden */
     /*printf(" %lf ",hess[i][i]);*/    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/"); /* Add to the right */
      strcat(tmpout,fileres);
   for (i=1;i<=npar;i++) {    return tmpout;
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*************** function subdirf2 ***********/
         hess[i][j]=hessij(p,delti,i,j);  char *subdirf2(char fileres[], char *preop)
         hess[j][i]=hess[i][j];      {
         /*printf(" %lf ",hess[i][j]);*/    
       }    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
   printf("\n");    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    return tmpout;
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  /*************** function subdirf3 ***********/
   x=vector(1,npar);  char *subdirf3(char fileres[], char *preop, char *preop2)
   indx=ivector(1,npar);  {
   for (i=1;i<=npar;i++)    
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    /* Caution optionfilefiname is hidden */
   ludcmp(a,npar,indx,&pd);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   for (j=1;j<=npar;j++) {    strcat(tmpout,preop);
     for (i=1;i<=npar;i++) x[i]=0;    strcat(tmpout,preop2);
     x[j]=1;    strcat(tmpout,fileres);
     lubksb(a,npar,indx,x);    return tmpout;
     for (i=1;i<=npar;i++){  }
       matcov[i][j]=x[i];  
     }  /***************** f1dim *************************/
   }  extern int ncom; 
   extern double *pcom,*xicom;
   printf("\n#Hessian matrix#\n");  extern double (*nrfunc)(double []); 
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++) {  double f1dim(double x) 
       printf("%.3e ",hess[i][j]);  { 
     }    int j; 
     printf("\n");    double f;
   }    double *xt; 
    
   /* Recompute Inverse */    xt=vector(1,ncom); 
   for (i=1;i<=npar;i++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    f=(*nrfunc)(xt); 
   ludcmp(a,npar,indx,&pd);    free_vector(xt,1,ncom); 
     return f; 
   /*  printf("\n#Hessian matrix recomputed#\n");  } 
   
   for (j=1;j<=npar;j++) {  /*****************brent *************************/
     for (i=1;i<=npar;i++) x[i]=0;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     x[j]=1;  { 
     lubksb(a,npar,indx,x);    int iter; 
     for (i=1;i<=npar;i++){    double a,b,d,etemp;
       y[i][j]=x[i];    double fu,fv,fw,fx;
       printf("%.3e ",y[i][j]);    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     printf("\n");    double e=0.0; 
   }   
   */    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   free_matrix(a,1,npar,1,npar);    x=w=v=bx; 
   free_matrix(y,1,npar,1,npar);    fw=fv=fx=(*f)(x); 
   free_vector(x,1,npar);    for (iter=1;iter<=ITMAX;iter++) { 
   free_ivector(indx,1,npar);      xm=0.5*(a+b); 
   free_matrix(hess,1,npar,1,npar);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 }      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 /*************** hessian matrix ****************/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double hessii( double x[], double delta, int theta, double delti[])      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   int i;  #endif
   int l=1, lmax=20;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double k1,k2;        *xmin=x; 
   double p2[NPARMAX+1];        return fx; 
   double res;      } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      ftemp=fu;
   double fx;      if (fabs(e) > tol1) { 
   int k=0,kmax=10;        r=(x-w)*(fx-fv); 
   double l1;        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   fx=func(x);        q=2.0*(q-r); 
   for (i=1;i<=npar;i++) p2[i]=x[i];        if (q > 0.0) p = -p; 
   for(l=0 ; l <=lmax; l++){        q=fabs(q); 
     l1=pow(10,l);        etemp=e; 
     delts=delt;        e=d; 
     for(k=1 ; k <kmax; k=k+1){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       delt = delta*(l1*k);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       p2[theta]=x[theta] +delt;        else { 
       k1=func(p2)-fx;          d=p/q; 
       p2[theta]=x[theta]-delt;          u=x+d; 
       k2=func(p2)-fx;          if (u-a < tol2 || b-u < tol2) 
       /*res= (k1-2.0*fx+k2)/delt/delt; */            d=SIGN(tol1,xm-x); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        } 
            } else { 
 #ifdef DEBUG        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } 
 #endif      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      fu=(*f)(u); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      if (fu <= fx) { 
         k=kmax;        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          SHFT(fv,fw,fx,fu) 
         k=kmax; l=lmax*10.;          } else { 
       }            if (u < x) a=u; else b=u; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            if (fu <= fw || w == x) { 
         delts=delt;              v=w; 
       }              w=u; 
     }              fv=fw; 
   }              fw=fu; 
   delti[theta]=delts;            } else if (fu <= fv || v == x || v == w) { 
   return res;              v=u; 
                fv=fu; 
 }            } 
           } 
 double hessij( double x[], double delti[], int thetai,int thetaj)    } 
 {    nrerror("Too many iterations in brent"); 
   int i;    *xmin=x; 
   int l=1, l1, lmax=20;    return fx; 
   double k1,k2,k3,k4,res,fx;  } 
   double p2[NPARMAX+1];  
   int k;  /****************** mnbrak ***********************/
   
   fx=func(x);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for (k=1; k<=2; k++) {              double (*func)(double)) 
     for (i=1;i<=npar;i++) p2[i]=x[i];  { 
     p2[thetai]=x[thetai]+delti[thetai]/k;    double ulim,u,r,q, dum;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double fu; 
     k1=func(p2)-fx;   
      *fa=(*func)(*ax); 
     p2[thetai]=x[thetai]+delti[thetai]/k;    *fb=(*func)(*bx); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if (*fb > *fa) { 
     k2=func(p2)-fx;      SHFT(dum,*ax,*bx,dum) 
          SHFT(dum,*fb,*fa,dum) 
     p2[thetai]=x[thetai]-delti[thetai]/k;        } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    *cx=(*bx)+GOLD*(*bx-*ax); 
     k3=func(p2)-fx;    *fc=(*func)(*cx); 
      while (*fb > *fc) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;      r=(*bx-*ax)*(*fb-*fc); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      q=(*bx-*cx)*(*fb-*fa); 
     k4=func(p2)-fx;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #ifdef DEBUG      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      if ((*bx-u)*(u-*cx) > 0.0) { 
 #endif        fu=(*func)(u); 
   }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   return res;        fu=(*func)(u); 
 }        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 /************** Inverse of matrix **************/            SHFT(*fb,*fc,fu,(*func)(u)) 
 void ludcmp(double **a, int n, int *indx, double *d)            } 
 {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   int i,imax,j,k;        u=ulim; 
   double big,dum,sum,temp;        fu=(*func)(u); 
   double *vv;      } else { 
          u=(*cx)+GOLD*(*cx-*bx); 
   vv=vector(1,n);        fu=(*func)(u); 
   *d=1.0;      } 
   for (i=1;i<=n;i++) {      SHFT(*ax,*bx,*cx,u) 
     big=0.0;        SHFT(*fa,*fb,*fc,fu) 
     for (j=1;j<=n;j++)        } 
       if ((temp=fabs(a[i][j])) > big) big=temp;  } 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  /*************** linmin ************************/
   }  
   for (j=1;j<=n;j++) {  int ncom; 
     for (i=1;i<j;i++) {  double *pcom,*xicom;
       sum=a[i][j];  double (*nrfunc)(double []); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
     big=0.0;    double brent(double ax, double bx, double cx, 
     for (i=j;i<=n;i++) {                 double (*f)(double), double tol, double *xmin); 
       sum=a[i][j];    double f1dim(double x); 
       for (k=1;k<j;k++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         sum -= a[i][k]*a[k][j];                double *fc, double (*func)(double)); 
       a[i][j]=sum;    int j; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double xx,xmin,bx,ax; 
         big=dum;    double fx,fb,fa;
         imax=i;   
       }    ncom=n; 
     }    pcom=vector(1,n); 
     if (j != imax) {    xicom=vector(1,n); 
       for (k=1;k<=n;k++) {    nrfunc=func; 
         dum=a[imax][k];    for (j=1;j<=n;j++) { 
         a[imax][k]=a[j][k];      pcom[j]=p[j]; 
         a[j][k]=dum;      xicom[j]=xi[j]; 
       }    } 
       *d = -(*d);    ax=0.0; 
       vv[imax]=vv[j];    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     indx[j]=imax;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     if (a[j][j] == 0.0) a[j][j]=TINY;  #ifdef DEBUG
     if (j != n) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       dum=1.0/(a[j][j]);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  #endif
     }    for (j=1;j<=n;j++) { 
   }      xi[j] *= xmin; 
   free_vector(vv,1,n);  /* Doesn't work */      p[j] += xi[j]; 
 ;    } 
 }    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
 void lubksb(double **a, int n, int *indx, double b[])  } 
 {  
   int i,ii=0,ip,j;  char *asc_diff_time(long time_sec, char ascdiff[])
   double sum;  {
      long sec_left, days, hours, minutes;
   for (i=1;i<=n;i++) {    days = (time_sec) / (60*60*24);
     ip=indx[i];    sec_left = (time_sec) % (60*60*24);
     sum=b[ip];    hours = (sec_left) / (60*60) ;
     b[ip]=b[i];    sec_left = (sec_left) %(60*60);
     if (ii)    minutes = (sec_left) /60;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    sec_left = (sec_left) % (60);
     else if (sum) ii=i;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     b[i]=sum;    return ascdiff;
   }  }
   for (i=n;i>=1;i--) {  
     sum=b[i];  /*************** powell ************************/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     b[i]=sum/a[i][i];              double (*func)(double [])) 
   }  { 
 }    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
 /************ Frequencies ********************/    int i,ibig,j; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double del,t,*pt,*ptt,*xit;
 {  /* Some frequencies */    double fp,fptt;
      double *xits;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int niterf, itmp;
   double ***freq; /* Frequencies */  
   double *pp;    pt=vector(1,n); 
   double pos, k2, dateintsum=0,k2cpt=0;    ptt=vector(1,n); 
   FILE *ficresp;    xit=vector(1,n); 
   char fileresp[FILENAMELENGTH];    xits=vector(1,n); 
      *fret=(*func)(p); 
   pp=vector(1,nlstate);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (*iter=1;;++(*iter)) { 
   strcpy(fileresp,"p");      fp=(*fret); 
   strcat(fileresp,fileres);      ibig=0; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {      del=0.0; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);      last_time=curr_time;
     exit(0);      (void) gettimeofday(&curr_time,&tzp);
   }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   j1=0;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       for (i=1;i<=n;i++) {
   j=cptcoveff;        printf(" %d %.12f",i, p[i]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(ficrespow," %.12lf", p[i]);
   for(k1=1; k1<=j;k1++){      }
     for(i1=1; i1<=ncodemax[k1];i1++){      printf("\n");
       j1++;      fprintf(ficlog,"\n");
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      fprintf(ficrespow,"\n");fflush(ficrespow);
         scanf("%d", i);*/      if(*iter <=3){
       for (i=-1; i<=nlstate+ndeath; i++)          tm = *localtime(&curr_time.tv_sec);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          strcpy(strcurr,asctime(&tm));
           for(m=agemin; m <= agemax+3; m++)  /*       asctime_r(&tm,strcurr); */
             freq[i][jk][m]=0;        forecast_time=curr_time; 
              itmp = strlen(strcurr);
       dateintsum=0;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       k2cpt=0;          strcurr[itmp-1]='\0';
       for (i=1; i<=imx; i++) {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         bool=1;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         if  (cptcovn>0) {        for(niterf=10;niterf<=30;niterf+=10){
           for (z1=1; z1<=cptcoveff; z1++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          tmf = *localtime(&forecast_time.tv_sec);
               bool=0;  /*      asctime_r(&tmf,strfor); */
         }          strcpy(strfor,asctime(&tmf));
         if (bool==1) {          itmp = strlen(strfor);
           for(m=firstpass; m<=lastpass; m++){          if(strfor[itmp-1]=='\n')
             k2=anint[m][i]+(mint[m][i]/12.);          strfor[itmp-1]='\0';
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
               if(agev[m][i]==0) agev[m][i]=agemax+1;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
               if(agev[m][i]==1) agev[m][i]=agemax+2;        }
               if (m<lastpass) {      }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (i=1;i<=n;i++) { 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
               }        fptt=(*fret); 
                #ifdef DEBUG
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        printf("fret=%lf \n",*fret);
                 dateintsum=dateintsum+k2;        fprintf(ficlog,"fret=%lf \n",*fret);
                 k2cpt++;  #endif
               }        printf("%d",i);fflush(stdout);
             }        fprintf(ficlog,"%d",i);fflush(ficlog);
           }        linmin(p,xit,n,fret,func); 
         }        if (fabs(fptt-(*fret)) > del) { 
       }          del=fabs(fptt-(*fret)); 
                  ibig=i; 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        } 
   #ifdef DEBUG
       if  (cptcovn>0) {        printf("%d %.12e",i,(*fret));
         fprintf(ficresp, "\n#********** Variable ");        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (j=1;j<=n;j++) {
         fprintf(ficresp, "**********\n#");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       }          printf(" x(%d)=%.12e",j,xit[j]);
       for(i=1; i<=nlstate;i++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        }
       fprintf(ficresp, "\n");        for(j=1;j<=n;j++) {
                printf(" p=%.12e",p[j]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){          fprintf(ficlog," p=%.12e",p[j]);
         if(i==(int)agemax+3)        }
           printf("Total");        printf("\n");
         else        fprintf(ficlog,"\n");
           printf("Age %d", i);  #endif
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }        int k[2],l;
         for(jk=1; jk <=nlstate ; jk++){        k[0]=1;
           for(m=-1, pos=0; m <=0 ; m++)        k[1]=-1;
             pos += freq[jk][m][i];        printf("Max: %.12e",(*func)(p));
           if(pp[jk]>=1.e-10)        fprintf(ficlog,"Max: %.12e",(*func)(p));
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (j=1;j<=n;j++) {
           else          printf(" %.12e",p[j]);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          fprintf(ficlog," %.12e",p[j]);
         }        }
         printf("\n");
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"\n");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(l=0;l<=1;l++) {
             pp[jk] += freq[jk][m][i];          for (j=1;j<=n;j++) {
         }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         for(jk=1,pos=0; jk <=nlstate ; jk++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           pos += pp[jk];          }
         for(jk=1; jk <=nlstate ; jk++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           if(pos>=1.e-5)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
           else  #endif
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){  
             if(pos>=1.e-5){        free_vector(xit,1,n); 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        free_vector(xits,1,n); 
               probs[i][jk][j1]= pp[jk]/pos;        free_vector(ptt,1,n); 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        free_vector(pt,1,n); 
             }        return; 
             else      } 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           }      for (j=1;j<=n;j++) { 
         }        ptt[j]=2.0*p[j]-pt[j]; 
                xit[j]=p[j]-pt[j]; 
         for(jk=-1; jk <=nlstate+ndeath; jk++)        pt[j]=p[j]; 
           for(m=-1; m <=nlstate+ndeath; m++)      } 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      fptt=(*func)(ptt); 
         if(i <= (int) agemax)      if (fptt < fp) { 
           fprintf(ficresp,"\n");        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         printf("\n");        if (t < 0.0) { 
       }          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
   dateintmean=dateintsum/k2cpt;            xi[j][n]=xit[j]; 
            }
   fclose(ficresp);  #ifdef DEBUG
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_vector(pp,1,nlstate);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
   /* End of Freq */            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
 /************ Prevalence ********************/          printf("\n");
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          fprintf(ficlog,"\n");
 {  /* Some frequencies */  #endif
          }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      } 
   double ***freq; /* Frequencies */    } 
   double *pp;  } 
   double pos, k2;  
   /**** Prevalence limit (stable or period prevalence)  ****************/
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   j1=0;       matrix by transitions matrix until convergence is reached */
    
   j=cptcoveff;    int i, ii,j,k;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double min, max, maxmin, maxmax,sumnew=0.;
      /* double **matprod2(); */ /* test */
   for(k1=1; k1<=j;k1++){    double **out, cov[NCOVMAX+1], **pmij();
     for(i1=1; i1<=ncodemax[k1];i1++){    double **newm;
       j1++;    double agefin, delaymax=50 ; /* Max number of years to converge */
        
       for (i=-1; i<=nlstate+ndeath; i++)      for (ii=1;ii<=nlstate+ndeath;ii++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for (j=1;j<=nlstate+ndeath;j++){
           for(m=agemin; m <= agemax+3; m++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             freq[i][jk][m]=0;      }
        
       for (i=1; i<=imx; i++) {     cov[1]=1.;
         bool=1;   
         if  (cptcovn>0) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           for (z1=1; z1<=cptcoveff; z1++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      newm=savm;
               bool=0;      /* Covariates have to be included here again */
         }      cov[2]=agefin;
         if (bool==1) {      
           for(m=firstpass; m<=lastpass; m++){      for (k=1; k<=cptcovn;k++) {
             k2=anint[m][i]+(mint[m][i]/12.);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;      }
               if(agev[m][i]==1) agev[m][i]=agemax+2;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
               if (m<lastpass) {      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
                 if (calagedate>0)      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      
                 else      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
               }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
             }      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
           }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         }      
       }      savm=oldm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){      oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){      maxmax=0.;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for(j=1;j<=nlstate;j++){
             pp[jk] += freq[jk][m][i];        min=1.;
         }        max=0.;
         for(jk=1; jk <=nlstate ; jk++){        for(i=1; i<=nlstate; i++) {
           for(m=-1, pos=0; m <=0 ; m++)          sumnew=0;
             pos += freq[jk][m][i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         }          prlim[i][j]= newm[i][j]/(1-sumnew);
                  /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         for(jk=1; jk <=nlstate ; jk++){          max=FMAX(max,prlim[i][j]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          min=FMIN(min,prlim[i][j]);
             pp[jk] += freq[jk][m][i];        }
         }        maxmin=max-min;
                maxmax=FMAX(maxmax,maxmin);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      }
              if(maxmax < ftolpl){
         for(jk=1; jk <=nlstate ; jk++){            return prlim;
           if( i <= (int) agemax){      }
             if(pos>=1.e-5){    }
               probs[i][jk][j1]= pp[jk]/pos;  }
             }  
           }  /*************** transition probabilities ***************/ 
         }  
          double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       }  {
     }    /* According to parameters values stored in x and the covariate's values stored in cov,
   }       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
         lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   free_vector(pp,1,nlstate);       ncth covariate in the global vector x is given by the formula:
         j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 }  /* End of Freq */       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 /************* Waves Concatenation ***************/       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 {    */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double s1, lnpijopii;
      Death is a valid wave (if date is known).    /*double t34;*/
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    int i,j,j1, nc, ii, jj;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.      for(i=1; i<= nlstate; i++){
      */        for(j=1; j<i;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   int i, mi, m;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
      double sum=0., jmean=0.;*/  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }
   int j, k=0,jk, ju, jl;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   double sum=0.;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   jmin=1e+5;        }
   jmax=-1;        for(j=i+1; j<=nlstate+ndeath;j++){
   jmean=0.;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   for(i=1; i<=imx; i++){            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     mi=0;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     m=firstpass;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
     while(s[m][i] <= nlstate){          }
       if(s[m][i]>=1)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         mw[++mi][i]=m;        }
       if(m >=lastpass)      }
         break;      
       else      for(i=1; i<= nlstate; i++){
         m++;        s1=0;
     }/* end while */        for(j=1; j<i; j++){
     if (s[m][i] > nlstate){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       mi++;     /* Death is another wave */          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       /* if(mi==0)  never been interviewed correctly before death */        }
          /* Only death is a correct wave */        for(j=i+1; j<=nlstate+ndeath; j++){
       mw[mi][i]=m;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
     wav[i]=mi;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     if(mi==0)        ps[i][i]=1./(s1+1.);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        /* Computing other pijs */
   }        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(i=1; i<=imx; i++){        for(j=i+1; j<=nlstate+ndeath; j++)
     for(mi=1; mi<wav[i];mi++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if (stepm <=0)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         dh[mi][i]=1;      } /* end i */
       else{      
         if (s[mw[mi+1][i]][i] > nlstate) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           if (agedc[i] < 2*AGESUP) {        for(jj=1; jj<= nlstate+ndeath; jj++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ps[ii][jj]=0;
           if(j==0) j=1;  /* Survives at least one month after exam */          ps[ii][ii]=1;
           k=k+1;        }
           if (j >= jmax) jmax=j;      }
           if (j <= jmin) jmin=j;      
           sum=sum+j;      
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
           }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         }      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         else{      /*   } */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      /*   printf("\n "); */
           k=k+1;      /* } */
           if (j >= jmax) jmax=j;      /* printf("\n ");printf("%lf ",cov[2]);*/
           else if (j <= jmin)jmin=j;      /*
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           sum=sum+j;        goto end;*/
         }      return ps;
         jk= j/stepm;  }
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;  /**************** Product of 2 matrices ******************/
         if(jl <= -ju)  
           dh[mi][i]=jk;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         else  {
           dh[mi][i]=jk+1;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         if(dh[mi][i]==0)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           dh[mi][i]=1; /* At least one step */    /* in, b, out are matrice of pointers which should have been initialized 
       }       before: only the contents of out is modified. The function returns
     }       a pointer to pointers identical to out */
   }    int i, j, k;
   jmean=sum/k;    for(i=nrl; i<= nrh; i++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for(k=ncolol; k<=ncoloh; k++){
  }        out[i][k]=0.;
 /*********** Tricode ****************************/        for(j=ncl; j<=nch; j++)
 void tricode(int *Tvar, int **nbcode, int imx)          out[i][k] +=in[i][j]*b[j][k];
 {      }
   int Ndum[20],ij=1, k, j, i;    return out;
   int cptcode=0;  }
   cptcoveff=0;  
    
   for (k=0; k<19; k++) Ndum[k]=0;  /************* Higher Matrix Product ***************/
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  {
     for (i=1; i<=imx; i++) {    /* Computes the transition matrix starting at age 'age' over 
       ij=(int)(covar[Tvar[j]][i]);       'nhstepm*hstepm*stepm' months (i.e. until
       Ndum[ij]++;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/       nhstepm*hstepm matrices. 
       if (ij > cptcode) cptcode=ij;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
        for the memory).
     for (i=0; i<=cptcode; i++) {       Model is determined by parameters x and covariates have to be 
       if(Ndum[i]!=0) ncodemax[j]++;       included manually here. 
     }  
     ij=1;       */
   
     int i, j, d, h, k;
     for (i=1; i<=ncodemax[j]; i++) {    double **out, cov[NCOVMAX+1];
       for (k=0; k<=19; k++) {    double **newm;
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;    /* Hstepm could be zero and should return the unit matrix */
              for (i=1;i<=nlstate+ndeath;i++)
           ij++;      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         if (ij > ncodemax[j]) break;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }        }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }      for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
  for (k=0; k<19; k++) Ndum[k]=0;        newm=savm;
         /* Covariates have to be included here again */
  for (i=1; i<=ncovmodel-2; i++) {        cov[1]=1.;
       ij=Tvar[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       Ndum[ij]++;        for (k=1; k<=cptcovn;k++) 
     }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
  ij=1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  for (i=1; i<=10; i++) {        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
    if((Ndum[i]!=0) && (i<=ncovcol)){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      Tvaraff[ij]=i;  
      ij++;  
    }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
  }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     cptcoveff=ij-1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 }        savm=oldm;
         oldm=newm;
 /*********** Health Expectancies ****************/      }
       for(i=1; i<=nlstate+ndeath; i++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
 {          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   /* Health expectancies */        }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      /*printf("h=%d ",h);*/
   double age, agelim, hf;    } /* end h */
   double ***p3mat,***varhe;  /*     printf("\n H=%d \n",h); */
   double **dnewm,**doldm;    return po;
   double *xp;  }
   double **gp, **gm;  
   double ***gradg, ***trgradg;  
   int theta;  /*************** log-likelihood *************/
   double func( double *x)
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  {
   xp=vector(1,npar);    int i, ii, j, k, mi, d, kk;
   dnewm=matrix(1,nlstate*2,1,npar);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   doldm=matrix(1,nlstate*2,1,nlstate*2);    double **out;
      double sw; /* Sum of weights */
   fprintf(ficreseij,"# Health expectancies\n");    double lli; /* Individual log likelihood */
   fprintf(ficreseij,"# Age");    int s1, s2;
   for(i=1; i<=nlstate;i++)    double bbh, survp;
     for(j=1; j<=nlstate;j++)    long ipmx;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /*extern weight */
   fprintf(ficreseij,"\n");    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   if(estepm < stepm){    /*for(i=1;i<imx;i++) 
     printf ("Problem %d lower than %d\n",estepm, stepm);      printf(" %d\n",s[4][i]);
   }    */
   else  hstepm=estepm;      cov[1]=1.;
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    for(k=1; k<=nlstate; k++) ll[k]=0.;
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear    if(mle==1){
    * progression inbetween and thus overestimating or underestimating according      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * to the curvature of the survival function. If, for the same date, we        /* Computes the values of the ncovmodel covariates of the model
    * estimate the model with stepm=1 month, we can keep estepm to 24 months           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
    * to compare the new estimate of Life expectancy with the same linear           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
    * hypothesis. A more precise result, taking into account a more precise           to be observed in j being in i according to the model.
    * curvature will be obtained if estepm is as small as stepm. */         */
         for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   /* For example we decided to compute the life expectancy with the smallest unit */          cov[2+k]=covar[Tvar[k]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        }
      nhstepm is the number of hstepm from age to agelim        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
      nstepm is the number of stepm from age to agelin.           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
      Look at hpijx to understand the reason of that which relies in memory size           has been calculated etc */
      and note for a fixed period like estepm months */        for(mi=1; mi<= wav[i]-1; mi++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for (ii=1;ii<=nlstate+ndeath;ii++)
      survival function given by stepm (the optimization length). Unfortunately it            for (j=1;j<=nlstate+ndeath;j++){
      means that if the survival funtion is printed only each two years of age and if              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      results. So we changed our mind and took the option of the best precision.            }
   */          for(d=0; d<dh[mi][i]; d++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   agelim=AGESUP;            for (kk=1; kk<=cptcovage;kk++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     /* nhstepm age range expressed in number of stepm */            }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* if (stepm >= YEARM) hstepm=1;*/            savm=oldm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            oldm=newm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /* end mult */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        
     gp=matrix(0,nhstepm,1,nlstate*2);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     gm=matrix(0,nhstepm,1,nlstate*2);          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored           * (in months) between two waves is not a multiple of stepm, we rounded to 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */           * the nearest (and in case of equal distance, to the lowest) interval but now
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);             * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
     /* Computing Variances of health expectancies */           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
      for(theta=1; theta <=npar; theta++){           */
       for(i=1; i<=npar; i++){          s1=s[mw[mi][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /* bias bh is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
       cptj=0;           */
       for(j=1; j<= nlstate; j++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         for(i=1; i<=nlstate; i++){          if( s2 > nlstate){ 
           cptj=cptj+1;            /* i.e. if s2 is a death state and if the date of death is known 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){               then the contribution to the likelihood is the probability to 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;               die between last step unit time and current  step unit time, 
           }               which is also equal to probability to die before dh 
         }               minus probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
                as if date of death was unknown. Death was treated as any other
                health state: the date of the interview describes the actual state
       for(i=1; i<=npar; i++)          and not the date of a change in health state. The former idea was
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          to consider that at each interview the state was recorded
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            (healthy, disable or death) and IMaCh was corrected; but when we
                introduced the exact date of death then we should have modified
       cptj=0;          the contribution of an exact death to the likelihood. This new
       for(j=1; j<= nlstate; j++){          contribution is smaller and very dependent of the step unit
         for(i=1;i<=nlstate;i++){          stepm. It is no more the probability to die between last interview
           cptj=cptj+1;          and month of death but the probability to survive from last
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          interview up to one month before death multiplied by the
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          probability to die within a month. Thanks to Chris
           }          Jackson for correcting this bug.  Former versions increased
         }          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
       for(j=1; j<= nlstate*2; j++)          lower mortality.
         for(h=0; h<=nhstepm-1; h++){            */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            lli=log(out[s1][s2] - savm[s1][s2]);
         }  
      }  
              } else if  (s2==-2) {
 /* End theta */            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            /*survp += out[s1][j]; */
             lli= log(survp);
      for(h=0; h<=nhstepm-1; h++)          }
       for(j=1; j<=nlstate*2;j++)          
         for(theta=1; theta <=npar; theta++)          else if  (s2==-4) { 
           trgradg[h][j][theta]=gradg[h][theta][j];            for (j=3,survp=0. ; j<=nlstate; j++)  
                    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
      for(i=1;i<=nlstate*2;i++)          } 
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
      printf("%d|",(int)age);fflush(stdout);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      for(h=0;h<=nhstepm-1;h++){            lli= log(survp); 
       for(k=0;k<=nhstepm-1;k++){          } 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          else{
         for(i=1;i<=nlstate*2;i++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for(j=1;j<=nlstate*2;j++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          } 
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
     /* Computing expectancies */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(i=1; i<=nlstate;i++)          ipmx +=1;
       for(j=1; j<=nlstate;j++)          sw += weight[i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        } /* end of wave */
                } /* end of individual */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficreseij,"%3.0f",age );          for (ii=1;ii<=nlstate+ndeath;ii++)
     cptj=0;            for (j=1;j<=nlstate+ndeath;j++){
     for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         cptj++;            }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          for(d=0; d<=dh[mi][i]; d++){
       }            newm=savm;
     fprintf(ficreseij,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
     free_matrix(gm,0,nhstepm,1,nlstate*2);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_matrix(gp,0,nhstepm,1,nlstate*2);            }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
   }            oldm=newm;
   printf("\n");          } /* end mult */
         
   free_vector(xp,1,npar);          s1=s[mw[mi][i]][i];
   free_matrix(dnewm,1,nlstate*2,1,npar);          s2=s[mw[mi+1][i]][i];
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 }          ipmx +=1;
           sw += weight[i];
 /************ Variance ******************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        } /* end of wave */
 {      } /* end of individual */
   /* Variance of health expectancies */    }  else if(mle==3){  /* exponential inter-extrapolation */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **newm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **dnewm,**doldm;        for(mi=1; mi<= wav[i]-1; mi++){
   int i, j, nhstepm, hstepm, h, nstepm ;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int k, cptcode;            for (j=1;j<=nlstate+ndeath;j++){
   double *xp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gp, **gm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***gradg, ***trgradg;            }
   double ***p3mat;          for(d=0; d<dh[mi][i]; d++){
   double age,agelim, hf;            newm=savm;
   int theta;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresvij,"# Age");            }
   for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            savm=oldm;
   fprintf(ficresvij,"\n");            oldm=newm;
           } /* end mult */
   xp=vector(1,npar);        
   dnewm=matrix(1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
   doldm=matrix(1,nlstate,1,nlstate);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   if(estepm < stepm){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     printf ("Problem %d lower than %d\n",estepm, stepm);          ipmx +=1;
   }          sw += weight[i];
   else  hstepm=estepm;            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* For example we decided to compute the life expectancy with the smallest unit */        } /* end of wave */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      } /* end of individual */
      nhstepm is the number of hstepm from age to agelim    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      nstepm is the number of stepm from age to agelin.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      Look at hpijx to understand the reason of that which relies in memory size        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      and note for a fixed period like k years */        for(mi=1; mi<= wav[i]-1; mi++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for (ii=1;ii<=nlstate+ndeath;ii++)
      survival function given by stepm (the optimization length). Unfortunately it            for (j=1;j<=nlstate+ndeath;j++){
      means that if the survival funtion is printed only each two years of age and if              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      results. So we changed our mind and took the option of the best precision.            }
   */          for(d=0; d<dh[mi][i]; d++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            newm=savm;
   agelim = AGESUP;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (kk=1; kk<=cptcovage;kk++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gp=matrix(0,nhstepm,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gm=matrix(0,nhstepm,1,nlstate);            savm=oldm;
             oldm=newm;
     for(theta=1; theta <=npar; theta++){          } /* end mult */
       for(i=1; i<=npar; i++){ /* Computes gradient */        
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            if( s2 > nlstate){ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
       if (popbased==1) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(i=1; i<=nlstate;i++)          }
           prlim[i][i]=probs[(int)age][i][ij];          ipmx +=1;
       }          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<= nlstate; j++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(h=0; h<=nhstepm; h++){        } /* end of wave */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      } /* end of individual */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=npar; i++) /* Computes gradient */          for (ii=1;ii<=nlstate+ndeath;ii++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (j=1;j<=nlstate+ndeath;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
       if (popbased==1) {          for(d=0; d<dh[mi][i]; d++){
         for(i=1; i<=nlstate;i++)            newm=savm;
           prlim[i][i]=probs[(int)age][i][ij];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate; j++){            }
         for(h=0; h<=nhstepm; h++){          
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
       }            oldm=newm;
           } /* end mult */
       for(j=1; j<= nlstate; j++)        
         for(h=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          s2=s[mw[mi+1][i]][i];
         }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     } /* End theta */          ipmx +=1;
           sw += weight[i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for(h=0; h<=nhstepm; h++)        } /* end of wave */
       for(j=1; j<=nlstate;j++)      } /* end of individual */
         for(theta=1; theta <=npar; theta++)    } /* End of if */
           trgradg[h][j][theta]=gradg[h][theta][j];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(i=1;i<=nlstate;i++)    return -l;
       for(j=1;j<=nlstate;j++)  }
         vareij[i][j][(int)age] =0.;  
   /*************** log-likelihood *************/
     for(h=0;h<=nhstepm;h++){  double funcone( double *x)
       for(k=0;k<=nhstepm;k++){  {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    /* Same as likeli but slower because of a lot of printf and if */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int i, ii, j, k, mi, d, kk;
         for(i=1;i<=nlstate;i++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           for(j=1;j<=nlstate;j++)    double **out;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double lli; /* Individual log likelihood */
       }    double llt;
     }    int s1, s2;
     double bbh, survp;
     fprintf(ficresvij,"%.0f ",age );    /*extern weight */
     for(i=1; i<=nlstate;i++)    /* We are differentiating ll according to initial status */
       for(j=1; j<=nlstate;j++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
     fprintf(ficresvij,"\n");    */
     free_matrix(gp,0,nhstepm,1,nlstate);    cov[1]=1.;
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   } /* End age */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   free_vector(xp,1,npar);        for (ii=1;ii<=nlstate+ndeath;ii++)
   free_matrix(doldm,1,nlstate,1,npar);          for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }          }
         for(d=0; d<dh[mi][i]; d++){
 /************ Variance of prevlim ******************/          newm=savm;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {          for (kk=1; kk<=cptcovage;kk++) {
   /* Variance of prevalence limit */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   double **newm;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   double **dnewm,**doldm;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k, cptcode;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   double *xp;          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   double *gp, *gm;          savm=oldm;
   double **gradg, **trgradg;          oldm=newm;
   double age,agelim;        } /* end mult */
   int theta;        
            s1=s[mw[mi][i]][i];
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        s2=s[mw[mi+1][i]][i];
   fprintf(ficresvpl,"# Age");        bbh=(double)bh[mi][i]/(double)stepm; 
   for(i=1; i<=nlstate;i++)        /* bias is positive if real duration
       fprintf(ficresvpl," %1d-%1d",i,i);         * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficresvpl,"\n");         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   xp=vector(1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
   dnewm=matrix(1,nlstate,1,npar);        } else if  (s2==-2) {
   doldm=matrix(1,nlstate,1,nlstate);          for (j=1,survp=0. ; j<=nlstate; j++) 
              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   hstepm=1*YEARM; /* Every year of age */          lli= log(survp);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        }else if (mle==1){
   agelim = AGESUP;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } else if(mle==2){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if (stepm >= YEARM) hstepm=1;        } else if(mle==3){  /* exponential inter-extrapolation */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     gradg=matrix(1,npar,1,nlstate);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     gp=vector(1,nlstate);          lli=log(out[s1][s2]); /* Original formula */
     gm=vector(1,nlstate);        } else{  /* mle=0 back to 1 */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(theta=1; theta <=npar; theta++){          /*lli=log(out[s1][s2]); */ /* Original formula */
       for(i=1; i<=npar; i++){ /* Computes gradient */        } /* End of if */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        ipmx +=1;
       }        sw += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1;i<=nlstate;i++)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         gp[i] = prlim[i][i];        if(globpr){
              fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(i=1; i<=npar; i++) /* Computes gradient */   %11.6f %11.6f %11.6f ", \
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(i=1;i<=nlstate;i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         gm[i] = prlim[i][i];            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for(i=1;i<=nlstate;i++)          }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          fprintf(ficresilk," %10.6f\n", -llt);
     } /* End theta */        }
       } /* end of wave */
     trgradg =matrix(1,nlstate,1,npar);    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(j=1; j<=nlstate;j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(theta=1; theta <=npar; theta++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         trgradg[j][theta]=gradg[theta][j];    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
     for(i=1;i<=nlstate;i++)      gsw=sw;
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    return -l;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   /*************** function likelione ***********/
     fprintf(ficresvpl,"%.0f ",age );  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    /* This routine should help understanding what is done with 
     fprintf(ficresvpl,"\n");       the selection of individuals/waves and
     free_vector(gp,1,nlstate);       to check the exact contribution to the likelihood.
     free_vector(gm,1,nlstate);       Plotting could be done.
     free_matrix(gradg,1,npar,1,nlstate);     */
     free_matrix(trgradg,1,nlstate,1,npar);    int k;
   } /* End age */  
     if(*globpri !=0){ /* Just counts and sums, no printings */
   free_vector(xp,1,npar);      strcpy(fileresilk,"ilk"); 
   free_matrix(doldm,1,nlstate,1,npar);      strcat(fileresilk,fileres);
   free_matrix(dnewm,1,nlstate,1,nlstate);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
 }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
 /************ Variance of one-step probabilities  ******************/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int i, j=0,  i1, k1, l1, t, tj;      for(k=1; k<=nlstate; k++) 
   int k2, l2, j1,  z1;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int k=0,l, cptcode;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int first=1;    }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;  
   double **dnewm,**doldm;    *fretone=(*funcone)(p);
   double *xp;    if(*globpri !=0){
   double *gp, *gm;      fclose(ficresilk);
   double **gradg, **trgradg;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double **mu;      fflush(fichtm); 
   double age,agelim, cov[NCOVMAX];    } 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    return;
   int theta;  }
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];  /*********** Maximum Likelihood Estimation ***************/
   
   double ***varpij;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
   strcpy(fileresprob,"prob");    int i,j, iter;
   strcat(fileresprob,fileres);    double **xi;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double fret;
     printf("Problem with resultfile: %s\n", fileresprob);    double fretone; /* Only one call to likelihood */
   }    /*  char filerespow[FILENAMELENGTH];*/
   strcpy(fileresprobcov,"probcov");    xi=matrix(1,npar,1,npar);
   strcat(fileresprobcov,fileres);    for (i=1;i<=npar;i++)
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for (j=1;j<=npar;j++)
     printf("Problem with resultfile: %s\n", fileresprobcov);        xi[i][j]=(i==j ? 1.0 : 0.0);
   }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   strcpy(fileresprobcor,"probcor");    strcpy(filerespow,"pow"); 
   strcat(fileresprobcor,fileres);    strcat(filerespow,fileres);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", fileresprobcor);      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficresprob,"# Age");    fprintf(ficrespow,"\n");
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");    powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }    /**** Computes Hessian and covariance matrix ***/
   fprintf(ficresprob,"\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   fprintf(ficresprobcov,"\n");  {
   fprintf(ficresprobcor,"\n");    double  **a,**y,*x,pd;
   xp=vector(1,npar);    double **hess;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    int i, j,jk;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    int *indx;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   first=1;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     exit(0);    double gompertz(double p[]);
   }    hess=matrix(1,npar,1,npar);
   else{  
     fprintf(ficgp,"\n# Routine varprob");    printf("\nCalculation of the hessian matrix. Wait...\n");
   }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    for (i=1;i<=npar;i++){
     printf("Problem with html file: %s\n", optionfilehtm);      printf("%d",i);fflush(stdout);
     exit(0);      fprintf(ficlog,"%d",i);fflush(ficlog);
   }     
   else{       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      /*  printf(" %f ",p[i]);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
   }    
     for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
   cov[1]=1;        if (j>i) { 
   tj=cptcoveff;          printf(".%d%d",i,j);fflush(stdout);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   j1=0;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   for(t=1; t<=tj;t++){          
     for(i1=1; i1<=ncodemax[t];i1++){          hess[j][i]=hess[i][j];    
       j1++;          /*printf(" %lf ",hess[i][j]);*/
              }
       if  (cptcovn>0) {      }
         fprintf(ficresprob, "\n#********** Variable ");    }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    printf("\n");
         fprintf(ficresprob, "**********\n#");    fprintf(ficlog,"\n");
         fprintf(ficresprobcov, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         fprintf(ficresprobcov, "**********\n#");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
            
         fprintf(ficgp, "\n#********** Variable ");    a=matrix(1,npar,1,npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    y=matrix(1,npar,1,npar);
         fprintf(ficgp, "**********\n#");    x=vector(1,npar);
            indx=ivector(1,npar);
            for (i=1;i<=npar;i++)
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    ludcmp(a,npar,indx,&pd);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  
            for (j=1;j<=npar;j++) {
         fprintf(ficresprobcor, "\n#********** Variable ");          for (i=1;i<=npar;i++) x[i]=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      x[j]=1;
         fprintf(ficgp, "**********\n#");          lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
              matcov[i][j]=x[i];
       for (age=bage; age<=fage; age ++){      }
         cov[2]=age;    }
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    printf("\n#Hessian matrix#\n");
         }    fprintf(ficlog,"\n#Hessian matrix#\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (i=1;i<=npar;i++) { 
         for (k=1; k<=cptcovprod;k++)      for (j=1;j<=npar;j++) { 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        printf("%.3e ",hess[i][j]);
                fprintf(ficlog,"%.3e ",hess[i][j]);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      printf("\n");
         gp=vector(1,(nlstate)*(nlstate+ndeath));      fprintf(ficlog,"\n");
         gm=vector(1,(nlstate)*(nlstate+ndeath));    }
      
         for(theta=1; theta <=npar; theta++){    /* Recompute Inverse */
           for(i=1; i<=npar; i++)    for (i=1;i<=npar;i++)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
              ludcmp(a,npar,indx,&pd);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
              /*  printf("\n#Hessian matrix recomputed#\n");
           k=0;  
           for(i=1; i<= (nlstate); i++){    for (j=1;j<=npar;j++) {
             for(j=1; j<=(nlstate+ndeath);j++){      for (i=1;i<=npar;i++) x[i]=0;
               k=k+1;      x[j]=1;
               gp[k]=pmmij[i][j];      lubksb(a,npar,indx,x);
             }      for (i=1;i<=npar;i++){ 
           }        y[i][j]=x[i];
                  printf("%.3e ",y[i][j]);
           for(i=1; i<=npar; i++)        fprintf(ficlog,"%.3e ",y[i][j]);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
          printf("\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      fprintf(ficlog,"\n");
           k=0;    }
           for(i=1; i<=(nlstate); i++){    */
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    free_matrix(a,1,npar,1,npar);
               gm[k]=pmmij[i][j];    free_matrix(y,1,npar,1,npar);
             }    free_vector(x,1,npar);
           }    free_ivector(indx,1,npar);
          free_matrix(hess,1,npar,1,npar);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
         }  }
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  /*************** hessian matrix ****************/
           for(theta=1; theta <=npar; theta++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
             trgradg[j][theta]=gradg[theta][j];  {
            int i;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    int l=1, lmax=20;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    double k1,k2;
            double p2[MAXPARM+1]; /* identical to x */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double res;
            double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         k=0;    double fx;
         for(i=1; i<=(nlstate); i++){    int k=0,kmax=10;
           for(j=1; j<=(nlstate+ndeath);j++){    double l1;
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];    fx=func(x);
           }    for (i=1;i<=npar;i++) p2[i]=x[i];
         }    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      l1=pow(10,l);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      delts=delt;
             varpij[i][j][(int)age] = doldm[i][j];      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
         /*printf("\n%d ",(int)age);        p2[theta]=x[theta] +delt;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        p2[theta]=x[theta]-delt;
      }*/        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
         fprintf(ficresprob,"\n%d ",(int)age);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         fprintf(ficresprobcov,"\n%d ",(int)age);        
         fprintf(ficresprobcor,"\n%d ",(int)age);  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  #endif
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          k=kmax;
         }        }
         i=0;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         for (k=1; k<=(nlstate);k++){          k=kmax; l=lmax*10.;
           for (l=1; l<=(nlstate+ndeath);l++){        }
             i=i++;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          delts=delt;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        }
             for (j=1; j<=i;j++){      }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    delti[theta]=delts;
             }    return res; 
           }    
         }/* end of loop for state */  }
       } /* end of loop for age */  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       for (k1=1; k1<=(nlstate);k1++){  {
         for (l1=1; l1<=(nlstate+ndeath);l1++){    int i;
           if(l1==k1) continue;    int l=1, l1, lmax=20;
           i=(k1-1)*(nlstate+ndeath)+l1;    double k1,k2,k3,k4,res,fx;
           for (k2=1; k2<=(nlstate);k2++){    double p2[MAXPARM+1];
             for (l2=1; l2<=(nlstate+ndeath);l2++){    int k;
               if(l2==k2) continue;  
               j=(k2-1)*(nlstate+ndeath)+l2;    fx=func(x);
               if(j<=i) continue;    for (k=1; k<=2; k++) {
               for (age=bage; age<=fage; age ++){      for (i=1;i<=npar;i++) p2[i]=x[i];
                 if ((int)age %5==0){      p2[thetai]=x[thetai]+delti[thetai]/k;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      k1=func(p2)-fx;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    
                   mu1=mu[i][(int) age]/stepm*YEARM ;      p2[thetai]=x[thetai]+delti[thetai]/k;
                   mu2=mu[j][(int) age]/stepm*YEARM;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   /* Computing eigen value of matrix of covariance */      k2=func(p2)-fx;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      p2[thetai]=x[thetai]-delti[thetai]/k;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   /* Eigen vectors */      k3=func(p2)-fx;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    
                   v21=sqrt(1.-v11*v11);      p2[thetai]=x[thetai]-delti[thetai]/k;
                   v12=-v21;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   v22=v11;      k4=func(p2)-fx;
                   /*printf(fignu*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  #ifdef DEBUG
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   if(first==1){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                     first=0;  #endif
                     fprintf(ficgp,"\nset parametric;set nolabel");    }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    return res;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);  
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);  /************** Inverse of matrix **************/
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);  void ludcmp(double **a, int n, int *indx, double *d) 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  { 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    int i,imax,j,k; 
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    double big,dum,sum,temp; 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    double *vv; 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);   
                   }else{    vv=vector(1,n); 
                     first=0;    *d=1.0; 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    for (i=1;i<=n;i++) { 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      big=0.0; 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      for (j=1;j<=n;j++) 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        if ((temp=fabs(a[i][j])) > big) big=temp; 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
                   }/* if first */      vv[i]=1.0/big; 
                 } /* age mod 5 */    } 
               } /* end loop age */    for (j=1;j<=n;j++) { 
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);      for (i=1;i<j;i++) { 
               first=1;        sum=a[i][j]; 
             } /*l12 */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           } /* k12 */        a[i][j]=sum; 
         } /*l1 */      } 
       }/* k1 */      big=0.0; 
     } /* loop covariates */      for (i=j;i<=n;i++) { 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        sum=a[i][j]; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        for (k=1;k<j;k++) 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          sum -= a[i][k]*a[k][j]; 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        a[i][j]=sum; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          big=dum; 
   }          imax=i; 
   free_vector(xp,1,npar);        } 
   fclose(ficresprob);      } 
   fclose(ficresprobcov);      if (j != imax) { 
   fclose(ficresprobcor);        for (k=1;k<=n;k++) { 
   fclose(ficgp);          dum=a[imax][k]; 
   fclose(fichtm);          a[imax][k]=a[j][k]; 
 }          a[j][k]=dum; 
         } 
         *d = -(*d); 
 /******************* Printing html file ***********/        vv[imax]=vv[j]; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      } 
                   int lastpass, int stepm, int weightopt, char model[],\      indx[j]=imax; 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      if (a[j][j] == 0.0) a[j][j]=TINY; 
                   int popforecast, int estepm ,\      if (j != n) { 
                   double jprev1, double mprev1,double anprev1, \        dum=1.0/(a[j][j]); 
                   double jprev2, double mprev2,double anprev2){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   int jj1, k1, i1, cpt;      } 
   /*char optionfilehtm[FILENAMELENGTH];*/    } 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    free_vector(vv,1,n);  /* Doesn't work */
     printf("Problem with %s \n",optionfilehtm), exit(0);  ;
   }  } 
   
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n  void lubksb(double **a, int n, int *indx, double b[]) 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  { 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    int i,ii=0,ip,j; 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    double sum; 
  - Life expectancies by age and initial health status (estepm=%2d months):   
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    for (i=1;i<=n;i++) { 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      ip=indx[i]; 
       sum=b[ip]; 
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n      b[ip]=b[i]; 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      if (ii) 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      else if (sum) ii=i; 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      b[i]=sum; 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    } 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    for (i=n;i>=1;i--) { 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
  if(popforecast==1) fprintf(fichtm,"\n      b[i]=sum/a[i][i]; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    } 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  } 
         <br>",fileres,fileres,fileres,fileres);  
  else  void pstamp(FILE *fichier)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  {
 fprintf(fichtm," <li><b>Graphs</b></li><p>");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
  jj1=0;  {  /* Some frequencies */
  for(k1=1; k1<=m;k1++){    
    for(i1=1; i1<=ncodemax[k1];i1++){    int i, m, jk, k1,i1, j1, bool, z1,j;
      jj1++;    int first;
      if (cptcovn > 0) {    double ***freq; /* Frequencies */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double *pp, **prop;
        for (cpt=1; cpt<=cptcoveff;cpt++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    char fileresp[FILENAMELENGTH];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    
      }    pp=vector(1,nlstate);
      /* Pij */    prop=matrix(1,nlstate,iagemin,iagemax+3);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    strcpy(fileresp,"p");
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        strcat(fileresp,fileres);
      /* Quasi-incidences */    if((ficresp=fopen(fileresp,"w"))==NULL) {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      printf("Problem with prevalence resultfile: %s\n", fileresp);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        /* Stable prevalence in each health state */      exit(0);
        for(cpt=1; cpt<nlstate;cpt++){    }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    j1=0;
        }    
     for(cpt=1; cpt<=nlstate;cpt++) {    j=cptcoveff;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 interval) in state (%d): v%s%d%d.png <br>  
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      first=1;
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /*    j1++;
      }  */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 health expectancies in states (1) and (2): e%s%d.png<br>        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          scanf("%d", i);*/
    }        for (i=-5; i<=nlstate+ndeath; i++)  
  }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
 fclose(fichtm);            for(m=iagemin; m <= iagemax+3; m++)
 }              freq[i][jk][m]=0;
         
 /******************* Gnuplot file **************/        for (i=1; i<=nlstate; i++)  
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        
   int ng;        dateintsum=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        k2cpt=0;
     printf("Problem with file %s",optionfilegnuplot);        for (i=1; i<=imx; i++) {
   }          bool=1;
           if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 #ifdef windows            for (z1=1; z1<=cptcoveff; z1++)       
     fprintf(ficgp,"cd \"%s\" \n",pathc);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
 #endif                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
 m=pow(2,cptcoveff);                bool=0;
                  /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
  /* 1eme*/                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
   for (cpt=1; cpt<= nlstate ; cpt ++) {                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
    for (k1=1; k1<= m ; k1 ++) {                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
               } 
 #ifdef windows          }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);   
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          if (bool==1){
 #endif            for(m=firstpass; m<=lastpass; m++){
 #ifdef unix              k2=anint[m][i]+(mint[m][i]/12.);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 #endif                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 for (i=1; i<= nlstate ; i ++) {                if (m<lastpass) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 }                }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                
     for (i=1; i<= nlstate ; i ++) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  dateintsum=dateintsum+k2;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  k2cpt++;
 }                }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                /*}*/
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        } /* end i */
 }           
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 #ifdef unix        pstamp(ficresp);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        if  (cptcovn>0) {
 #endif          fprintf(ficresp, "\n#********** Variable "); 
    }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresp, "**********\n#");
   /*2 eme*/          fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for (k1=1; k1<= m ; k1 ++) {          fprintf(ficlog, "**********\n#");
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        for(i=1; i<=nlstate;i++) 
              fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for (i=1; i<= nlstate+1 ; i ++) {        fprintf(ficresp, "\n");
       k=2*i;        
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for(i=iagemin; i <= iagemax+3; i++){
       for (j=1; j<= nlstate+1 ; j ++) {          if(i==iagemax+3){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            fprintf(ficlog,"Total");
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }else{
 }              if(first==1){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              first=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              printf("See log file for details...\n");
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            fprintf(ficlog,"Age %d", i);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){
 }              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficgp,"\" t\"\" w l 0,");              pp[jk] += freq[jk][m][i]; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          for(jk=1; jk <=nlstate ; jk++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(m=-1, pos=0; m <=0 ; m++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              pos += freq[jk][m][i];
 }              if(pp[jk]>=1.e-10){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              if(first==1){
       else fprintf(ficgp,"\" t\"\" w l 0,");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }              }
   }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
              }else{
   /*3eme*/              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   for (k1=1; k1<= m ; k1 ++) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for (cpt=1; cpt<= nlstate ; cpt ++) {            }
       k=2+nlstate*(2*cpt-2);          }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          for(jk=1; jk <=nlstate ; jk++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              pp[jk] += freq[jk][m][i];
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          }       
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            pos += pp[jk];
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            posprop += prop[jk][i];
           }
 */          for(jk=1; jk <=nlstate ; jk++){
       for (i=1; i< nlstate ; i ++) {            if(pos>=1.e-5){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }            }else{
   }              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /* CV preval stat */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<nlstate ; cpt ++) {            if( i <= iagemax){
       k=3;              if(pos>=1.e-5){
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for (i=1; i< nlstate ; i ++)              }
         fprintf(ficgp,"+$%d",k+i+1);              else
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                  }
       l=3+(nlstate+ndeath)*cpt;          }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          
       for (i=1; i< nlstate ; i ++) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
         l=3+(nlstate+ndeath)*cpt;            for(m=-1; m <=nlstate+ndeath; m++)
         fprintf(ficgp,"+$%d",l+i+1);              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                }
            if(i <= iagemax)
   /* proba elementaires */            fprintf(ficresp,"\n");
    for(i=1,jk=1; i <=nlstate; i++){          if(first==1)
     for(k=1; k <=(nlstate+ndeath); k++){            printf("Others in log...\n");
       if (k != i) {          fprintf(ficlog,"\n");
         for(j=1; j <=ncovmodel; j++){        }
                /*}*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    }
           jk++;    dateintmean=dateintsum/k2cpt; 
           fprintf(ficgp,"\n");   
         }    fclose(ficresp);
       }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     }    free_vector(pp,1,nlstate);
    }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  }
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  /************ Prevalence ********************/
        if (ng==2)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  {  
        else    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
          fprintf(ficgp,"\nset title \"Probability\"\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);       We still use firstpass and lastpass as another selection.
        i=1;    */
        for(k2=1; k2<=nlstate; k2++) {   
          k3=i;    int i, m, jk, k1, i1, j1, bool, z1,j;
          for(k=1; k<=(nlstate+ndeath); k++) {    double ***freq; /* Frequencies */
            if (k != k2){    double *pp, **prop;
              if(ng==2)    double pos,posprop; 
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    double  y2; /* in fractional years */
              else    int iagemin, iagemax;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int first; /** to stop verbosity which is redirected to log file */
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {    iagemin= (int) agemin;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    iagemax= (int) agemax;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /*pp=vector(1,nlstate);*/
                  ij++;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
                }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                else    j1=0;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
              }    /*j=cptcoveff;*/
              fprintf(ficgp,")/(1");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                  
              for(k1=1; k1 <=nlstate; k1++){      first=1;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
                ij=1;      /*for(i1=1; i1<=ncodemax[k1];i1++){
                for(j=3; j <=ncovmodel; j++){        j1++;*/
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for (i=1; i<=nlstate; i++)  
                    ij++;          for(m=iagemin; m <= iagemax+3; m++)
                  }            prop[i][m]=0.0;
                  else       
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for (i=1; i<=imx; i++) { /* Each individual */
                }          bool=1;
                fprintf(ficgp,")");          if  (cptcovn>0) {
              }            for (z1=1; z1<=cptcoveff; z1++) 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                bool=0;
              i=i+ncovmodel;          } 
            }          if (bool==1) { 
          }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    fclose(ficgp);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 }  /* end gnuplot */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 /*************** Moving average **************/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   int i, cpt, cptcod;              }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            } /* end selection of waves */
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;        for(i=iagemin; i <= iagemax+3; i++){  
              for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            posprop += prop[jk][i]; 
       for (i=1; i<=nlstate;i++){          } 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          
           for (cpt=0;cpt<=4;cpt++){          for(jk=1; jk <=nlstate ; jk++){     
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            if( i <=  iagemax){ 
           }              if(posprop>=1.e-5){ 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                probs[i][jk][j1]= prop[jk][i]/posprop;
         }              } else{
       }                if(first==1){
     }                  first=0;
                      printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 }                }
               }
             } 
 /************** Forecasting ******************/          }/* end jk */ 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }/* end i */ 
        /*} *//* end i1 */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    } /* end j1 */
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double *popeffectif,*popcount;    /*free_vector(pp,1,nlstate);*/
   double ***p3mat;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   char fileresf[FILENAMELENGTH];  }  /* End of prevalence */
   
  agelim=AGESUP;  /************* Waves Concatenation ***************/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
   strcpy(fileresf,"f");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   strcat(fileresf,fileres);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   if((ficresf=fopen(fileresf,"w"))==NULL) {       and mw[mi+1][i]. dh depends on stepm.
     printf("Problem with forecast resultfile: %s\n", fileresf);       */
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       double sum=0., jmean=0.;*/
     int first;
   if (mobilav==1) {    int j, k=0,jk, ju, jl;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double sum=0.;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    first=0;
   }    jmin=1e+5;
     jmax=-1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    jmean=0.;
   if (stepm<=12) stepsize=1;    for(i=1; i<=imx; i++){
        mi=0;
   agelim=AGESUP;      m=firstpass;
        while(s[m][i] <= nlstate){
   hstepm=1;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   hstepm=hstepm/stepm;          mw[++mi][i]=m;
   yp1=modf(dateintmean,&yp);        if(m >=lastpass)
   anprojmean=yp;          break;
   yp2=modf((yp1*12),&yp);        else
   mprojmean=yp;          m++;
   yp1=modf((yp2*30.5),&yp);      }/* end while */
   jprojmean=yp;      if (s[m][i] > nlstate){
   if(jprojmean==0) jprojmean=1;        mi++;     /* Death is another wave */
   if(mprojmean==0) jprojmean=1;        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        mw[mi][i]=m;
        }
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      wav[i]=mi;
       k=k+1;      if(mi==0){
       fprintf(ficresf,"\n#******");        nbwarn++;
       for(j=1;j<=cptcoveff;j++) {        if(first==0){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       }          first=1;
       fprintf(ficresf,"******\n");        }
       fprintf(ficresf,"# StartingAge FinalAge");        if(first==1){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
              }
            } /* end mi==0 */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    } /* End individuals */
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if (stepm <=0)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          dh[mi][i]=1;
           nhstepm = nhstepm/hstepm;        else{
                    if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if (agedc[i] < 2*AGESUP) {
           oldm=oldms;savm=savms;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                if(j==0) j=1;  /* Survives at least one month after exam */
                      else if(j<0){
           for (h=0; h<=nhstepm; h++){                nberr++;
             if (h==(int) (calagedate+YEARM*cpt)) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);                j=1; /* Temporary Dangerous patch */
             }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             for(j=1; j<=nlstate+ndeath;j++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               kk1=0.;kk2=0;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               for(i=1; i<=nlstate;i++) {                            }
                 if (mobilav==1)              k=k+1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              if (j >= jmax){
                 else {                jmax=j;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                ijmax=i;
                 }              }
                              if (j <= jmin){
               }                jmin=j;
               if (h==(int)(calagedate+12*cpt)){                ijmin=i;
                 fprintf(ficresf," %.3f", kk1);              }
                                      sum=sum+j;
               }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
             }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           }            }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         }          else{
       }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   }  
                    k=k+1;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if (j >= jmax) {
               jmax=j;
   fclose(ficresf);              ijmax=i;
 }            }
 /************** Forecasting ******************/            else if (j <= jmin){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              jmin=j;
                ijmin=i;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            }
   int *popage;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double *popeffectif,*popcount;            if(j<0){
   double ***p3mat,***tabpop,***tabpopprev;              nberr++;
   char filerespop[FILENAMELENGTH];              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            sum=sum+j;
   agelim=AGESUP;          }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          jk= j/stepm;
            jl= j -jk*stepm;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
   strcpy(filerespop,"pop");              dh[mi][i]=jk;
   strcat(filerespop,fileres);              bh[mi][i]=0;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            }else{ /* We want a negative bias in order to only have interpolation ie
     printf("Problem with forecast resultfile: %s\n", filerespop);                    * to avoid the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
   printf("Computing forecasting: result on file '%s' \n", filerespop);              bh[mi][i]=ju;
             }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }else{
             if(jl <= -ju){
   if (mobilav==1) {              dh[mi][i]=jk;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              bh[mi][i]=jl;       /* bias is positive if real duration
     movingaverage(agedeb, fage, ageminpar, mobaverage);                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
             }
   stepsize=(int) (stepm+YEARM-1)/YEARM;            else{
   if (stepm<=12) stepsize=1;              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   agelim=AGESUP;            }
              if(dh[mi][i]==0){
   hstepm=1;              dh[mi][i]=1; /* At least one step */
   hstepm=hstepm/stepm;              bh[mi][i]=ju; /* At least one step */
                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   if (popforecast==1) {            }
     if((ficpop=fopen(popfile,"r"))==NULL) {          } /* end if mle */
       printf("Problem with population file : %s\n",popfile);exit(0);        }
     }      } /* end wave */
     popage=ivector(0,AGESUP);    }
     popeffectif=vector(0,AGESUP);    jmean=sum/k;
     popcount=vector(0,AGESUP);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     i=1;     }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
      /*********** Tricode ****************************/
     imx=i;  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  {
   }    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   for(cptcov=1;cptcov<=i2;cptcov++){    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
       k=k+1;    /* nbcode[Tvar[j]][1]= 
       fprintf(ficrespop,"\n#******");    */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       }    int modmaxcovj=0; /* Modality max of covariates j */
       fprintf(ficrespop,"******\n");    int cptcode=0; /* Modality max of covariates j */
       fprintf(ficrespop,"# Age");    int modmincovj=0; /* Modality min of covariates j */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
          cptcoveff=0; 
       for (cpt=0; cpt<=0;cpt++) {   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      for (k=-1; k < maxncov; k++) Ndum[k]=0;
            for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* Loop on covariates without age and products */
           nhstepm = nhstepm/hstepm;    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
                for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                                 modality of this covariate Vj*/ 
           oldm=oldms;savm=savms;        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                                        * If product of Vn*Vm, still boolean *:
                                              * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
           for (h=0; h<=nhstepm; h++){                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
             if (h==(int) (calagedate+YEARM*cpt)) {        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                                        modality of the nth covariate of individual i. */
             }        if (ij > modmaxcovj)
             for(j=1; j<=nlstate+ndeath;j++) {          modmaxcovj=ij; 
               kk1=0.;kk2=0;        else if (ij < modmincovj) 
               for(i=1; i<=nlstate;i++) {                        modmincovj=ij; 
                 if (mobilav==1)        if ((ij < -1) && (ij > NCOVMAX)){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                 else {          exit(1);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }else
                 }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
               }        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
               if (h==(int)(calagedate+12*cpt)){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        /* getting the maximum value of the modality of the covariate
                   /*fprintf(ficrespop," %.3f", kk1);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/           female is 1, then modmaxcovj=1.*/
               }      }
             }      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
             for(i=1; i<=nlstate;i++){      cptcode=modmaxcovj;
               kk1=0.;      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                 for(j=1; j<=nlstate;j++){     /*for (i=0; i<=cptcode; i++) {*/
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
                 }        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
             }          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           }      } /* Ndum[-1] number of undefined modalities */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       }      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
        /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
   /******/         modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           variables V1_1 and V1_2.
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){         nbcode[Tvar[j]][ij]=k;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         nbcode[Tvar[j]][1]=0;
           nhstepm = nhstepm/hstepm;         nbcode[Tvar[j]][2]=1;
                   nbcode[Tvar[j]][3]=2;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      */
           oldm=oldms;savm=savms;      ij=1; /* ij is similar to i but can jumps over null modalities */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
           for (h=0; h<=nhstepm; h++){        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
             if (h==(int) (calagedate+YEARM*cpt)) {          /*recode from 0 */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
             for(j=1; j<=nlstate+ndeath;j++) {                                       k is a modality. If we have model=V1+V1*sex 
               kk1=0.;kk2=0;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
               for(i=1; i<=nlstate;i++) {                          ij++;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              }
               }          if (ij > ncodemax[j]) break; 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }  /* end of loop on */
             }      } /* end of loop on modality */ 
           }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
       }    
    }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     Ndum[ij]++; 
    } 
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);   ij=1;
     free_vector(popeffectif,0,AGESUP);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     free_vector(popcount,0,AGESUP);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   }     if((Ndum[i]!=0) && (i<=ncovcol)){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       Tvaraff[ij]=i; /*For printing (unclear) */
   fclose(ficrespop);       ij++;
 }     }else
          Tvaraff[ij]=0;
 /***********************************************/   }
 /**************** Main Program *****************/   ij--;
 /***********************************************/   cptcoveff=ij; /*Number of total covariates*/
   
 int main(int argc, char *argv[])  }
 {  
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  /*********** Health Expectancies ****************/
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   double fret;  {
   double **xi,tmp,delta;    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double dum; /* Dummy variable */    int nhstepma, nstepma; /* Decreasing with age */
   double ***p3mat;    double age, agelim, hf;
   int *indx;    double ***p3mat;
   char line[MAXLINE], linepar[MAXLINE];    double eip;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    pstamp(ficreseij);
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   int c,  h , cpt,l;    fprintf(ficreseij,"# Age");
   int ju,jl, mi;    for(i=1; i<=nlstate;i++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      for(j=1; j<=nlstate;j++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        fprintf(ficreseij," e%1d%1d ",i,j);
   int mobilav=0,popforecast=0;      }
   int hstepm, nhstepm;      fprintf(ficreseij," e%1d. ",i);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    }
     fprintf(ficreseij,"\n");
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    
   double **prlim;    if(estepm < stepm){
   double *severity;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double ***param; /* Matrix of parameters */    }
   double  *p;    else  hstepm=estepm;   
   double **matcov; /* Matrix of covariance */    /* We compute the life expectancy from trapezoids spaced every estepm months
   double ***delti3; /* Scale */     * This is mainly to measure the difference between two models: for example
   double *delti; /* Scale */     * if stepm=24 months pijx are given only every 2 years and by summing them
   double ***eij, ***vareij;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double **varpl; /* Variances of prevalence limits by age */     * progression in between and thus overestimating or underestimating according
   double *epj, vepp;     * to the curvature of the survival function. If, for the same date, we 
   double kk1, kk2;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   char z[1]="c", occ;       nhstepm is the number of hstepm from age to agelim 
 #include <sys/time.h>       nstepm is the number of stepm from age to agelin. 
 #include <time.h>       Look at hpijx to understand the reason of that which relies in memory size
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       and note for a fixed period like estepm months */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* long total_usecs;       survival function given by stepm (the optimization length). Unfortunately it
   struct timeval start_time, end_time;       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       results. So we changed our mind and took the option of the best precision.
   getcwd(pathcd, size);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("\n%s",version);  
   if(argc <=1){    agelim=AGESUP;
     printf("\nEnter the parameter file name: ");    /* If stepm=6 months */
     scanf("%s",pathtot);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   else{      
     strcpy(pathtot,argv[1]);  /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /*cygwin_split_path(pathtot,path,optionfile);    /* if (stepm >= YEARM) hstepm=1;*/
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /* cutv(path,optionfile,pathtot,'\\');*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    for (age=bage; age<=fage; age ++){ 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   chdir(path);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   replace(pathc,path);      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 /*-------- arguments in the command line --------*/  
       /* If stepm=6 months */
   strcpy(fileres,"r");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   strcat(fileres, optionfilefiname);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   strcat(fileres,".txt");    /* Other files have txt extension */      
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /*---------arguments file --------*/      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      
     printf("Problem with optionfile %s\n",optionfile);      printf("%d|",(int)age);fflush(stdout);
     goto end;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }      
       /* Computing expectancies */
   strcpy(filereso,"o");      for(i=1; i<=nlstate;i++)
   strcat(filereso,fileres);        for(j=1; j<=nlstate;j++)
   if((ficparo=fopen(filereso,"w"))==NULL) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficreseij,"%3.0f",age );
     puts(line);      for(i=1; i<=nlstate;i++){
     fputs(line,ficparo);        eip=0;
   }        for(j=1; j<=nlstate;j++){
   ungetc(c,ficpar);          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        fprintf(ficreseij,"%9.4f", eip );
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      }
 while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficreseij,"\n");
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);    printf("\n");
   }    fprintf(ficlog,"\n");
   ungetc(c,ficpar);    
    }
      
   covar=matrix(0,NCOVMAX,1,n);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  {
     /* Covariances of health expectancies eij and of total life expectancies according
   ncovmodel=2+cptcovn;     to initial status i, ei. .
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   /* Read guess parameters */    int nhstepma, nstepma; /* Decreasing with age */
   /* Reads comments: lines beginning with '#' */    double age, agelim, hf;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3matp, ***p3matm, ***varhe;
     ungetc(c,ficpar);    double **dnewm,**doldm;
     fgets(line, MAXLINE, ficpar);    double *xp, *xm;
     puts(line);    double **gp, **gm;
     fputs(line,ficparo);    double ***gradg, ***trgradg;
   }    int theta;
   ungetc(c,ficpar);  
      double eip, vip;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for(j=1; j <=nlstate+ndeath-1; j++){    xp=vector(1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    xm=vector(1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       printf("%1d%1d",i,j);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);    pstamp(ficresstdeij);
         printf(" %lf",param[i][j][k]);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(ficresstdeij,"# Age");
       }    for(i=1; i<=nlstate;i++){
       fscanf(ficpar,"\n");      for(j=1; j<=nlstate;j++)
       printf("\n");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficparo,"\n");      fprintf(ficresstdeij," e%1d. ",i);
     }    }
      fprintf(ficresstdeij,"\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     pstamp(ficrescveij);
   p=param[1][1];    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
   /* Reads comments: lines beginning with '#' */    for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);        cptj= (j-1)*nlstate+i;
     fgets(line, MAXLINE, ficpar);        for(i2=1; i2<=nlstate;i2++)
     puts(line);          for(j2=1; j2<=nlstate;j2++){
     fputs(line,ficparo);            cptj2= (j2-1)*nlstate+i2;
   }            if(cptj2 <= cptj)
   ungetc(c,ficpar);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficrescveij,"\n");
   for(i=1; i <=nlstate; i++){    
     for(j=1; j <=nlstate+ndeath-1; j++){    if(estepm < stepm){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       printf("%1d%1d",i,j);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    else  hstepm=estepm;   
       for(k=1; k<=ncovmodel;k++){    /* We compute the life expectancy from trapezoids spaced every estepm months
         fscanf(ficpar,"%le",&delti3[i][j][k]);     * This is mainly to measure the difference between two models: for example
         printf(" %le",delti3[i][j][k]);     * if stepm=24 months pijx are given only every 2 years and by summing them
         fprintf(ficparo," %le",delti3[i][j][k]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
       fscanf(ficpar,"\n");     * to the curvature of the survival function. If, for the same date, we 
       printf("\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficparo,"\n");     * to compare the new estimate of Life expectancy with the same linear 
     }     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   delti=delti3[1][1];  
      /* For example we decided to compute the life expectancy with the smallest unit */
   /* Reads comments: lines beginning with '#' */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   while((c=getc(ficpar))=='#' && c!= EOF){       nhstepm is the number of hstepm from age to agelim 
     ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
     fgets(line, MAXLINE, ficpar);       Look at hpijx to understand the reason of that which relies in memory size
     puts(line);       and note for a fixed period like estepm months */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   ungetc(c,ficpar);       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   matcov=matrix(1,npar,1,npar);       results. So we changed our mind and took the option of the best precision.
   for(i=1; i <=npar; i++){    */
     fscanf(ficpar,"%s",&str);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("%s",str);  
     fprintf(ficparo,"%s",str);    /* If stepm=6 months */
     for(j=1; j <=i; j++){    /* nhstepm age range expressed in number of stepm */
       fscanf(ficpar," %le",&matcov[i][j]);    agelim=AGESUP;
       printf(" %.5le",matcov[i][j]);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       fprintf(ficparo," %.5le",matcov[i][j]);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }    /* if (stepm >= YEARM) hstepm=1;*/
     fscanf(ficpar,"\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     printf("\n");    
     fprintf(ficparo,"\n");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1; i <=npar; i++)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     for(j=i+1;j<=npar;j++)    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       matcov[i][j]=matcov[j][i];    gp=matrix(0,nhstepm,1,nlstate*nlstate);
        gm=matrix(0,nhstepm,1,nlstate*nlstate);
   printf("\n");  
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /*-------- Rewriting paramater file ----------*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      strcpy(rfileres,"r");    /* "Rparameterfile */      /* if (stepm >= YEARM) hstepm=1;*/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      /* If stepm=6 months */
     if((ficres =fopen(rfileres,"w"))==NULL) {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       printf("Problem writing new parameter file: %s\n", fileres);goto end;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     }      
     fprintf(ficres,"#%s\n",version);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
     /*-------- data file ----------*/      /* Computing  Variances of health expectancies */
     if((fic=fopen(datafile,"r"))==NULL)    {      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       printf("Problem with datafile: %s\n", datafile);goto end;         decrease memory allocation */
     }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
     n= lastobs;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     severity = vector(1,maxwav);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     outcome=imatrix(1,maxwav+1,1,n);        }
     num=ivector(1,n);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     moisnais=vector(1,n);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     annais=vector(1,n);    
     moisdc=vector(1,n);        for(j=1; j<= nlstate; j++){
     andc=vector(1,n);          for(i=1; i<=nlstate; i++){
     agedc=vector(1,n);            for(h=0; h<=nhstepm-1; h++){
     cod=ivector(1,n);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     weight=vector(1,n);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            }
     mint=matrix(1,maxwav,1,n);          }
     anint=matrix(1,maxwav,1,n);        }
     s=imatrix(1,maxwav+1,1,n);       
     adl=imatrix(1,maxwav+1,1,n);            for(ij=1; ij<= nlstate*nlstate; ij++)
     tab=ivector(1,NCOVMAX);          for(h=0; h<=nhstepm-1; h++){
     ncodemax=ivector(1,8);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
     i=1;      }/* End theta */
     while (fgets(line, MAXLINE, fic) != NULL)    {      
       if ((i >= firstobs) && (i <=lastobs)) {      
              for(h=0; h<=nhstepm-1; h++)
         for (j=maxwav;j>=1;j--){        for(j=1; j<=nlstate*nlstate;j++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          for(theta=1; theta <=npar; theta++)
           strcpy(line,stra);            trgradg[h][j][theta]=gradg[h][theta][j];
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }       for(ij=1;ij<=nlstate*nlstate;ij++)
                for(ji=1;ji<=nlstate*nlstate;ji++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          varhe[ij][ji][(int)age] =0.;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
        printf("%d|",(int)age);fflush(stdout);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         for (j=ncovcol;j>=1;j--){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(ij=1;ij<=nlstate*nlstate;ij++)
         }            for(ji=1;ji<=nlstate*nlstate;ji++)
         num[i]=atol(stra);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
                }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
       /* Computing expectancies */
         i=i+1;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       }      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
     /* printf("ii=%d", ij);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
        scanf("%d",i);*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   imx=i-1; /* Number of individuals */            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      fprintf(ficresstdeij,"%3.0f",age );
     }*/      for(i=1; i<=nlstate;i++){
    /*  for (i=1; i<=imx; i++){        eip=0.;
      if (s[4][i]==9)  s[4][i]=-1;        vip=0.;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(j=1; j<=nlstate;j++){
            eip += eij[i][j][(int)age];
            for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   /* Calculation of the number of parameter from char model*/            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   Tvar=ivector(1,15);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   Tprod=ivector(1,15);        }
   Tvaraff=ivector(1,15);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   Tvard=imatrix(1,15,1,2);      }
   Tage=ivector(1,15);            fprintf(ficresstdeij,"\n");
      
   if (strlen(model) >1){      fprintf(ficrescveij,"%3.0f",age );
     j=0, j1=0, k1=1, k2=1;      for(i=1; i<=nlstate;i++)
     j=nbocc(model,'+');        for(j=1; j<=nlstate;j++){
     j1=nbocc(model,'*');          cptj= (j-1)*nlstate+i;
     cptcovn=j+1;          for(i2=1; i2<=nlstate;i2++)
     cptcovprod=j1;            for(j2=1; j2<=nlstate;j2++){
                  cptj2= (j2-1)*nlstate+i2;
     strcpy(modelsav,model);              if(cptj2 <= cptj)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       printf("Error. Non available option model=%s ",model);            }
       goto end;        }
     }      fprintf(ficrescveij,"\n");
         
     for(i=(j+1); i>=1;i--){    }
       cutv(stra,strb,modelsav,'+');    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       /*scanf("%d",i);*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       if (strchr(strb,'*')) {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         cutv(strd,strc,strb,'*');    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         if (strcmp(strc,"age")==0) {    printf("\n");
           cptcovprod--;    fprintf(ficlog,"\n");
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);    free_vector(xm,1,npar);
           cptcovage++;    free_vector(xp,1,npar);
             Tage[cptcovage]=i;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
             /*printf("stre=%s ", stre);*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         else if (strcmp(strd,"age")==0) {  }
           cptcovprod--;  
           cutv(strb,stre,strc,'V');  /************ Variance ******************/
           Tvar[i]=atoi(stre);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           cptcovage++;  {
           Tage[cptcovage]=i;    /* Variance of health expectancies */
         }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         else {    /* double **newm;*/
           cutv(strb,stre,strc,'V');    double **dnewm,**doldm;
           Tvar[i]=ncovcol+k1;    double **dnewmp,**doldmp;
           cutv(strb,strc,strd,'V');    int i, j, nhstepm, hstepm, h, nstepm ;
           Tprod[k1]=i;    int k, cptcode;
           Tvard[k1][1]=atoi(strc);    double *xp;
           Tvard[k1][2]=atoi(stre);    double **gp, **gm;  /* for var eij */
           Tvar[cptcovn+k2]=Tvard[k1][1];    double ***gradg, ***trgradg; /*for var eij */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double **gradgp, **trgradgp; /* for var p point j */
           for (k=1; k<=lastobs;k++)    double *gpp, *gmp; /* for var p point j */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           k1++;    double ***p3mat;
           k2=k2+2;    double age,agelim, hf;
         }    double ***mobaverage;
       }    int theta;
       else {    char digit[4];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    char digitp[25];
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    char fileresprobmorprev[FILENAMELENGTH];
       Tvar[i]=atoi(strc);  
       }    if(popbased==1){
       strcpy(modelsav,stra);        if(mobilav!=0)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        strcpy(digitp,"-populbased-mobilav-");
         scanf("%d",i);*/      else strcpy(digitp,"-populbased-nomobil-");
     }    }
 }    else 
        strcpy(digitp,"-stablbased-");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);    if (mobilav!=0) {
   scanf("%d ",i);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(fic);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     /*  if(mle==1){*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     if (weightopt != 1) { /* Maximisation without weights*/      }
       for(i=1;i<=n;i++) weight[i]=1.0;    }
     }  
     /*-calculation of age at interview from date of interview and age at death -*/    strcpy(fileresprobmorprev,"prmorprev"); 
     agev=matrix(1,maxwav,1,imx);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     for (i=1; i<=imx; i++) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for(m=2; (m<= maxwav); m++) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    strcat(fileresprobmorprev,fileres);
          anint[m][i]=9999;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
          s[m][i]=-1;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    }
       }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     }   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for (i=1; i<=imx; i++)  {    pstamp(ficresprobmorprev);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for(m=1; (m<= maxwav); m++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         if(s[m][i] >0){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           if (s[m][i] >= nlstate+1) {      fprintf(ficresprobmorprev," p.%-d SE",j);
             if(agedc[i]>0)      for(i=1; i<=nlstate;i++)
               if(moisdc[i]!=99 && andc[i]!=9999)        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                 agev[m][i]=agedc[i];    }  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    fprintf(ficresprobmorprev,"\n");
            else {    fprintf(ficgp,"\n# Routine varevsij");
               if (andc[i]!=9999){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
               agev[m][i]=-1;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               }  /*   } */
             }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    pstamp(ficresvij);
           else if(s[m][i] !=9){ /* Should no more exist */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    if(popbased==1)
             if(mint[m][i]==99 || anint[m][i]==9999)      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
               agev[m][i]=1;    else
             else if(agev[m][i] <agemin){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
               agemin=agev[m][i];    fprintf(ficresvij,"# Age");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++)
             else if(agev[m][i] >agemax){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
               agemax=agev[m][i];    fprintf(ficresvij,"\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }    xp=vector(1,npar);
             /*agev[m][i]=anint[m][i]-annais[i];*/    dnewm=matrix(1,nlstate,1,npar);
             /*   agev[m][i] = age[i]+2*m;*/    doldm=matrix(1,nlstate,1,nlstate);
           }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           else { /* =9 */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             agev[m][i]=1;  
             s[m][i]=-1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           }    gpp=vector(nlstate+1,nlstate+ndeath);
         }    gmp=vector(nlstate+1,nlstate+ndeath);
         else /*= 0 Unknown */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           agev[m][i]=1;    
       }    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
     for (i=1; i<=imx; i++)  {    else  hstepm=estepm;   
       for(m=1; (m<= maxwav); m++){    /* For example we decided to compute the life expectancy with the smallest unit */
         if (s[m][i] > (nlstate+ndeath)) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           printf("Error: Wrong value in nlstate or ndeath\n");         nhstepm is the number of hstepm from age to agelim 
           goto end;       nstepm is the number of stepm from age to agelin. 
         }       Look at function hpijx to understand why (it is linked to memory size questions) */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     free_vector(severity,1,maxwav);    */
     free_imatrix(outcome,1,maxwav+1,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_vector(moisnais,1,n);    agelim = AGESUP;
     free_vector(annais,1,n);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     /* free_matrix(mint,1,maxwav,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        free_matrix(anint,1,maxwav,1,n);*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     free_vector(moisdc,1,n);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(andc,1,n);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
          gm=matrix(0,nhstepm,1,nlstate);
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     /* Concatenates waves */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        if (popbased==1) {
       ncodemax[1]=1;          if(mobilav ==0){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            for(i=1; i<=nlstate;i++)
                    prlim[i][i]=probs[(int)age][i][ij];
    codtab=imatrix(1,100,1,10);          }else{ /* mobilav */ 
    h=0;            for(i=1; i<=nlstate;i++)
    m=pow(2,cptcoveff);              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
    for(k=1;k<=cptcoveff; k++){        }
      for(i=1; i <=(m/pow(2,k));i++){    
        for(j=1; j <= ncodemax[k]; j++){        for(j=1; j<= nlstate; j++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          for(h=0; h<=nhstepm; h++){
            h++;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          }
          }        }
        }        /* This for computing probability of death (h=1 means
      }           computed over hstepm matrices product = hstepm*stepm months) 
    }           as a weighted average of prlim.
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        */
       codtab[1][2]=1;codtab[2][2]=2; */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    /* for(i=1; i <=m ;i++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       for(k=1; k <=cptcovn; k++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        }    
       }        /* end probability of death */
       printf("\n");  
       }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       scanf("%d",i);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    /* Calculates basic frequencies. Computes observed prevalence at single age        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        and prints on file fileres'p'. */   
         if (popbased==1) {
              if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              prlim[i][i]=probs[(int)age][i][ij];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }else{ /* mobilav */ 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(i=1; i<=nlstate;i++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              prlim[i][i]=mobaverage[(int)age][i][ij];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          }
              }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     if(mle==1){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          }
     }        }
            /* This for computing probability of death (h=1 means
     /*--------- results files --------------*/           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);           as a weighted average of prlim.
          */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
    jk=1;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }    
    for(i=1,jk=1; i <=nlstate; i++){        /* end probability of death */
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)        for(j=1; j<= nlstate; j++) /* vareij */
          {          for(h=0; h<=nhstepm; h++){
            printf("%d%d ",i,k);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
              fprintf(ficres,"%f ",p[jk]);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
              jk++;        }
            }  
            printf("\n");      } /* End theta */
            fprintf(ficres,"\n");  
          }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      }  
    }      for(h=0; h<=nhstepm; h++) /* veij */
  if(mle==1){        for(j=1; j<=nlstate;j++)
     /* Computing hessian and covariance matrix */          for(theta=1; theta <=npar; theta++)
     ftolhess=ftol; /* Usually correct */            trgradg[h][j][theta]=gradg[h][theta][j];
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        for(theta=1; theta <=npar; theta++)
     printf("# Scales (for hessian or gradient estimation)\n");          trgradgp[j][theta]=gradgp[theta][j];
      for(i=1,jk=1; i <=nlstate; i++){    
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficres,"%1d%1d",i,j);      for(i=1;i<=nlstate;i++)
           printf("%1d%1d",i,j);        for(j=1;j<=nlstate;j++)
           for(k=1; k<=ncovmodel;k++){          vareij[i][j][(int)age] =0.;
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);      for(h=0;h<=nhstepm;h++){
             jk++;        for(k=0;k<=nhstepm;k++){
           }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           printf("\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           fprintf(ficres,"\n");          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
       }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
      }        }
          }
     k=1;    
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      /* pptj */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     for(i=1;i<=npar;i++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       /*  if (k>nlstate) k=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       i1=(i-1)/(ncovmodel*nlstate)+1;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          varppt[j][i]=doldmp[j][i];
       printf("%s%d%d",alph[k],i1,tab[i]);*/      /* end ppptj */
       fprintf(ficres,"%3d",i);      /*  x centered again */
       printf("%3d",i);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for(j=1; j<=i;j++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         fprintf(ficres," %.5e",matcov[i][j]);   
         printf(" %.5e",matcov[i][j]);      if (popbased==1) {
       }        if(mobilav ==0){
       fprintf(ficres,"\n");          for(i=1; i<=nlstate;i++)
       printf("\n");            prlim[i][i]=probs[(int)age][i][ij];
       k++;        }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);               
       puts(line);      /* This for computing probability of death (h=1 means
       fputs(line,ficparo);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     }         as a weighted average of prlim.
     ungetc(c,ficpar);      */
     estepm=0;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     if (estepm==0 || estepm < stepm) estepm=stepm;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     if (fage <= 2) {      }    
       bage = ageminpar;      /* end probability of death */
       fage = agemaxpar;  
     }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for(i=1; i<=nlstate;i++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
     while((c=getc(ficpar))=='#' && c!= EOF){      } 
     ungetc(c,ficpar);      fprintf(ficresprobmorprev,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficresvij,"%.0f ",age );
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   ungetc(c,ficpar);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      fprintf(ficresvij,"\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_matrix(gp,0,nhstepm,1,nlstate);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_matrix(gm,0,nhstepm,1,nlstate);
            free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     ungetc(c,ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    } /* End age */
     puts(line);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fscanf(ficpar,"pop_based=%d\n",&popbased);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficparo,"pop_based=%d\n",popbased);      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
   fprintf(ficres,"pop_based=%d\n",popbased);      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     ungetc(c,ficpar);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fgets(line, MAXLINE, ficpar);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     puts(line);  */
     fputs(line,ficparo);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   ungetc(c,ficpar);  
     free_vector(xp,1,npar);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    free_matrix(doldm,1,nlstate,1,nlstate);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_matrix(dnewm,1,nlstate,1,npar);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 while((c=getc(ficpar))=='#' && c!= EOF){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     ungetc(c,ficpar);    fclose(ficresprobmorprev);
     fgets(line, MAXLINE, ficpar);    fflush(ficgp);
     puts(line);    fflush(fichtm); 
     fputs(line,ficparo);  }  /* end varevsij */
   }  
   ungetc(c,ficpar);  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  {
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /* Variance of prevalence limit */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
 /*------------ gnuplot -------------*/    int k, cptcode;
   strcpy(optionfilegnuplot,optionfilefiname);    double *xp;
   strcat(optionfilegnuplot,".gp");    double *gp, *gm;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    double **gradg, **trgradg;
     printf("Problem with file %s",optionfilegnuplot);    double age,agelim;
   }    int theta;
   fclose(ficgp);    
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    pstamp(ficresvpl);
 /*--------- index.htm --------*/    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
   strcpy(optionfilehtm,optionfile);    for(i=1; i<=nlstate;i++)
   strcat(optionfilehtm,".htm");        fprintf(ficresvpl," %1d-%1d",i,i);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    fprintf(ficresvpl,"\n");
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    doldm=matrix(1,nlstate,1,nlstate);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    
 \n    hstepm=1*YEARM; /* Every year of age */
 Total number of observations=%d <br>\n    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    agelim = AGESUP;
 <hr  size=\"2\" color=\"#EC5E5E\">    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  <ul><li><h4>Parameter files</h4>\n      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      if (stepm >= YEARM) hstepm=1;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   fclose(fichtm);      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      gm=vector(1,nlstate);
    
 /*------------ free_vector  -------------*/      for(theta=1; theta <=npar; theta++){
  chdir(path);        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
  free_ivector(wav,1,imx);        }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for(i=1;i<=nlstate;i++)
  free_ivector(num,1,n);          gp[i] = prlim[i][i];
  free_vector(agedc,1,n);      
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        for(i=1; i<=npar; i++) /* Computes gradient */
  fclose(ficparo);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  fclose(ficres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   /*--------------- Prevalence limit --------------*/  
          for(i=1;i<=nlstate;i++)
   strcpy(filerespl,"pl");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   strcat(filerespl,fileres);      } /* End theta */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      trgradg =matrix(1,nlstate,1,npar);
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      for(j=1; j<=nlstate;j++)
   fprintf(ficrespl,"#Prevalence limit\n");        for(theta=1; theta <=npar; theta++)
   fprintf(ficrespl,"#Age ");          trgradg[j][theta]=gradg[theta][j];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   prlim=matrix(1,nlstate,1,nlstate);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1;i<=nlstate;i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      fprintf(ficresvpl,"%.0f ",age );
   k=0;      for(i=1; i<=nlstate;i++)
   agebase=ageminpar;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   agelim=agemaxpar;      fprintf(ficresvpl,"\n");
   ftolpl=1.e-10;      free_vector(gp,1,nlstate);
   i1=cptcoveff;      free_vector(gm,1,nlstate);
   if (cptcovn < 1){i1=1;}      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    } /* End age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    free_vector(xp,1,npar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    free_matrix(doldm,1,nlstate,1,npar);
         fprintf(ficrespl,"\n#******");    free_matrix(dnewm,1,nlstate,1,nlstate);
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
         fprintf(ficrespl,"******\n");  
          /************ Variance of one-step probabilities  ******************/
         for (age=agebase; age<=agelim; age++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  {
           fprintf(ficrespl,"%.0f",age );    int i, j=0,  i1, k1, l1, t, tj;
           for(i=1; i<=nlstate;i++)    int k2, l2, j1,  z1;
           fprintf(ficrespl," %.5f", prlim[i][i]);    int k=0,l, cptcode;
           fprintf(ficrespl,"\n");    int first=1, first1, first2;
         }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       }    double **dnewm,**doldm;
     }    double *xp;
   fclose(ficrespl);    double *gp, *gm;
     double **gradg, **trgradg;
   /*------------- h Pij x at various ages ------------*/    double **mu;
      double age,agelim, cov[NCOVMAX+1];
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    int theta;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    char fileresprob[FILENAMELENGTH];
   }    char fileresprobcov[FILENAMELENGTH];
   printf("Computing pij: result on file '%s' \n", filerespij);    char fileresprobcor[FILENAMELENGTH];
      double ***varpij;
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   agelim=AGESUP;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   hstepm=stepsize*YEARM; /* Every year of age */      printf("Problem with resultfile: %s\n", fileresprob);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   /* hstepm=1;   aff par mois*/    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   k=0;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   for(cptcov=1;cptcov<=i1;cptcov++){      printf("Problem with resultfile: %s\n", fileresprobcov);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       k=k+1;    }
         fprintf(ficrespij,"\n#****** ");    strcpy(fileresprobcor,"probcor"); 
         for(j=1;j<=cptcoveff;j++)    strcat(fileresprobcor,fileres);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         fprintf(ficrespij,"******\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           oldm=oldms;savm=savms;    pstamp(ficresprob);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           fprintf(ficrespij,"# Age");    fprintf(ficresprob,"# Age");
           for(i=1; i<=nlstate;i++)    pstamp(ficresprobcov);
             for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficresprobcov,"# Age");
           fprintf(ficrespij,"\n");    pstamp(ficresprobcor);
            for (h=0; h<=nhstepm; h++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    fprintf(ficresprobcor,"# Age");
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    for(i=1; i<=nlstate;i++)
             fprintf(ficrespij,"\n");      for(j=1; j<=(nlstate+ndeath);j++){
              }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           fprintf(ficrespij,"\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         }      }  
     }   /* fprintf(ficresprob,"\n");
   }    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   */
     xp=vector(1,npar);
   fclose(ficrespij);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   /*---------- Forecasting ------------------*/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   if((stepm == 1) && (strcmp(model,".")==0)){    first=1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fprintf(ficgp,"\n# Routine varprob");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   }    fprintf(fichtm,"\n");
   else{  
     erreur=108;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   }    file %s<br>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
   /*---------- Health expectancies and variances ------------*/   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   strcpy(filerest,"t");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   strcat(filerest,fileres);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   if((ficrest=fopen(filerest,"w"))==NULL) {  standard deviations wide on each axis. <br>\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
   strcpy(filerese,"e");    /* tj=cptcoveff; */
   strcat(filerese,fileres);    tj = (int) pow(2,cptcoveff);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    j1=0;
   }    for(j1=1; j1<=tj;j1++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
  strcpy(fileresv,"v");        if  (cptcovn>0) {
   strcat(fileresv,fileres);          fprintf(ficresprob, "\n#********** Variable "); 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficresprob, "**********\n#\n");
   }          fprintf(ficresprobcov, "\n#********** Variable "); 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   calagedate=-1;          fprintf(ficresprobcov, "**********\n#\n");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          
           fprintf(ficgp, "\n#********** Variable "); 
   k=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp, "**********\n#\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          
       k=k+1;          
       fprintf(ficrest,"\n#****** ");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       for(j=1;j<=cptcoveff;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficrest,"******\n");          
           fprintf(ficresprobcor, "\n#********** Variable ");    
       fprintf(ficreseij,"\n#****** ");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcor, "**********\n#");    
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficreseij,"******\n");        
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       fprintf(ficresvij,"\n#****** ");        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)        gp=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        gm=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficresvij,"******\n");        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for (k=1; k<=cptcovn;k++) {
       oldm=oldms;savm=savms;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                                                             * 1  1 1 1 1
                                                             * 2  2 1 1 1
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                                                           * 3  1 2 1 1
       oldm=oldms;savm=savms;                                                           */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
              }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          
       fprintf(ficrest,"\n");      
           for(theta=1; theta <=npar; theta++){
       epj=vector(1,nlstate+1);            for(i=1; i<=npar; i++)
       for(age=bage; age <=fage ;age++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            
         if (popbased==1) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(i=1; i<=nlstate;i++)            
             prlim[i][i]=probs[(int)age][i][k];            k=0;
         }            for(i=1; i<= (nlstate); i++){
                      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficrest," %4.0f",age);                k=k+1;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                gp[k]=pmmij[i][j];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {              }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            
           }            for(i=1; i<=npar; i++)
           epj[nlstate+1] +=epj[j];              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         }      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
         for(i=1, vepp=0.;i <=nlstate;i++)            k=0;
           for(j=1;j <=nlstate;j++)            for(i=1; i<=(nlstate); i++){
             vepp += vareij[i][j][(int)age];              for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                k=k+1;
         for(j=1;j <=nlstate;j++){                gm[k]=pmmij[i][j];
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));              }
         }            }
         fprintf(ficrest,"\n");       
       }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   }          }
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     free_vector(weight,1,n);            for(theta=1; theta <=npar; theta++)
   fclose(ficreseij);              trgradg[j][theta]=gradg[theta][j];
   fclose(ficresvij);          
   fclose(ficrest);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   fclose(ficpar);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   free_vector(epj,1,nlstate+1);  
            pmij(pmmij,cov,ncovmodel,x,nlstate);
   /*------- Variance limit prevalence------*/            
           k=0;
   strcpy(fileresvpl,"vpl");          for(i=1; i<=(nlstate); i++){
   strcat(fileresvpl,fileres);            for(j=1; j<=(nlstate+ndeath);j++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              k=k+1;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              mu[k][(int) age]=pmmij[i][j];
     exit(0);            }
   }          }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   k=0;              varpij[i][j][(int)age] = doldm[i][j];
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          /*printf("\n%d ",(int)age);
       k=k+1;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficresvpl,"\n#****** ");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       for(j=1;j<=cptcoveff;j++)            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }*/
       fprintf(ficresvpl,"******\n");  
                fprintf(ficresprob,"\n%d ",(int)age);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          fprintf(ficresprobcov,"\n%d ",(int)age);
       oldm=oldms;savm=savms;          fprintf(ficresprobcor,"\n%d ",(int)age);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fclose(ficresvpl);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   /*---------- End : free ----------------*/          }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          i=0;
            for (k=1; k<=(nlstate);k++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for (l=1; l<=(nlstate+ndeath);l++){ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              i++;
                fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              for (j=1; j<=i;j++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
   free_matrix(matcov,1,npar,1,npar);            }
   free_vector(delti,1,npar);          }/* end of loop for state */
   free_matrix(agev,1,maxwav,1,imx);        } /* end of loop for age */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fprintf(fichtm,"\n</body>");        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fclose(fichtm);        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fclose(ficgp);        
          /* Confidence intervalle of pij  */
         /*
   if(erreur >0)          fprintf(ficgp,"\nunset parametric;unset label");
     printf("End of Imach with error or warning %d\n",erreur);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   else   printf("End of Imach\n");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   /*------ End -----------*/        */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
  end:        first1=1;first2=2;
 #ifdef windows        for (k2=1; k2<=(nlstate);k2++){
   /* chdir(pathcd);*/          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 #endif            if(l2==k2) continue;
  /*system("wgnuplot graph.plt");*/            j=(k2-1)*(nlstate+ndeath)+l2;
  /*system("../gp37mgw/wgnuplot graph.plt");*/            for (k1=1; k1<=(nlstate);k1++){
  /*system("cd ../gp37mgw");*/              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                if(l1==k1) continue;
  strcpy(plotcmd,GNUPLOTPROGRAM);                i=(k1-1)*(nlstate+ndeath)+l1;
  strcat(plotcmd," ");                if(i<=j) continue;
  strcat(plotcmd,optionfilegnuplot);                for (age=bage; age<=fage; age ++){ 
  system(plotcmd);                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 #ifdef windows                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   while (z[0] != 'q') {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     /* chdir(path); */                    mu1=mu[i][(int) age]/stepm*YEARM ;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                    mu2=mu[j][(int) age]/stepm*YEARM;
     scanf("%s",z);                    c12=cv12/sqrt(v1*v2);
     if (z[0] == 'c') system("./imach");                    /* Computing eigen value of matrix of covariance */
     else if (z[0] == 'e') system(optionfilehtm);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     else if (z[0] == 'g') system(plotcmd);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     else if (z[0] == 'q') exit(0);                    if ((lc2 <0) || (lc1 <0) ){
   }                      if(first2==1){
 #endif                        first1=0;
 }                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.49  
changed lines
  Added in v.1.145


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>