Diff for /imach/src/imach.c between versions 1.47 and 1.147

version 1.47, 2002/06/10 13:12:01 version 1.147, 2014/06/16 10:33:11
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.147  2014/06/16 10:33:11  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.146  2014/06/16 10:20:28  brouard
   first survey ("cross") where individuals from different ages are    Summary: Merge
   interviewed on their health status or degree of disability (in the    Author: Brouard
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Merge, before building revised version.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.145  2014/06/10 21:23:15  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Debugging with valgrind
   Maximum Likelihood of the parameters involved in the model.  The    Author: Nicolas Brouard
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Lot of changes in order to output the results with some covariates
   conditional to be observed in state i at the first wave. Therefore    After the Edimburgh REVES conference 2014, it seems mandatory to
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    improve the code.
   'age' is age and 'sex' is a covariate. If you want to have a more    No more memory valgrind error but a lot has to be done in order to
   complex model than "constant and age", you should modify the program    continue the work of splitting the code into subroutines.
   where the markup *Covariates have to be included here again* invites    Also, decodemodel has been improved. Tricode is still not
   you to do it.  More covariates you add, slower the    optimal. nbcode should be improved. Documentation has been added in
   convergence.    the source code.
   
   The advantage of this computer programme, compared to a simple    Revision 1.143  2014/01/26 09:45:38  brouard
   multinomial logistic model, is clear when the delay between waves is not    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   account using an interpolation or extrapolation.      (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.142  2014/01/26 03:57:36  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.141  2014/01/26 02:42:01  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   hPijx.  
     Revision 1.140  2011/09/02 10:37:54  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: times.h is ok with mingw32 now.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.139  2010/06/14 07:50:17  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
            Institut national d'études démographiques, Paris.    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.138  2010/04/30 18:19:40  brouard
   It is copyrighted identically to a GNU software product, ie programme and    *** empty log message ***
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.137  2010/04/29 18:11:38  brouard
   **********************************************************************/    (Module): Checking covariates for more complex models
      than V1+V2. A lot of change to be done. Unstable.
 #include <math.h>  
 #include <stdio.h>    Revision 1.136  2010/04/26 20:30:53  brouard
 #include <stdlib.h>    (Module): merging some libgsl code. Fixing computation
 #include <unistd.h>    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 #define MAXLINE 256    Some cleaning of code and comments added.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.135  2009/10/29 15:33:14  brouard
 #define FILENAMELENGTH 80    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 /*#define DEBUG*/  
 #define windows    Revision 1.134  2009/10/29 13:18:53  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.133  2009/07/06 10:21:25  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    just nforces
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.132  2009/07/06 08:22:05  brouard
 #define NINTERVMAX 8    Many tings
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.131  2009/06/20 16:22:47  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Some dimensions resccaled
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.130  2009/05/26 06:44:34  brouard
 #define AGESUP 130    (Module): Max Covariate is now set to 20 instead of 8. A
 #define AGEBASE 40    lot of cleaning with variables initialized to 0. Trying to make
 #ifdef windows    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define DIRSEPARATOR '\\'  
 #else    Revision 1.129  2007/08/31 13:49:27  lievre
 #define DIRSEPARATOR '/'    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #endif  
     Revision 1.128  2006/06/30 13:02:05  brouard
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    (Module): Clarifications on computing e.j
 int erreur; /* Error number */  
 int nvar;    Revision 1.127  2006/04/28 18:11:50  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Yes the sum of survivors was wrong since
 int npar=NPARMAX;    imach-114 because nhstepm was no more computed in the age
 int nlstate=2; /* Number of live states */    loop. Now we define nhstepma in the age loop.
 int ndeath=1; /* Number of dead states */    (Module): In order to speed up (in case of numerous covariates) we
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    compute health expectancies (without variances) in a first step
 int popbased=0;    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 int *wav; /* Number of waves for this individuual 0 is possible */    computation.
 int maxwav; /* Maxim number of waves */    In the future we should be able to stop the program is only health
 int jmin, jmax; /* min, max spacing between 2 waves */    expectancies and graph are needed without standard deviations.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.126  2006/04/28 17:23:28  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Yes the sum of survivors was wrong since
 double jmean; /* Mean space between 2 waves */    imach-114 because nhstepm was no more computed in the age
 double **oldm, **newm, **savm; /* Working pointers to matrices */    loop. Now we define nhstepma in the age loop.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Version 0.98h
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.125  2006/04/04 15:20:31  lievre
 FILE *fichtm; /* Html File */    Errors in calculation of health expectancies. Age was not initialized.
 FILE *ficreseij;    Forecasting file added.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.124  2006/03/22 17:13:53  lievre
 char fileresv[FILENAMELENGTH];    Parameters are printed with %lf instead of %f (more numbers after the comma).
 FILE  *ficresvpl;    The log-likelihood is printed in the log file
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.123  2006/03/20 10:52:43  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    * imach.c (Module): <title> changed, corresponds to .htm file
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    name. <head> headers where missing.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 char filerest[FILENAMELENGTH];    otherwise the weight is truncated).
 char fileregp[FILENAMELENGTH];    Modification of warning when the covariates values are not 0 or
 char popfile[FILENAMELENGTH];    1.
     Version 0.98g
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.122  2006/03/20 09:45:41  brouard
 #define NR_END 1    (Module): Weights can have a decimal point as for
 #define FREE_ARG char*    English (a comma might work with a correct LC_NUMERIC environment,
 #define FTOL 1.0e-10    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 #define NRANSI    1.
 #define ITMAX 200    Version 0.98g
   
 #define TOL 2.0e-4    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    * imach.c (Module): refinements in the computation of lli if
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.120  2006/03/16 15:10:38  lievre
 #define TINY 1.0e-20    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 static double maxarg1,maxarg2;    not 1 month. Version 0.98f
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.119  2006/03/15 17:42:26  brouard
      (Module): Bug if status = -2, the loglikelihood was
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    computed as likelihood omitting the logarithm. Version O.98e
 #define rint(a) floor(a+0.5)  
     Revision 1.118  2006/03/14 18:20:07  brouard
 static double sqrarg;    (Module): varevsij Comments added explaining the second
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    table of variances if popbased=1 .
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 int imx;    (Module): Version 0.98d
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 int estepm;    table of variances if popbased=1 .
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 int m,nb;    (Module): Version 0.98d
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.116  2006/03/06 10:29:27  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Variance-covariance wrong links and
 double dateintmean=0;    varian-covariance of ej. is needed (Saito).
   
 double *weight;    Revision 1.115  2006/02/27 12:17:45  brouard
 int **s; /* Status */    (Module): One freematrix added in mlikeli! 0.98c
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    filename with strsep.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.113  2006/02/24 14:20:24  brouard
 /**************** split *************************/    (Module): Memory leaks checks with valgrind and:
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    datafile was not closed, some imatrix were not freed and on matrix
 {    allocation too.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.111  2006/01/25 20:38:18  brouard
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    (Module): Lots of cleaning and bugs added (Gompertz)
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): Comments can be added in data file. Missing date values
 #if     defined(__bsd__)                /* get current working directory */    can be a simple dot '.'.
       extern char       *getwd( );  
     Revision 1.110  2006/01/25 00:51:50  brouard
       if ( getwd( dirc ) == NULL ) {    (Module): Lots of cleaning and bugs added (Gompertz)
 #else  
       extern char       *getcwd( );    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.108  2006/01/19 18:05:42  lievre
          return( GLOCK_ERROR_GETCWD );    Gnuplot problem appeared...
       }    To be fixed
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.107  2006/01/19 16:20:37  brouard
       s++;                              /* after this, the filename */    Test existence of gnuplot in imach path
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.106  2006/01/19 13:24:36  brouard
       strcpy( name, s );                /* save file name */    Some cleaning and links added in html output
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.105  2006/01/05 20:23:19  lievre
    }    *** empty log message ***
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.104  2005/09/30 16:11:43  lievre
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): sump fixed, loop imx fixed, and simplifications.
 #else    (Module): If the status is missing at the last wave but we know
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    that the person is alive, then we can code his/her status as -2
 #endif    (instead of missing=-1 in earlier versions) and his/her
    s = strrchr( name, '.' );            /* find last / */    contributions to the likelihood is 1 - Prob of dying from last
    s++;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    strcpy(ext,s);                       /* save extension */    the healthy state at last known wave). Version is 0.98
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.103  2005/09/30 15:54:49  lievre
    strncpy( finame, name, l1-l2);    (Module): sump fixed, loop imx fixed, and simplifications.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.102  2004/09/15 17:31:30  brouard
 }    Add the possibility to read data file including tab characters.
   
     Revision 1.101  2004/09/15 10:38:38  brouard
 /******************************************/    Fix on curr_time
   
 void replace(char *s, char*t)    Revision 1.100  2004/07/12 18:29:06  brouard
 {    Add version for Mac OS X. Just define UNIX in Makefile
   int i;  
   int lg=20;    Revision 1.99  2004/06/05 08:57:40  brouard
   i=0;    *** empty log message ***
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.98  2004/05/16 15:05:56  brouard
     (s[i] = t[i]);    New version 0.97 . First attempt to estimate force of mortality
     if (t[i]== '\\') s[i]='/';    directly from the data i.e. without the need of knowing the health
   }    state at each age, but using a Gompertz model: log u =a + b*age .
 }    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 int nbocc(char *s, char occ)    cross-longitudinal survey is different from the mortality estimated
 {    from other sources like vital statistic data.
   int i,j=0;  
   int lg=20;    The same imach parameter file can be used but the option for mle should be -3.
   i=0;  
   lg=strlen(s);    Agnès, who wrote this part of the code, tried to keep most of the
   for(i=0; i<= lg; i++) {    former routines in order to include the new code within the former code.
   if  (s[i] == occ ) j++;  
   }    The output is very simple: only an estimate of the intercept and of
   return j;    the slope with 95% confident intervals.
 }  
     Current limitations:
 void cutv(char *u,char *v, char*t, char occ)    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   int i,lg,j,p=0;    B) There is no computation of Life Expectancy nor Life Table.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.97  2004/02/20 13:25:42  lievre
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Version 0.96d. Population forecasting command line is (temporarily)
   }    suppressed.
   
   lg=strlen(t);    Revision 1.96  2003/07/15 15:38:55  brouard
   for(j=0; j<p; j++) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     (u[j] = t[j]);    rewritten within the same printf. Workaround: many printfs.
   }  
      u[p]='\0';    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
    for(j=0; j<= lg; j++) {    (Repository): Using imachwizard code to output a more meaningful covariance
     if (j>=(p+1))(v[j-p-1] = t[j]);    matrix (cov(a12,c31) instead of numbers.
   }  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 /********************** nrerror ********************/  
     Revision 1.93  2003/06/25 16:33:55  brouard
 void nrerror(char error_text[])    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   fprintf(stderr,"ERREUR ...\n");    (Module): Version 0.96b
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
 /*********************** vector *******************/    exist so I changed back to asctime which exists.
 double *vector(int nl, int nh)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   double *v;    * imach.c (Repository): Duplicated warning errors corrected.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Repository): Elapsed time after each iteration is now output. It
   if (!v) nrerror("allocation failure in vector");    helps to forecast when convergence will be reached. Elapsed time
   return v-nl+NR_END;    is stamped in powell.  We created a new html file for the graphs
 }    concerning matrix of covariance. It has extension -cov.htm.
   
 /************************ free vector ******************/    Revision 1.90  2003/06/24 12:34:15  brouard
 void free_vector(double*v, int nl, int nh)    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   free((FREE_ARG)(v+nl-NR_END));    of the covariance matrix to be input.
 }  
     Revision 1.89  2003/06/24 12:30:52  brouard
 /************************ivector *******************************/    (Module): Some bugs corrected for windows. Also, when
 int *ivector(long nl,long nh)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.88  2003/06/23 17:54:56  brouard
   if (!v) nrerror("allocation failure in ivector");    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   return v-nl+NR_END;  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   free((FREE_ARG)(v+nl-NR_END));    routine fileappend.
 }  
     Revision 1.85  2003/06/17 13:12:43  brouard
 /******************* imatrix *******************************/    * imach.c (Repository): Check when date of death was earlier that
 int **imatrix(long nrl, long nrh, long ncl, long nch)    current date of interview. It may happen when the death was just
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    assuming that the date of death was just one stepm after the
   int **m;    interview.
      (Repository): Because some people have very long ID (first column)
   /* allocate pointers to rows */    we changed int to long in num[] and we added a new lvector for
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    memory allocation. But we also truncated to 8 characters (left
   if (!m) nrerror("allocation failure 1 in matrix()");    truncation)
   m += NR_END;    (Repository): No more line truncation errors.
   m -= nrl;  
      Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
   /* allocate rows and set pointers to them */    place. It differs from routine "prevalence" which may be called
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    many times. Probs is memory consuming and must be used with
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    parcimony.
   m[nrl] += NR_END;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   m[nrl] -= ncl;  
      Revision 1.83  2003/06/10 13:39:11  lievre
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    *** empty log message ***
    
   /* return pointer to array of pointers to rows */    Revision 1.82  2003/06/05 15:57:20  brouard
   return m;    Add log in  imach.c and  fullversion number is now printed.
 }  
   */
 /****************** free_imatrix *************************/  /*
 void free_imatrix(m,nrl,nrh,ncl,nch)     Interpolated Markov Chain
       int **m;  
       long nch,ncl,nrh,nrl;    Short summary of the programme:
      /* free an int matrix allocated by imatrix() */    
 {    This program computes Healthy Life Expectancies from
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   free((FREE_ARG) (m+nrl-NR_END));    first survey ("cross") where individuals from different ages are
 }    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 /******************* matrix *******************************/    second wave of interviews ("longitudinal") which measure each change
 double **matrix(long nrl, long nrh, long ncl, long nch)    (if any) in individual health status.  Health expectancies are
 {    computed from the time spent in each health state according to a
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    model. More health states you consider, more time is necessary to reach the
   double **m;    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    probability to be observed in state j at the second wave
   if (!m) nrerror("allocation failure 1 in matrix()");    conditional to be observed in state i at the first wave. Therefore
   m += NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m -= nrl;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    where the markup *Covariates have to be included here again* invites
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    you to do it.  More covariates you add, slower the
   m[nrl] += NR_END;    convergence.
   m[nrl] -= ncl;  
     The advantage of this computer programme, compared to a simple
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    multinomial logistic model, is clear when the delay between waves is not
   return m;    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    split into an exact number (nh*stepm) of unobserved intermediate
   free((FREE_ARG)(m+nrl-NR_END));    states. This elementary transition (by month, quarter,
 }    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 /******************* ma3x *******************************/    and the contribution of each individual to the likelihood is simply
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    hPijx.
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Also this programme outputs the covariance matrix of the parameters but also
   double ***m;    of the life expectancies. It also computes the period (stable) prevalence. 
     
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   if (!m) nrerror("allocation failure 1 in matrix()");             Institut national d'études démographiques, Paris.
   m += NR_END;    This software have been partly granted by Euro-REVES, a concerted action
   m -= nrl;    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    software can be distributed freely for non commercial use. Latest version
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    can be accessed at http://euroreves.ined.fr/imach .
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    
     **********************************************************************/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /*
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    main
   m[nrl][ncl] += NR_END;    read parameterfile
   m[nrl][ncl] -= nll;    read datafile
   for (j=ncl+1; j<=nch; j++)    concatwav
     m[nrl][j]=m[nrl][j-1]+nlay;    freqsummary
      if (mle >= 1)
   for (i=nrl+1; i<=nrh; i++) {      mlikeli
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    print results files
     for (j=ncl+1; j<=nch; j++)    if mle==1 
       m[i][j]=m[i][j-1]+nlay;       computes hessian
   }    read end of parameter file: agemin, agemax, bage, fage, estepm
   return m;        begin-prev-date,...
 }    open gnuplot file
     open html file
 /*************************free ma3x ************************/    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      freexexit2 possible for memory heap.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    h Pij x                         | pij_nom  ficrestpij
 }     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
          1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 /***************** f1dim *************************/         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 extern int ncom;  
 extern double *pcom,*xicom;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 extern double (*nrfunc)(double []);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
      variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 double f1dim(double x)     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   int j;  
   double f;    forecasting if prevfcast==1 prevforecast call prevalence()
   double *xt;    health expectancies
      Variance-covariance of DFLE
   xt=vector(1,ncom);    prevalence()
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     movingaverage()
   f=(*nrfunc)(xt);    varevsij() 
   free_vector(xt,1,ncom);    if popbased==1 varevsij(,popbased)
   return f;    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /*****************brent *************************/  */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  
   int iter;  
   double a,b,d,etemp;   
   double fu,fv,fw,fx;  #include <math.h>
   double ftemp;  #include <stdio.h>
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #include <stdlib.h>
   double e=0.0;  #include <string.h>
    #include <unistd.h>
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  #include <limits.h>
   x=w=v=bx;  #include <sys/types.h>
   fw=fv=fx=(*f)(x);  #include <sys/stat.h>
   for (iter=1;iter<=ITMAX;iter++) {  #include <errno.h>
     xm=0.5*(a+b);  extern int errno;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #ifdef LINUX
     printf(".");fflush(stdout);  #include <time.h>
 #ifdef DEBUG  #include "timeval.h"
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #else
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #include <sys/time.h>
 #endif  #endif
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  #ifdef GSL
       return fx;  #include <gsl/gsl_errno.h>
     }  #include <gsl/gsl_multimin.h>
     ftemp=fu;  #endif
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /* #include <libintl.h> */
       q=(x-v)*(fx-fw);  /* #define _(String) gettext (String) */
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       if (q > 0.0) p = -p;  
       q=fabs(q);  #define GNUPLOTPROGRAM "gnuplot"
       etemp=e;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       e=d;  #define FILENAMELENGTH 132
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       else {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         d=p/q;  
         u=x+d;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
         if (u-a < tol2 || b-u < tol2)  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
           d=SIGN(tol1,xm-x);  
       }  #define NINTERVMAX 8
     } else {  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
     fu=(*f)(u);  #define MAXN 20000
     if (fu <= fx) {  #define YEARM 12. /**< Number of months per year */
       if (u >= x) a=x; else b=x;  #define AGESUP 130
       SHFT(v,w,x,u)  #define AGEBASE 40
         SHFT(fv,fw,fx,fu)  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
         } else {  #ifdef UNIX
           if (u < x) a=u; else b=u;  #define DIRSEPARATOR '/'
           if (fu <= fw || w == x) {  #define CHARSEPARATOR "/"
             v=w;  #define ODIRSEPARATOR '\\'
             w=u;  #else
             fv=fw;  #define DIRSEPARATOR '\\'
             fw=fu;  #define CHARSEPARATOR "\\"
           } else if (fu <= fv || v == x || v == w) {  #define ODIRSEPARATOR '/'
             v=u;  #endif
             fv=fu;  
           }  /* $Id$ */
         }  /* $State$ */
   }  
   nrerror("Too many iterations in brent");  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   *xmin=x;  char fullversion[]="$Revision$ $Date$"; 
   return fx;  char strstart[80];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /****************** mnbrak ***********************/  int nvar=0, nforce=0; /* Number of variables, number of forces */
   /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
             double (*func)(double))  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 {  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   double ulim,u,r,q, dum;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   double fu;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
    int cptcoveff=0; /* Total number of covariates to vary for printing results */
   *fa=(*func)(*ax);  int cptcov=0; /* Working variable */
   *fb=(*func)(*bx);  int npar=NPARMAX;
   if (*fb > *fa) {  int nlstate=2; /* Number of live states */
     SHFT(dum,*ax,*bx,dum)  int ndeath=1; /* Number of dead states */
       SHFT(dum,*fb,*fa,dum)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       }  int popbased=0;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  int *wav; /* Number of waves for this individuual 0 is possible */
   while (*fb > *fc) {  int maxwav=0; /* Maxim number of waves */
     r=(*bx-*ax)*(*fb-*fc);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     q=(*bx-*cx)*(*fb-*fa);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));                     to the likelihood and the sum of weights (done by funcone)*/
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int mle=1, weightopt=0;
     if ((*bx-u)*(u-*cx) > 0.0) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       fu=(*func)(u);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       fu=(*func)(u);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       if (fu < *fc) {  double jmean=1; /* Mean space between 2 waves */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double **matprod2(); /* test */
           SHFT(*fb,*fc,fu,(*func)(u))  double **oldm, **newm, **savm; /* Working pointers to matrices */
           }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /*FILE *fic ; */ /* Used in readdata only */
       u=ulim;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       fu=(*func)(u);  FILE *ficlog, *ficrespow;
     } else {  int globpr=0; /* Global variable for printing or not */
       u=(*cx)+GOLD*(*cx-*bx);  double fretone; /* Only one call to likelihood */
       fu=(*func)(u);  long ipmx=0; /* Number of contributions */
     }  double sw; /* Sum of weights */
     SHFT(*ax,*bx,*cx,u)  char filerespow[FILENAMELENGTH];
       SHFT(*fa,*fb,*fc,fu)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       }  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /*************** linmin ************************/  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 int ncom;  char filerese[FILENAMELENGTH];
 double *pcom,*xicom;  FILE *ficresstdeij;
 double (*nrfunc)(double []);  char fileresstde[FILENAMELENGTH];
    FILE *ficrescveij;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  char filerescve[FILENAMELENGTH];
 {  FILE  *ficresvij;
   double brent(double ax, double bx, double cx,  char fileresv[FILENAMELENGTH];
                double (*f)(double), double tol, double *xmin);  FILE  *ficresvpl;
   double f1dim(double x);  char fileresvpl[FILENAMELENGTH];
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  char title[MAXLINE];
               double *fc, double (*func)(double));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   int j;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double xx,xmin,bx,ax;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double fx,fb,fa;  char command[FILENAMELENGTH];
    int  outcmd=0;
   ncom=n;  
   pcom=vector(1,n);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   xicom=vector(1,n);  
   nrfunc=func;  char filelog[FILENAMELENGTH]; /* Log file */
   for (j=1;j<=n;j++) {  char filerest[FILENAMELENGTH];
     pcom[j]=p[j];  char fileregp[FILENAMELENGTH];
     xicom[j]=xi[j];  char popfile[FILENAMELENGTH];
   }  
   ax=0.0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  struct timezone tzp;
 #ifdef DEBUG  extern int gettimeofday();
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 #endif  long time_value;
   for (j=1;j<=n;j++) {  extern long time();
     xi[j] *= xmin;  char strcurr[80], strfor[80];
     p[j] += xi[j];  
   }  char *endptr;
   free_vector(xicom,1,n);  long lval;
   free_vector(pcom,1,n);  double dval;
 }  
   #define NR_END 1
 /*************** powell ************************/  #define FREE_ARG char*
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define FTOL 1.0e-10
             double (*func)(double []))  
 {  #define NRANSI 
   void linmin(double p[], double xi[], int n, double *fret,  #define ITMAX 200 
               double (*func)(double []));  
   int i,ibig,j;  #define TOL 2.0e-4 
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  #define CGOLD 0.3819660 
   double *xits;  #define ZEPS 1.0e-10 
   pt=vector(1,n);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   ptt=vector(1,n);  
   xit=vector(1,n);  #define GOLD 1.618034 
   xits=vector(1,n);  #define GLIMIT 100.0 
   *fret=(*func)(p);  #define TINY 1.0e-20 
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  static double maxarg1,maxarg2;
     fp=(*fret);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     ibig=0;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     del=0.0;    
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for (i=1;i<=n;i++)  #define rint(a) floor(a+0.5)
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  static double sqrarg;
     for (i=1;i<=n;i++) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       fptt=(*fret);  int agegomp= AGEGOMP;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  int imx; 
 #endif  int stepm=1;
       printf("%d",i);fflush(stdout);  /* Stepm, step in month: minimum step interpolation*/
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  int estepm;
         del=fabs(fptt-(*fret));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         ibig=i;  
       }  int m,nb;
 #ifdef DEBUG  long *num;
       printf("%d %.12e",i,(*fret));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       for (j=1;j<=n;j++) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double **pmmij, ***probs;
         printf(" x(%d)=%.12e",j,xit[j]);  double *ageexmed,*agecens;
       }  double dateintmean=0;
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  double *weight;
       printf("\n");  int **s; /* Status */
 #endif  double *agedc;
     }  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {                    * covar=matrix(0,NCOVMAX,1,n); 
 #ifdef DEBUG                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       int k[2],l;  double  idx; 
       k[0]=1;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       k[1]=-1;  int *Ndum; /** Freq of modality (tricode */
       printf("Max: %.12e",(*func)(p));  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       for (j=1;j<=n;j++)  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         printf(" %.12e",p[j]);  double *lsurv, *lpop, *tpop;
       printf("\n");  
       for(l=0;l<=1;l++) {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         for (j=1;j<=n;j++) {  double ftolhess; /**< Tolerance for computing hessian */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /**************** split *************************/
         }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 #endif       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
     char  *ss;                            /* pointer */
       free_vector(xit,1,n);    int   l1, l2;                         /* length counters */
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);    l1 = strlen(path );                   /* length of path */
       free_vector(pt,1,n);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       return;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      strcpy( name, path );               /* we got the fullname name because no directory */
     for (j=1;j<=n;j++) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       ptt[j]=2.0*p[j]-pt[j];        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       xit[j]=p[j]-pt[j];      /* get current working directory */
       pt[j]=p[j];      /*    extern  char* getcwd ( char *buf , int len);*/
     }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     fptt=(*func)(ptt);        return( GLOCK_ERROR_GETCWD );
     if (fptt < fp) {      }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      /* got dirc from getcwd*/
       if (t < 0.0) {      printf(" DIRC = %s \n",dirc);
         linmin(p,xit,n,fret,func);    } else {                              /* strip direcotry from path */
         for (j=1;j<=n;j++) {      ss++;                               /* after this, the filename */
           xi[j][ibig]=xi[j][n];      l2 = strlen( ss );                  /* length of filename */
           xi[j][n]=xit[j];      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         }      strcpy( name, ss );         /* save file name */
 #ifdef DEBUG      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      dirc[l1-l2] = 0;                    /* add zero */
         for(j=1;j<=n;j++)      printf(" DIRC2 = %s \n",dirc);
           printf(" %.12e",xit[j]);    }
         printf("\n");    /* We add a separator at the end of dirc if not exists */
 #endif    l1 = strlen( dirc );                  /* length of directory */
       }    if( dirc[l1-1] != DIRSEPARATOR ){
     }      dirc[l1] =  DIRSEPARATOR;
   }      dirc[l1+1] = 0; 
 }      printf(" DIRC3 = %s \n",dirc);
     }
 /**** Prevalence limit ****************/    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      l1= strlen( name);
      matrix by transitions matrix until convergence is reached */      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
   int i, ii,j,k;      finame[l1-l2]= 0;
   double min, max, maxmin, maxmax,sumnew=0.;    }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();    return( 0 );                          /* we're done */
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /******************************************/
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void replace_back_to_slash(char *s, char*t)
     }  {
     int i;
    cov[1]=1.;    int lg=0;
      i=0;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    lg=strlen(t);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for(i=0; i<= lg; i++) {
     newm=savm;      (s[i] = t[i]);
     /* Covariates have to be included here again */      if (t[i]== '\\') s[i]='/';
      cov[2]=agefin;    }
    }
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char *trimbb(char *out, char *in)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       }    char *s;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    s=out;
       for (k=1; k<=cptcovprod;k++)    while (*in != '\0'){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      *out++ = *in++;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    *out='\0';
     return s;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  char *cutl(char *blocc, char *alocc, char *in, char occ)
     for(j=1;j<=nlstate;j++){  {
       min=1.;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       max=0.;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       for(i=1; i<=nlstate; i++) {       gives blocc="abcdef2ghi" and alocc="j".
         sumnew=0;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    */
         prlim[i][j]= newm[i][j]/(1-sumnew);    char *s, *t, *bl;
         max=FMAX(max,prlim[i][j]);    t=in;s=in;
         min=FMIN(min,prlim[i][j]);    while ((*in != occ) && (*in != '\0')){
       }      *alocc++ = *in++;
       maxmin=max-min;    }
       maxmax=FMAX(maxmax,maxmin);    if( *in == occ){
     }      *(alocc)='\0';
     if(maxmax < ftolpl){      s=++in;
       return prlim;    }
     }   
   }    if (s == t) {/* occ not found */
 }      *(alocc-(in-s))='\0';
       in=s;
 /*************** transition probabilities ***************/    }
     while ( *in != '\0'){
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      *blocc++ = *in++;
 {    }
   double s1, s2;  
   /*double t34;*/    *blocc='\0';
   int i,j,j1, nc, ii, jj;    return t;
   }
     for(i=1; i<= nlstate; i++){  char *cutv(char *blocc, char *alocc, char *in, char occ)
     for(j=1; j<i;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         /*s2 += param[i][j][nc]*cov[nc];*/       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       gives blocc="abcdef2ghi" and alocc="j".
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       }    */
       ps[i][j]=s2;    char *s, *t;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    t=in;s=in;
     }    while (*in != '\0'){
     for(j=i+1; j<=nlstate+ndeath;j++){      while( *in == occ){
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        *blocc++ = *in++;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        s=in;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      }
       }      *blocc++ = *in++;
       ps[i][j]=s2;    }
     }    if (s == t) /* occ not found */
   }      *(blocc-(in-s))='\0';
     /*ps[3][2]=1;*/    else
       *(blocc-(in-s)-1)='\0';
   for(i=1; i<= nlstate; i++){    in=s;
      s1=0;    while ( *in != '\0'){
     for(j=1; j<i; j++)      *alocc++ = *in++;
       s1+=exp(ps[i][j]);    }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    *alocc='\0';
     ps[i][i]=1./(s1+1.);    return s;
     for(j=1; j<i; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  int nbocc(char *s, char occ)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    int i,j=0;
   } /* end i */    int lg=20;
     i=0;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    lg=strlen(s);
     for(jj=1; jj<= nlstate+ndeath; jj++){    for(i=0; i<= lg; i++) {
       ps[ii][jj]=0;    if  (s[i] == occ ) j++;
       ps[ii][ii]=1;    }
     }    return j;
   }  }
   
   /* void cutv(char *u,char *v, char*t, char occ) */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /* { */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
      printf("%lf ",ps[ii][jj]);  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
    }  /*      gives u="abcdef2ghi" and v="j" *\/ */
     printf("\n ");  /*   int i,lg,j,p=0; */
     }  /*   i=0; */
     printf("\n ");printf("%lf ",cov[2]);*/  /*   lg=strlen(t); */
 /*  /*   for(j=0; j<=lg-1; j++) { */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   goto end;*/  /*   } */
     return ps;  
 }  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
 /**************** Product of 2 matrices ******************/  /*   } */
   /*      u[p]='\0'; */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  /*    for(j=0; j<= lg; j++) { */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*   } */
   /* in, b, out are matrice of pointers which should have been initialized  /* } */
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /********************** nrerror ********************/
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  void nrerror(char error_text[])
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    fprintf(stderr,"ERREUR ...\n");
         out[i][k] +=in[i][j]*b[j][k];    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   return out;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
   {
 /************* Higher Matrix Product ***************/    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  }
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /************************ free vector ******************/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  void free_vector(double*v, int nl, int nh)
      (typically every 2 years instead of every month which is too big).  {
      Model is determined by parameters x and covariates have to be    free((FREE_ARG)(v+nl-NR_END));
      included manually here.  }
   
      */  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    int *v;
   double **newm;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   /* Hstepm could be zero and should return the unit matrix */    return v-nl+NR_END;
   for (i=1;i<=nlstate+ndeath;i++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /******************free ivector **************************/
       po[i][j][0]=(i==j ? 1.0 : 0.0);  void free_ivector(int *v, long nl, long nh)
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(v+nl-NR_END));
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /************************lvector *******************************/
       /* Covariates have to be included here again */  long *lvector(long nl,long nh)
       cov[1]=1.;  {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    long *v;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       for (k=1; k<=cptcovage;k++)    if (!v) nrerror("allocation failure in ivector");
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return v-nl+NR_END;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    free((FREE_ARG)(v+nl-NR_END));
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /******************* imatrix *******************************/
       oldm=newm;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for(i=1; i<=nlstate+ndeath; i++)  { 
       for(j=1;j<=nlstate+ndeath;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         po[i][j][h]=newm[i][j];    int **m; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    
          */    /* allocate pointers to rows */ 
       }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   } /* end h */    if (!m) nrerror("allocation failure 1 in matrix()"); 
   return po;    m += NR_END; 
 }    m -= nrl; 
     
     
 /*************** log-likelihood *************/    /* allocate rows and set pointers to them */ 
 double func( double *x)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   int i, ii, j, k, mi, d, kk;    m[nrl] += NR_END; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    m[nrl] -= ncl; 
   double **out;    
   double sw; /* Sum of weights */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double lli; /* Individual log likelihood */    
   long ipmx;    /* return pointer to array of pointers to rows */ 
   /*extern weight */    return m; 
   /* We are differentiating ll according to initial status */  } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  /****************** free_imatrix *************************/
     printf(" %d\n",s[4][i]);  void free_imatrix(m,nrl,nrh,ncl,nch)
   */        int **m;
   cov[1]=1.;        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    free((FREE_ARG) (m+nrl-NR_END)); 
     for(mi=1; mi<= wav[i]-1; mi++){  } 
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /******************* matrix *******************************/
       for(d=0; d<dh[mi][i]; d++){  double **matrix(long nrl, long nrh, long ncl, long nch)
         newm=savm;  {
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         for (kk=1; kk<=cptcovage;kk++) {    double **m;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
            if (!m) nrerror("allocation failure 1 in matrix()");
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    m += NR_END;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    m -= nrl;
         savm=oldm;  
         oldm=newm;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
            if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
            m[nrl] += NR_END;
       } /* end mult */    m[nrl] -= ncl;
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    return m;
       ipmx +=1;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       sw += weight[i];  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     } /* end of wave */     */
   } /* end of individual */  }
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*************************free matrix ************************/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  {
   return -l;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 }    free((FREE_ARG)(m+nrl-NR_END));
   }
   
 /*********** Maximum Likelihood Estimation ***************/  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  {
 {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int i,j, iter;    double ***m;
   double **xi,*delti;  
   double fret;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   xi=matrix(1,npar,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()");
   for (i=1;i<=npar;i++)    m += NR_END;
     for (j=1;j<=npar;j++)    m -= nrl;
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   powell(p,xi,npar,ftol,&iter,&fret,func);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    m[nrl] -= ncl;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /**** Computes Hessian and covariance matrix ***/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   double  **a,**y,*x,pd;    for (j=ncl+1; j<=nch; j++) 
   double **hess;      m[nrl][j]=m[nrl][j-1]+nlay;
   int i, j,jk;    
   int *indx;    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double hessii(double p[], double delta, int theta, double delti[]);      for (j=ncl+1; j<=nch; j++) 
   double hessij(double p[], double delti[], int i, int j);        m[i][j]=m[i][j-1]+nlay;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    }
   void ludcmp(double **a, int npar, int *indx, double *d) ;    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   hess=matrix(1,npar,1,npar);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
   printf("\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /*************************free ma3x ************************/
     hess[i][i]=hessii(p,ftolhess,i,delti);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     /*printf(" %f ",p[i]);*/  {
     /*printf(" %lf ",hess[i][i]);*/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  /*************** function subdirf ***********/
         printf(".%d%d",i,j);fflush(stdout);  char *subdirf(char fileres[])
         hess[i][j]=hessij(p,delti,i,j);  {
         hess[j][i]=hess[i][j];        /* Caution optionfilefiname is hidden */
         /*printf(" %lf ",hess[i][j]);*/    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
   }    return tmpout;
   printf("\n");  }
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*************** function subdirf2 ***********/
    char *subdirf2(char fileres[], char *preop)
   a=matrix(1,npar,1,npar);  {
   y=matrix(1,npar,1,npar);    
   x=vector(1,npar);    /* Caution optionfilefiname is hidden */
   indx=ivector(1,npar);    strcpy(tmpout,optionfilefiname);
   for (i=1;i<=npar;i++)    strcat(tmpout,"/");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    strcat(tmpout,preop);
   ludcmp(a,npar,indx,&pd);    strcat(tmpout,fileres);
     return tmpout;
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** function subdirf3 ***********/
     lubksb(a,npar,indx,x);  char *subdirf3(char fileres[], char *preop, char *preop2)
     for (i=1;i<=npar;i++){  {
       matcov[i][j]=x[i];    
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   printf("\n#Hessian matrix#\n");    strcat(tmpout,preop);
   for (i=1;i<=npar;i++) {    strcat(tmpout,preop2);
     for (j=1;j<=npar;j++) {    strcat(tmpout,fileres);
       printf("%.3e ",hess[i][j]);    return tmpout;
     }  }
     printf("\n");  
   }  /***************** f1dim *************************/
   extern int ncom; 
   /* Recompute Inverse */  extern double *pcom,*xicom;
   for (i=1;i<=npar;i++)  extern double (*nrfunc)(double []); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];   
   ludcmp(a,npar,indx,&pd);  double f1dim(double x) 
   { 
   /*  printf("\n#Hessian matrix recomputed#\n");    int j; 
     double f;
   for (j=1;j<=npar;j++) {    double *xt; 
     for (i=1;i<=npar;i++) x[i]=0;   
     x[j]=1;    xt=vector(1,ncom); 
     lubksb(a,npar,indx,x);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for (i=1;i<=npar;i++){    f=(*nrfunc)(xt); 
       y[i][j]=x[i];    free_vector(xt,1,ncom); 
       printf("%.3e ",y[i][j]);    return f; 
     }  } 
     printf("\n");  
   }  /*****************brent *************************/
   */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
   free_matrix(a,1,npar,1,npar);    int iter; 
   free_matrix(y,1,npar,1,npar);    double a,b,d,etemp;
   free_vector(x,1,npar);    double fu,fv,fw,fx;
   free_ivector(indx,1,npar);    double ftemp;
   free_matrix(hess,1,npar,1,npar);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
    
 }    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 /*************** hessian matrix ****************/    x=w=v=bx; 
 double hessii( double x[], double delta, int theta, double delti[])    fw=fv=fx=(*f)(x); 
 {    for (iter=1;iter<=ITMAX;iter++) { 
   int i;      xm=0.5*(a+b); 
   int l=1, lmax=20;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double k1,k2;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double p2[NPARMAX+1];      printf(".");fflush(stdout);
   double res;      fprintf(ficlog,".");fflush(ficlog);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #ifdef DEBUG
   double fx;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int k=0,kmax=10;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double l1;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   fx=func(x);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (i=1;i<=npar;i++) p2[i]=x[i];        *xmin=x; 
   for(l=0 ; l <=lmax; l++){        return fx; 
     l1=pow(10,l);      } 
     delts=delt;      ftemp=fu;
     for(k=1 ; k <kmax; k=k+1){      if (fabs(e) > tol1) { 
       delt = delta*(l1*k);        r=(x-w)*(fx-fv); 
       p2[theta]=x[theta] +delt;        q=(x-v)*(fx-fw); 
       k1=func(p2)-fx;        p=(x-v)*q-(x-w)*r; 
       p2[theta]=x[theta]-delt;        q=2.0*(q-r); 
       k2=func(p2)-fx;        if (q > 0.0) p = -p; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        q=fabs(q); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        etemp=e; 
              e=d; 
 #ifdef DEBUG        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif        else { 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          d=p/q; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          u=x+d; 
         k=kmax;          if (u-a < tol2 || b-u < tol2) 
       }            d=SIGN(tol1,xm-x); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        } 
         k=kmax; l=lmax*10.;      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      } 
         delts=delt;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       }      fu=(*f)(u); 
     }      if (fu <= fx) { 
   }        if (u >= x) a=x; else b=x; 
   delti[theta]=delts;        SHFT(v,w,x,u) 
   return res;          SHFT(fv,fw,fx,fu) 
            } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 double hessij( double x[], double delti[], int thetai,int thetaj)              v=w; 
 {              w=u; 
   int i;              fv=fw; 
   int l=1, l1, lmax=20;              fw=fu; 
   double k1,k2,k3,k4,res,fx;            } else if (fu <= fv || v == x || v == w) { 
   double p2[NPARMAX+1];              v=u; 
   int k;              fv=fu; 
             } 
   fx=func(x);          } 
   for (k=1; k<=2; k++) {    } 
     for (i=1;i<=npar;i++) p2[i]=x[i];    nrerror("Too many iterations in brent"); 
     p2[thetai]=x[thetai]+delti[thetai]/k;    *xmin=x; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    return fx; 
     k1=func(p2)-fx;  } 
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  /****************** mnbrak ***********************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                double (*func)(double)) 
     p2[thetai]=x[thetai]-delti[thetai]/k;  { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double ulim,u,r,q, dum;
     k3=func(p2)-fx;    double fu; 
     
     p2[thetai]=x[thetai]-delti[thetai]/k;    *fa=(*func)(*ax); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    *fb=(*func)(*bx); 
     k4=func(p2)-fx;    if (*fb > *fa) { 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      SHFT(dum,*ax,*bx,dum) 
 #ifdef DEBUG        SHFT(dum,*fb,*fa,dum) 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        } 
 #endif    *cx=(*bx)+GOLD*(*bx-*ax); 
   }    *fc=(*func)(*cx); 
   return res;    while (*fb > *fc) { 
 }      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 /************** Inverse of matrix **************/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 void ludcmp(double **a, int n, int *indx, double *d)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   int i,imax,j,k;      if ((*bx-u)*(u-*cx) > 0.0) { 
   double big,dum,sum,temp;        fu=(*func)(u); 
   double *vv;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
          fu=(*func)(u); 
   vv=vector(1,n);        if (fu < *fc) { 
   *d=1.0;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   for (i=1;i<=n;i++) {            SHFT(*fb,*fc,fu,(*func)(u)) 
     big=0.0;            } 
     for (j=1;j<=n;j++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       if ((temp=fabs(a[i][j])) > big) big=temp;        u=ulim; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        fu=(*func)(u); 
     vv[i]=1.0/big;      } else { 
   }        u=(*cx)+GOLD*(*cx-*bx); 
   for (j=1;j<=n;j++) {        fu=(*func)(u); 
     for (i=1;i<j;i++) {      } 
       sum=a[i][j];      SHFT(*ax,*bx,*cx,u) 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        SHFT(*fa,*fb,*fc,fu) 
       a[i][j]=sum;        } 
     }  } 
     big=0.0;  
     for (i=j;i<=n;i++) {  /*************** linmin ************************/
       sum=a[i][j];  
       for (k=1;k<j;k++)  int ncom; 
         sum -= a[i][k]*a[k][j];  double *pcom,*xicom;
       a[i][j]=sum;  double (*nrfunc)(double []); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {   
         big=dum;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         imax=i;  { 
       }    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
     if (j != imax) {    double f1dim(double x); 
       for (k=1;k<=n;k++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         dum=a[imax][k];                double *fc, double (*func)(double)); 
         a[imax][k]=a[j][k];    int j; 
         a[j][k]=dum;    double xx,xmin,bx,ax; 
       }    double fx,fb,fa;
       *d = -(*d);   
       vv[imax]=vv[j];    ncom=n; 
     }    pcom=vector(1,n); 
     indx[j]=imax;    xicom=vector(1,n); 
     if (a[j][j] == 0.0) a[j][j]=TINY;    nrfunc=func; 
     if (j != n) {    for (j=1;j<=n;j++) { 
       dum=1.0/(a[j][j]);      pcom[j]=p[j]; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      xicom[j]=xi[j]; 
     }    } 
   }    ax=0.0; 
   free_vector(vv,1,n);  /* Doesn't work */    xx=1.0; 
 ;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 void lubksb(double **a, int n, int *indx, double b[])    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i,ii=0,ip,j;  #endif
   double sum;    for (j=1;j<=n;j++) { 
        xi[j] *= xmin; 
   for (i=1;i<=n;i++) {      p[j] += xi[j]; 
     ip=indx[i];    } 
     sum=b[ip];    free_vector(xicom,1,n); 
     b[ip]=b[i];    free_vector(pcom,1,n); 
     if (ii)  } 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  char *asc_diff_time(long time_sec, char ascdiff[])
     b[i]=sum;  {
   }    long sec_left, days, hours, minutes;
   for (i=n;i>=1;i--) {    days = (time_sec) / (60*60*24);
     sum=b[i];    sec_left = (time_sec) % (60*60*24);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    hours = (sec_left) / (60*60) ;
     b[i]=sum/a[i][i];    sec_left = (sec_left) %(60*60);
   }    minutes = (sec_left) /60;
 }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 /************ Frequencies ********************/    return ascdiff;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  }
 {  /* Some frequencies */  
    /*************** powell ************************/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double ***freq; /* Frequencies */              double (*func)(double [])) 
   double *pp;  { 
   double pos, k2, dateintsum=0,k2cpt=0;    void linmin(double p[], double xi[], int n, double *fret, 
   FILE *ficresp;                double (*func)(double [])); 
   char fileresp[FILENAMELENGTH];    int i,ibig,j; 
      double del,t,*pt,*ptt,*xit;
   pp=vector(1,nlstate);    double fp,fptt;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xits;
   strcpy(fileresp,"p");    int niterf, itmp;
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {    pt=vector(1,n); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    ptt=vector(1,n); 
     exit(0);    xit=vector(1,n); 
   }    xits=vector(1,n); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    *fret=(*func)(p); 
   j1=0;    for (j=1;j<=n;j++) pt[j]=p[j]; 
      for (*iter=1;;++(*iter)) { 
   j=cptcoveff;      fp=(*fret); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      ibig=0; 
        del=0.0; 
   for(k1=1; k1<=j;k1++){      last_time=curr_time;
     for(i1=1; i1<=ncodemax[k1];i1++){      (void) gettimeofday(&curr_time,&tzp);
       j1++;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         scanf("%d", i);*/  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       for (i=-1; i<=nlstate+ndeath; i++)       for (i=1;i<=n;i++) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)          printf(" %d %.12f",i, p[i]);
           for(m=agemin; m <= agemax+3; m++)        fprintf(ficlog," %d %.12lf",i, p[i]);
             freq[i][jk][m]=0;        fprintf(ficrespow," %.12lf", p[i]);
            }
       dateintsum=0;      printf("\n");
       k2cpt=0;      fprintf(ficlog,"\n");
       for (i=1; i<=imx; i++) {      fprintf(ficrespow,"\n");fflush(ficrespow);
         bool=1;      if(*iter <=3){
         if  (cptcovn>0) {        tm = *localtime(&curr_time.tv_sec);
           for (z1=1; z1<=cptcoveff; z1++)        strcpy(strcurr,asctime(&tm));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*       asctime_r(&tm,strcurr); */
               bool=0;        forecast_time=curr_time; 
         }        itmp = strlen(strcurr);
         if (bool==1) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           for(m=firstpass; m<=lastpass; m++){          strcurr[itmp-1]='\0';
             k2=anint[m][i]+(mint[m][i]/12.);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(niterf=10;niterf<=30;niterf+=10){
               if(agev[m][i]==1) agev[m][i]=agemax+2;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
               if (m<lastpass) {          tmf = *localtime(&forecast_time.tv_sec);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*      asctime_r(&tmf,strfor); */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          strcpy(strfor,asctime(&tmf));
               }          itmp = strlen(strfor);
                        if(strfor[itmp-1]=='\n')
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          strfor[itmp-1]='\0';
                 dateintsum=dateintsum+k2;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                 k2cpt++;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
               }        }
             }      }
           }      for (i=1;i<=n;i++) { 
         }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
          #ifdef DEBUG
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
       if  (cptcovn>0) {  #endif
         fprintf(ficresp, "\n#********** Variable ");        printf("%d",i);fflush(stdout);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficlog,"%d",i);fflush(ficlog);
         fprintf(ficresp, "**********\n#");        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
       for(i=1; i<=nlstate;i++)          del=fabs(fptt-(*fret)); 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ibig=i; 
       fprintf(ficresp, "\n");        } 
        #ifdef DEBUG
       for(i=(int)agemin; i <= (int)agemax+3; i++){        printf("%d %.12e",i,(*fret));
         if(i==(int)agemax+3)        fprintf(ficlog,"%d %.12e",i,(*fret));
           printf("Total");        for (j=1;j<=n;j++) {
         else          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf("Age %d", i);          printf(" x(%d)=%.12e",j,xit[j]);
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        }
             pp[jk] += freq[jk][m][i];        for(j=1;j<=n;j++) {
         }          printf(" p=%.12e",p[j]);
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog," p=%.12e",p[j]);
           for(m=-1, pos=0; m <=0 ; m++)        }
             pos += freq[jk][m][i];        printf("\n");
           if(pp[jk]>=1.e-10)        fprintf(ficlog,"\n");
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  #endif
           else      } 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         }  #ifdef DEBUG
         int k[2],l;
         for(jk=1; jk <=nlstate ; jk++){        k[0]=1;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        k[1]=-1;
             pp[jk] += freq[jk][m][i];        printf("Max: %.12e",(*func)(p));
         }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
         for(jk=1,pos=0; jk <=nlstate ; jk++)          printf(" %.12e",p[j]);
           pos += pp[jk];          fprintf(ficlog," %.12e",p[j]);
         for(jk=1; jk <=nlstate ; jk++){        }
           if(pos>=1.e-5)        printf("\n");
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        fprintf(ficlog,"\n");
           else        for(l=0;l<=1;l++) {
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for (j=1;j<=n;j++) {
           if( i <= (int) agemax){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             if(pos>=1.e-5){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               probs[i][jk][j1]= pp[jk]/pos;          }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             else        }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  #endif
           }  
         }  
                free_vector(xit,1,n); 
         for(jk=-1; jk <=nlstate+ndeath; jk++)        free_vector(xits,1,n); 
           for(m=-1; m <=nlstate+ndeath; m++)        free_vector(ptt,1,n); 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        free_vector(pt,1,n); 
         if(i <= (int) agemax)        return; 
           fprintf(ficresp,"\n");      } 
         printf("\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
   dateintmean=dateintsum/k2cpt;        pt[j]=p[j]; 
        } 
   fclose(ficresp);      fptt=(*func)(ptt); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      if (fptt < fp) { 
   free_vector(pp,1,nlstate);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          if (t < 0.0) { 
   /* End of Freq */          linmin(p,xit,n,fret,func); 
 }          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 /************ Prevalence ********************/            xi[j][n]=xit[j]; 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          }
 {  /* Some frequencies */  #ifdef DEBUG
            printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double ***freq; /* Frequencies */          for(j=1;j<=n;j++){
   double *pp;            printf(" %.12e",xit[j]);
   double pos, k2;            fprintf(ficlog," %.12e",xit[j]);
           }
   pp=vector(1,nlstate);          printf("\n");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog,"\n");
    #endif
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        }
   j1=0;      } 
      } 
   j=cptcoveff;  } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /**** Prevalence limit (stable or period prevalence)  ****************/
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       j1++;  {
          /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       for (i=-1; i<=nlstate+ndeath; i++)         matrix by transitions matrix until convergence is reached */
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    int i, ii,j,k;
             freq[i][jk][m]=0;    double min, max, maxmin, maxmax,sumnew=0.;
          /* double **matprod2(); */ /* test */
       for (i=1; i<=imx; i++) {    double **out, cov[NCOVMAX+1], **pmij();
         bool=1;    double **newm;
         if  (cptcovn>0) {    double agefin, delaymax=50 ; /* Max number of years to converge */
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for (ii=1;ii<=nlstate+ndeath;ii++)
               bool=0;      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {      }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);     cov[1]=1.;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {   
               if(agev[m][i]==0) agev[m][i]=agemax+1;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
               if (m<lastpass) {      newm=savm;
                 if (calagedate>0)      /* Covariates have to be included here again */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      cov[2]=agefin;
                 else      
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (k=1; k<=cptcovn;k++) {
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               }        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
             }      }
           }      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         }      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       }      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       for(i=(int)agemin; i <= (int)agemax+3; i++){      
         for(jk=1; jk <=nlstate ; jk++){      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             pp[jk] += freq[jk][m][i];      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         for(jk=1; jk <=nlstate ; jk++){      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
           for(m=-1, pos=0; m <=0 ; m++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
             pos += freq[jk][m][i];      
         }      savm=oldm;
              oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){      maxmax=0.;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for(j=1;j<=nlstate;j++){
             pp[jk] += freq[jk][m][i];        min=1.;
         }        max=0.;
                for(i=1; i<=nlstate; i++) {
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          sumnew=0;
                  for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for(jk=1; jk <=nlstate ; jk++){              prlim[i][j]= newm[i][j]/(1-sumnew);
           if( i <= (int) agemax){          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
             if(pos>=1.e-5){          max=FMAX(max,prlim[i][j]);
               probs[i][jk][j1]= pp[jk]/pos;          min=FMIN(min,prlim[i][j]);
             }        }
           }        maxmin=max-min;
         }        maxmax=FMAX(maxmax,maxmin);
              }
       }      if(maxmax < ftolpl){
     }        return prlim;
   }      }
     }
    }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  /*************** transition probabilities ***************/ 
    
 }  /* End of Freq */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 /************* Waves Concatenation ***************/    /* According to parameters values stored in x and the covariate's values stored in cov,
        computes the probability to be observed in state j being in state i by appying the
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)       model to the ncovmodel covariates (including constant and age).
 {       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
      Death is a valid wave (if date is known).       ncth covariate in the global vector x is given by the formula:
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      and mw[mi+1][i]. dh depends on stepm.       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
      */       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
   int i, mi, m;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    */
      double sum=0., jmean=0.;*/    double s1, lnpijopii;
     /*double t34;*/
   int j, k=0,jk, ju, jl;    int i,j,j1, nc, ii, jj;
   double sum=0.;  
   jmin=1e+5;      for(i=1; i<= nlstate; i++){
   jmax=-1;        for(j=1; j<i;j++){
   jmean=0.;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   for(i=1; i<=imx; i++){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
     mi=0;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
     m=firstpass;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     while(s[m][i] <= nlstate){          }
       if(s[m][i]>=1)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         mw[++mi][i]=m;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       if(m >=lastpass)        }
         break;        for(j=i+1; j<=nlstate+ndeath;j++){
       else          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         m++;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     }/* end while */            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     if (s[m][i] > nlstate){  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       mi++;     /* Death is another wave */          }
       /* if(mi==0)  never been interviewed correctly before death */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
          /* Only death is a correct wave */        }
       mw[mi][i]=m;      }
     }      
       for(i=1; i<= nlstate; i++){
     wav[i]=mi;        s1=0;
     if(mi==0)        for(j=1; j<i; j++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
   for(i=1; i<=imx; i++){        for(j=i+1; j<=nlstate+ndeath; j++){
     for(mi=1; mi<wav[i];mi++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       if (stepm <=0)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         dh[mi][i]=1;        }
       else{        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         if (s[mw[mi+1][i]][i] > nlstate) {        ps[i][i]=1./(s1+1.);
           if (agedc[i] < 2*AGESUP) {        /* Computing other pijs */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(j=1; j<i; j++)
           if(j==0) j=1;  /* Survives at least one month after exam */          ps[i][j]= exp(ps[i][j])*ps[i][i];
           k=k+1;        for(j=i+1; j<=nlstate+ndeath; j++)
           if (j >= jmax) jmax=j;          ps[i][j]= exp(ps[i][j])*ps[i][i];
           if (j <= jmin) jmin=j;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           sum=sum+j;      } /* end i */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      
           }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         }        for(jj=1; jj<= nlstate+ndeath; jj++){
         else{          ps[ii][jj]=0;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          ps[ii][ii]=1;
           k=k+1;        }
           if (j >= jmax) jmax=j;      }
           else if (j <= jmin)jmin=j;      
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      
           sum=sum+j;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         jk= j/stepm;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         jl= j -jk*stepm;      /*   } */
         ju= j -(jk+1)*stepm;      /*   printf("\n "); */
         if(jl <= -ju)      /* } */
           dh[mi][i]=jk;      /* printf("\n ");printf("%lf ",cov[2]);*/
         else      /*
           dh[mi][i]=jk+1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         if(dh[mi][i]==0)        goto end;*/
           dh[mi][i]=1; /* At least one step */      return ps;
       }  }
     }  
   }  /**************** Product of 2 matrices ******************/
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
  }  {
 /*********** Tricode ****************************/    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 void tricode(int *Tvar, int **nbcode, int imx)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 {    /* in, b, out are matrice of pointers which should have been initialized 
   int Ndum[20],ij=1, k, j, i;       before: only the contents of out is modified. The function returns
   int cptcode=0;       a pointer to pointers identical to out */
   cptcoveff=0;    int i, j, k;
      for(i=nrl; i<= nrh; i++)
   for (k=0; k<19; k++) Ndum[k]=0;      for(k=ncolol; k<=ncoloh; k++){
   for (k=1; k<=7; k++) ncodemax[k]=0;        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          out[i][k] +=in[i][j]*b[j][k];
     for (i=1; i<=imx; i++) {      }
       ij=(int)(covar[Tvar[j]][i]);    return out;
       Ndum[ij]++;  }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  
     }  /************* Higher Matrix Product ***************/
   
     for (i=0; i<=cptcode; i++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       if(Ndum[i]!=0) ncodemax[j]++;  {
     }    /* Computes the transition matrix starting at age 'age' over 
     ij=1;       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
     for (i=1; i<=ncodemax[j]; i++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for (k=0; k<=19; k++) {       (typically every 2 years instead of every month which is too big 
         if (Ndum[k] != 0) {       for the memory).
           nbcode[Tvar[j]][ij]=k;       Model is determined by parameters x and covariates have to be 
                 included manually here. 
           ij++;  
         }       */
         if (ij > ncodemax[j]) break;  
       }      int i, j, d, h, k;
     }    double **out, cov[NCOVMAX+1];
   }      double **newm;
   
  for (k=0; k<19; k++) Ndum[k]=0;    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
  for (i=1; i<=ncovmodel-2; i++) {      for (j=1;j<=nlstate+ndeath;j++){
       ij=Tvar[i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
       Ndum[ij]++;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  ij=1;    for(h=1; h <=nhstepm; h++){
  for (i=1; i<=10; i++) {      for(d=1; d <=hstepm; d++){
    if((Ndum[i]!=0) && (i<=ncovcol)){        newm=savm;
      Tvaraff[ij]=i;        /* Covariates have to be included here again */
      ij++;        cov[1]=1.;
    }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
  }        for (k=1; k<=cptcovn;k++) 
            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     cptcoveff=ij-1;        for (k=1; k<=cptcovage;k++)
 }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 /*********** Health Expectancies ****************/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   /* Health expectancies */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double age, agelim, hf;        savm=oldm;
   double ***p3mat,***varhe;        oldm=newm;
   double **dnewm,**doldm;      }
   double *xp;      for(i=1; i<=nlstate+ndeath; i++)
   double **gp, **gm;        for(j=1;j<=nlstate+ndeath;j++) {
   double ***gradg, ***trgradg;          po[i][j][h]=newm[i][j];
   int theta;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      /*printf("h=%d ",h);*/
   xp=vector(1,npar);    } /* end h */
   dnewm=matrix(1,nlstate*2,1,npar);  /*     printf("\n H=%d \n",h); */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    return po;
    }
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
     for(j=1; j<=nlstate;j++)  double func( double *x)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  {
   fprintf(ficreseij,"\n");    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   if(estepm < stepm){    double **out;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
   else  hstepm=estepm;      int s1, s2;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double bbh, survp;
    * This is mainly to measure the difference between two models: for example    long ipmx;
    * if stepm=24 months pijx are given only every 2 years and by summing them    /*extern weight */
    * we are calculating an estimate of the Life Expectancy assuming a linear    /* We are differentiating ll according to initial status */
    * progression inbetween and thus overestimating or underestimating according    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
    * to the curvature of the survival function. If, for the same date, we    /*for(i=1;i<imx;i++) 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      printf(" %d\n",s[4][i]);
    * to compare the new estimate of Life expectancy with the same linear    */
    * hypothesis. A more precise result, taking into account a more precise    cov[1]=1.;
    * curvature will be obtained if estepm is as small as stepm. */  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    if(mle==1){
      nhstepm is the number of hstepm from age to agelim      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      nstepm is the number of stepm from age to agelin.        /* Computes the values of the ncovmodel covariates of the model
      Look at hpijx to understand the reason of that which relies in memory size           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
      and note for a fixed period like estepm months */           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the           to be observed in j being in i according to the model.
      survival function given by stepm (the optimization length). Unfortunately it         */
      means that if the survival funtion is printed only each two years of age and if        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          cov[2+k]=covar[Tvar[k]][i];
      results. So we changed our mind and took the option of the best precision.        }
   */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
   agelim=AGESUP;        for(mi=1; mi<= wav[i]-1; mi++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for (ii=1;ii<=nlstate+ndeath;ii++)
     /* nhstepm age range expressed in number of stepm */            for (j=1;j<=nlstate+ndeath;j++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* if (stepm >= YEARM) hstepm=1;*/            }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          for(d=0; d<dh[mi][i]; d++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            newm=savm;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gp=matrix(0,nhstepm,1,nlstate*2);            for (kk=1; kk<=cptcovage;kk++) {
     gm=matrix(0,nhstepm,1,nlstate*2);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              savm=oldm;
              oldm=newm;
           } /* end mult */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     /* Computing Variances of health expectancies */          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
      for(theta=1; theta <=npar; theta++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(i=1; i<=npar; i++){           * the nearest (and in case of equal distance, to the lowest) interval but now
         xp[i] = x[i] + (i==theta ?delti[theta]:0);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);             * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       cptj=0;           * -stepm/2 to stepm/2 .
       for(j=1; j<= nlstate; j++){           * For stepm=1 the results are the same as for previous versions of Imach.
         for(i=1; i<=nlstate; i++){           * For stepm > 1 the results are less biased than in previous versions. 
           cptj=cptj+1;           */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          s1=s[mw[mi][i]][i];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          s2=s[mw[mi+1][i]][i];
           }          bbh=(double)bh[mi][i]/(double)stepm; 
         }          /* bias bh is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
                 */
                /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(i=1; i<=npar; i++)          if( s2 > nlstate){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            /* i.e. if s2 is a death state and if the date of death is known 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                 then the contribution to the likelihood is the probability to 
                     die between last step unit time and current  step unit time, 
       cptj=0;               which is also equal to probability to die before dh 
       for(j=1; j<= nlstate; j++){               minus probability to die before dh-stepm . 
         for(i=1;i<=nlstate;i++){               In version up to 0.92 likelihood was computed
           cptj=cptj+1;          as if date of death was unknown. Death was treated as any other
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          health state: the date of the interview describes the actual state
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          and not the date of a change in health state. The former idea was
           }          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
       for(j=1; j<= nlstate*2; j++)          the contribution of an exact death to the likelihood. This new
         for(h=0; h<=nhstepm-1; h++){          contribution is smaller and very dependent of the step unit
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          stepm. It is no more the probability to die between last interview
         }          and month of death but the probability to survive from last
      }          interview up to one month before death multiplied by the
              probability to die within a month. Thanks to Chris
 /* End theta */          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          which slows down the processing. The difference can be up to 10%
           lower mortality.
      for(h=0; h<=nhstepm-1; h++)            */
       for(j=1; j<=nlstate*2;j++)            lli=log(out[s1][s2] - savm[s1][s2]);
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  
                } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
      for(i=1;i<=nlstate*2;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1;j<=nlstate*2;j++)            /*survp += out[s1][j]; */
         varhe[i][j][(int)age] =0.;            lli= log(survp);
           }
      printf("%d|",(int)age);fflush(stdout);          
      for(h=0;h<=nhstepm-1;h++){          else if  (s2==-4) { 
       for(k=0;k<=nhstepm-1;k++){            for (j=3,survp=0. ; j<=nlstate; j++)  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);            lli= log(survp); 
         for(i=1;i<=nlstate*2;i++)          } 
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          else if  (s2==-5) { 
       }            for (j=1,survp=0. ; j<=2; j++)  
     }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* Computing expectancies */            lli= log(survp); 
     for(i=1; i<=nlstate;i++)          } 
       for(j=1; j<=nlstate;j++)          
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          else{
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                      /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     fprintf(ficreseij,"%3.0f",age );          ipmx +=1;
     cptj=0;          sw += weight[i];
     for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++){        } /* end of wave */
         cptj++;      } /* end of individual */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficreseij,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
     free_matrix(gm,0,nhstepm,1,nlstate*2);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_matrix(gp,0,nhstepm,1,nlstate*2);            for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   }          for(d=0; d<=dh[mi][i]; d++){
   printf("\n");            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_vector(xp,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   free_matrix(dnewm,1,nlstate*2,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************ Variance ******************/            oldm=newm;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          } /* end mult */
 {        
   /* Variance of health expectancies */          s1=s[mw[mi][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          s2=s[mw[mi+1][i]][i];
   double **newm;          bbh=(double)bh[mi][i]/(double)stepm; 
   double **dnewm,**doldm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i, j, nhstepm, hstepm, h, nstepm ;          ipmx +=1;
   int k, cptcode;          sw += weight[i];
   double *xp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **gp, **gm;        } /* end of wave */
   double ***gradg, ***trgradg;      } /* end of individual */
   double ***p3mat;    }  else if(mle==3){  /* exponential inter-extrapolation */
   double age,agelim, hf;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int theta;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvij,"# Age");            for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            }
   fprintf(ficresvij,"\n");          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   xp=vector(1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dnewm=matrix(1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   doldm=matrix(1,nlstate,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   if(estepm < stepm){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf ("Problem %d lower than %d\n",estepm, stepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   else  hstepm=estepm;              oldm=newm;
   /* For example we decided to compute the life expectancy with the smallest unit */          } /* end mult */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        
      nhstepm is the number of hstepm from age to agelim          s1=s[mw[mi][i]][i];
      nstepm is the number of stepm from age to agelin.          s2=s[mw[mi+1][i]][i];
      Look at hpijx to understand the reason of that which relies in memory size          bbh=(double)bh[mi][i]/(double)stepm; 
      and note for a fixed period like k years */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          ipmx +=1;
      survival function given by stepm (the optimization length). Unfortunately it          sw += weight[i];
      means that if the survival funtion is printed only each two years of age and if          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        } /* end of wave */
      results. So we changed our mind and took the option of the best precision.      } /* end of individual */
   */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   agelim = AGESUP;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(mi=1; mi<= wav[i]-1; mi++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for (j=1;j<=nlstate+ndeath;j++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=matrix(0,nhstepm,1,nlstate);            }
     gm=matrix(0,nhstepm,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     for(theta=1; theta <=npar; theta++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++){ /* Computes gradient */            for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (popbased==1) {            savm=oldm;
         for(i=1; i<=nlstate;i++)            oldm=newm;
           prlim[i][i]=probs[(int)age][i][ij];          } /* end mult */
       }        
            s1=s[mw[mi][i]][i];
       for(j=1; j<= nlstate; j++){          s2=s[mw[mi+1][i]][i];
         for(h=0; h<=nhstepm; h++){          if( s2 > nlstate){ 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          }else{
         }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          }
              ipmx +=1;
       for(i=1; i<=npar; i++) /* Computes gradient */          sw += weight[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } /* end of wave */
        } /* end of individual */
       if (popbased==1) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           prlim[i][i]=probs[(int)age][i][ij];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++){            for (j=1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm; h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1; j<= nlstate; j++)            for (kk=1; kk<=cptcovage;kk++) {
         for(h=0; h<=nhstepm; h++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            }
         }          
     } /* End theta */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            savm=oldm;
             oldm=newm;
     for(h=0; h<=nhstepm; h++)          } /* end mult */
       for(j=1; j<=nlstate;j++)        
         for(theta=1; theta <=npar; theta++)          s1=s[mw[mi][i]][i];
           trgradg[h][j][theta]=gradg[h][theta][j];          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          ipmx +=1;
     for(i=1;i<=nlstate;i++)          sw += weight[i];
       for(j=1;j<=nlstate;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         vareij[i][j][(int)age] =0.;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
     for(h=0;h<=nhstepm;h++){      } /* end of individual */
       for(k=0;k<=nhstepm;k++){    } /* End of if */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(i=1;i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(j=1;j<=nlstate;j++)    return -l;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  }
       }  
     }  /*************** log-likelihood *************/
   double funcone( double *x)
     fprintf(ficresvij,"%.0f ",age );  {
     for(i=1; i<=nlstate;i++)    /* Same as likeli but slower because of a lot of printf and if */
       for(j=1; j<=nlstate;j++){    int i, ii, j, k, mi, d, kk;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       }    double **out;
     fprintf(ficresvij,"\n");    double lli; /* Individual log likelihood */
     free_matrix(gp,0,nhstepm,1,nlstate);    double llt;
     free_matrix(gm,0,nhstepm,1,nlstate);    int s1, s2;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double bbh, survp;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /*extern weight */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* We are differentiating ll according to initial status */
   } /* End age */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   free_vector(xp,1,npar);      printf(" %d\n",s[4][i]);
   free_matrix(doldm,1,nlstate,1,npar);    */
   free_matrix(dnewm,1,nlstate,1,nlstate);    cov[1]=1.;
   
 }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /************ Variance of prevlim ******************/    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {      for(mi=1; mi<= wav[i]-1; mi++){
   /* Variance of prevalence limit */        for (ii=1;ii<=nlstate+ndeath;ii++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for (j=1;j<=nlstate+ndeath;j++){
   double **newm;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **dnewm,**doldm;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm;          }
   int k, cptcode;        for(d=0; d<dh[mi][i]; d++){
   double *xp;          newm=savm;
   double *gp, *gm;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **gradg, **trgradg;          for (kk=1; kk<=cptcovage;kk++) {
   double age,agelim;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int theta;          }
              /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresvpl,"# Age");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=nlstate;i++)          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
       fprintf(ficresvpl," %1d-%1d",i,i);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   fprintf(ficresvpl,"\n");          savm=oldm;
           oldm=newm;
   xp=vector(1,npar);        } /* end mult */
   dnewm=matrix(1,nlstate,1,npar);        
   doldm=matrix(1,nlstate,1,nlstate);        s1=s[mw[mi][i]][i];
          s2=s[mw[mi+1][i]][i];
   hstepm=1*YEARM; /* Every year of age */        bbh=(double)bh[mi][i]/(double)stepm; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        /* bias is positive if real duration
   agelim = AGESUP;         * is higher than the multiple of stepm and negative otherwise.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */         */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     if (stepm >= YEARM) hstepm=1;          lli=log(out[s1][s2] - savm[s1][s2]);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        } else if  (s2==-2) {
     gradg=matrix(1,npar,1,nlstate);          for (j=1,survp=0. ; j<=nlstate; j++) 
     gp=vector(1,nlstate);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gm=vector(1,nlstate);          lli= log(survp);
         }else if (mle==1){
     for(theta=1; theta <=npar; theta++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */        } else if(mle==2){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }        } else if(mle==3){  /* exponential inter-extrapolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(i=1;i<=nlstate;i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         gp[i] = prlim[i][i];          lli=log(out[s1][s2]); /* Original formula */
            } else{  /* mle=0 back to 1 */
       for(i=1; i<=npar; i++) /* Computes gradient */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          /*lli=log(out[s1][s2]); */ /* Original formula */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } /* End of if */
       for(i=1;i<=nlstate;i++)        ipmx +=1;
         gm[i] = prlim[i][i];        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1;i<=nlstate;i++)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        if(globpr){
     } /* End theta */          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
     trgradg =matrix(1,nlstate,1,npar);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for(j=1; j<=nlstate;j++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(theta=1; theta <=npar; theta++)            llt +=ll[k]*gipmx/gsw;
         trgradg[j][theta]=gradg[theta][j];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     for(i=1;i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
       varpl[i][(int)age] =0.;        }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      } /* end of wave */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    } /* end of individual */
     for(i=1;i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficresvpl,"%.0f ",age );    if(globpr==0){ /* First time we count the contributions and weights */
     for(i=1; i<=nlstate;i++)      gipmx=ipmx;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      gsw=sw;
     fprintf(ficresvpl,"\n");    }
     free_vector(gp,1,nlstate);    return -l;
     free_vector(gm,1,nlstate);  }
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_vector(xp,1,npar);  {
   free_matrix(doldm,1,nlstate,1,npar);    /* This routine should help understanding what is done with 
   free_matrix(dnewm,1,nlstate,1,nlstate);       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 }       Plotting could be done.
      */
 /************ Variance of one-step probabilities  ******************/    int k;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {    if(*globpri !=0){ /* Just counts and sums, no printings */
   int i, j,  i1, k1, l1;      strcpy(fileresilk,"ilk"); 
   int k2, l2, j1,  z1;      strcat(fileresilk,fileres);
   int k=0,l, cptcode;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int first=1;        printf("Problem with resultfile: %s\n", fileresilk);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double **dnewm,**doldm;      }
   double *xp;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double *gp, *gm;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double **gradg, **trgradg;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double **mu;      for(k=1; k<=nlstate; k++) 
   double age,agelim, cov[NCOVMAX];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int theta;    }
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];    *fretone=(*funcone)(p);
   char fileresprobcor[FILENAMELENGTH];    if(*globpri !=0){
       fclose(ficresilk);
   double ***varpij;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   strcpy(fileresprob,"prob");    } 
   strcat(fileresprob,fileres);    return;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprob);  
   }  
   strcpy(fileresprobcov,"probcov");  /*********** Maximum Likelihood Estimation ***************/
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     printf("Problem with resultfile: %s\n", fileresprobcov);  {
   }    int i,j, iter;
   strcpy(fileresprobcor,"probcor");    double **xi;
   strcat(fileresprobcor,fileres);    double fret;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    double fretone; /* Only one call to likelihood */
     printf("Problem with resultfile: %s\n", fileresprobcor);    /*  char filerespow[FILENAMELENGTH];*/
   }    xi=matrix(1,npar,1,npar);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    for (i=1;i<=npar;i++)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for (j=1;j<=npar;j++)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        xi[i][j]=(i==j ? 1.0 : 0.0);
      printf("Powell\n");  fprintf(ficlog,"Powell\n");
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    strcpy(filerespow,"pow"); 
   fprintf(ficresprob,"# Age");    strcat(filerespow,fileres);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   fprintf(ficresprobcov,"# Age");      printf("Problem with resultfile: %s\n", filerespow);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(ficresprobcov,"# Age");    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
   for(i=1; i<=nlstate;i++)      for(j=1;j<=nlstate+ndeath;j++)
     for(j=1; j<=(nlstate+ndeath);j++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    fprintf(ficrespow,"\n");
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    powell(p,xi,npar,ftol,&iter,&fret,func);
     }    
   fprintf(ficresprob,"\n");    free_matrix(xi,1,npar,1,npar);
   fprintf(ficresprobcov,"\n");    fclose(ficrespow);
   fprintf(ficresprobcor,"\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   xp=vector(1,npar);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;  /**** Computes Hessian and covariance matrix ***/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  {
     exit(0);    double  **a,**y,*x,pd;
   }    double **hess;
   else{    int i, j,jk;
     fprintf(ficgp,"\n# Routine varprob");    int *indx;
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     printf("Problem with html file: %s\n", optionfilehtm);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     exit(0);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   }    void ludcmp(double **a, int npar, int *indx, double *d) ;
   else{    double gompertz(double p[]);
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    hess=matrix(1,npar,1,npar);
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   }    for (i=1;i<=npar;i++){
   cov[1]=1;      printf("%d",i);fflush(stdout);
   j=cptcoveff;      fprintf(ficlog,"%d",i);fflush(ficlog);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}     
   j1=0;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   for(k1=1; k1<=1;k1++){      
     for(i1=1; i1<=ncodemax[k1];i1++){      /*  printf(" %f ",p[i]);
     j1++;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     if  (cptcovn>0) {    
       fprintf(ficresprob, "\n#********** Variable ");    for (i=1;i<=npar;i++) {
       fprintf(ficresprobcov, "\n#********** Variable ");      for (j=1;j<=npar;j++)  {
       fprintf(ficgp, "\n#********** Variable ");        if (j>i) { 
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");          printf(".%d%d",i,j);fflush(stdout);
       fprintf(ficresprobcor, "\n#********** Variable ");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          hess[i][j]=hessij(p,delti,i,j,func,npar);
       fprintf(ficresprob, "**********\n#");          
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          hess[j][i]=hess[i][j];    
       fprintf(ficresprobcov, "**********\n#");          /*printf(" %lf ",hess[i][j]);*/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
       fprintf(ficgp, "**********\n#");      }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
       fprintf(ficgp, "**********\n#");    printf("\n");
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficlog,"\n");
       fprintf(fichtm, "**********\n#");  
     }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
        fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for (age=bage; age<=fage; age ++){    
         cov[2]=age;    a=matrix(1,npar,1,npar);
         for (k=1; k<=cptcovn;k++) {    y=matrix(1,npar,1,npar);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    x=vector(1,npar);
         }    indx=ivector(1,npar);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (i=1;i<=npar;i++)
         for (k=1; k<=cptcovprod;k++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    ludcmp(a,npar,indx,&pd);
          
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    for (j=1;j<=npar;j++) {
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      for (i=1;i<=npar;i++) x[i]=0;
         gp=vector(1,(nlstate)*(nlstate+ndeath));      x[j]=1;
         gm=vector(1,(nlstate)*(nlstate+ndeath));      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
         for(theta=1; theta <=npar; theta++){        matcov[i][j]=x[i];
           for(i=1; i<=npar; i++)      }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    printf("\n#Hessian matrix#\n");
              fprintf(ficlog,"\n#Hessian matrix#\n");
           k=0;    for (i=1;i<=npar;i++) { 
           for(i=1; i<= (nlstate); i++){      for (j=1;j<=npar;j++) { 
             for(j=1; j<=(nlstate+ndeath);j++){        printf("%.3e ",hess[i][j]);
               k=k+1;        fprintf(ficlog,"%.3e ",hess[i][j]);
               gp[k]=pmmij[i][j];      }
             }      printf("\n");
           }      fprintf(ficlog,"\n");
              }
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Recompute Inverse */
        for (i=1;i<=npar;i++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           k=0;    ludcmp(a,npar,indx,&pd);
           for(i=1; i<=(nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){    /*  printf("\n#Hessian matrix recomputed#\n");
               k=k+1;  
               gm[k]=pmmij[i][j];    for (j=1;j<=npar;j++) {
             }      for (i=1;i<=npar;i++) x[i]=0;
           }      x[j]=1;
            lubksb(a,npar,indx,x);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      for (i=1;i<=npar;i++){ 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          y[i][j]=x[i];
         }        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      }
           for(theta=1; theta <=npar; theta++)      printf("\n");
             trgradg[j][theta]=gradg[theta][j];      fprintf(ficlog,"\n");
            }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
            free_matrix(a,1,npar,1,npar);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    free_matrix(y,1,npar,1,npar);
            free_vector(x,1,npar);
         k=0;    free_ivector(indx,1,npar);
         for(i=1; i<=(nlstate); i++){    free_matrix(hess,1,npar,1,npar);
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];  }
           }  
         }  /*************** hessian matrix ****************/
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  {
             varpij[i][j][(int)age] = doldm[i][j];    int i;
     int l=1, lmax=20;
         /*printf("\n%d ",(int)age);    double k1,k2;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double p2[MAXPARM+1]; /* identical to x */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double res;
      }*/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
         fprintf(ficresprob,"\n%d ",(int)age);    int k=0,kmax=10;
         fprintf(ficresprobcov,"\n%d ",(int)age);    double l1;
         fprintf(ficresprobcor,"\n%d ",(int)age);  
     fx=func(x);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      l1=pow(10,l);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      delts=delt;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      for(k=1 ; k <kmax; k=k+1){
         }        delt = delta*(l1*k);
         i=0;        p2[theta]=x[theta] +delt;
         for (k=1; k<=(nlstate);k++){        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
           for (l=1; l<=(nlstate+ndeath);l++){        p2[theta]=x[theta]-delt;
             i=i++;        k2=func(p2)-fx;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        /*res= (k1-2.0*fx+k2)/delt/delt; */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             for (j=1; j<=i;j++){        
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  #ifdef DEBUGHESS
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           }  #endif
         }/* end of loop for state */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       } /* end of loop for age */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          k=kmax;
       for (k1=1; k1<=(nlstate);k1++){        }
         for (l1=1; l1<=(nlstate+ndeath);l1++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           if(l1==k1) continue;          k=kmax; l=lmax*10.;
           i=(k1-1)*(nlstate+ndeath)+l1;        }
           for (k2=1; k2<=(nlstate);k2++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
             for (l2=1; l2<=(nlstate+ndeath);l2++){          delts=delt;
               if(l2==k2) continue;        }
               j=(k2-1)*(nlstate+ndeath)+l2;      }
               if(j<=i) continue;    }
               for (age=bage; age<=fage; age ++){    delti[theta]=delts;
                 if ((int)age %5==0){    return res; 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
                   mu2=mu[j][(int) age]/stepm*YEARM;  {
                   /* Computing eigen value of matrix of covariance */    int i;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    int l=1, l1, lmax=20;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    double k1,k2,k3,k4,res,fx;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    double p2[MAXPARM+1];
                   /* Eigen vectors */    int k;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   v21=sqrt(1.-v11*v11);    fx=func(x);
                   v12=-v21;    for (k=1; k<=2; k++) {
                   v22=v11;      for (i=1;i<=npar;i++) p2[i]=x[i];
                   /*printf(fignu*/      p2[thetai]=x[thetai]+delti[thetai]/k;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      k1=func(p2)-fx;
                   if(first==1){    
                     first=0;      p2[thetai]=x[thetai]+delti[thetai]/k;
                     fprintf(ficgp,"\nset parametric;set nolabel");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      k2=func(p2)-fx;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);      p2[thetai]=x[thetai]-delti[thetai]/k;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);      k3=func(p2)-fx;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      p2[thetai]=x[thetai]-delti[thetai]/k;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      k4=func(p2)-fx;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                   }else{  #ifdef DEBUG
                     first=0;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  #endif
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    return res;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  }
                   }/* if first */  
                 } /* age mod 5 */  /************** Inverse of matrix **************/
               } /* end loop age */  void ludcmp(double **a, int n, int *indx, double *d) 
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);  { 
               first=1;    int i,imax,j,k; 
             } /*l12 */    double big,dum,sum,temp; 
           } /* k12 */    double *vv; 
         } /*l1 */   
       }/* k1 */    vv=vector(1,n); 
     } /* loop covariates */    *d=1.0; 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    for (i=1;i<=n;i++) { 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      big=0.0; 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for (j=1;j<=n;j++) 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      vv[i]=1.0/big; 
   }    } 
   free_vector(xp,1,npar);    for (j=1;j<=n;j++) { 
   fclose(ficresprob);      for (i=1;i<j;i++) { 
   fclose(ficresprobcov);        sum=a[i][j]; 
   fclose(ficresprobcor);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   fclose(ficgp);        a[i][j]=sum; 
   fclose(fichtm);      } 
 }      big=0.0; 
       for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
 /******************* Printing html file ***********/        for (k=1;k<j;k++) 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          sum -= a[i][k]*a[k][j]; 
                   int lastpass, int stepm, int weightopt, char model[],\        a[i][j]=sum; 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   int popforecast, int estepm ,\          big=dum; 
                   double jprev1, double mprev1,double anprev1, \          imax=i; 
                   double jprev2, double mprev2,double anprev2){        } 
   int jj1, k1, i1, cpt;      } 
   /*char optionfilehtm[FILENAMELENGTH];*/      if (j != imax) { 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        for (k=1;k<=n;k++) { 
     printf("Problem with %s \n",optionfilehtm), exit(0);          dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n        } 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        *d = -(*d); 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        vv[imax]=vv[j]; 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      } 
  - Life expectancies by age and initial health status (estepm=%2d months):      indx[j]=imax; 
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      if (a[j][j] == 0.0) a[j][j]=TINY; 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      if (j != n) { 
         dum=1.0/(a[j][j]); 
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      } 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    } 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    free_vector(vv,1,n);  /* Doesn't work */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  ;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  } 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
  if(popforecast==1) fprintf(fichtm,"\n    int i,ii=0,ip,j; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    double sum; 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n   
         <br>",fileres,fileres,fileres,fileres);    for (i=1;i<=n;i++) { 
  else      ip=indx[i]; 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      sum=b[ip]; 
 fprintf(fichtm," <li>Graphs</li><p>");      b[ip]=b[i]; 
       if (ii) 
  m=cptcoveff;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      else if (sum) ii=i; 
       b[i]=sum; 
  jj1=0;    } 
  for(k1=1; k1<=m;k1++){    for (i=n;i>=1;i--) { 
    for(i1=1; i1<=ncodemax[k1];i1++){      sum=b[i]; 
      jj1++;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      if (cptcovn > 0) {      b[i]=sum/a[i][i]; 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    } 
        for (cpt=1; cpt<=cptcoveff;cpt++)  } 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  void pstamp(FILE *fichier)
      }  {
      /* Pij */    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
      /* Quasi-incidences */  /************ Frequencies ********************/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  {  /* Some frequencies */
        /* Stable prevalence in each health state */    
        for(cpt=1; cpt<nlstate;cpt++){    int i, m, jk, k1,i1, j1, bool, z1,j;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    int first;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double ***freq; /* Frequencies */
        }    double *pp, **prop;
     for(cpt=1; cpt<=nlstate;cpt++) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    char fileresp[FILENAMELENGTH];
 interval) in state (%d): v%s%d%d.png <br>    
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      pp=vector(1,nlstate);
      }    prop=matrix(1,nlstate,iagemin,iagemax+3);
      for(cpt=1; cpt<=nlstate;cpt++) {    strcpy(fileresp,"p");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    strcat(fileresp,fileres);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    if((ficresp=fopen(fileresp,"w"))==NULL) {
      }      printf("Problem with prevalence resultfile: %s\n", fileresp);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 health expectancies in states (1) and (2): e%s%d.png<br>      exit(0);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    }
    }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
  }    j1=0;
 fclose(fichtm);    
 }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    first=1;
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
   int ng;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    /*    j1++;
     printf("Problem with file %s",optionfilegnuplot);  */
   }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 #ifdef windows          scanf("%d", i);*/
     fprintf(ficgp,"cd \"%s\" \n",pathc);        for (i=-5; i<=nlstate+ndeath; i++)  
 #endif          for (jk=-5; jk<=nlstate+ndeath; jk++)  
 m=pow(2,cptcoveff);            for(m=iagemin; m <= iagemax+3; m++)
                freq[i][jk][m]=0;
  /* 1eme*/        
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for (i=1; i<=nlstate; i++)  
    for (k1=1; k1<= m ; k1 ++) {          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0;
 #ifdef windows        
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        dateintsum=0;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        k2cpt=0;
 #endif        for (i=1; i<=imx; i++) {
 #ifdef unix          bool=1;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            for (z1=1; z1<=cptcoveff; z1++)       
 #endif              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                   /* Tests if the value of each of the covariates of i is equal to filter j1 */
 for (i=1; i<= nlstate ; i ++) {                bool=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
 }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     for (i=1; i<= nlstate ; i ++) {              } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }          if (bool==1){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            for(m=firstpass; m<=lastpass; m++){
      for (i=1; i<= nlstate ; i ++) {              k2=anint[m][i]+(mint[m][i]/12.);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 }                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #ifdef unix                if (m<lastpass) {
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 #endif                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
    }                }
   }                
   /*2 eme*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   for (k1=1; k1<= m ; k1 ++) {                  k2cpt++;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);                }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                /*}*/
                }
     for (i=1; i<= nlstate+1 ; i ++) {          }
       k=2*i;        } /* end i */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);         
       for (j=1; j<= nlstate+1 ; j ++) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        pstamp(ficresp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if  (cptcovn>0) {
 }            fprintf(ficresp, "\n#********** Variable "); 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          fprintf(ficresp, "**********\n#");
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          fprintf(ficlog, "\n#********** Variable "); 
       for (j=1; j<= nlstate+1 ; j ++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficlog, "**********\n#");
         else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          for(i=1; i<=nlstate;i++) 
       fprintf(ficgp,"\" t\"\" w l 0,");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficresp, "\n");
       for (j=1; j<= nlstate+1 ; j ++) {        
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(i=iagemin; i <= iagemax+3; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if(i==iagemax+3){
 }              fprintf(ficlog,"Total");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }else{
       else fprintf(ficgp,"\" t\"\" w l 0,");            if(first==1){
     }              first=0;
   }              printf("See log file for details...\n");
              }
   /*3eme*/            fprintf(ficlog,"Age %d", i);
           }
   for (k1=1; k1<= m ; k1 ++) {          for(jk=1; jk <=nlstate ; jk++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       k=2+nlstate*(2*cpt-2);              pp[jk] += freq[jk][m][i]; 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          for(jk=1; jk <=nlstate ; jk++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            for(m=-1, pos=0; m <=0 ; m++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              pos += freq[jk][m][i];
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if(pp[jk]>=1.e-10){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              if(first==1){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 */            }else{
       for (i=1; i< nlstate ; i ++) {              if(first==1)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
     }          }
   }  
            for(jk=1; jk <=nlstate ; jk++){
   /* CV preval stat */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for (k1=1; k1<= m ; k1 ++) {              pp[jk] += freq[jk][m][i];
     for (cpt=1; cpt<nlstate ; cpt ++) {          }       
       k=3;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            pos += pp[jk];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            posprop += prop[jk][i];
           }
       for (i=1; i< nlstate ; i ++)          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficgp,"+$%d",k+i+1);            if(pos>=1.e-5){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              if(first==1)
                      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       l=3+(nlstate+ndeath)*cpt;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }else{
       for (i=1; i< nlstate ; i ++) {              if(first==1)
         l=3+(nlstate+ndeath)*cpt;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficgp,"+$%d",l+i+1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              if( i <= iagemax){
     }              if(pos>=1.e-5){
   }                  fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                  /*probs[i][jk][j1]= pp[jk]/pos;*/
   /* proba elementaires */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
    for(i=1,jk=1; i <=nlstate; i++){              }
     for(k=1; k <=(nlstate+ndeath); k++){              else
       if (k != i) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for(j=1; j <=ncovmodel; j++){            }
                  }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          
           jk++;          for(jk=-1; jk <=nlstate+ndeath; jk++)
           fprintf(ficgp,"\n");            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
     }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
    }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          if(i <= iagemax)
      for(jk=1; jk <=m; jk++) {            fprintf(ficresp,"\n");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          if(first==1)
        if (ng==2)            printf("Others in log...\n");
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          fprintf(ficlog,"\n");
        else        }
          fprintf(ficgp,"\nset title \"Probability\"\n");        /*}*/
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    }
        i=1;    dateintmean=dateintsum/k2cpt; 
        for(k2=1; k2<=nlstate; k2++) {   
          k3=i;    fclose(ficresp);
          for(k=1; k<=(nlstate+ndeath); k++) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
            if (k != k2){    free_vector(pp,1,nlstate);
              if(ng==2)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    /* End of Freq */
              else  }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;  /************ Prevalence ********************/
              for(j=3; j <=ncovmodel; j++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                  ij++;       in each health status at the date of interview (if between dateprev1 and dateprev2).
                }       We still use firstpass and lastpass as another selection.
                else    */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
              }    int i, m, jk, k1, i1, j1, bool, z1,j;
              fprintf(ficgp,")/(1");    double ***freq; /* Frequencies */
                  double *pp, **prop;
              for(k1=1; k1 <=nlstate; k1++){      double pos,posprop; 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double  y2; /* in fractional years */
                ij=1;    int iagemin, iagemax;
                for(j=3; j <=ncovmodel; j++){    int first; /** to stop verbosity which is redirected to log file */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    iagemin= (int) agemin;
                    ij++;    iagemax= (int) agemax;
                  }    /*pp=vector(1,nlstate);*/
                  else    prop=matrix(1,nlstate,iagemin,iagemax+3); 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                }    j1=0;
                fprintf(ficgp,")");    
              }    /*j=cptcoveff;*/
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    
              i=i+ncovmodel;    first=1;
            }    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
          }      /*for(i1=1; i1<=ncodemax[k1];i1++){
        }        j1++;*/
      }        
    }        for (i=1; i<=nlstate; i++)  
    fclose(ficgp);          for(m=iagemin; m <= iagemax+3; m++)
 }  /* end gnuplot */            prop[i][m]=0.0;
        
         for (i=1; i<=imx; i++) { /* Each individual */
 /*************** Moving average **************/          bool=1;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   int i, cpt, cptcod;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                bool=0;
       for (i=1; i<=nlstate;i++)          } 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          if (bool==1) { 
           mobaverage[(int)agedeb][i][cptcod]=0.;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                  y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for (i=1; i<=nlstate;i++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           for (cpt=0;cpt<=4;cpt++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                  prop[s[m][i]][iagemax+3] += weight[i]; 
       }                } 
     }              }
                } /* end selection of waves */
 }          }
         }
         for(i=iagemin; i <= iagemax+3; i++){  
 /************** Forecasting ******************/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            posprop += prop[jk][i]; 
            } 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          
   int *popage;          for(jk=1; jk <=nlstate ; jk++){     
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            if( i <=  iagemax){ 
   double *popeffectif,*popcount;              if(posprop>=1.e-5){ 
   double ***p3mat;                probs[i][jk][j1]= prop[jk][i]/posprop;
   char fileresf[FILENAMELENGTH];              } else{
                 if(first==1){
  agelim=AGESUP;                  first=0;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                 }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              }
              } 
            }/* end jk */ 
   strcpy(fileresf,"f");        }/* end i */ 
   strcat(fileresf,fileres);      /*} *//* end i1 */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    } /* end j1 */
     printf("Problem with forecast resultfile: %s\n", fileresf);    
   }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   printf("Computing forecasting: result on file '%s' \n", fileresf);    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  }  /* End of prevalence */
   
   if (mobilav==1) {  /************* Waves Concatenation ***************/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   stepsize=(int) (stepm+YEARM-1)/YEARM;       Death is a valid wave (if date is known).
   if (stepm<=12) stepsize=1;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   agelim=AGESUP;       and mw[mi+1][i]. dh depends on stepm.
         */
   hstepm=1;  
   hstepm=hstepm/stepm;    int i, mi, m;
   yp1=modf(dateintmean,&yp);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   anprojmean=yp;       double sum=0., jmean=0.;*/
   yp2=modf((yp1*12),&yp);    int first;
   mprojmean=yp;    int j, k=0,jk, ju, jl;
   yp1=modf((yp2*30.5),&yp);    double sum=0.;
   jprojmean=yp;    first=0;
   if(jprojmean==0) jprojmean=1;    jmin=1e+5;
   if(mprojmean==0) jprojmean=1;    jmax=-1;
      jmean=0.;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    for(i=1; i<=imx; i++){
        mi=0;
   for(cptcov=1;cptcov<=i2;cptcov++){      m=firstpass;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      while(s[m][i] <= nlstate){
       k=k+1;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       fprintf(ficresf,"\n#******");          mw[++mi][i]=m;
       for(j=1;j<=cptcoveff;j++) {        if(m >=lastpass)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          break;
       }        else
       fprintf(ficresf,"******\n");          m++;
       fprintf(ficresf,"# StartingAge FinalAge");      }/* end while */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      if (s[m][i] > nlstate){
              mi++;     /* Death is another wave */
              /* if(mi==0)  never been interviewed correctly before death */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {           /* Only death is a correct wave */
         fprintf(ficresf,"\n");        mw[mi][i]=m;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        }
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      wav[i]=mi;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      if(mi==0){
           nhstepm = nhstepm/hstepm;        nbwarn++;
                  if(first==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           oldm=oldms;savm=savms;          first=1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
                if(first==1){
           for (h=0; h<=nhstepm; h++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      } /* end mi==0 */
             }    } /* End individuals */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    for(i=1; i<=imx; i++){
               for(i=1; i<=nlstate;i++) {                    for(mi=1; mi<wav[i];mi++){
                 if (mobilav==1)        if (stepm <=0)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          dh[mi][i]=1;
                 else {        else{
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                 }            if (agedc[i] < 2*AGESUP) {
                              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               }              if(j==0) j=1;  /* Survives at least one month after exam */
               if (h==(int)(calagedate+12*cpt)){              else if(j<0){
                 fprintf(ficresf," %.3f", kk1);                nberr++;
                                        printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               }                j=1; /* Temporary Dangerous patch */
             }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }              }
       }              k=k+1;
     }              if (j >= jmax){
   }                jmax=j;
                        ijmax=i;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
               if (j <= jmin){
   fclose(ficresf);                jmin=j;
 }                ijmin=i;
 /************** Forecasting ******************/              }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   int *popage;            }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;          else{
   double ***p3mat,***tabpop,***tabpopprev;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   char filerespop[FILENAMELENGTH];  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            k=k+1;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if (j >= jmax) {
   agelim=AGESUP;              jmax=j;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              ijmax=i;
              }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            else if (j <= jmin){
                jmin=j;
                ijmin=i;
   strcpy(filerespop,"pop");            }
   strcat(filerespop,fileres);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     printf("Problem with forecast resultfile: %s\n", filerespop);            if(j<0){
   }              nberr++;
   printf("Computing forecasting: result on file '%s' \n", filerespop);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            }
             sum=sum+j;
   if (mobilav==1) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          jk= j/stepm;
     movingaverage(agedeb, fage, ageminpar, mobaverage);          jl= j -jk*stepm;
   }          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   stepsize=(int) (stepm+YEARM-1)/YEARM;            if(jl==0){
   if (stepm<=12) stepsize=1;              dh[mi][i]=jk;
                bh[mi][i]=0;
   agelim=AGESUP;            }else{ /* We want a negative bias in order to only have interpolation ie
                      * to avoid the price of an extra matrix product in likelihood */
   hstepm=1;              dh[mi][i]=jk+1;
   hstepm=hstepm/stepm;              bh[mi][i]=ju;
              }
   if (popforecast==1) {          }else{
     if((ficpop=fopen(popfile,"r"))==NULL) {            if(jl <= -ju){
       printf("Problem with population file : %s\n",popfile);exit(0);              dh[mi][i]=jk;
     }              bh[mi][i]=jl;       /* bias is positive if real duration
     popage=ivector(0,AGESUP);                                   * is higher than the multiple of stepm and negative otherwise.
     popeffectif=vector(0,AGESUP);                                   */
     popcount=vector(0,AGESUP);            }
                else{
     i=1;                dh[mi][i]=jk+1;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              bh[mi][i]=ju;
                }
     imx=i;            if(dh[mi][i]==0){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              dh[mi][i]=1; /* At least one step */
   }              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   for(cptcov=1;cptcov<=i2;cptcov++){            }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          } /* end if mle */
       k=k+1;        }
       fprintf(ficrespop,"\n#******");      } /* end wave */
       for(j=1;j<=cptcoveff;j++) {    }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficrespop,"******\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fprintf(ficrespop,"# Age");   }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");  /*********** Tricode ****************************/
        void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
       for (cpt=0; cpt<=0;cpt++) {  {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /**< Uses cptcovn+2*cptcovprod as the number of covariates */
            /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
           nhstepm = nhstepm/hstepm;    /* nbcode[Tvar[j]][1]= 
              */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int modmaxcovj=0; /* Modality max of covariates j */
            int cptcode=0; /* Modality max of covariates j */
           for (h=0; h<=nhstepm; h++){    int modmincovj=0; /* Modality min of covariates j */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    cptcoveff=0; 
             for(j=1; j<=nlstate+ndeath;j++) {   
               kk1=0.;kk2=0;    for (k=-1; k < maxncov; k++) Ndum[k]=0;
               for(i=1; i<=nlstate;i++) {                  for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* Loop on covariates without age and products */
                 else {    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                 }                                 modality of this covariate Vj*/ 
               }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
               if (h==(int)(calagedate+12*cpt)){                                      * If product of Vn*Vm, still boolean *:
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                   /*fprintf(ficrespop," %.3f", kk1);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
               }                                        modality of the nth covariate of individual i. */
             }        if (ij > modmaxcovj)
             for(i=1; i<=nlstate;i++){          modmaxcovj=ij; 
               kk1=0.;        else if (ij < modmincovj) 
                 for(j=1; j<=nlstate;j++){          modmincovj=ij; 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        if ((ij < -1) && (ij > NCOVMAX)){
                 }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          exit(1);
             }        }else
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           }        /* getting the maximum value of the modality of the covariate
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         }           female is 1, then modmaxcovj=1.*/
       }      }
        printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   /******/      cptcode=modmaxcovj;
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {     /*for (i=0; i<=cptcode; i++) {*/
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
           nhstepm = nhstepm/hstepm;          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
           oldm=oldms;savm=savms;           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        } /* Ndum[-1] number of undefined modalities */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
             }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
             for(j=1; j<=nlstate+ndeath;j++) {         modmincovj=3; modmaxcovj = 7;
               kk1=0.;kk2=0;         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
               for(i=1; i<=nlstate;i++) {                       which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];             variables V1_1 and V1_2.
               }         nbcode[Tvar[j]][ij]=k;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);         nbcode[Tvar[j]][1]=0;
             }         nbcode[Tvar[j]][2]=1;
           }         nbcode[Tvar[j]][3]=2;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      */
         }      ij=1; /* ij is similar to i but can jumps over null modalities */
       }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
    }        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   }          /*recode from 0 */
            if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
   if (popforecast==1) {                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     free_ivector(popage,0,AGESUP);            ij++;
     free_vector(popeffectif,0,AGESUP);          }
     free_vector(popcount,0,AGESUP);          if (ij > ncodemax[j]) break; 
   }        }  /* end of loop on */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* end of loop on modality */ 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   fclose(ficrespop);    
 }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
 /***********************************************/    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
 /**************** Main Program *****************/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 /***********************************************/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; 
 int main(int argc, char *argv[])   } 
 {  
    ij=1;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   double agedeb, agefin,hf;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;     if((Ndum[i]!=0) && (i<=ncovcol)){
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   double fret;       Tvaraff[ij]=i; /*For printing (unclear) */
   double **xi,tmp,delta;       ij++;
      }else
   double dum; /* Dummy variable */         Tvaraff[ij]=0;
   double ***p3mat;   }
   int *indx;   ij--;
   char line[MAXLINE], linepar[MAXLINE];   cptcoveff=ij; /*Number of total covariates*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;  }
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;  
   int ju,jl, mi;  /*********** Health Expectancies ****************/
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;  {
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double bage, fage, age, agelim, agebase;    int nhstepma, nstepma; /* Decreasing with age */
   double ftolpl=FTOL;    double age, agelim, hf;
   double **prlim;    double ***p3mat;
   double *severity;    double eip;
   double ***param; /* Matrix of parameters */  
   double  *p;    pstamp(ficreseij);
   double **matcov; /* Matrix of covariance */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   double ***delti3; /* Scale */    fprintf(ficreseij,"# Age");
   double *delti; /* Scale */    for(i=1; i<=nlstate;i++){
   double ***eij, ***vareij;      for(j=1; j<=nlstate;j++){
   double **varpl; /* Variances of prevalence limits by age */        fprintf(ficreseij," e%1d%1d ",i,j);
   double *epj, vepp;      }
   double kk1, kk2;      fprintf(ficreseij," e%1d. ",i);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    }
      fprintf(ficreseij,"\n");
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];    
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   char z[1]="c", occ;    }
 #include <sys/time.h>    else  hstepm=estepm;   
 #include <time.h>    /* We compute the life expectancy from trapezoids spaced every estepm months
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];     * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   /* long total_usecs;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   struct timeval start_time, end_time;     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   getcwd(pathcd, size);     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   printf("\n%s",version);     * curvature will be obtained if estepm is as small as stepm. */
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");    /* For example we decided to compute the life expectancy with the smallest unit */
     scanf("%s",pathtot);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   else{       nstepm is the number of stepm from age to agelin. 
     strcpy(pathtot,argv[1]);       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /*cygwin_split_path(pathtot,path,optionfile);       survival function given by stepm (the optimization length). Unfortunately it
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       means that if the survival funtion is printed only each two years of age and if
   /* cutv(path,optionfile,pathtot,'\\');*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   chdir(path);  
   replace(pathc,path);    agelim=AGESUP;
     /* If stepm=6 months */
 /*-------- arguments in the command line --------*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   strcpy(fileres,"r");      
   strcat(fileres, optionfilefiname);  /* nhstepm age range expressed in number of stepm */
   strcat(fileres,".txt");    /* Other files have txt extension */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /*---------arguments file --------*/    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;    for (age=bage; age<=fage; age ++){ 
   }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcpy(filereso,"o");      /* if (stepm >= YEARM) hstepm=1;*/
   strcat(filereso,fileres);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     puts(line);      
     fputs(line,ficparo);      printf("%d|",(int)age);fflush(stdout);
   }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   ungetc(c,ficpar);      
       /* Computing expectancies */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      for(i=1; i<=nlstate;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(j=1; j<=nlstate;j++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 while((c=getc(ficpar))=='#' && c!= EOF){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     ungetc(c,ficpar);            
     fgets(line, MAXLINE, ficpar);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     puts(line);  
     fputs(line,ficparo);          }
   }  
   ungetc(c,ficpar);      fprintf(ficreseij,"%3.0f",age );
        for(i=1; i<=nlstate;i++){
            eip=0;
   covar=matrix(0,NCOVMAX,1,n);        for(j=1; j<=nlstate;j++){
   cptcovn=0;          eip +=eij[i][j][(int)age];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   ncovmodel=2+cptcovn;        fprintf(ficreseij,"%9.4f", eip );
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      }
        fprintf(ficreseij,"\n");
   /* Read guess parameters */      
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    printf("\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"\n");
     puts(line);    
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  {
     for(i=1; i <=nlstate; i++)    /* Covariances of health expectancies eij and of total life expectancies according
     for(j=1; j <=nlstate+ndeath-1; j++){     to initial status i, ei. .
       fscanf(ficpar,"%1d%1d",&i1,&j1);    */
       fprintf(ficparo,"%1d%1d",i1,j1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       printf("%1d%1d",i,j);    int nhstepma, nstepma; /* Decreasing with age */
       for(k=1; k<=ncovmodel;k++){    double age, agelim, hf;
         fscanf(ficpar," %lf",&param[i][j][k]);    double ***p3matp, ***p3matm, ***varhe;
         printf(" %lf",param[i][j][k]);    double **dnewm,**doldm;
         fprintf(ficparo," %lf",param[i][j][k]);    double *xp, *xm;
       }    double **gp, **gm;
       fscanf(ficpar,"\n");    double ***gradg, ***trgradg;
       printf("\n");    int theta;
       fprintf(ficparo,"\n");  
     }    double eip, vip;
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   p=param[1][1];    xm=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
   /* Reads comments: lines beginning with '#' */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    pstamp(ficresstdeij);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     puts(line);    fprintf(ficresstdeij,"# Age");
     fputs(line,ficparo);    for(i=1; i<=nlstate;i++){
   }      for(j=1; j<=nlstate;j++)
   ungetc(c,ficpar);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficresstdeij,"\n");
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    pstamp(ficrescveij);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       printf("%1d%1d",i,j);    fprintf(ficrescveij,"# Age");
       fprintf(ficparo,"%1d%1d",i1,j1);    for(i=1; i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){      for(j=1; j<=nlstate;j++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);        cptj= (j-1)*nlstate+i;
         printf(" %le",delti3[i][j][k]);        for(i2=1; i2<=nlstate;i2++)
         fprintf(ficparo," %le",delti3[i][j][k]);          for(j2=1; j2<=nlstate;j2++){
       }            cptj2= (j2-1)*nlstate+i2;
       fscanf(ficpar,"\n");            if(cptj2 <= cptj)
       printf("\n");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       fprintf(ficparo,"\n");          }
     }      }
   }    fprintf(ficrescveij,"\n");
   delti=delti3[1][1];    
      if(estepm < stepm){
   /* Reads comments: lines beginning with '#' */      printf ("Problem %d lower than %d\n",estepm, stepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     fgets(line, MAXLINE, ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
     puts(line);     * This is mainly to measure the difference between two models: for example
     fputs(line,ficparo);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   ungetc(c,ficpar);     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   matcov=matrix(1,npar,1,npar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   for(i=1; i <=npar; i++){     * to compare the new estimate of Life expectancy with the same linear 
     fscanf(ficpar,"%s",&str);     * hypothesis. A more precise result, taking into account a more precise
     printf("%s",str);     * curvature will be obtained if estepm is as small as stepm. */
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    /* For example we decided to compute the life expectancy with the smallest unit */
       fscanf(ficpar," %le",&matcov[i][j]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       printf(" %.5le",matcov[i][j]);       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficparo," %.5le",matcov[i][j]);       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
     fscanf(ficpar,"\n");       and note for a fixed period like estepm months */
     printf("\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficparo,"\n");       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
   for(i=1; i <=npar; i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(j=i+1;j<=npar;j++)       results. So we changed our mind and took the option of the best precision.
       matcov[i][j]=matcov[j][i];    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("\n");  
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     /*-------- Rewriting paramater file ----------*/    agelim=AGESUP;
      strcpy(rfileres,"r");    /* "Rparameterfile */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      strcat(rfileres,".");    /* */    /* if (stepm >= YEARM) hstepm=1;*/
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     if((ficres =fopen(rfileres,"w"))==NULL) {    
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficres,"#%s\n",version);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     /*-------- data file ----------*/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     if((fic=fopen(datafile,"r"))==NULL)    {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     n= lastobs;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     severity = vector(1,maxwav);      /* if (stepm >= YEARM) hstepm=1;*/
     outcome=imatrix(1,maxwav+1,1,n);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     num=ivector(1,n);  
     moisnais=vector(1,n);      /* If stepm=6 months */
     annais=vector(1,n);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     moisdc=vector(1,n);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     andc=vector(1,n);      
     agedc=vector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     cod=ivector(1,n);  
     weight=vector(1,n);      /* Computing  Variances of health expectancies */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     mint=matrix(1,maxwav,1,n);         decrease memory allocation */
     anint=matrix(1,maxwav,1,n);      for(theta=1; theta <=npar; theta++){
     s=imatrix(1,maxwav+1,1,n);        for(i=1; i<=npar; i++){ 
     adl=imatrix(1,maxwav+1,1,n);              xp[i] = x[i] + (i==theta ?delti[theta]:0);
     tab=ivector(1,NCOVMAX);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     ncodemax=ivector(1,8);        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     i=1;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     while (fgets(line, MAXLINE, fic) != NULL)    {    
       if ((i >= firstobs) && (i <=lastobs)) {        for(j=1; j<= nlstate; j++){
                  for(i=1; i<=nlstate; i++){
         for (j=maxwav;j>=1;j--){            for(h=0; h<=nhstepm-1; h++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           strcpy(line,stra);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }        }
               
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(ij=1; ij<= nlstate*nlstate; ij++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      }/* End theta */
       
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      
         for (j=ncovcol;j>=1;j--){      for(h=0; h<=nhstepm-1; h++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate*nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
         num[i]=atol(stra);            trgradg[h][j][theta]=gradg[h][theta][j];
              
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
         i=i+1;          varhe[ij][ji][(int)age] =0.;
       }  
     }       printf("%d|",(int)age);fflush(stdout);
     /* printf("ii=%d", ij);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        scanf("%d",i);*/       for(h=0;h<=nhstepm-1;h++){
   imx=i-1; /* Number of individuals */        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   /* for (i=1; i<=imx; i++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for(ij=1;ij<=nlstate*nlstate;ij++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            for(ji=1;ji<=nlstate*nlstate;ji++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     }*/        }
    /*  for (i=1; i<=imx; i++){      }
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      /* Computing expectancies */
        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        for(i=1; i<=nlstate;i++)
   /* Calculation of the number of parameter from char model*/        for(j=1; j<=nlstate;j++)
   Tvar=ivector(1,15);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   Tprod=ivector(1,15);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   Tvaraff=ivector(1,15);            
   Tvard=imatrix(1,15,1,2);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   Tage=ivector(1,15);        
              }
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;      fprintf(ficresstdeij,"%3.0f",age );
     j=nbocc(model,'+');      for(i=1; i<=nlstate;i++){
     j1=nbocc(model,'*');        eip=0.;
     cptcovn=j+1;        vip=0.;
     cptcovprod=j1;        for(j=1; j<=nlstate;j++){
              eip += eij[i][j][(int)age];
     strcpy(modelsav,model);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       printf("Error. Non available option model=%s ",model);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       goto end;        }
     }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
          }
     for(i=(j+1); i>=1;i--){      fprintf(ficresstdeij,"\n");
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      fprintf(ficrescveij,"%3.0f",age );
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      for(i=1; i<=nlstate;i++)
       /*scanf("%d",i);*/        for(j=1; j<=nlstate;j++){
       if (strchr(strb,'*')) {          cptj= (j-1)*nlstate+i;
         cutv(strd,strc,strb,'*');          for(i2=1; i2<=nlstate;i2++)
         if (strcmp(strc,"age")==0) {            for(j2=1; j2<=nlstate;j2++){
           cptcovprod--;              cptj2= (j2-1)*nlstate+i2;
           cutv(strb,stre,strd,'V');              if(cptj2 <= cptj)
           Tvar[i]=atoi(stre);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
           cptcovage++;            }
             Tage[cptcovage]=i;        }
             /*printf("stre=%s ", stre);*/      fprintf(ficrescveij,"\n");
         }     
         else if (strcmp(strd,"age")==0) {    }
           cptcovprod--;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           cutv(strb,stre,strc,'V');    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           Tvar[i]=atoi(stre);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           cptcovage++;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           Tage[cptcovage]=i;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else {    printf("\n");
           cutv(strb,stre,strc,'V');    fprintf(ficlog,"\n");
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');    free_vector(xm,1,npar);
           Tprod[k1]=i;    free_vector(xp,1,npar);
           Tvard[k1][1]=atoi(strc);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           Tvard[k1][2]=atoi(stre);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  }
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  /************ Variance ******************/
           k1++;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           k2=k2+2;  {
         }    /* Variance of health expectancies */
       }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       else {    /* double **newm;*/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double **dnewm,**doldm;
        /*  scanf("%d",i);*/    double **dnewmp,**doldmp;
       cutv(strd,strc,strb,'V');    int i, j, nhstepm, hstepm, h, nstepm ;
       Tvar[i]=atoi(strc);    int k, cptcode;
       }    double *xp;
       strcpy(modelsav,stra);      double **gp, **gm;  /* for var eij */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double ***gradg, ***trgradg; /*for var eij */
         scanf("%d",i);*/    double **gradgp, **trgradgp; /* for var p point j */
     }    double *gpp, *gmp; /* for var p point j */
 }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double age,agelim, hf;
   printf("cptcovprod=%d ", cptcovprod);    double ***mobaverage;
   scanf("%d ",i);*/    int theta;
     fclose(fic);    char digit[4];
     char digitp[25];
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    char fileresprobmorprev[FILENAMELENGTH];
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }    if(popbased==1){
     /*-calculation of age at interview from date of interview and age at death -*/      if(mobilav!=0)
     agev=matrix(1,maxwav,1,imx);        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     for (i=1; i<=imx; i++) {    }
       for(m=2; (m<= maxwav); m++) {    else 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      strcpy(digitp,"-stablbased-");
          anint[m][i]=9999;  
          s[m][i]=-1;    if (mobilav!=0) {
        }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     for (i=1; i<=imx; i++)  {    }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){    strcpy(fileresprobmorprev,"prmorprev"); 
         if(s[m][i] >0){    sprintf(digit,"%-d",ij);
           if (s[m][i] >= nlstate+1) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
             if(agedc[i]>0)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
               if(moisdc[i]!=99 && andc[i]!=9999)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                 agev[m][i]=agedc[i];    strcat(fileresprobmorprev,fileres);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
            else {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               if (andc[i]!=9999){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    }
               agev[m][i]=-1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               }   
             }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }    pstamp(ficresprobmorprev);
           else if(s[m][i] !=9){ /* Should no more exist */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             if(mint[m][i]==99 || anint[m][i]==9999)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               agev[m][i]=1;      fprintf(ficresprobmorprev," p.%-d SE",j);
             else if(agev[m][i] <agemin){      for(i=1; i<=nlstate;i++)
               agemin=agev[m][i];        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    }  
             }    fprintf(ficresprobmorprev,"\n");
             else if(agev[m][i] >agemax){    fprintf(ficgp,"\n# Routine varevsij");
               agemax=agev[m][i];    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             /*agev[m][i]=anint[m][i]-annais[i];*/  /*   } */
             /*   agev[m][i] = age[i]+2*m;*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    pstamp(ficresvij);
           else { /* =9 */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
             agev[m][i]=1;    if(popbased==1)
             s[m][i]=-1;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
           }    else
         }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
         else /*= 0 Unknown */    fprintf(ficresvij,"# Age");
           agev[m][i]=1;    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++)
            fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     }    fprintf(ficresvij,"\n");
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    xp=vector(1,npar);
         if (s[m][i] > (nlstate+ndeath)) {    dnewm=matrix(1,nlstate,1,npar);
           printf("Error: Wrong value in nlstate or ndeath\n");      doldm=matrix(1,nlstate,1,nlstate);
           goto end;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }  
     }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     free_vector(severity,1,maxwav);    
     free_imatrix(outcome,1,maxwav+1,1,n);    if(estepm < stepm){
     free_vector(moisnais,1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
     free_vector(annais,1,n);    }
     /* free_matrix(mint,1,maxwav,1,n);    else  hstepm=estepm;   
        free_matrix(anint,1,maxwav,1,n);*/    /* For example we decided to compute the life expectancy with the smallest unit */
     free_vector(moisdc,1,n);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     free_vector(andc,1,n);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
           Look at function hpijx to understand why (it is linked to memory size questions) */
     wav=ivector(1,imx);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     dh=imatrix(1,lastpass-firstpass+1,1,imx);       survival function given by stepm (the optimization length). Unfortunately it
     mw=imatrix(1,lastpass-firstpass+1,1,imx);       means that if the survival funtion is printed every two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     /* Concatenates waves */       results. So we changed our mind and took the option of the best precision.
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
       Tcode=ivector(1,100);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       ncodemax[1]=1;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
    codtab=imatrix(1,100,1,10);      gp=matrix(0,nhstepm,1,nlstate);
    h=0;      gm=matrix(0,nhstepm,1,nlstate);
    m=pow(2,cptcoveff);  
    
    for(k=1;k<=cptcoveff; k++){      for(theta=1; theta <=npar; theta++){
      for(i=1; i <=(m/pow(2,k));i++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
        for(j=1; j <= ncodemax[k]; j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        }
            h++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }        if (popbased==1) {
        }          if(mobilav ==0){
      }            for(i=1; i<=nlstate;i++)
    }              prlim[i][i]=probs[(int)age][i][ij];
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          }else{ /* mobilav */ 
       codtab[1][2]=1;codtab[2][2]=2; */            for(i=1; i<=nlstate;i++)
    /* for(i=1; i <=m ;i++){              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(k=1; k <=cptcovn; k++){          }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        }
       }    
       printf("\n");        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
       scanf("%d",i);*/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                  gp[h][j] += prlim[i][i]*p3mat[i][j][h];
    /* Calculates basic frequencies. Computes observed prevalence at single age          }
        and prints on file fileres'p'. */        }
         /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
               as a weighted average of prlim.
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }    
              /* end probability of death */
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if(mle==1){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   
     }        if (popbased==1) {
              if(mobilav ==0){
     /*--------- results files --------------*/            for(i=1; i<=nlstate;i++)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
    jk=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
        if (k != i)          for(h=0; h<=nhstepm; h++){
          {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
            printf("%d%d ",i,k);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);        /* This for computing probability of death (h=1 means
              fprintf(ficres,"%f ",p[jk]);           computed over hstepm matrices product = hstepm*stepm months) 
              jk++;           as a weighted average of prlim.
            }        */
            printf("\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            fprintf(ficres,"\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
          }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
      }        }    
    }        /* end probability of death */
  if(mle==1){  
     /* Computing hessian and covariance matrix */        for(j=1; j<= nlstate; j++) /* vareij */
     ftolhess=ftol; /* Usually correct */          for(h=0; h<=nhstepm; h++){
     hesscov(matcov, p, npar, delti, ftolhess, func);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  }          }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
      for(i=1,jk=1; i <=nlstate; i++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       for(j=1; j <=nlstate+ndeath; j++){        }
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);      } /* End theta */
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);      for(h=0; h<=nhstepm; h++) /* veij */
             jk++;        for(j=1; j<=nlstate;j++)
           }          for(theta=1; theta <=npar; theta++)
           printf("\n");            trgradg[h][j][theta]=gradg[h][theta][j];
           fprintf(ficres,"\n");  
         }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       }        for(theta=1; theta <=npar; theta++)
      }          trgradgp[j][theta]=gradgp[theta][j];
        
     k=1;  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for(i=1;i<=nlstate;i++)
     for(i=1;i<=npar;i++){        for(j=1;j<=nlstate;j++)
       /*  if (k>nlstate) k=1;          vareij[i][j][(int)age] =0.;
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      for(h=0;h<=nhstepm;h++){
       printf("%s%d%d",alph[k],i1,tab[i]);*/        for(k=0;k<=nhstepm;k++){
       fprintf(ficres,"%3d",i);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       printf("%3d",i);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for(j=1; j<=i;j++){          for(i=1;i<=nlstate;i++)
         fprintf(ficres," %.5e",matcov[i][j]);            for(j=1;j<=nlstate;j++)
         printf(" %.5e",matcov[i][j]);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
       fprintf(ficres,"\n");      }
       printf("\n");    
       k++;      /* pptj */
     }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
          matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     while((c=getc(ficpar))=='#' && c!= EOF){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       ungetc(c,ficpar);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fgets(line, MAXLINE, ficpar);          varppt[j][i]=doldmp[j][i];
       puts(line);      /* end ppptj */
       fputs(line,ficparo);      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     ungetc(c,ficpar);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     estepm=0;   
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      if (popbased==1) {
     if (estepm==0 || estepm < stepm) estepm=stepm;        if(mobilav ==0){
     if (fage <= 2) {          for(i=1; i<=nlstate;i++)
       bage = ageminpar;            prlim[i][i]=probs[(int)age][i][ij];
       fage = agemaxpar;        }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);               
        /* This for computing probability of death (h=1 means
     while((c=getc(ficpar))=='#' && c!= EOF){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     ungetc(c,ficpar);         as a weighted average of prlim.
     fgets(line, MAXLINE, ficpar);      */
     puts(line);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fputs(line,ficparo);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   ungetc(c,ficpar);      }    
        /* end probability of death */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
              fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=nlstate;i++){
     ungetc(c,ficpar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      } 
     fputs(line,ficparo);      fprintf(ficresprobmorprev,"\n");
   }  
   ungetc(c,ficpar);      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        }
       fprintf(ficresvij,"\n");
   fscanf(ficpar,"pop_based=%d\n",&popbased);      free_matrix(gp,0,nhstepm,1,nlstate);
   fprintf(ficparo,"pop_based=%d\n",popbased);        free_matrix(gm,0,nhstepm,1,nlstate);
   fprintf(ficres,"pop_based=%d\n",popbased);        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    } /* End age */
     fgets(line, MAXLINE, ficpar);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     puts(line);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   ungetc(c,ficpar);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     ungetc(c,ficpar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     puts(line);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fputs(line,ficparo);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   }  */
   ungetc(c,ficpar);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    free_vector(xp,1,npar);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 /*------------ gnuplot -------------*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(optionfilegnuplot,optionfilefiname);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(optionfilegnuplot,".gp");    fclose(ficresprobmorprev);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fflush(ficgp);
     printf("Problem with file %s",optionfilegnuplot);    fflush(fichtm); 
   }  }  /* end varevsij */
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  /************ Variance of prevlim ******************/
 /*--------- index.htm --------*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
   strcpy(optionfilehtm,optionfile);    /* Variance of prevalence limit */
   strcat(optionfilehtm,".htm");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double **newm;
     printf("Problem with %s \n",optionfilehtm), exit(0);    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
     int k, cptcode;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    double *xp;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    double *gp, *gm;
 \n    double **gradg, **trgradg;
 Total number of observations=%d <br>\n    double age,agelim;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int theta;
 <hr  size=\"2\" color=\"#EC5E5E\">    
  <ul><li>Parameter files<br>\n    pstamp(ficresvpl);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    fprintf(ficresvpl,"# Age");
   fclose(fichtm);    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    fprintf(ficresvpl,"\n");
    
 /*------------ free_vector  -------------*/    xp=vector(1,npar);
  chdir(path);    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
  free_ivector(wav,1,imx);    
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    hstepm=1*YEARM; /* Every year of age */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
  free_ivector(num,1,n);    agelim = AGESUP;
  free_vector(agedc,1,n);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  fclose(ficparo);      if (stepm >= YEARM) hstepm=1;
  fclose(ficres);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   /*--------------- Prevalence limit --------------*/      gm=vector(1,nlstate);
    
   strcpy(filerespl,"pl");      for(theta=1; theta <=npar; theta++){
   strcat(filerespl,fileres);        for(i=1; i<=npar; i++){ /* Computes gradient */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        for(i=1;i<=nlstate;i++)
   fprintf(ficrespl,"#Prevalence limit\n");          gp[i] = prlim[i][i];
   fprintf(ficrespl,"#Age ");      
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(i=1; i<=npar; i++) /* Computes gradient */
   fprintf(ficrespl,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   prlim=matrix(1,nlstate,1,nlstate);        for(i=1;i<=nlstate;i++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gm[i] = prlim[i][i];
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      } /* End theta */
   k=0;  
   agebase=ageminpar;      trgradg =matrix(1,nlstate,1,npar);
   agelim=agemaxpar;  
   ftolpl=1.e-10;      for(j=1; j<=nlstate;j++)
   i1=cptcoveff;        for(theta=1; theta <=npar; theta++)
   if (cptcovn < 1){i1=1;}          trgradg[j][theta]=gradg[theta][j];
   
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1;i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        varpl[i][(int)age] =0.;
         k=k+1;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         fprintf(ficrespl,"\n#******");      for(i=1;i<=nlstate;i++)
         for(j=1;j<=cptcoveff;j++)        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");      fprintf(ficresvpl,"%.0f ",age );
              for(i=1; i<=nlstate;i++)
         for (age=agebase; age<=agelim; age++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficresvpl,"\n");
           fprintf(ficrespl,"%.0f",age );      free_vector(gp,1,nlstate);
           for(i=1; i<=nlstate;i++)      free_vector(gm,1,nlstate);
           fprintf(ficrespl," %.5f", prlim[i][i]);      free_matrix(gradg,1,npar,1,nlstate);
           fprintf(ficrespl,"\n");      free_matrix(trgradg,1,nlstate,1,npar);
         }    } /* End age */
       }  
     }    free_vector(xp,1,npar);
   fclose(ficrespl);    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   /*------------- h Pij x at various ages ------------*/  
    }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  /************ Variance of one-step probabilities  ******************/
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
   printf("Computing pij: result on file '%s' \n", filerespij);    int i, j=0,  i1, k1, l1, t, tj;
      int k2, l2, j1,  z1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int k=0,l, cptcode;
   /*if (stepm<=24) stepsize=2;*/    int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   agelim=AGESUP;    double **dnewm,**doldm;
   hstepm=stepsize*YEARM; /* Every year of age */    double *xp;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    double *gp, *gm;
      double **gradg, **trgradg;
   k=0;    double **mu;
   for(cptcov=1;cptcov<=i1;cptcov++){    double age,agelim, cov[NCOVMAX+1];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       k=k+1;    int theta;
         fprintf(ficrespij,"\n#****** ");    char fileresprob[FILENAMELENGTH];
         for(j=1;j<=cptcoveff;j++)    char fileresprobcov[FILENAMELENGTH];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresprobcor[FILENAMELENGTH];
         fprintf(ficrespij,"******\n");    double ***varpij;
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    strcpy(fileresprob,"prob"); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcat(fileresprob,fileres);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprob);
           oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
           fprintf(ficrespij,"# Age");    strcpy(fileresprobcov,"probcov"); 
           for(i=1; i<=nlstate;i++)    strcat(fileresprobcov,fileres);
             for(j=1; j<=nlstate+ndeath;j++)    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               fprintf(ficrespij," %1d-%1d",i,j);      printf("Problem with resultfile: %s\n", fileresprobcov);
           fprintf(ficrespij,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
            for (h=0; h<=nhstepm; h++){    }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    strcpy(fileresprobcor,"probcor"); 
             for(i=1; i<=nlstate;i++)    strcat(fileresprobcor,fileres);
               for(j=1; j<=nlstate+ndeath;j++)    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      printf("Problem with resultfile: %s\n", fileresprobcor);
             fprintf(ficrespij,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
              }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           fprintf(ficrespij,"\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fclose(ficrespij);    fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   /*---------- Forecasting ------------------*/    fprintf(ficresprobcov,"# Age");
   if((stepm == 1) && (strcmp(model,".")==0)){    pstamp(ficresprobcor);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    fprintf(ficresprobcor,"# Age");
   }  
   else{  
     erreur=108;    for(i=1; i<=nlstate;i++)
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      for(j=1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   /*---------- Health expectancies and variances ------------*/      }  
    /* fprintf(ficresprob,"\n");
   strcpy(filerest,"t");    fprintf(ficresprobcov,"\n");
   strcat(filerest,fileres);    fprintf(ficresprobcor,"\n");
   if((ficrest=fopen(filerest,"w"))==NULL) {   */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    xp=vector(1,npar);
   }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   strcpy(filerese,"e");    first=1;
   strcat(filerese,fileres);    fprintf(ficgp,"\n# Routine varprob");
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(fichtm,"\n");
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
  strcpy(fileresv,"v");    file %s<br>\n",optionfilehtmcov);
   strcat(fileresv,fileres);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  and drawn. It helps understanding how is the covariance between two incidences.\
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   calagedate=-1;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   k=0;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   for(cptcov=1;cptcov<=i1;cptcov++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    cov[1]=1;
       fprintf(ficrest,"\n#****** ");    /* tj=cptcoveff; */
       for(j=1;j<=cptcoveff;j++)    tj = (int) pow(2,cptcoveff);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fprintf(ficrest,"******\n");    j1=0;
     for(j1=1; j1<=tj;j1++){
       fprintf(ficreseij,"\n#****** ");      /*for(i1=1; i1<=ncodemax[t];i1++){ */
       for(j=1;j<=cptcoveff;j++)      /*j1++;*/
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if  (cptcovn>0) {
       fprintf(ficreseij,"******\n");          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresvij,"\n#****** ");          fprintf(ficresprob, "**********\n#\n");
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcov, "\n#********** Variable "); 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresvij,"******\n");          fprintf(ficresprobcov, "**********\n#\n");
           
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficgp, "\n#********** Variable "); 
       oldm=oldms;savm=savms;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficgp, "**********\n#\n");
            
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          
       oldm=oldms;savm=savms;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
            fprintf(ficresprobcor, "\n#********** Variable ");    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(ficresprobcor, "**********\n#");    
       fprintf(ficrest,"\n");        }
         
       epj=vector(1,nlstate+1);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       for(age=bage; age <=fage ;age++){        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        gp=vector(1,(nlstate)*(nlstate+ndeath));
         if (popbased==1) {        gm=vector(1,(nlstate)*(nlstate+ndeath));
           for(i=1; i<=nlstate;i++)        for (age=bage; age<=fage; age ++){ 
             prlim[i][i]=probs[(int)age][i][k];          cov[2]=age;
         }          for (k=1; k<=cptcovn;k++) {
                    cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
         fprintf(ficrest," %4.0f",age);                                                           * 1  1 1 1 1
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                                                           * 2  2 1 1 1
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                                                           * 3  1 2 1 1
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                                                           */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }          }
           epj[nlstate+1] +=epj[j];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(i=1, vepp=0.;i <=nlstate;i++)          
           for(j=1;j <=nlstate;j++)      
             vepp += vareij[i][j][(int)age];          for(theta=1; theta <=npar; theta++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            for(i=1; i<=npar; i++)
         for(j=1;j <=nlstate;j++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            
         }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficrest,"\n");            
       }            k=0;
     }            for(i=1; i<= (nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
 free_matrix(mint,1,maxwav,1,n);                k=k+1;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                gp[k]=pmmij[i][j];
     free_vector(weight,1,n);              }
   fclose(ficreseij);            }
   fclose(ficresvij);            
   fclose(ficrest);            for(i=1; i<=npar; i++)
   fclose(ficpar);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   free_vector(epj,1,nlstate+1);      
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*------- Variance limit prevalence------*/              k=0;
             for(i=1; i<=(nlstate); i++){
   strcpy(fileresvpl,"vpl");              for(j=1; j<=(nlstate+ndeath);j++){
   strcat(fileresvpl,fileres);                k=k+1;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                gm[k]=pmmij[i][j];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              }
     exit(0);            }
   }       
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   k=0;          }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       k=k+1;            for(theta=1; theta <=npar; theta++)
       fprintf(ficresvpl,"\n#****** ");              trgradg[j][theta]=gradg[theta][j];
       for(j=1;j<=cptcoveff;j++)          
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       fprintf(ficresvpl,"******\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       oldm=oldms;savm=savms;          
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          k=0;
     }          for(i=1; i<=(nlstate); i++){
  }            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   fclose(ficresvpl);              mu[k][(int) age]=pmmij[i][j];
             }
   /*---------- End : free ----------------*/          }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              varpij[i][j][(int)age] = doldm[i][j];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
            /*printf("\n%d ",(int)age);
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            }*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
            fprintf(ficresprob,"\n%d ",(int)age);
   free_matrix(matcov,1,npar,1,npar);          fprintf(ficresprobcov,"\n%d ",(int)age);
   free_vector(delti,1,npar);          fprintf(ficresprobcor,"\n%d ",(int)age);
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fprintf(fichtm,"\n</body>");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fclose(fichtm);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   fclose(ficgp);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
            }
           i=0;
   if(erreur >0)          for (k=1; k<=(nlstate);k++){
     printf("End of Imach with error or warning %d\n",erreur);            for (l=1; l<=(nlstate+ndeath);l++){ 
   else   printf("End of Imach\n");              i++;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              for (j=1; j<=i;j++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
   /*------ End -----------*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
  end:            }
 #ifdef windows          }/* end of loop for state */
   /* chdir(pathcd);*/        } /* end of loop for age */
 #endif        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  /*system("wgnuplot graph.plt");*/        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  /*system("../gp37mgw/wgnuplot graph.plt");*/        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  /*system("cd ../gp37mgw");*/        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        
  strcpy(plotcmd,GNUPLOTPROGRAM);        /* Confidence intervalle of pij  */
  strcat(plotcmd," ");        /*
  strcat(plotcmd,optionfilegnuplot);          fprintf(ficgp,"\nunset parametric;unset label");
  system(plotcmd);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 #ifdef windows          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   while (z[0] != 'q') {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     /* chdir(path); */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     scanf("%s",z);        */
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     else if (z[0] == 'g') system(plotcmd);        first1=1;first2=2;
     else if (z[0] == 'q') exit(0);        for (k2=1; k2<=(nlstate);k2++){
   }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 #endif            if(l2==k2) continue;
 }            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.147


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>