Diff for /imach/src/imach.c between versions 1.51 and 1.147

version 1.51, 2002/07/19 12:22:25 version 1.147, 2014/06/16 10:33:11
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.147  2014/06/16 10:33:11  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.146  2014/06/16 10:20:28  brouard
   first survey ("cross") where individuals from different ages are    Summary: Merge
   interviewed on their health status or degree of disability (in the    Author: Brouard
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Merge, before building revised version.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.145  2014/06/10 21:23:15  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Debugging with valgrind
   Maximum Likelihood of the parameters involved in the model.  The    Author: Nicolas Brouard
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Lot of changes in order to output the results with some covariates
   conditional to be observed in state i at the first wave. Therefore    After the Edimburgh REVES conference 2014, it seems mandatory to
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    improve the code.
   'age' is age and 'sex' is a covariate. If you want to have a more    No more memory valgrind error but a lot has to be done in order to
   complex model than "constant and age", you should modify the program    continue the work of splitting the code into subroutines.
   where the markup *Covariates have to be included here again* invites    Also, decodemodel has been improved. Tricode is still not
   you to do it.  More covariates you add, slower the    optimal. nbcode should be improved. Documentation has been added in
   convergence.    the source code.
   
   The advantage of this computer programme, compared to a simple    Revision 1.143  2014/01/26 09:45:38  brouard
   multinomial logistic model, is clear when the delay between waves is not    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   account using an interpolation or extrapolation.      (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.142  2014/01/26 03:57:36  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.141  2014/01/26 02:42:01  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   hPijx.  
     Revision 1.140  2011/09/02 10:37:54  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: times.h is ok with mingw32 now.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.139  2010/06/14 07:50:17  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
            Institut national d'études démographiques, Paris.    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.138  2010/04/30 18:19:40  brouard
   It is copyrighted identically to a GNU software product, ie programme and    *** empty log message ***
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.137  2010/04/29 18:11:38  brouard
   **********************************************************************/    (Module): Checking covariates for more complex models
      than V1+V2. A lot of change to be done. Unstable.
 #include <math.h>  
 #include <stdio.h>    Revision 1.136  2010/04/26 20:30:53  brouard
 #include <stdlib.h>    (Module): merging some libgsl code. Fixing computation
 #include <unistd.h>    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 #define MAXLINE 256    Some cleaning of code and comments added.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.135  2009/10/29 15:33:14  brouard
 #define FILENAMELENGTH 80    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 /*#define DEBUG*/  
 #define windows    Revision 1.134  2009/10/29 13:18:53  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.133  2009/07/06 10:21:25  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    just nforces
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.132  2009/07/06 08:22:05  brouard
 #define NINTERVMAX 8    Many tings
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.131  2009/06/20 16:22:47  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Some dimensions resccaled
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.130  2009/05/26 06:44:34  brouard
 #define AGESUP 130    (Module): Max Covariate is now set to 20 instead of 8. A
 #define AGEBASE 40    lot of cleaning with variables initialized to 0. Trying to make
 #ifdef windows    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.129  2007/08/31 13:49:27  lievre
 #else    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.128  2006/06/30 13:02:05  brouard
 #endif    (Module): Clarifications on computing e.j
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.127  2006/04/28 18:11:50  brouard
 int erreur; /* Error number */    (Module): Yes the sum of survivors was wrong since
 int nvar;    imach-114 because nhstepm was no more computed in the age
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    loop. Now we define nhstepma in the age loop.
 int npar=NPARMAX;    (Module): In order to speed up (in case of numerous covariates) we
 int nlstate=2; /* Number of live states */    compute health expectancies (without variances) in a first step
 int ndeath=1; /* Number of dead states */    and then all the health expectancies with variances or standard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    deviation (needs data from the Hessian matrices) which slows the
 int popbased=0;    computation.
     In the future we should be able to stop the program is only health
 int *wav; /* Number of waves for this individuual 0 is possible */    expectancies and graph are needed without standard deviations.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.126  2006/04/28 17:23:28  brouard
 int mle, weightopt;    (Module): Yes the sum of survivors was wrong since
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    imach-114 because nhstepm was no more computed in the age
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    loop. Now we define nhstepma in the age loop.
 double jmean; /* Mean space between 2 waves */    Version 0.98h
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.125  2006/04/04 15:20:31  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Errors in calculation of health expectancies. Age was not initialized.
 FILE *ficlog;    Forecasting file added.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Revision 1.124  2006/03/22 17:13:53  lievre
 FILE *fichtm; /* Html File */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 FILE *ficreseij;    The log-likelihood is printed in the log file
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.123  2006/03/20 10:52:43  brouard
 char fileresv[FILENAMELENGTH];    * imach.c (Module): <title> changed, corresponds to .htm file
 FILE  *ficresvpl;    name. <head> headers where missing.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    * imach.c (Module): Weights can have a decimal point as for
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    English (a comma might work with a correct LC_NUMERIC environment,
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    1.
 char filelog[FILENAMELENGTH]; /* Log file */    Version 0.98g
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.122  2006/03/20 09:45:41  brouard
 char popfile[FILENAMELENGTH];    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 #define NR_END 1    1.
 #define FREE_ARG char*    Version 0.98g
 #define FTOL 1.0e-10  
     Revision 1.121  2006/03/16 17:45:01  lievre
 #define NRANSI    * imach.c (Module): Comments concerning covariates added
 #define ITMAX 200  
     * imach.c (Module): refinements in the computation of lli if
 #define TOL 2.0e-4    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.120  2006/03/16 15:10:38  lievre
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define GOLD 1.618034    not 1 month. Version 0.98f
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 static double maxarg1,maxarg2;    computed as likelihood omitting the logarithm. Version O.98e
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    table of variances if popbased=1 .
 #define rint(a) floor(a+0.5)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 static double sqrarg;    (Module): Version 0.98d
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 int imx;    table of variances if popbased=1 .
 int stepm;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 /* Stepm, step in month: minimum step interpolation*/    (Module): Function pstamp added
     (Module): Version 0.98d
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 int m,nb;    varian-covariance of ej. is needed (Saito).
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.115  2006/02/27 12:17:45  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): One freematrix added in mlikeli! 0.98c
 double dateintmean=0;  
     Revision 1.114  2006/02/26 12:57:58  brouard
 double *weight;    (Module): Some improvements in processing parameter
 int **s; /* Status */    filename with strsep.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    datafile was not closed, some imatrix were not freed and on matrix
 double ftolhess; /* Tolerance for computing hessian */    allocation too.
   
 /**************** split *************************/    Revision 1.112  2006/01/30 09:55:26  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 {  
    char *s;                             /* pointer */    Revision 1.111  2006/01/25 20:38:18  brouard
    int  l1, l2;                         /* length counters */    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
    l1 = strlen( path );                 /* length of path */    can be a simple dot '.'.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Revision 1.110  2006/01/25 00:51:50  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): Lots of cleaning and bugs added (Gompertz)
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.109  2006/01/24 19:37:15  brouard
 #if     defined(__bsd__)                /* get current working directory */    (Module): Comments (lines starting with a #) are allowed in data.
       extern char       *getwd( );  
     Revision 1.108  2006/01/19 18:05:42  lievre
       if ( getwd( dirc ) == NULL ) {    Gnuplot problem appeared...
 #else    To be fixed
       extern char       *getcwd( );  
     Revision 1.107  2006/01/19 16:20:37  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Test existence of gnuplot in imach path
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.106  2006/01/19 13:24:36  brouard
       }    Some cleaning and links added in html output
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.105  2006/01/05 20:23:19  lievre
       s++;                              /* after this, the filename */    *** empty log message ***
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.104  2005/09/30 16:11:43  lievre
       strcpy( name, s );                /* save file name */    (Module): sump fixed, loop imx fixed, and simplifications.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): If the status is missing at the last wave but we know
       dirc[l1-l2] = 0;                  /* add zero */    that the person is alive, then we can code his/her status as -2
    }    (instead of missing=-1 in earlier versions) and his/her
    l1 = strlen( dirc );                 /* length of directory */    contributions to the likelihood is 1 - Prob of dying from last
 #ifdef windows    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    the healthy state at last known wave). Version is 0.98
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.103  2005/09/30 15:54:49  lievre
 #endif    (Module): sump fixed, loop imx fixed, and simplifications.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.102  2004/09/15 17:31:30  brouard
    strcpy(ext,s);                       /* save extension */    Add the possibility to read data file including tab characters.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.101  2004/09/15 10:38:38  brouard
    strncpy( finame, name, l1-l2);    Fix on curr_time
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.100  2004/07/12 18:29:06  brouard
 }    Add version for Mac OS X. Just define UNIX in Makefile
   
     Revision 1.99  2004/06/05 08:57:40  brouard
 /******************************************/    *** empty log message ***
   
 void replace(char *s, char*t)    Revision 1.98  2004/05/16 15:05:56  brouard
 {    New version 0.97 . First attempt to estimate force of mortality
   int i;    directly from the data i.e. without the need of knowing the health
   int lg=20;    state at each age, but using a Gompertz model: log u =a + b*age .
   i=0;    This is the basic analysis of mortality and should be done before any
   lg=strlen(t);    other analysis, in order to test if the mortality estimated from the
   for(i=0; i<= lg; i++) {    cross-longitudinal survey is different from the mortality estimated
     (s[i] = t[i]);    from other sources like vital statistic data.
     if (t[i]== '\\') s[i]='/';  
   }    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
 int nbocc(char *s, char occ)    former routines in order to include the new code within the former code.
 {  
   int i,j=0;    The output is very simple: only an estimate of the intercept and of
   int lg=20;    the slope with 95% confident intervals.
   i=0;  
   lg=strlen(s);    Current limitations:
   for(i=0; i<= lg; i++) {    A) Even if you enter covariates, i.e. with the
   if  (s[i] == occ ) j++;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   }    B) There is no computation of Life Expectancy nor Life Table.
   return j;  
 }    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 void cutv(char *u,char *v, char*t, char occ)    suppressed.
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    Revision 1.96  2003/07/15 15:38:55  brouard
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
      gives u="abcedf" and v="ghi2j" */    rewritten within the same printf. Workaround: many printfs.
   int i,lg,j,p=0;  
   i=0;    Revision 1.95  2003/07/08 07:54:34  brouard
   for(j=0; j<=strlen(t)-1; j++) {    * imach.c (Repository):
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Repository): Using imachwizard code to output a more meaningful covariance
   }    matrix (cov(a12,c31) instead of numbers.
   
   lg=strlen(t);    Revision 1.94  2003/06/27 13:00:02  brouard
   for(j=0; j<p; j++) {    Just cleaning
     (u[j] = t[j]);  
   }    Revision 1.93  2003/06/25 16:33:55  brouard
      u[p]='\0';    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
    for(j=0; j<= lg; j++) {    (Module): Version 0.96b
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /********************** nrerror ********************/  
     Revision 1.91  2003/06/25 15:30:29  brouard
 void nrerror(char error_text[])    * imach.c (Repository): Duplicated warning errors corrected.
 {    (Repository): Elapsed time after each iteration is now output. It
   fprintf(stderr,"ERREUR ...\n");    helps to forecast when convergence will be reached. Elapsed time
   fprintf(stderr,"%s\n",error_text);    is stamped in powell.  We created a new html file for the graphs
   exit(1);    concerning matrix of covariance. It has extension -cov.htm.
 }  
 /*********************** vector *******************/    Revision 1.90  2003/06/24 12:34:15  brouard
 double *vector(int nl, int nh)    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   double *v;    of the covariance matrix to be input.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.89  2003/06/24 12:30:52  brouard
   return v-nl+NR_END;    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   int *v;    routine fileappend.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.85  2003/06/17 13:12:43  brouard
   return v-nl+NR_END;    * imach.c (Repository): Check when date of death was earlier that
 }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 /******************free ivector **************************/    was wrong (infinity). We still send an "Error" but patch by
 void free_ivector(int *v, long nl, long nh)    assuming that the date of death was just one stepm after the
 {    interview.
   free((FREE_ARG)(v+nl-NR_END));    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /******************* imatrix *******************************/    truncation)
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Repository): No more line truncation errors.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    * imach.c (Repository): Replace "freqsummary" at a correct
   int **m;    place. It differs from routine "prevalence" which may be called
      many times. Probs is memory consuming and must be used with
   /* allocate pointers to rows */    parcimony.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.83  2003/06/10 13:39:11  lievre
   m -= nrl;    *** empty log message ***
    
      Revision 1.82  2003/06/05 15:57:20  brouard
   /* allocate rows and set pointers to them */    Add log in  imach.c and  fullversion number is now printed.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  */
   m[nrl] += NR_END;  /*
   m[nrl] -= ncl;     Interpolated Markov Chain
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Short summary of the programme:
      
   /* return pointer to array of pointers to rows */    This program computes Healthy Life Expectancies from
   return m;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /****************** free_imatrix *************************/    case of a health survey which is our main interest) -2- at least a
 void free_imatrix(m,nrl,nrh,ncl,nch)    second wave of interviews ("longitudinal") which measure each change
       int **m;    (if any) in individual health status.  Health expectancies are
       long nch,ncl,nrh,nrl;    computed from the time spent in each health state according to a
      /* free an int matrix allocated by imatrix() */    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    simplest model is the multinomial logistic model where pij is the
   free((FREE_ARG) (m+nrl-NR_END));    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /******************* matrix *******************************/    'age' is age and 'sex' is a covariate. If you want to have a more
 double **matrix(long nrl, long nrh, long ncl, long nch)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    you to do it.  More covariates you add, slower the
   double **m;    convergence.
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    The advantage of this computer programme, compared to a simple
   if (!m) nrerror("allocation failure 1 in matrix()");    multinomial logistic model, is clear when the delay between waves is not
   m += NR_END;    identical for each individual. Also, if a individual missed an
   m -= nrl;    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    hPijx is the probability to be observed in state i at age x+h
   m[nrl] += NR_END;    conditional to the observed state i at age x. The delay 'h' can be
   m[nrl] -= ncl;    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    semester or year) is modelled as a multinomial logistic.  The hPx
   return m;    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the period (stable) prevalence. 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    
   free((FREE_ARG)(m+nrl-NR_END));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /******************* ma3x *******************************/    from the European Union.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    can be accessed at http://euroreves.ined.fr/imach .
   double ***m;  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    **********************************************************************/
   m -= nrl;  /*
     main
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    read parameterfile
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    read datafile
   m[nrl] += NR_END;    concatwav
   m[nrl] -= ncl;    freqsummary
     if (mle >= 1)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      mlikeli
     print results files
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if mle==1 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");       computes hessian
   m[nrl][ncl] += NR_END;    read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl][ncl] -= nll;        begin-prev-date,...
   for (j=ncl+1; j<=nch; j++)    open gnuplot file
     m[nrl][j]=m[nrl][j-1]+nlay;    open html file
      period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   for (i=nrl+1; i<=nrh; i++) {     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     for (j=ncl+1; j<=nch; j++)      freexexit2 possible for memory heap.
       m[i][j]=m[i][j-1]+nlay;  
   }    h Pij x                         | pij_nom  ficrestpij
   return m;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 }         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
          1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   free((FREE_ARG)(m[nrl]+ncl-NR_END));     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   free((FREE_ARG)(m+nrl-NR_END));     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 }  
     forecasting if prevfcast==1 prevforecast call prevalence()
 /***************** f1dim *************************/    health expectancies
 extern int ncom;    Variance-covariance of DFLE
 extern double *pcom,*xicom;    prevalence()
 extern double (*nrfunc)(double []);     movingaverage()
      varevsij() 
 double f1dim(double x)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   int j;    Variance of period (stable) prevalence
   double f;   end
   double *xt;  */
    
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);   
   free_vector(xt,1,ncom);  #include <math.h>
   return f;  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /*****************brent *************************/  #include <unistd.h>
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  #include <limits.h>
   int iter;  #include <sys/types.h>
   double a,b,d,etemp;  #include <sys/stat.h>
   double fu,fv,fw,fx;  #include <errno.h>
   double ftemp;  extern int errno;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  #ifdef LINUX
    #include <time.h>
   a=(ax < cx ? ax : cx);  #include "timeval.h"
   b=(ax > cx ? ax : cx);  #else
   x=w=v=bx;  #include <sys/time.h>
   fw=fv=fx=(*f)(x);  #endif
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  #ifdef GSL
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #include <gsl/gsl_errno.h>
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #include <gsl/gsl_multimin.h>
     printf(".");fflush(stdout);  #endif
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG  /* #include <libintl.h> */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /* #define _(String) gettext (String) */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define GNUPLOTPROGRAM "gnuplot"
       *xmin=x;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       return fx;  #define FILENAMELENGTH 132
     }  
     ftemp=fu;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if (fabs(e) > tol1) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       p=(x-v)*q-(x-w)*r;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #define NINTERVMAX 8
       q=fabs(q);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       etemp=e;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       e=d;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define MAXN 20000
       else {  #define YEARM 12. /**< Number of months per year */
         d=p/q;  #define AGESUP 130
         u=x+d;  #define AGEBASE 40
         if (u-a < tol2 || b-u < tol2)  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
           d=SIGN(tol1,xm-x);  #ifdef UNIX
       }  #define DIRSEPARATOR '/'
     } else {  #define CHARSEPARATOR "/"
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define ODIRSEPARATOR '\\'
     }  #else
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define DIRSEPARATOR '\\'
     fu=(*f)(u);  #define CHARSEPARATOR "\\"
     if (fu <= fx) {  #define ODIRSEPARATOR '/'
       if (u >= x) a=x; else b=x;  #endif
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /* $Id$ */
         } else {  /* $State$ */
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
             v=w;  char fullversion[]="$Revision$ $Date$"; 
             w=u;  char strstart[80];
             fv=fw;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
             fw=fu;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
           } else if (fu <= fv || v == x || v == w) {  int nvar=0, nforce=0; /* Number of variables, number of forces */
             v=u;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
             fv=fu;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
           }  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
         }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   }  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   nrerror("Too many iterations in brent");  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   *xmin=x;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   return fx;  int cptcov=0; /* Working variable */
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /****************** mnbrak ***********************/  int ndeath=1; /* Number of dead states */
   int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int popbased=0;
             double (*func)(double))  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   double ulim,u,r,q, dum;  int maxwav=0; /* Maxim number of waves */
   double fu;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
    int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   *fa=(*func)(*ax);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   *fb=(*func)(*bx);                     to the likelihood and the sum of weights (done by funcone)*/
   if (*fb > *fa) {  int mle=1, weightopt=0;
     SHFT(dum,*ax,*bx,dum)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       SHFT(dum,*fb,*fa,dum)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   *cx=(*bx)+GOLD*(*bx-*ax);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   *fc=(*func)(*cx);  double jmean=1; /* Mean space between 2 waves */
   while (*fb > *fc) {  double **matprod2(); /* test */
     r=(*bx-*ax)*(*fb-*fc);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     q=(*bx-*cx)*(*fb-*fa);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /*FILE *fic ; */ /* Used in readdata only */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  FILE *ficlog, *ficrespow;
     if ((*bx-u)*(u-*cx) > 0.0) {  int globpr=0; /* Global variable for printing or not */
       fu=(*func)(u);  double fretone; /* Only one call to likelihood */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  long ipmx=0; /* Number of contributions */
       fu=(*func)(u);  double sw; /* Sum of weights */
       if (fu < *fc) {  char filerespow[FILENAMELENGTH];
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
           SHFT(*fb,*fc,fu,(*func)(u))  FILE *ficresilk;
           }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  FILE *ficresprobmorprev;
       u=ulim;  FILE *fichtm, *fichtmcov; /* Html File */
       fu=(*func)(u);  FILE *ficreseij;
     } else {  char filerese[FILENAMELENGTH];
       u=(*cx)+GOLD*(*cx-*bx);  FILE *ficresstdeij;
       fu=(*func)(u);  char fileresstde[FILENAMELENGTH];
     }  FILE *ficrescveij;
     SHFT(*ax,*bx,*cx,u)  char filerescve[FILENAMELENGTH];
       SHFT(*fa,*fb,*fc,fu)  FILE  *ficresvij;
       }  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /*************** linmin ************************/  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int ncom;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 double *pcom,*xicom;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 double (*nrfunc)(double []);  char command[FILENAMELENGTH];
    int  outcmd=0;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  char filelog[FILENAMELENGTH]; /* Log file */
   double f1dim(double x);  char filerest[FILENAMELENGTH];
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  char fileregp[FILENAMELENGTH];
               double *fc, double (*func)(double));  char popfile[FILENAMELENGTH];
   int j;  
   double xx,xmin,bx,ax;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double fx,fb,fa;  
    struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   ncom=n;  struct timezone tzp;
   pcom=vector(1,n);  extern int gettimeofday();
   xicom=vector(1,n);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   nrfunc=func;  long time_value;
   for (j=1;j<=n;j++) {  extern long time();
     pcom[j]=p[j];  char strcurr[80], strfor[80];
     xicom[j]=xi[j];  
   }  char *endptr;
   ax=0.0;  long lval;
   xx=1.0;  double dval;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define NR_END 1
 #ifdef DEBUG  #define FREE_ARG char*
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define FTOL 1.0e-10
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  #define NRANSI 
   for (j=1;j<=n;j++) {  #define ITMAX 200 
     xi[j] *= xmin;  
     p[j] += xi[j];  #define TOL 2.0e-4 
   }  
   free_vector(xicom,1,n);  #define CGOLD 0.3819660 
   free_vector(pcom,1,n);  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /*************** powell ************************/  #define GOLD 1.618034 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define GLIMIT 100.0 
             double (*func)(double []))  #define TINY 1.0e-20 
 {  
   void linmin(double p[], double xi[], int n, double *fret,  static double maxarg1,maxarg2;
               double (*func)(double []));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   int i,ibig,j;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double del,t,*pt,*ptt,*xit;    
   double fp,fptt;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double *xits;  #define rint(a) floor(a+0.5)
   pt=vector(1,n);  
   ptt=vector(1,n);  static double sqrarg;
   xit=vector(1,n);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   xits=vector(1,n);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   *fret=(*func)(p);  int agegomp= AGEGOMP;
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  int imx; 
     fp=(*fret);  int stepm=1;
     ibig=0;  /* Stepm, step in month: minimum step interpolation*/
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int estepm;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  int m,nb;
     fprintf(ficlog," %d %.12f",i, p[i]);  long *num;
     printf("\n");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     fprintf(ficlog,"\n");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     for (i=1;i<=n;i++) {  double **pmmij, ***probs;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  double *ageexmed,*agecens;
       fptt=(*fret);  double dateintmean=0;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  double *weight;
       fprintf(ficlog,"fret=%lf \n",*fret);  int **s; /* Status */
 #endif  double *agedc;
       printf("%d",i);fflush(stdout);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       fprintf(ficlog,"%d",i);fflush(ficlog);                    * covar=matrix(0,NCOVMAX,1,n); 
       linmin(p,xit,n,fret,func);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       if (fabs(fptt-(*fret)) > del) {  double  idx; 
         del=fabs(fptt-(*fret));  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         ibig=i;  int *Ndum; /** Freq of modality (tricode */
       }  int **codtab; /**< codtab=imatrix(1,100,1,10); */
 #ifdef DEBUG  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       printf("%d %.12e",i,(*fret));  double *lsurv, *lpop, *tpop;
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double ftolhess; /**< Tolerance for computing hessian */
         printf(" x(%d)=%.12e",j,xit[j]);  
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  /**************** split *************************/
       }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       for(j=1;j<=n;j++) {  {
         printf(" p=%.12e",p[j]);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         fprintf(ficlog," p=%.12e",p[j]);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       }    */ 
       printf("\n");    char  *ss;                            /* pointer */
       fprintf(ficlog,"\n");    int   l1, l2;                         /* length counters */
 #endif  
     }    l1 = strlen(path );                   /* length of path */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #ifdef DEBUG    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       int k[2],l;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       k[0]=1;      strcpy( name, path );               /* we got the fullname name because no directory */
       k[1]=-1;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("Max: %.12e",(*func)(p));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       fprintf(ficlog,"Max: %.12e",(*func)(p));      /* get current working directory */
       for (j=1;j<=n;j++) {      /*    extern  char* getcwd ( char *buf , int len);*/
         printf(" %.12e",p[j]);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         fprintf(ficlog," %.12e",p[j]);        return( GLOCK_ERROR_GETCWD );
       }      }
       printf("\n");      /* got dirc from getcwd*/
       fprintf(ficlog,"\n");      printf(" DIRC = %s \n",dirc);
       for(l=0;l<=1;l++) {    } else {                              /* strip direcotry from path */
         for (j=1;j<=n;j++) {      ss++;                               /* after this, the filename */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      l2 = strlen( ss );                  /* length of filename */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      strcpy( name, ss );         /* save file name */
         }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      dirc[l1-l2] = 0;                    /* add zero */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      printf(" DIRC2 = %s \n",dirc);
       }    }
 #endif    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
       free_vector(xit,1,n);      dirc[l1] =  DIRSEPARATOR;
       free_vector(xits,1,n);      dirc[l1+1] = 0; 
       free_vector(ptt,1,n);      printf(" DIRC3 = %s \n",dirc);
       free_vector(pt,1,n);    }
       return;    ss = strrchr( name, '.' );            /* find last / */
     }    if (ss >0){
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      ss++;
     for (j=1;j<=n;j++) {      strcpy(ext,ss);                     /* save extension */
       ptt[j]=2.0*p[j]-pt[j];      l1= strlen( name);
       xit[j]=p[j]-pt[j];      l2= strlen(ss)+1;
       pt[j]=p[j];      strncpy( finame, name, l1-l2);
     }      finame[l1-l2]= 0;
     fptt=(*func)(ptt);    }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return( 0 );                          /* we're done */
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /******************************************/
           xi[j][n]=xit[j];  
         }  void replace_back_to_slash(char *s, char*t)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    int i;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    int lg=0;
         for(j=1;j<=n;j++){    i=0;
           printf(" %.12e",xit[j]);    lg=strlen(t);
           fprintf(ficlog," %.12e",xit[j]);    for(i=0; i<= lg; i++) {
         }      (s[i] = t[i]);
         printf("\n");      if (t[i]== '\\') s[i]='/';
         fprintf(ficlog,"\n");    }
 #endif  }
       }  
     }  char *trimbb(char *out, char *in)
   }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 }    char *s;
     s=out;
 /**** Prevalence limit ****************/    while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        in++;
 {      }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      *out++ = *in++;
      matrix by transitions matrix until convergence is reached */    }
     *out='\0';
   int i, ii,j,k;    return s;
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  char *cutl(char *blocc, char *alocc, char *in, char occ)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
        and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   for (ii=1;ii<=nlstate+ndeath;ii++)       gives blocc="abcdef2ghi" and alocc="j".
     for (j=1;j<=nlstate+ndeath;j++){       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    */
     }    char *s, *t, *bl;
     t=in;s=in;
    cov[1]=1.;    while ((*in != occ) && (*in != '\0')){
        *alocc++ = *in++;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    if( *in == occ){
     newm=savm;      *(alocc)='\0';
     /* Covariates have to be included here again */      s=++in;
      cov[2]=agefin;    }
     
       for (k=1; k<=cptcovn;k++) {    if (s == t) {/* occ not found */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      *(alocc-(in-s))='\0';
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      in=s;
       }    }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    while ( *in != '\0'){
       for (k=1; k<=cptcovprod;k++)      *blocc++ = *in++;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    *blocc='\0';
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return t;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char *cutv(char *blocc, char *alocc, char *in, char occ)
   {
     savm=oldm;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     oldm=newm;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     maxmax=0.;       gives blocc="abcdef2ghi" and alocc="j".
     for(j=1;j<=nlstate;j++){       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       min=1.;    */
       max=0.;    char *s, *t;
       for(i=1; i<=nlstate; i++) {    t=in;s=in;
         sumnew=0;    while (*in != '\0'){
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      while( *in == occ){
         prlim[i][j]= newm[i][j]/(1-sumnew);        *blocc++ = *in++;
         max=FMAX(max,prlim[i][j]);        s=in;
         min=FMIN(min,prlim[i][j]);      }
       }      *blocc++ = *in++;
       maxmin=max-min;    }
       maxmax=FMAX(maxmax,maxmin);    if (s == t) /* occ not found */
     }      *(blocc-(in-s))='\0';
     if(maxmax < ftolpl){    else
       return prlim;      *(blocc-(in-s)-1)='\0';
     }    in=s;
   }    while ( *in != '\0'){
 }      *alocc++ = *in++;
     }
 /*************** transition probabilities ***************/  
     *alocc='\0';
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    return s;
 {  }
   double s1, s2;  
   /*double t34;*/  int nbocc(char *s, char occ)
   int i,j,j1, nc, ii, jj;  {
     int i,j=0;
     for(i=1; i<= nlstate; i++){    int lg=20;
     for(j=1; j<i;j++){    i=0;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    lg=strlen(s);
         /*s2 += param[i][j][nc]*cov[nc];*/    for(i=0; i<= lg; i++) {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if  (s[i] == occ ) j++;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    }
       }    return j;
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /* void cutv(char *u,char *v, char*t, char occ) */
     for(j=i+1; j<=nlstate+ndeath;j++){  /* { */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /*      gives u="abcdef2ghi" and v="j" *\/ */
       }  /*   int i,lg,j,p=0; */
       ps[i][j]=s2;  /*   i=0; */
     }  /*   lg=strlen(t); */
   }  /*   for(j=0; j<=lg-1; j++) { */
     /*ps[3][2]=1;*/  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
   for(i=1; i<= nlstate; i++){  
      s1=0;  /*   for(j=0; j<p; j++) { */
     for(j=1; j<i; j++)  /*     (u[j] = t[j]); */
       s1+=exp(ps[i][j]);  /*   } */
     for(j=i+1; j<=nlstate+ndeath; j++)  /*      u[p]='\0'; */
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /*    for(j=0; j<= lg; j++) { */
     for(j=1; j<i; j++)  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*   } */
     for(j=i+1; j<=nlstate+ndeath; j++)  /* } */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /********************** nrerror ********************/
   } /* end i */  
   void nrerror(char error_text[])
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    fprintf(stderr,"ERREUR ...\n");
       ps[ii][jj]=0;    fprintf(stderr,"%s\n",error_text);
       ps[ii][ii]=1;    exit(EXIT_FAILURE);
     }  }
   }  /*********************** vector *******************/
   double *vector(int nl, int nh)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double *v;
     for(jj=1; jj<= nlstate+ndeath; jj++){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      printf("%lf ",ps[ii][jj]);    if (!v) nrerror("allocation failure in vector");
    }    return v-nl+NR_END;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /************************ free vector ******************/
 /*  void free_vector(double*v, int nl, int nh)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    free((FREE_ARG)(v+nl-NR_END));
     return ps;  }
 }  
   /************************ivector *******************************/
 /**************** Product of 2 matrices ******************/  int *ivector(long nl,long nh)
   {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    if (!v) nrerror("allocation failure in ivector");
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    return v-nl+NR_END;
   /* in, b, out are matrice of pointers which should have been initialized  }
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /******************free ivector **************************/
   long i, j, k;  void free_ivector(int *v, long nl, long nh)
   for(i=nrl; i<= nrh; i++)  {
     for(k=ncolol; k<=ncoloh; k++)    free((FREE_ARG)(v+nl-NR_END));
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /************************lvector *******************************/
   return out;  long *lvector(long nl,long nh)
 }  {
     long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /************* Higher Matrix Product ***************/    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  }
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /******************free lvector **************************/
      duration (i.e. until  void free_lvector(long *v, long nl, long nh)
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    free((FREE_ARG)(v+nl-NR_END));
      (typically every 2 years instead of every month which is too big).  }
      Model is determined by parameters x and covariates have to be  
      included manually here.  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
      */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
   int i, j, d, h, k;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double **out, cov[NCOVMAX];    int **m; 
   double **newm;    
     /* allocate pointers to rows */ 
   /* Hstepm could be zero and should return the unit matrix */    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for (i=1;i<=nlstate+ndeath;i++)    if (!m) nrerror("allocation failure 1 in matrix()"); 
     for (j=1;j<=nlstate+ndeath;j++){    m += NR_END; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    m -= nrl; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    
     }    
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* allocate rows and set pointers to them */ 
   for(h=1; h <=nhstepm; h++){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for(d=1; d <=hstepm; d++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       newm=savm;    m[nrl] += NR_END; 
       /* Covariates have to be included here again */    m[nrl] -= ncl; 
       cov[1]=1.;    
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    
       for (k=1; k<=cptcovage;k++)    /* return pointer to array of pointers to rows */ 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return m; 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        int **m;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        long nch,ncl,nrh,nrl; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,       /* free an int matrix allocated by imatrix() */ 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  { 
       savm=oldm;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       oldm=newm;    free((FREE_ARG) (m+nrl-NR_END)); 
     }  } 
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /******************* matrix *******************************/
         po[i][j][h]=newm[i][j];  double **matrix(long nrl, long nrh, long ncl, long nch)
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  {
          */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
   } /* end h */  
   return po;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
     m -= nrl;
 /*************** log-likelihood *************/  
 double func( double *x)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int i, ii, j, k, mi, d, kk;    m[nrl] += NR_END;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    m[nrl] -= ncl;
   double **out;  
   double sw; /* Sum of weights */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double lli; /* Individual log likelihood */    return m;
   long ipmx;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   /*extern weight */  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   /* We are differentiating ll according to initial status */  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/     */
   /*for(i=1;i<imx;i++)  }
     printf(" %d\n",s[4][i]);  
   */  /*************************free matrix ************************/
   cov[1]=1.;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   for(k=1; k<=nlstate; k++) ll[k]=0.;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    free((FREE_ARG)(m+nrl-NR_END));
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  /******************* ma3x *******************************/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       for(d=0; d<dh[mi][i]; d++){  {
         newm=savm;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double ***m;
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
            m += NR_END;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    m -= nrl;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         oldm=newm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
            m[nrl] += NR_END;
            m[nrl] -= ncl;
       } /* end mult */  
          for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       ipmx +=1;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       sw += weight[i];    m[nrl][ncl] += NR_END;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    m[nrl][ncl] -= nll;
     } /* end of wave */    for (j=ncl+1; j<=nch; j++) 
   } /* end of individual */      m[nrl][j]=m[nrl][j-1]+nlay;
     
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for (i=nrl+1; i<=nrh; i++) {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      for (j=ncl+1; j<=nch; j++) 
   return -l;        m[i][j]=m[i][j-1]+nlay;
 }    }
     return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 /*********** Maximum Likelihood Estimation ***************/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  }
 {  
   int i,j, iter;  /*************************free ma3x ************************/
   double **xi,*delti;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double fret;  {
   xi=matrix(1,npar,1,npar);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for (i=1;i<=npar;i++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (j=1;j<=npar;j++)    free((FREE_ARG)(m+nrl-NR_END));
       xi[i][j]=(i==j ? 1.0 : 0.0);  }
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  {
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    /* Caution optionfilefiname is hidden */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
 }    strcat(tmpout,fileres);
     return tmpout;
 /**** Computes Hessian and covariance matrix ***/  }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  /*************** function subdirf2 ***********/
   double  **a,**y,*x,pd;  char *subdirf2(char fileres[], char *preop)
   double **hess;  {
   int i, j,jk;    
   int *indx;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   double hessii(double p[], double delta, int theta, double delti[]);    strcat(tmpout,"/");
   double hessij(double p[], double delti[], int i, int j);    strcat(tmpout,preop);
   void lubksb(double **a, int npar, int *indx, double b[]) ;    strcat(tmpout,fileres);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    return tmpout;
   }
   hess=matrix(1,npar,1,npar);  
   /*************** function subdirf3 ***********/
   printf("\nCalculation of the hessian matrix. Wait...\n");  char *subdirf3(char fileres[], char *preop, char *preop2)
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  {
   for (i=1;i<=npar;i++){    
     printf("%d",i);fflush(stdout);    /* Caution optionfilefiname is hidden */
     fprintf(ficlog,"%d",i);fflush(ficlog);    strcpy(tmpout,optionfilefiname);
     hess[i][i]=hessii(p,ftolhess,i,delti);    strcat(tmpout,"/");
     /*printf(" %f ",p[i]);*/    strcat(tmpout,preop);
     /*printf(" %lf ",hess[i][i]);*/    strcat(tmpout,preop2);
   }    strcat(tmpout,fileres);
      return tmpout;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  /***************** f1dim *************************/
         printf(".%d%d",i,j);fflush(stdout);  extern int ncom; 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  extern double *pcom,*xicom;
         hess[i][j]=hessij(p,delti,i,j);  extern double (*nrfunc)(double []); 
         hess[j][i]=hess[i][j];       
         /*printf(" %lf ",hess[i][j]);*/  double f1dim(double x) 
       }  { 
     }    int j; 
   }    double f;
   printf("\n");    double *xt; 
   fprintf(ficlog,"\n");   
     xt=vector(1,ncom); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    f=(*nrfunc)(xt); 
      free_vector(xt,1,ncom); 
   a=matrix(1,npar,1,npar);    return f; 
   y=matrix(1,npar,1,npar);  } 
   x=vector(1,npar);  
   indx=ivector(1,npar);  /*****************brent *************************/
   for (i=1;i<=npar;i++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  { 
   ludcmp(a,npar,indx,&pd);    int iter; 
     double a,b,d,etemp;
   for (j=1;j<=npar;j++) {    double fu,fv,fw,fx;
     for (i=1;i<=npar;i++) x[i]=0;    double ftemp;
     x[j]=1;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     lubksb(a,npar,indx,x);    double e=0.0; 
     for (i=1;i<=npar;i++){   
       matcov[i][j]=x[i];    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
   }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
   printf("\n#Hessian matrix#\n");    for (iter=1;iter<=ITMAX;iter++) { 
   fprintf(ficlog,"\n#Hessian matrix#\n");      xm=0.5*(a+b); 
   for (i=1;i<=npar;i++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (j=1;j<=npar;j++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf("%.3e ",hess[i][j]);      printf(".");fflush(stdout);
       fprintf(ficlog,"%.3e ",hess[i][j]);      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
     printf("\n");      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fprintf(ficlog,"\n");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   /* Recompute Inverse */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (i=1;i<=npar;i++)        *xmin=x; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        return fx; 
   ludcmp(a,npar,indx,&pd);      } 
       ftemp=fu;
   /*  printf("\n#Hessian matrix recomputed#\n");      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   for (j=1;j<=npar;j++) {        q=(x-v)*(fx-fw); 
     for (i=1;i<=npar;i++) x[i]=0;        p=(x-v)*q-(x-w)*r; 
     x[j]=1;        q=2.0*(q-r); 
     lubksb(a,npar,indx,x);        if (q > 0.0) p = -p; 
     for (i=1;i<=npar;i++){        q=fabs(q); 
       y[i][j]=x[i];        etemp=e; 
       printf("%.3e ",y[i][j]);        e=d; 
       fprintf(ficlog,"%.3e ",y[i][j]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf("\n");        else { 
     fprintf(ficlog,"\n");          d=p/q; 
   }          u=x+d; 
   */          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
   free_matrix(a,1,npar,1,npar);        } 
   free_matrix(y,1,npar,1,npar);      } else { 
   free_vector(x,1,npar);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   free_ivector(indx,1,npar);      } 
   free_matrix(hess,1,npar,1,npar);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
       if (fu <= fx) { 
 }        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 /*************** hessian matrix ****************/          SHFT(fv,fw,fx,fu) 
 double hessii( double x[], double delta, int theta, double delti[])          } else { 
 {            if (u < x) a=u; else b=u; 
   int i;            if (fu <= fw || w == x) { 
   int l=1, lmax=20;              v=w; 
   double k1,k2;              w=u; 
   double p2[NPARMAX+1];              fv=fw; 
   double res;              fw=fu; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            } else if (fu <= fv || v == x || v == w) { 
   double fx;              v=u; 
   int k=0,kmax=10;              fv=fu; 
   double l1;            } 
           } 
   fx=func(x);    } 
   for (i=1;i<=npar;i++) p2[i]=x[i];    nrerror("Too many iterations in brent"); 
   for(l=0 ; l <=lmax; l++){    *xmin=x; 
     l1=pow(10,l);    return fx; 
     delts=delt;  } 
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  /****************** mnbrak ***********************/
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       p2[theta]=x[theta]-delt;              double (*func)(double)) 
       k2=func(p2)-fx;  { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double ulim,u,r,q, dum;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double fu; 
         
 #ifdef DEBUG    *fa=(*func)(*ax); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    *fb=(*func)(*bx); 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    if (*fb > *fa) { 
 #endif      SHFT(dum,*ax,*bx,dum) 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        SHFT(dum,*fb,*fa,dum) 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        } 
         k=kmax;    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    while (*fb > *fc) { 
         k=kmax; l=lmax*10.;      r=(*bx-*ax)*(*fb-*fc); 
       }      q=(*bx-*cx)*(*fb-*fa); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         delts=delt;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
   }        fu=(*func)(u); 
   delti[theta]=delts;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   return res;        fu=(*func)(u); 
          if (fu < *fc) { 
 }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 double hessij( double x[], double delti[], int thetai,int thetaj)            } 
 {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   int i;        u=ulim; 
   int l=1, l1, lmax=20;        fu=(*func)(u); 
   double k1,k2,k3,k4,res,fx;      } else { 
   double p2[NPARMAX+1];        u=(*cx)+GOLD*(*cx-*bx); 
   int k;        fu=(*func)(u); 
       } 
   fx=func(x);      SHFT(*ax,*bx,*cx,u) 
   for (k=1; k<=2; k++) {        SHFT(*fa,*fb,*fc,fu) 
     for (i=1;i<=npar;i++) p2[i]=x[i];        } 
     p2[thetai]=x[thetai]+delti[thetai]/k;  } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  /*************** linmin ************************/
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  int ncom; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double *pcom,*xicom;
     k2=func(p2)-fx;  double (*nrfunc)(double []); 
     
     p2[thetai]=x[thetai]-delti[thetai]/k;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  { 
     k3=func(p2)-fx;    double brent(double ax, double bx, double cx, 
                   double (*f)(double), double tol, double *xmin); 
     p2[thetai]=x[thetai]-delti[thetai]/k;    double f1dim(double x); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     k4=func(p2)-fx;                double *fc, double (*func)(double)); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    int j; 
 #ifdef DEBUG    double xx,xmin,bx,ax; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double fx,fb,fa;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);   
 #endif    ncom=n; 
   }    pcom=vector(1,n); 
   return res;    xicom=vector(1,n); 
 }    nrfunc=func; 
     for (j=1;j<=n;j++) { 
 /************** Inverse of matrix **************/      pcom[j]=p[j]; 
 void ludcmp(double **a, int n, int *indx, double *d)      xicom[j]=xi[j]; 
 {    } 
   int i,imax,j,k;    ax=0.0; 
   double big,dum,sum,temp;    xx=1.0; 
   double *vv;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   vv=vector(1,n);  #ifdef DEBUG
   *d=1.0;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=n;i++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     big=0.0;  #endif
     for (j=1;j<=n;j++)    for (j=1;j<=n;j++) { 
       if ((temp=fabs(a[i][j])) > big) big=temp;      xi[j] *= xmin; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      p[j] += xi[j]; 
     vv[i]=1.0/big;    } 
   }    free_vector(xicom,1,n); 
   for (j=1;j<=n;j++) {    free_vector(pcom,1,n); 
     for (i=1;i<j;i++) {  } 
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  char *asc_diff_time(long time_sec, char ascdiff[])
       a[i][j]=sum;  {
     }    long sec_left, days, hours, minutes;
     big=0.0;    days = (time_sec) / (60*60*24);
     for (i=j;i<=n;i++) {    sec_left = (time_sec) % (60*60*24);
       sum=a[i][j];    hours = (sec_left) / (60*60) ;
       for (k=1;k<j;k++)    sec_left = (sec_left) %(60*60);
         sum -= a[i][k]*a[k][j];    minutes = (sec_left) /60;
       a[i][j]=sum;    sec_left = (sec_left) % (60);
       if ( (dum=vv[i]*fabs(sum)) >= big) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         big=dum;    return ascdiff;
         imax=i;  }
       }  
     }  /*************** powell ************************/
     if (j != imax) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (k=1;k<=n;k++) {              double (*func)(double [])) 
         dum=a[imax][k];  { 
         a[imax][k]=a[j][k];    void linmin(double p[], double xi[], int n, double *fret, 
         a[j][k]=dum;                double (*func)(double [])); 
       }    int i,ibig,j; 
       *d = -(*d);    double del,t,*pt,*ptt,*xit;
       vv[imax]=vv[j];    double fp,fptt;
     }    double *xits;
     indx[j]=imax;    int niterf, itmp;
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {    pt=vector(1,n); 
       dum=1.0/(a[j][j]);    ptt=vector(1,n); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    xit=vector(1,n); 
     }    xits=vector(1,n); 
   }    *fret=(*func)(p); 
   free_vector(vv,1,n);  /* Doesn't work */    for (j=1;j<=n;j++) pt[j]=p[j]; 
 ;    for (*iter=1;;++(*iter)) { 
 }      fp=(*fret); 
       ibig=0; 
 void lubksb(double **a, int n, int *indx, double b[])      del=0.0; 
 {      last_time=curr_time;
   int i,ii=0,ip,j;      (void) gettimeofday(&curr_time,&tzp);
   double sum;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
        fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   for (i=1;i<=n;i++) {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     ip=indx[i];     for (i=1;i<=n;i++) {
     sum=b[ip];        printf(" %d %.12f",i, p[i]);
     b[ip]=b[i];        fprintf(ficlog," %d %.12lf",i, p[i]);
     if (ii)        fprintf(ficrespow," %.12lf", p[i]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      }
     else if (sum) ii=i;      printf("\n");
     b[i]=sum;      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");fflush(ficrespow);
   for (i=n;i>=1;i--) {      if(*iter <=3){
     sum=b[i];        tm = *localtime(&curr_time.tv_sec);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        strcpy(strcurr,asctime(&tm));
     b[i]=sum/a[i][i];  /*       asctime_r(&tm,strcurr); */
   }        forecast_time=curr_time; 
 }        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 /************ Frequencies ********************/          strcurr[itmp-1]='\0';
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {  /* Some frequencies */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          for(niterf=10;niterf<=30;niterf+=10){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   int first;          tmf = *localtime(&forecast_time.tv_sec);
   double ***freq; /* Frequencies */  /*      asctime_r(&tmf,strfor); */
   double *pp;          strcpy(strfor,asctime(&tmf));
   double pos, k2, dateintsum=0,k2cpt=0;          itmp = strlen(strfor);
   FILE *ficresp;          if(strfor[itmp-1]=='\n')
   char fileresp[FILENAMELENGTH];          strfor[itmp-1]='\0';
            printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   pp=vector(1,nlstate);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   strcpy(fileresp,"p");      }
   strcat(fileresp,fileres);      for (i=1;i<=n;i++) { 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);        fptt=(*fret); 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  #ifdef DEBUG
     exit(0);        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  #endif
   j1=0;        printf("%d",i);fflush(stdout);
          fprintf(ficlog,"%d",i);fflush(ficlog);
   j=cptcoveff;        linmin(p,xit,n,fret,func); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   first=1;          ibig=i; 
         } 
   for(k1=1; k1<=j;k1++){  #ifdef DEBUG
     for(i1=1; i1<=ncodemax[k1];i1++){        printf("%d %.12e",i,(*fret));
       j1++;        fprintf(ficlog,"%d %.12e",i,(*fret));
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for (j=1;j<=n;j++) {
         scanf("%d", i);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for (i=-1; i<=nlstate+ndeath; i++)            printf(" x(%d)=%.12e",j,xit[j]);
         for (jk=-1; jk<=nlstate+ndeath; jk++)            fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           for(m=agemin; m <= agemax+3; m++)        }
             freq[i][jk][m]=0;        for(j=1;j<=n;j++) {
                printf(" p=%.12e",p[j]);
       dateintsum=0;          fprintf(ficlog," p=%.12e",p[j]);
       k2cpt=0;        }
       for (i=1; i<=imx; i++) {        printf("\n");
         bool=1;        fprintf(ficlog,"\n");
         if  (cptcovn>0) {  #endif
           for (z1=1; z1<=cptcoveff; z1++)      } 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
               bool=0;  #ifdef DEBUG
         }        int k[2],l;
         if (bool==1) {        k[0]=1;
           for(m=firstpass; m<=lastpass; m++){        k[1]=-1;
             k2=anint[m][i]+(mint[m][i]/12.);        printf("Max: %.12e",(*func)(p));
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for (j=1;j<=n;j++) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;          printf(" %.12e",p[j]);
               if (m<lastpass) {          fprintf(ficlog," %.12e",p[j]);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        printf("\n");
               }        fprintf(ficlog,"\n");
                      for(l=0;l<=1;l++) {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          for (j=1;j<=n;j++) {
                 dateintsum=dateintsum+k2;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                 k2cpt++;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             }          }
           }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
          #endif
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
   
       if  (cptcovn>0) {        free_vector(xit,1,n); 
         fprintf(ficresp, "\n#********** Variable ");        free_vector(xits,1,n); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        free_vector(ptt,1,n); 
         fprintf(ficresp, "**********\n#");        free_vector(pt,1,n); 
       }        return; 
       for(i=1; i<=nlstate;i++)      } 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       fprintf(ficresp, "\n");      for (j=1;j<=n;j++) { 
              ptt[j]=2.0*p[j]-pt[j]; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        xit[j]=p[j]-pt[j]; 
         if(i==(int)agemax+3){        pt[j]=p[j]; 
           fprintf(ficlog,"Total");      } 
         }else{      fptt=(*func)(ptt); 
           if(first==1){      if (fptt < fp) { 
             first=0;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             printf("See log file for details...\n");        if (t < 0.0) { 
           }          linmin(p,xit,n,fret,func); 
           fprintf(ficlog,"Age %d", i);          for (j=1;j<=n;j++) { 
         }            xi[j][ibig]=xi[j][n]; 
         for(jk=1; jk <=nlstate ; jk++){            xi[j][n]=xit[j]; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          }
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(m=-1, pos=0; m <=0 ; m++)          for(j=1;j<=n;j++){
             pos += freq[jk][m][i];            printf(" %.12e",xit[j]);
           if(pp[jk]>=1.e-10){            fprintf(ficlog," %.12e",xit[j]);
             if(first==1){          }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          printf("\n");
             }          fprintf(ficlog,"\n");
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  #endif
           }else{        }
             if(first==1)      } 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    } 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  } 
           }  
         }  /**** Prevalence limit (stable or period prevalence)  ****************/
   
         for(jk=1; jk <=nlstate ; jk++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  {
             pp[jk] += freq[jk][m][i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         }       matrix by transitions matrix until convergence is reached */
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)    int i, ii,j,k;
           pos += pp[jk];    double min, max, maxmin, maxmax,sumnew=0.;
         for(jk=1; jk <=nlstate ; jk++){    /* double **matprod2(); */ /* test */
           if(pos>=1.e-5){    double **out, cov[NCOVMAX+1], **pmij();
             if(first==1)    double **newm;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double agefin, delaymax=50 ; /* Max number of years to converge */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           }else{    for (ii=1;ii<=nlstate+ndeath;ii++)
             if(first==1)      for (j=1;j<=nlstate+ndeath;j++){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      }
           }  
           if( i <= (int) agemax){     cov[1]=1.;
             if(pos>=1.e-5){   
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               probs[i][jk][j1]= pp[jk]/pos;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      newm=savm;
             }      /* Covariates have to be included here again */
             else      cov[2]=agefin;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      
           }      for (k=1; k<=cptcovn;k++) {
         }        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)      }
           for(m=-1; m <=nlstate+ndeath; m++)      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
             if(freq[jk][m][i] !=0 ) {      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
             if(first==1)      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
             }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         if(i <= (int) agemax)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           fprintf(ficresp,"\n");      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         if(first==1)      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
           printf("Others in log...\n");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         fprintf(ficlog,"\n");      
       }      savm=oldm;
     }      oldm=newm;
   }      maxmax=0.;
   dateintmean=dateintsum/k2cpt;      for(j=1;j<=nlstate;j++){
          min=1.;
   fclose(ficresp);        max=0.;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for(i=1; i<=nlstate; i++) {
   free_vector(pp,1,nlstate);          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /* End of Freq */          prlim[i][j]= newm[i][j]/(1-sumnew);
 }          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           max=FMAX(max,prlim[i][j]);
 /************ Prevalence ********************/          min=FMIN(min,prlim[i][j]);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        }
 {  /* Some frequencies */        maxmin=max-min;
          maxmax=FMAX(maxmax,maxmin);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */      if(maxmax < ftolpl){
   double *pp;        return prlim;
   double pos, k2;      }
     }
   pp=vector(1,nlstate);  }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
    /*************** transition probabilities ***************/ 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
   j=cptcoveff;    /* According to parameters values stored in x and the covariate's values stored in cov,
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       computes the probability to be observed in state j being in state i by appying the
         model to the ncovmodel covariates (including constant and age).
   for(k1=1; k1<=j;k1++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     for(i1=1; i1<=ncodemax[k1];i1++){       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       j1++;       ncth covariate in the global vector x is given by the formula:
             j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
       for (i=-1; i<=nlstate+ndeath; i++)         j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         for (jk=-1; jk<=nlstate+ndeath; jk++)         Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           for(m=agemin; m <= agemax+3; m++)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
             freq[i][jk][m]=0;       Outputs ps[i][j] the probability to be observed in j being in j according to
             the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
       for (i=1; i<=imx; i++) {    */
         bool=1;    double s1, lnpijopii;
         if  (cptcovn>0) {    /*double t34;*/
           for (z1=1; z1<=cptcoveff; z1++)    int i,j,j1, nc, ii, jj;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;      for(i=1; i<= nlstate; i++){
         }        for(j=1; j<i;j++){
         if (bool==1) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           for(m=firstpass; m<=lastpass; m++){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             k2=anint[m][i]+(mint[m][i]/12.);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          }
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
               if (m<lastpass) {  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                 if (calagedate>0)        }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for(j=i+1; j<=nlstate+ndeath;j++){
                 else          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
               }  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
             }          }
           }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }        }
       }      }
       for(i=(int)agemin; i <= (int)agemax+3; i++){      
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<= nlstate; i++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        s1=0;
             pp[jk] += freq[jk][m][i];        for(j=1; j<i; j++){
         }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(jk=1; jk <=nlstate ; jk++){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           for(m=-1, pos=0; m <=0 ; m++)        }
             pos += freq[jk][m][i];        for(j=i+1; j<=nlstate+ndeath; j++){
         }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                  /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
             pp[jk] += freq[jk][m][i];        ps[i][i]=1./(s1+1.);
         }        /* Computing other pijs */
                for(j=1; j<i; j++)
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          ps[i][j]= exp(ps[i][j])*ps[i][i];
                for(j=i+1; j<=nlstate+ndeath; j++)
         for(jk=1; jk <=nlstate ; jk++){              ps[i][j]= exp(ps[i][j])*ps[i][i];
           if( i <= (int) agemax){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
             if(pos>=1.e-5){      } /* end i */
               probs[i][jk][j1]= pp[jk]/pos;      
             }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           }        for(jj=1; jj<= nlstate+ndeath; jj++){
         }/* end jk */          ps[ii][jj]=0;
       }/* end i */          ps[ii][ii]=1;
     } /* end i1 */        }
   } /* end k1 */      }
       
        
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   free_vector(pp,1,nlstate);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
        /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 }  /* End of Freq */      /*   } */
       /*   printf("\n "); */
 /************* Waves Concatenation ***************/      /* } */
       /* printf("\n ");printf("%lf ",cov[2]);*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      /*
 {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        goto end;*/
      Death is a valid wave (if date is known).      return ps;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  /**************** Product of 2 matrices ******************/
      */  
   double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      double sum=0., jmean=0.;*/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int first;    /* in, b, out are matrice of pointers which should have been initialized 
   int j, k=0,jk, ju, jl;       before: only the contents of out is modified. The function returns
   double sum=0.;       a pointer to pointers identical to out */
   first=0;    int i, j, k;
   jmin=1e+5;    for(i=nrl; i<= nrh; i++)
   jmax=-1;      for(k=ncolol; k<=ncoloh; k++){
   jmean=0.;        out[i][k]=0.;
   for(i=1; i<=imx; i++){        for(j=ncl; j<=nch; j++)
     mi=0;          out[i][k] +=in[i][j]*b[j][k];
     m=firstpass;      }
     while(s[m][i] <= nlstate){    return out;
       if(s[m][i]>=1)  }
         mw[++mi][i]=m;  
       if(m >=lastpass)  
         break;  /************* Higher Matrix Product ***************/
       else  
         m++;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }/* end while */  {
     if (s[m][i] > nlstate){    /* Computes the transition matrix starting at age 'age' over 
       mi++;     /* Death is another wave */       'nhstepm*hstepm*stepm' months (i.e. until
       /* if(mi==0)  never been interviewed correctly before death */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
          /* Only death is a correct wave */       nhstepm*hstepm matrices. 
       mw[mi][i]=m;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
        for the memory).
     wav[i]=mi;       Model is determined by parameters x and covariates have to be 
     if(mi==0){       included manually here. 
       if(first==0){  
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);       */
         first=1;  
       }    int i, j, d, h, k;
       if(first==1){    double **out, cov[NCOVMAX+1];
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    double **newm;
       }  
     } /* end mi==0 */    /* Hstepm could be zero and should return the unit matrix */
   }    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=imx; i++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
       if (stepm <=0)      }
         dh[mi][i]=1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       else{    for(h=1; h <=nhstepm; h++){
         if (s[mw[mi+1][i]][i] > nlstate) {      for(d=1; d <=hstepm; d++){
           if (agedc[i] < 2*AGESUP) {        newm=savm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        /* Covariates have to be included here again */
           if(j==0) j=1;  /* Survives at least one month after exam */        cov[1]=1.;
           k=k+1;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           if (j >= jmax) jmax=j;        for (k=1; k<=cptcovn;k++) 
           if (j <= jmin) jmin=j;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           sum=sum+j;        for (k=1; k<=cptcovage;k++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           if (j >= jmax) jmax=j;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           else if (j <= jmin)jmin=j;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;        savm=oldm;
         }        oldm=newm;
         jk= j/stepm;      }
         jl= j -jk*stepm;      for(i=1; i<=nlstate+ndeath; i++)
         ju= j -(jk+1)*stepm;        for(j=1;j<=nlstate+ndeath;j++) {
         if(jl <= -ju)          po[i][j][h]=newm[i][j];
           dh[mi][i]=jk;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         else        }
           dh[mi][i]=jk+1;      /*printf("h=%d ",h);*/
         if(dh[mi][i]==0)    } /* end h */
           dh[mi][i]=1; /* At least one step */  /*     printf("\n H=%d \n",h); */
       }    return po;
     }  }
   }  
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /*************** log-likelihood *************/
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  double func( double *x)
  }  {
     int i, ii, j, k, mi, d, kk;
 /*********** Tricode ****************************/    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 void tricode(int *Tvar, int **nbcode, int imx)    double **out;
 {    double sw; /* Sum of weights */
   int Ndum[20],ij=1, k, j, i;    double lli; /* Individual log likelihood */
   int cptcode=0;    int s1, s2;
   cptcoveff=0;    double bbh, survp;
      long ipmx;
   for (k=0; k<19; k++) Ndum[k]=0;    /*extern weight */
   for (k=1; k<=7; k++) ncodemax[k]=0;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /*for(i=1;i<imx;i++) 
     for (i=1; i<=imx; i++) {      printf(" %d\n",s[4][i]);
       ij=(int)(covar[Tvar[j]][i]);    */
       Ndum[ij]++;    cov[1]=1.;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
     if(mle==1){
     for (i=0; i<=cptcode; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(Ndum[i]!=0) ncodemax[j]++;        /* Computes the values of the ncovmodel covariates of the model
     }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     ij=1;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
          */
     for (i=1; i<=ncodemax[j]; i++) {        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       for (k=0; k<=19; k++) {          cov[2+k]=covar[Tvar[k]][i];
         if (Ndum[k] != 0) {        }
           nbcode[Tvar[j]][ij]=k;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
                     is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
           ij++;           has been calculated etc */
         }        for(mi=1; mi<= wav[i]-1; mi++){
         if (ij > ncodemax[j]) break;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }              for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }                savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  for (k=0; k<19; k++) Ndum[k]=0;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
  for (i=1; i<=ncovmodel-2; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    ij=Tvar[i];            for (kk=1; kk<=cptcovage;kk++) {
    Ndum[ij]++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
  }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  ij=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (i=1; i<=10; i++) {            savm=oldm;
    if((Ndum[i]!=0) && (i<=ncovcol)){            oldm=newm;
      Tvaraff[ij]=i;          } /* end mult */
      ij++;        
    }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
  }          /* But now since version 0.9 we anticipate for bias at large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
  cptcoveff=ij-1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
 }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 /*********** Health Expectancies ****************/           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 {           * For stepm=1 the results are the same as for previous versions of Imach.
   /* Health expectancies */           * For stepm > 1 the results are less biased than in previous versions. 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;           */
   double age, agelim, hf;          s1=s[mw[mi][i]][i];
   double ***p3mat,***varhe;          s2=s[mw[mi+1][i]][i];
   double **dnewm,**doldm;          bbh=(double)bh[mi][i]/(double)stepm; 
   double *xp;          /* bias bh is positive if real duration
   double **gp, **gm;           * is higher than the multiple of stepm and negative otherwise.
   double ***gradg, ***trgradg;           */
   int theta;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            /* i.e. if s2 is a death state and if the date of death is known 
   xp=vector(1,npar);               then the contribution to the likelihood is the probability to 
   dnewm=matrix(1,nlstate*2,1,npar);               die between last step unit time and current  step unit time, 
   doldm=matrix(1,nlstate*2,1,nlstate*2);               which is also equal to probability to die before dh 
                 minus probability to die before dh-stepm . 
   fprintf(ficreseij,"# Health expectancies\n");               In version up to 0.92 likelihood was computed
   fprintf(ficreseij,"# Age");          as if date of death was unknown. Death was treated as any other
   for(i=1; i<=nlstate;i++)          health state: the date of the interview describes the actual state
     for(j=1; j<=nlstate;j++)          and not the date of a change in health state. The former idea was
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          to consider that at each interview the state was recorded
   fprintf(ficreseij,"\n");          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
   if(estepm < stepm){          the contribution of an exact death to the likelihood. This new
     printf ("Problem %d lower than %d\n",estepm, stepm);          contribution is smaller and very dependent of the step unit
   }          stepm. It is no more the probability to die between last interview
   else  hstepm=estepm;            and month of death but the probability to survive from last
   /* We compute the life expectancy from trapezoids spaced every estepm months          interview up to one month before death multiplied by the
    * This is mainly to measure the difference between two models: for example          probability to die within a month. Thanks to Chris
    * if stepm=24 months pijx are given only every 2 years and by summing them          Jackson for correcting this bug.  Former versions increased
    * we are calculating an estimate of the Life Expectancy assuming a linear          mortality artificially. The bad side is that we add another loop
    * progression inbetween and thus overestimating or underestimating according          which slows down the processing. The difference can be up to 10%
    * to the curvature of the survival function. If, for the same date, we          lower mortality.
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            */
    * to compare the new estimate of Life expectancy with the same linear            lli=log(out[s1][s2] - savm[s1][s2]);
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */  
           } else if  (s2==-2) {
   /* For example we decided to compute the life expectancy with the smallest unit */            for (j=1,survp=0. ; j<=nlstate; j++) 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      nhstepm is the number of hstepm from age to agelim            /*survp += out[s1][j]; */
      nstepm is the number of stepm from age to agelin.            lli= log(survp);
      Look at hpijx to understand the reason of that which relies in memory size          }
      and note for a fixed period like estepm months */          
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          else if  (s2==-4) { 
      survival function given by stepm (the optimization length). Unfortunately it            for (j=3,survp=0. ; j<=nlstate; j++)  
      means that if the survival funtion is printed only each two years of age and if              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            lli= log(survp); 
      results. So we changed our mind and took the option of the best precision.          } 
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
   agelim=AGESUP;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            lli= log(survp); 
     /* nhstepm age range expressed in number of stepm */          } 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          else{
     /* if (stepm >= YEARM) hstepm=1;*/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     gp=matrix(0,nhstepm,1,nlstate*2);          /*if(lli ==000.0)*/
     gm=matrix(0,nhstepm,1,nlstate*2);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          sw += weight[i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          } /* end of wave */
        } /* end of individual */
     }  else if(mle==2){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     /* Computing Variances of health expectancies */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
      for(theta=1; theta <=npar; theta++){            for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<=npar; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
       cptj=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1; j<= nlstate; j++){            for (kk=1; kk<=cptcovage;kk++) {
         for(i=1; i<=nlstate; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           cptj=cptj+1;            }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
       }          } /* end mult */
              
                s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++)          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          bbh=(double)bh[mi][i]/(double)stepm; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                ipmx +=1;
       cptj=0;          sw += weight[i];
       for(j=1; j<= nlstate; j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(i=1;i<=nlstate;i++){        } /* end of wave */
           cptj=cptj+1;      } /* end of individual */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    }  else if(mle==3){  /* exponential inter-extrapolation */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate*2; j++)            for (j=1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm-1; h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
      }          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
 /* End theta */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
      for(h=0; h<=nhstepm-1; h++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate*2;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(theta=1; theta <=npar; theta++)            savm=oldm;
           trgradg[h][j][theta]=gradg[h][theta][j];            oldm=newm;
                } /* end mult */
         
      for(i=1;i<=nlstate*2;i++)          s1=s[mw[mi][i]][i];
       for(j=1;j<=nlstate*2;j++)          s2=s[mw[mi+1][i]][i];
         varhe[i][j][(int)age] =0.;          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      printf("%d|",(int)age);fflush(stdout);          ipmx +=1;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          sw += weight[i];
      for(h=0;h<=nhstepm-1;h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(k=0;k<=nhstepm-1;k++){        } /* end of wave */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      } /* end of individual */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for(i=1;i<=nlstate*2;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(j=1;j<=nlstate*2;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     /* Computing expectancies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++)            }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          for(d=0; d<dh[mi][i]; d++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            newm=savm;
                      cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
           
     fprintf(ficreseij,"%3.0f",age );            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     cptj=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1; i<=nlstate;i++)            savm=oldm;
       for(j=1; j<=nlstate;j++){            oldm=newm;
         cptj++;          } /* end mult */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        
       }          s1=s[mw[mi][i]][i];
     fprintf(ficreseij,"\n");          s2=s[mw[mi+1][i]][i];
              if( s2 > nlstate){ 
     free_matrix(gm,0,nhstepm,1,nlstate*2);            lli=log(out[s1][s2] - savm[s1][s2]);
     free_matrix(gp,0,nhstepm,1,nlstate*2);          }else{
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ipmx +=1;
   }          sw += weight[i];
   printf("\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficlog,"\n");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
   free_vector(xp,1,npar);      } /* end of individual */
   free_matrix(dnewm,1,nlstate*2,1,npar);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /************ Variance ******************/            for (j=1;j<=nlstate+ndeath;j++){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Variance of health expectancies */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for(d=0; d<dh[mi][i]; d++){
   /* double **newm;*/            newm=savm;
   double **dnewm,**doldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **dnewmp,**doldmp;            for (kk=1; kk<=cptcovage;kk++) {
   int i, j, nhstepm, hstepm, h, nstepm ;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int k, cptcode;            }
   double *xp;          
   double **gp, **gm;  /* for var eij */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***gradg, ***trgradg; /*for var eij */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **gradgp, **trgradgp; /* for var p point j */            savm=oldm;
   double *gpp, *gmp; /* for var p point j */            oldm=newm;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          } /* end mult */
   double ***p3mat;        
   double age,agelim, hf;          s1=s[mw[mi][i]][i];
   int theta;          s2=s[mw[mi+1][i]][i];
   char digit[4];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   char digitp[16];          ipmx +=1;
           sw += weight[i];
   char fileresprobmorprev[FILENAMELENGTH];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   if(popbased==1)        } /* end of wave */
     strcpy(digitp,"-populbased-");      } /* end of individual */
   else    } /* End of if */
     strcpy(digitp,"-stablbased-");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   strcpy(fileresprobmorprev,"prmorprev");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   sprintf(digit,"%-d",ij);    return -l;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  }
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  
   strcat(fileresprobmorprev,digitp); /* Popbased or not */  /*************** log-likelihood *************/
   strcat(fileresprobmorprev,fileres);  double funcone( double *x)
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  {
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    /* Same as likeli but slower because of a lot of printf and if */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    double **out;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    double lli; /* Individual log likelihood */
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    double llt;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    int s1, s2;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    double bbh, survp;
     fprintf(ficresprobmorprev," p.%-d SE",j);    /*extern weight */
     for(i=1; i<=nlstate;i++)    /* We are differentiating ll according to initial status */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }      /*for(i=1;i<imx;i++) 
   fprintf(ficresprobmorprev,"\n");      printf(" %d\n",s[4][i]);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    cov[1]=1.;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   else{    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficgp,"\n# Routine varevsij");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }      for(mi=1; mi<= wav[i]-1; mi++){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("Problem with html file: %s\n", optionfilehtm);          for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     exit(0);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }          }
   else{        for(d=0; d<dh[mi][i]; d++){
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          newm=savm;
   }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          }
   fprintf(ficresvij,"# Age");          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   for(i=1; i<=nlstate;i++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   fprintf(ficresvij,"\n");          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
   xp=vector(1,npar);          oldm=newm;
   dnewm=matrix(1,nlstate,1,npar);        } /* end mult */
   doldm=matrix(1,nlstate,1,nlstate);        
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        s1=s[mw[mi][i]][i];
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        /* bias is positive if real duration
   gpp=vector(nlstate+1,nlstate+ndeath);         * is higher than the multiple of stepm and negative otherwise.
   gmp=vector(nlstate+1,nlstate+ndeath);         */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
            lli=log(out[s1][s2] - savm[s1][s2]);
   if(estepm < stepm){        } else if  (s2==-2) {
     printf ("Problem %d lower than %d\n",estepm, stepm);          for (j=1,survp=0. ; j<=nlstate; j++) 
   }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   else  hstepm=estepm;            lli= log(survp);
   /* For example we decided to compute the life expectancy with the smallest unit */        }else if (mle==1){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      nhstepm is the number of hstepm from age to agelim        } else if(mle==2){
      nstepm is the number of stepm from age to agelin.          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      Look at hpijx to understand the reason of that which relies in memory size        } else if(mle==3){  /* exponential inter-extrapolation */
      and note for a fixed period like k years */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      survival function given by stepm (the optimization length). Unfortunately it          lli=log(out[s1][s2]); /* Original formula */
      means that if the survival funtion is printed only each two years of age and if        } else{  /* mle=0 back to 1 */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      results. So we changed our mind and took the option of the best precision.          /*lli=log(out[s1][s2]); */ /* Original formula */
   */        } /* End of if */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        ipmx +=1;
   agelim = AGESUP;        sw += weight[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        if(globpr){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);   %11.6f %11.6f %11.6f ", \
     gp=matrix(0,nhstepm,1,nlstate);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     gm=matrix(0,nhstepm,1,nlstate);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     for(theta=1; theta <=npar; theta++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } /* end of wave */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if (popbased==1) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(i=1; i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           prlim[i][i]=probs[(int)age][i][ij];    if(globpr==0){ /* First time we count the contributions and weights */
       }      gipmx=ipmx;
        gsw=sw;
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){    return -l;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }  /*************** function likelione ***********/
       /* This for computing forces of mortality (h=1)as a weighted average */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){  {
         for(i=1; i<= nlstate; i++)    /* This routine should help understanding what is done with 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];       the selection of individuals/waves and
       }           to check the exact contribution to the likelihood.
       /* end force of mortality */       Plotting could be done.
      */
       for(i=1; i<=npar; i++) /* Computes gradient */    int k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      if(*globpri !=0){ /* Just counts and sums, no printings */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      strcpy(fileresilk,"ilk"); 
        strcat(fileresilk,fileres);
       if (popbased==1) {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         for(i=1; i<=nlstate;i++)        printf("Problem with resultfile: %s\n", fileresilk);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       for(j=1; j<= nlstate; j++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         for(h=0; h<=nhstepm; h++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for(k=1; k<=nlstate; k++) 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       }    }
       /* This for computing force of mortality (h=1)as a weighted average */  
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    *fretone=(*funcone)(p);
         for(i=1; i<= nlstate; i++)    if(*globpri !=0){
           gmp[j] += prlim[i][i]*p3mat[i][j][1];      fclose(ficresilk);
       }          fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       /* end force of mortality */      fflush(fichtm); 
     } 
       for(j=1; j<= nlstate; j++) /* vareij */    return;
         for(h=0; h<=nhstepm; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  /*********** Maximum Likelihood Estimation ***************/
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  
       }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     } /* End theta */    int i,j, iter;
     double **xi;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    double fret;
     double fretone; /* Only one call to likelihood */
     for(h=0; h<=nhstepm; h++) /* veij */    /*  char filerespow[FILENAMELENGTH];*/
       for(j=1; j<=nlstate;j++)    xi=matrix(1,npar,1,npar);
         for(theta=1; theta <=npar; theta++)    for (i=1;i<=npar;i++)
           trgradg[h][j][theta]=gradg[h][theta][j];      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(theta=1; theta <=npar; theta++)    strcpy(filerespow,"pow"); 
         trgradgp[j][theta]=gradgp[theta][j];    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      printf("Problem with resultfile: %s\n", filerespow);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(j=1;j<=nlstate;j++)    }
         vareij[i][j][(int)age] =0.;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
     for(h=0;h<=nhstepm;h++){      for(j=1;j<=nlstate+ndeath;j++)
       for(k=0;k<=nhstepm;k++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    fprintf(ficrespow,"\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    free_matrix(xi,1,npar,1,npar);
       }    fclose(ficrespow);
     }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     /* pptj */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  }
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  /**** Computes Hessian and covariance matrix ***/
         varppt[j][i]=doldmp[j][i];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     /* end ppptj */  {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      double  **a,**y,*x,pd;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    double **hess;
      int i, j,jk;
     if (popbased==1) {    int *indx;
       for(i=1; i<=nlstate;i++)  
         prlim[i][i]=probs[(int)age][i][ij];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
        void lubksb(double **a, int npar, int *indx, double b[]) ;
     /* This for computing force of mortality (h=1)as a weighted average */    void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    double gompertz(double p[]);
       for(i=1; i<= nlstate; i++)    hess=matrix(1,npar,1,npar);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  
     }        printf("\nCalculation of the hessian matrix. Wait...\n");
     /* end force of mortality */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      printf("%d",i);fflush(stdout);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      fprintf(ficlog,"%d",i);fflush(ficlog);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));     
       for(i=1; i<=nlstate;i++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      
       }      /*  printf(" %f ",p[i]);
     }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     fprintf(ficresprobmorprev,"\n");    }
     
     fprintf(ficresvij,"%.0f ",age );    for (i=1;i<=npar;i++) {
     for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++)  {
       for(j=1; j<=nlstate;j++){        if (j>i) { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          printf(".%d%d",i,j);fflush(stdout);
       }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     fprintf(ficresvij,"\n");          hess[i][j]=hessij(p,delti,i,j,func,npar);
     free_matrix(gp,0,nhstepm,1,nlstate);          
     free_matrix(gm,0,nhstepm,1,nlstate);          hess[j][i]=hess[i][j];    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   } /* End age */    }
   free_vector(gpp,nlstate+1,nlstate+ndeath);    printf("\n");
   free_vector(gmp,nlstate+1,nlstate+ndeath);    fprintf(ficlog,"\n");
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    a=matrix(1,npar,1,npar);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    y=matrix(1,npar,1,npar);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    x=vector(1,npar);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    indx=ivector(1,npar);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    for (i=1;i<=npar;i++)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    ludcmp(a,npar,indx,&pd);
   
   free_vector(xp,1,npar);    for (j=1;j<=npar;j++) {
   free_matrix(doldm,1,nlstate,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
   free_matrix(dnewm,1,nlstate,1,npar);      x[j]=1;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      lubksb(a,npar,indx,x);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      for (i=1;i<=npar;i++){ 
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        matcov[i][j]=x[i];
   fclose(ficresprobmorprev);      }
   fclose(ficgp);    }
   fclose(fichtm);  
     printf("\n#Hessian matrix#\n");
 }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
 /************ Variance of prevlim ******************/      for (j=1;j<=npar;j++) { 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        printf("%.3e ",hess[i][j]);
 {        fprintf(ficlog,"%.3e ",hess[i][j]);
   /* Variance of prevalence limit */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      printf("\n");
   double **newm;      fprintf(ficlog,"\n");
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    /* Recompute Inverse */
   double *xp;    for (i=1;i<=npar;i++)
   double *gp, *gm;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double **gradg, **trgradg;    ludcmp(a,npar,indx,&pd);
   double age,agelim;  
   int theta;    /*  printf("\n#Hessian matrix recomputed#\n");
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    for (j=1;j<=npar;j++) {
   fprintf(ficresvpl,"# Age");      for (i=1;i<=npar;i++) x[i]=0;
   for(i=1; i<=nlstate;i++)      x[j]=1;
       fprintf(ficresvpl," %1d-%1d",i,i);      lubksb(a,npar,indx,x);
   fprintf(ficresvpl,"\n");      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   xp=vector(1,npar);        printf("%.3e ",y[i][j]);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"%.3e ",y[i][j]);
   doldm=matrix(1,nlstate,1,nlstate);      }
        printf("\n");
   hstepm=1*YEARM; /* Every year of age */      fprintf(ficlog,"\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }
   agelim = AGESUP;    */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_matrix(a,1,npar,1,npar);
     if (stepm >= YEARM) hstepm=1;    free_matrix(y,1,npar,1,npar);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_vector(x,1,npar);
     gradg=matrix(1,npar,1,nlstate);    free_ivector(indx,1,npar);
     gp=vector(1,nlstate);    free_matrix(hess,1,npar,1,npar);
     gm=vector(1,nlstate);  
   
     for(theta=1; theta <=npar; theta++){  }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /*************** hessian matrix ****************/
       }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    int i;
         gp[i] = prlim[i][i];    int l=1, lmax=20;
        double k1,k2;
       for(i=1; i<=npar; i++) /* Computes gradient */    double p2[MAXPARM+1]; /* identical to x */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double res;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(i=1;i<=nlstate;i++)    double fx;
         gm[i] = prlim[i][i];    int k=0,kmax=10;
     double l1;
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fx=func(x);
     } /* End theta */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     trgradg =matrix(1,nlstate,1,npar);      l1=pow(10,l);
       delts=delt;
     for(j=1; j<=nlstate;j++)      for(k=1 ; k <kmax; k=k+1){
       for(theta=1; theta <=npar; theta++)        delt = delta*(l1*k);
         trgradg[j][theta]=gradg[theta][j];        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     for(i=1;i<=nlstate;i++)        p2[theta]=x[theta]-delt;
       varpl[i][(int)age] =0.;        k2=func(p2)-fx;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     for(i=1;i<=nlstate;i++)        
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficresvpl,"%.0f ",age );        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1; i<=nlstate;i++)  #endif
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     fprintf(ficresvpl,"\n");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     free_vector(gp,1,nlstate);          k=kmax;
     free_vector(gm,1,nlstate);        }
     free_matrix(gradg,1,npar,1,nlstate);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     free_matrix(trgradg,1,nlstate,1,npar);          k=kmax; l=lmax*10.;
   } /* End age */        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   free_vector(xp,1,npar);          delts=delt;
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);      }
     }
 }    delti[theta]=delts;
     return res; 
 /************ Variance of one-step probabilities  ******************/    
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  }
 {  
   int i, j=0,  i1, k1, l1, t, tj;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   int k2, l2, j1,  z1;  {
   int k=0,l, cptcode;    int i;
   int first=1, first1;    int l=1, l1, lmax=20;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    double k1,k2,k3,k4,res,fx;
   double **dnewm,**doldm;    double p2[MAXPARM+1];
   double *xp;    int k;
   double *gp, *gm;  
   double **gradg, **trgradg;    fx=func(x);
   double **mu;    for (k=1; k<=2; k++) {
   double age,agelim, cov[NCOVMAX];      for (i=1;i<=npar;i++) p2[i]=x[i];
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      p2[thetai]=x[thetai]+delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char fileresprob[FILENAMELENGTH];      k1=func(p2)-fx;
   char fileresprobcov[FILENAMELENGTH];    
   char fileresprobcor[FILENAMELENGTH];      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***varpij;      k2=func(p2)-fx;
     
   strcpy(fileresprob,"prob");      p2[thetai]=x[thetai]-delti[thetai]/k;
   strcat(fileresprob,fileres);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      k3=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprob);    
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcpy(fileresprobcov,"probcov");      k4=func(p2)-fx;
   strcat(fileresprobcov,fileres);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  #ifdef DEBUG
     printf("Problem with resultfile: %s\n", fileresprobcov);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }  #endif
   strcpy(fileresprobcor,"probcor");    }
   strcat(fileresprobcor,fileres);    return res;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  /************** Inverse of matrix **************/
   }  void ludcmp(double **a, int n, int *indx, double *d) 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  { 
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int i,imax,j,k; 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double big,dum,sum,temp; 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double *vv; 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);   
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    vv=vector(1,n); 
      *d=1.0; 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    for (i=1;i<=n;i++) { 
   fprintf(ficresprob,"# Age");      big=0.0; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      for (j=1;j<=n;j++) 
   fprintf(ficresprobcov,"# Age");        if ((temp=fabs(a[i][j])) > big) big=temp; 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   fprintf(ficresprobcov,"# Age");      vv[i]=1.0/big; 
     } 
     for (j=1;j<=n;j++) { 
   for(i=1; i<=nlstate;i++)      for (i=1;i<j;i++) { 
     for(j=1; j<=(nlstate+ndeath);j++){        sum=a[i][j]; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        a[i][j]=sum; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      } 
     }        big=0.0; 
   fprintf(ficresprob,"\n");      for (i=j;i<=n;i++) { 
   fprintf(ficresprobcov,"\n");        sum=a[i][j]; 
   fprintf(ficresprobcor,"\n");        for (k=1;k<j;k++) 
   xp=vector(1,npar);          sum -= a[i][k]*a[k][j]; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        a[i][j]=sum; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          big=dum; 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          imax=i; 
   first=1;        } 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      } 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      if (j != imax) { 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        for (k=1;k<=n;k++) { 
     exit(0);          dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
   else{          a[j][k]=dum; 
     fprintf(ficgp,"\n# Routine varprob");        } 
   }        *d = -(*d); 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        vv[imax]=vv[j]; 
     printf("Problem with html file: %s\n", optionfilehtm);      } 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      indx[j]=imax; 
     exit(0);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   }      if (j != n) { 
   else{        dum=1.0/(a[j][j]); 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fprintf(fichtm,"\n");      } 
     } 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    free_vector(vv,1,n);  /* Doesn't work */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  ;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  } 
   
   }  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
      int i,ii=0,ip,j; 
   cov[1]=1;    double sum; 
   tj=cptcoveff;   
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    for (i=1;i<=n;i++) { 
   j1=0;      ip=indx[i]; 
   for(t=1; t<=tj;t++){      sum=b[ip]; 
     for(i1=1; i1<=ncodemax[t];i1++){      b[ip]=b[i]; 
       j1++;      if (ii) 
              for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       if  (cptcovn>0) {      else if (sum) ii=i; 
         fprintf(ficresprob, "\n#********** Variable ");      b[i]=sum; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } 
         fprintf(ficresprob, "**********\n#");    for (i=n;i>=1;i--) { 
         fprintf(ficresprobcov, "\n#********** Variable ");      sum=b[i]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficresprobcov, "**********\n#");      b[i]=sum/a[i][i]; 
            } 
         fprintf(ficgp, "\n#********** Variable ");  } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficgp, "**********\n#");  void pstamp(FILE *fichier)
          {
            fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");  }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  /************ Frequencies ********************/
          void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         fprintf(ficresprobcor, "\n#********** Variable ");      {  /* Some frequencies */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
         fprintf(ficgp, "**********\n#");        int i, m, jk, k1,i1, j1, bool, z1,j;
       }    int first;
          double ***freq; /* Frequencies */
       for (age=bage; age<=fage; age ++){    double *pp, **prop;
         cov[2]=age;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for (k=1; k<=cptcovn;k++) {    char fileresp[FILENAMELENGTH];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    
         }    pp=vector(1,nlstate);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    prop=matrix(1,nlstate,iagemin,iagemax+3);
         for (k=1; k<=cptcovprod;k++)    strcpy(fileresp,"p");
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(fileresp,fileres);
            if((ficresp=fopen(fileresp,"w"))==NULL) {
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      printf("Problem with prevalence resultfile: %s\n", fileresp);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         gp=vector(1,(nlstate)*(nlstate+ndeath));      exit(0);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    }
        freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         for(theta=1; theta <=npar; theta++){    j1=0;
           for(i=1; i<=npar; i++)    
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    j=cptcoveff;
              if (cptcovn<1) {j=1;ncodemax[1]=1;}
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
              first=1;
           k=0;  
           for(i=1; i<= (nlstate); i++){    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
             for(j=1; j<=(nlstate+ndeath);j++){    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
               k=k+1;    /*    j1++;
               gp[k]=pmmij[i][j];  */
             }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                    scanf("%d", i);*/
           for(i=1; i<=npar; i++)        for (i=-5; i<=nlstate+ndeath; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                for(m=iagemin; m <= iagemax+3; m++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              freq[i][jk][m]=0;
           k=0;        
           for(i=1; i<=(nlstate); i++){        for (i=1; i<=nlstate; i++)  
             for(j=1; j<=(nlstate+ndeath);j++){          for(m=iagemin; m <= iagemax+3; m++)
               k=k+1;            prop[i][m]=0;
               gm[k]=pmmij[i][j];        
             }        dateintsum=0;
           }        k2cpt=0;
              for (i=1; i<=imx; i++) {
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          bool=1;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
         }            for (z1=1; z1<=cptcoveff; z1++)       
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
           for(theta=1; theta <=npar; theta++)                bool=0;
             trgradg[j][theta]=gradg[theta][j];                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                          bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                      } 
         pmij(pmmij,cov,ncovmodel,x,nlstate);          }
           
         k=0;          if (bool==1){
         for(i=1; i<=(nlstate); i++){            for(m=firstpass; m<=lastpass; m++){
           for(j=1; j<=(nlstate+ndeath);j++){              k2=anint[m][i]+(mint[m][i]/12.);
             k=k+1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             mu[k][(int) age]=pmmij[i][j];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                if (m<lastpass) {
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             varpij[i][j][(int)age] = doldm[i][j];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
         /*printf("\n%d ",(int)age);                
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                  dateintsum=dateintsum+k2;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                  k2cpt++;
      }*/                }
                 /*}*/
         fprintf(ficresprob,"\n%d ",(int)age);            }
         fprintf(ficresprobcov,"\n%d ",(int)age);          }
         fprintf(ficresprobcor,"\n%d ",(int)age);        } /* end i */
          
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        pstamp(ficresp);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        if  (cptcovn>0) {
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          fprintf(ficresp, "\n#********** Variable "); 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresp, "**********\n#");
         i=0;          fprintf(ficlog, "\n#********** Variable "); 
         for (k=1; k<=(nlstate);k++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for (l=1; l<=(nlstate+ndeath);l++){          fprintf(ficlog, "**********\n#");
             i=i++;        }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        for(i=1; i<=nlstate;i++) 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             for (j=1; j<=i;j++){        fprintf(ficresp, "\n");
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        for(i=iagemin; i <= iagemax+3; i++){
             }          if(i==iagemax+3){
           }            fprintf(ficlog,"Total");
         }/* end of loop for state */          }else{
       } /* end of loop for age */            if(first==1){
               first=0;
       /* Confidence intervalle of pij  */              printf("See log file for details...\n");
       /*            }
       fprintf(ficgp,"\nset noparametric;unset label");            fprintf(ficlog,"Age %d", i);
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          }
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for(jk=1; jk <=nlstate ; jk++){
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);              pp[jk] += freq[jk][m][i]; 
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          }
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          for(jk=1; jk <=nlstate ; jk++){
       */            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            if(pp[jk]>=1.e-10){
       first1=1;              if(first==1){
       for (k2=1; k2<=(nlstate);k2++){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for (l2=1; l2<=(nlstate+ndeath);l2++){              }
           if(l2==k2) continue;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           j=(k2-1)*(nlstate+ndeath)+l2;            }else{
           for (k1=1; k1<=(nlstate);k1++){              if(first==1)
             for (l1=1; l1<=(nlstate+ndeath);l1++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               if(l1==k1) continue;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               i=(k1-1)*(nlstate+ndeath)+l1;            }
               if(i<=j) continue;          }
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){          for(jk=1; jk <=nlstate ; jk++){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              pp[jk] += freq[jk][m][i];
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          }       
                   mu1=mu[i][(int) age]/stepm*YEARM ;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   mu2=mu[j][(int) age]/stepm*YEARM;            pos += pp[jk];
                   c12=cv12/sqrt(v1*v2);            posprop += prop[jk][i];
                   /* Computing eigen value of matrix of covariance */          }
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          for(jk=1; jk <=nlstate ; jk++){
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            if(pos>=1.e-5){
                   /* Eigen vectors */              if(first==1)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   /*v21=sqrt(1.-v11*v11); *//* error */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   v21=(lc1-v1)/cv12*v11;            }else{
                   v12=-v21;              if(first==1)
                   v22=v11;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   tnalp=v21/v11;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   if(first1==1){            }
                     first1=0;            if( i <= iagemax){
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);              if(pos>=1.e-5){
                   }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                   /*printf(fignu*/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              }
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */              else
                   if(first==1){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                     first=0;            }
                     fprintf(ficgp,"\nset parametric;unset label");          }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);          
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for(jk=-1; jk <=nlstate+ndeath; jk++)
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);            for(m=-1; m <=nlstate+ndeath; m++)
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);              if(freq[jk][m][i] !=0 ) {
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);              if(first==1)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\              }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          if(i <= iagemax)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            fprintf(ficresp,"\n");
                   }else{          if(first==1)
                     first=0;            printf("Others in log...\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          fprintf(ficlog,"\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        /*}*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    dateintmean=dateintsum/k2cpt; 
                   }/* if first */   
                 } /* age mod 5 */    fclose(ficresp);
               } /* end loop age */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    free_vector(pp,1,nlstate);
               first=1;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             } /*l12 */    /* End of Freq */
           } /* k12 */  }
         } /*l1 */  
       }/* k1 */  /************ Prevalence ********************/
     } /* loop covariates */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  {  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       in each health status at the date of interview (if between dateprev1 and dateprev2).
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);       We still use firstpass and lastpass as another selection.
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);   
   }    int i, m, jk, k1, i1, j1, bool, z1,j;
   free_vector(xp,1,npar);    double ***freq; /* Frequencies */
   fclose(ficresprob);    double *pp, **prop;
   fclose(ficresprobcov);    double pos,posprop; 
   fclose(ficresprobcor);    double  y2; /* in fractional years */
   fclose(ficgp);    int iagemin, iagemax;
   fclose(fichtm);    int first; /** to stop verbosity which is redirected to log file */
 }  
     iagemin= (int) agemin;
     iagemax= (int) agemax;
 /******************* Printing html file ***********/    /*pp=vector(1,nlstate);*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    prop=matrix(1,nlstate,iagemin,iagemax+3); 
                   int lastpass, int stepm, int weightopt, char model[],\    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    j1=0;
                   int popforecast, int estepm ,\    
                   double jprev1, double mprev1,double anprev1, \    /*j=cptcoveff;*/
                   double jprev2, double mprev2,double anprev2){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   int jj1, k1, i1, cpt;    
   /*char optionfilehtm[FILENAMELENGTH];*/    first=1;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     printf("Problem with %s \n",optionfilehtm), exit(0);      /*for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);        j1++;*/
   }        
         for (i=1; i<=nlstate; i++)  
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          for(m=iagemin; m <= iagemax+3; m++)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n            prop[i][m]=0.0;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n       
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Life expectancies by age and initial health status (estepm=%2d months):          bool=1;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          if  (cptcovn>0) {
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");                bool=0;
           } 
  m=cptcoveff;          if (bool==1) { 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  jj1=0;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  for(k1=1; k1<=m;k1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    for(i1=1; i1<=ncodemax[k1];i1++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      jj1++;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      if (cptcovn > 0) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
        for (cpt=1; cpt<=cptcoveff;cpt++)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                  prop[s[m][i]][iagemax+3] += weight[i]; 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                } 
      }              }
      /* Pij */            } /* end selection of waves */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
      /* Quasi-incidences */        for(i=iagemin; i <= iagemax+3; i++){  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            posprop += prop[jk][i]; 
        /* Stable prevalence in each health state */          } 
        for(cpt=1; cpt<nlstate;cpt++){          
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          for(jk=1; jk <=nlstate ; jk++){     
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if( i <=  iagemax){ 
        }              if(posprop>=1.e-5){ 
      for(cpt=1; cpt<=nlstate;cpt++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              } else{
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                if(first==1){
      }                  first=0;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 health expectancies in states (1) and (2): e%s%d.png<br>                }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }
    } /* end i1 */            } 
  }/* End k1 */          }/* end jk */ 
  fprintf(fichtm,"</ul>");        }/* end i */ 
       /*} *//* end i1 */
     } /* end j1 */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    /*free_vector(pp,1,nlstate);*/
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  }  /* End of prevalence */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  /************* Waves Concatenation ***************/
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  if(popforecast==1) fprintf(fichtm,"\n  {
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       Death is a valid wave (if date is known).
         <br>",fileres,fileres,fileres,fileres);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  else       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);       and mw[mi+1][i]. dh depends on stepm.
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");       */
   
  m=cptcoveff;    int i, mi, m;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
  jj1=0;    int first;
  for(k1=1; k1<=m;k1++){    int j, k=0,jk, ju, jl;
    for(i1=1; i1<=ncodemax[k1];i1++){    double sum=0.;
      jj1++;    first=0;
      if (cptcovn > 0) {    jmin=1e+5;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    jmax=-1;
        for (cpt=1; cpt<=cptcoveff;cpt++)    jmean=0.;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    for(i=1; i<=imx; i++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      mi=0;
      }      m=firstpass;
      for(cpt=1; cpt<=nlstate;cpt++) {      while(s[m][i] <= nlstate){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 interval) in state (%d): v%s%d%d.png <br>          mw[++mi][i]=m;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if(m >=lastpass)
      }          break;
    } /* end i1 */        else
  }/* End k1 */          m++;
  fprintf(fichtm,"</ul>");      }/* end while */
 fclose(fichtm);      if (s[m][i] > nlstate){
 }        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
 /******************* Gnuplot file **************/           /* Only death is a correct wave */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        mw[mi][i]=m;
       }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;      wav[i]=mi;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      if(mi==0){
     printf("Problem with file %s",optionfilegnuplot);        nbwarn++;
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        if(first==0){
   }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
 #ifdef windows        }
     fprintf(ficgp,"cd \"%s\" \n",pathc);        if(first==1){
 #endif          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 m=pow(2,cptcoveff);        }
        } /* end mi==0 */
  /* 1eme*/    } /* End individuals */
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
 #ifdef windows        if (stepm <=0)
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          dh[mi][i]=1;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        else{
 #endif          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 #ifdef unix            if (agedc[i] < 2*AGESUP) {
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              if(j==0) j=1;  /* Survives at least one month after exam */
 #endif              else if(j<0){
                 nberr++;
 for (i=1; i<= nlstate ; i ++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                j=1; /* Temporary Dangerous patch */
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              k=k+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (j >= jmax){
 }                jmax=j;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                ijmax=i;
      for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if (j <= jmin){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                jmin=j;
 }                  ijmin=i;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              }
 #ifdef unix              sum=sum+j;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 #endif              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    }            }
   }          }
   /*2 eme*/          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   for (k1=1; k1<= m ; k1 ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            k=k+1;
                if (j >= jmax) {
     for (i=1; i<= nlstate+1 ; i ++) {              jmax=j;
       k=2*i;              ijmax=i;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            else if (j <= jmin){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              ijmin=i;
 }              }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(j<0){
       for (j=1; j<= nlstate+1 ; j ++) {              nberr++;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }              }
       fprintf(ficgp,"\" t\"\" w l 0,");            sum=sum+j;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          jk= j/stepm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          jl= j -jk*stepm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          ju= j -(jk+1)*stepm;
 }            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if(jl==0){
       else fprintf(ficgp,"\" t\"\" w l 0,");              dh[mi][i]=jk;
     }              bh[mi][i]=0;
   }            }else{ /* We want a negative bias in order to only have interpolation ie
                      * to avoid the price of an extra matrix product in likelihood */
   /*3eme*/              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }else{
       k=2+nlstate*(2*cpt-2);            if(jl <= -ju){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              dh[mi][i]=jk;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              bh[mi][i]=jl;       /* bias is positive if real duration
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                                   * is higher than the multiple of stepm and negative otherwise.
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                                   */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            else{
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              dh[mi][i]=jk+1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              bh[mi][i]=ju;
             }
 */            if(dh[mi][i]==0){
       for (i=1; i< nlstate ; i ++) {              dh[mi][i]=1; /* At least one step */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
     }          } /* end if mle */
   }        }
        } /* end wave */
   /* CV preval stat */    }
     for (k1=1; k1<= m ; k1 ++) {    jmean=sum/k;
     for (cpt=1; cpt<nlstate ; cpt ++) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       k=3;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);   }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
   /*********** Tricode ****************************/
       for (i=1; i< nlstate ; i ++)  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
         fprintf(ficgp,"+$%d",k+i+1);  {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
          /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       l=3+(nlstate+ndeath)*cpt;    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
       for (i=1; i< nlstate ; i ++) {    /* nbcode[Tvar[j]][1]= 
         l=3+(nlstate+ndeath)*cpt;    */
         fprintf(ficgp,"+$%d",l+i+1);  
       }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      int modmaxcovj=0; /* Modality max of covariates j */
     }    int cptcode=0; /* Modality max of covariates j */
   }      int modmincovj=0; /* Modality min of covariates j */
    
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    cptcoveff=0; 
     for(k=1; k <=(nlstate+ndeath); k++){   
       if (k != i) {    for (k=-1; k < maxncov; k++) Ndum[k]=0;
         for(j=1; j <=ncovmodel; j++){    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;    /* Loop on covariates without age and products */
           fprintf(ficgp,"\n");    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
         }      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
       }                                 modality of this covariate Vj*/ 
     }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
    }                                      * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
      for(jk=1; jk <=m; jk++) {        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);                                        modality of the nth covariate of individual i. */
        if (ng==2)        if (ij > modmaxcovj)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          modmaxcovj=ij; 
        else        else if (ij < modmincovj) 
          fprintf(ficgp,"\nset title \"Probability\"\n");          modmincovj=ij; 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        if ((ij < -1) && (ij > NCOVMAX)){
        i=1;          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
        for(k2=1; k2<=nlstate; k2++) {          exit(1);
          k3=i;        }else
          for(k=1; k<=(nlstate+ndeath); k++) {        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
            if (k != k2){        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
              if(ng==2)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        /* getting the maximum value of the modality of the covariate
              else           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);           female is 1, then modmaxcovj=1.*/
              ij=1;      }
              for(j=3; j <=ncovmodel; j++) {      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      cptcode=modmaxcovj;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                  ij++;     /*for (i=0; i<=cptcode; i++) {*/
                }      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
                else        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
              }          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
              fprintf(ficgp,")/(1");        }
                      /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
              for(k1=1; k1 <=nlstate; k1++){             historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      } /* Ndum[-1] number of undefined modalities */
                ij=1;  
                for(j=3; j <=ncovmodel; j++){      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
                    ij++;         modmincovj=3; modmaxcovj = 7;
                  }         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
                  else         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);         variables V1_1 and V1_2.
                }         nbcode[Tvar[j]][ij]=k;
                fprintf(ficgp,")");         nbcode[Tvar[j]][1]=0;
              }         nbcode[Tvar[j]][2]=1;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);         nbcode[Tvar[j]][3]=2;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      */
              i=i+ncovmodel;      ij=1; /* ij is similar to i but can jumps over null modalities */
            }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
          } /* end k */        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
        } /* end k2 */          /*recode from 0 */
      } /* end jk */          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
    } /* end ng */            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
    fclose(ficgp);                                       k is a modality. If we have model=V1+V1*sex 
 }  /* end gnuplot */                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
           }
 /*************** Moving average **************/          if (ij > ncodemax[j]) break; 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        }  /* end of loop on */
       } /* end of loop on modality */ 
   int i, cpt, cptcod;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    
       for (i=1; i<=nlstate;i++)   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    
           mobaverage[(int)agedeb][i][cptcod]=0.;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
         /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       for (i=1; i<=nlstate;i++){     Ndum[ij]++; 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   } 
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   ij=1;
           }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         }     if((Ndum[i]!=0) && (i<=ncovcol)){
       }       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     }       Tvaraff[ij]=i; /*For printing (unclear) */
           ij++;
 }     }else
          Tvaraff[ij]=0;
    }
 /************** Forecasting ******************/   ij--;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){   cptcoveff=ij; /*Number of total covariates*/
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;  /*********** Health Expectancies ****************/
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
  agelim=AGESUP;  {
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int nhstepma, nstepma; /* Decreasing with age */
      double age, agelim, hf;
      double ***p3mat;
   strcpy(fileresf,"f");    double eip;
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {    pstamp(ficreseij);
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficreseij,"# Age");
   }    for(i=1; i<=nlstate;i++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);      for(j=1; j<=nlstate;j++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        fprintf(ficreseij," e%1d%1d ",i,j);
       }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficreseij," e%1d. ",i);
     }
   if (mobilav==1) {    fprintf(ficreseij,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    
   }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   agelim=AGESUP;     * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   hstepm=1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   hstepm=hstepm/stepm;     * progression in between and thus overestimating or underestimating according
   yp1=modf(dateintmean,&yp);     * to the curvature of the survival function. If, for the same date, we 
   anprojmean=yp;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   yp2=modf((yp1*12),&yp);     * to compare the new estimate of Life expectancy with the same linear 
   mprojmean=yp;     * hypothesis. A more precise result, taking into account a more precise
   yp1=modf((yp2*30.5),&yp);     * curvature will be obtained if estepm is as small as stepm. */
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    /* For example we decided to compute the life expectancy with the smallest unit */
   if(mprojmean==0) jprojmean=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   for(cptcov=1;cptcov<=i2;cptcov++){       and note for a fixed period like estepm months */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       k=k+1;       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficresf,"\n#******");       means that if the survival funtion is printed only each two years of age and if
       for(j=1;j<=cptcoveff;j++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       results. So we changed our mind and took the option of the best precision.
       }    */
       fprintf(ficresf,"******\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    agelim=AGESUP;
          /* If stepm=6 months */
            /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficresf,"\n");      
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* if (stepm >= YEARM) hstepm=1;*/
           nhstepm = nhstepm/hstepm;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    for (age=bage; age<=fage; age ++){ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
              /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           for (h=0; h<=nhstepm; h++){      /* if (stepm >= YEARM) hstepm=1;*/
             if (h==(int) (calagedate+YEARM*cpt)) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }      /* If stepm=6 months */
             for(j=1; j<=nlstate+ndeath;j++) {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
               kk1=0.;kk2=0;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               for(i=1; i<=nlstate;i++) {                    
                 if (mobilav==1)      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      
                 else {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      
                 }      printf("%d|",(int)age);fflush(stdout);
                      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               }      
               if (h==(int)(calagedate+12*cpt)){      /* Computing expectancies */
                 fprintf(ficresf," %.3f", kk1);      for(i=1; i<=nlstate;i++)
                                for(j=1; j<=nlstate;j++)
               }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           }            
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         }  
       }          }
     }  
   }      fprintf(ficreseij,"%3.0f",age );
              for(i=1; i<=nlstate;i++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        eip=0;
         for(j=1; j<=nlstate;j++){
   fclose(ficresf);          eip +=eij[i][j][(int)age];
 }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 /************** Forecasting ******************/        }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        fprintf(ficreseij,"%9.4f", eip );
        }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      fprintf(ficreseij,"\n");
   int *popage;      
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***p3mat,***tabpop,***tabpopprev;    printf("\n");
   char filerespop[FILENAMELENGTH];    fprintf(ficlog,"\n");
     
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
    {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* Covariances of health expectancies eij and of total life expectancies according
       to initial status i, ei. .
      */
   strcpy(filerespop,"pop");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   strcat(filerespop,fileres);    int nhstepma, nstepma; /* Decreasing with age */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double age, agelim, hf;
     printf("Problem with forecast resultfile: %s\n", filerespop);    double ***p3matp, ***p3matm, ***varhe;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    double **dnewm,**doldm;
   }    double *xp, *xm;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    double **gp, **gm;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    double ***gradg, ***trgradg;
     int theta;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     double eip, vip;
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    xp=vector(1,npar);
   }    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if (stepm<=12) stepsize=1;    
      pstamp(ficresstdeij);
   agelim=AGESUP;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      fprintf(ficresstdeij,"# Age");
   hstepm=1;    for(i=1; i<=nlstate;i++){
   hstepm=hstepm/stepm;      for(j=1; j<=nlstate;j++)
          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   if (popforecast==1) {      fprintf(ficresstdeij," e%1d. ",i);
     if((ficpop=fopen(popfile,"r"))==NULL) {    }
       printf("Problem with population file : %s\n",popfile);exit(0);    fprintf(ficresstdeij,"\n");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }    pstamp(ficrescveij);
     popage=ivector(0,AGESUP);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     popeffectif=vector(0,AGESUP);    fprintf(ficrescveij,"# Age");
     popcount=vector(0,AGESUP);    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
     i=1;          cptj= (j-1)*nlstate+i;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for(i2=1; i2<=nlstate;i2++)
              for(j2=1; j2<=nlstate;j2++){
     imx=i;            cptj2= (j2-1)*nlstate+i2;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            if(cptj2 <= cptj)
   }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   for(cptcov=1;cptcov<=i2;cptcov++){      }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficrescveij,"\n");
       k=k+1;    
       fprintf(ficrespop,"\n#******");    if(estepm < stepm){
       for(j=1;j<=cptcoveff;j++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    else  hstepm=estepm;   
       fprintf(ficrespop,"******\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficrespop,"# Age");     * This is mainly to measure the difference between two models: for example
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);     * if stepm=24 months pijx are given only every 2 years and by summing them
       if (popforecast==1)  fprintf(ficrespop," [Population]");     * we are calculating an estimate of the Life Expectancy assuming a linear 
           * progression in between and thus overestimating or underestimating according
       for (cpt=0; cpt<=0;cpt++) {     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
             * to compare the new estimate of Life expectancy with the same linear 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * hypothesis. A more precise result, taking into account a more precise
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * curvature will be obtained if estepm is as small as stepm. */
           nhstepm = nhstepm/hstepm;  
              /* For example we decided to compute the life expectancy with the smallest unit */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           oldm=oldms;savm=savms;       nhstepm is the number of hstepm from age to agelim 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
           for (h=0; h<=nhstepm; h++){       and note for a fixed period like estepm months */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed only each two years of age and if
             for(j=1; j<=nlstate+ndeath;j++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               kk1=0.;kk2=0;       results. So we changed our mind and took the option of the best precision.
               for(i=1; i<=nlstate;i++) {                  */
                 if (mobilav==1)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    /* If stepm=6 months */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* nhstepm age range expressed in number of stepm */
                 }    agelim=AGESUP;
               }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
               if (h==(int)(calagedate+12*cpt)){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    /* if (stepm >= YEARM) hstepm=1;*/
                   /*fprintf(ficrespop," %.3f", kk1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    
               }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(i=1; i<=nlstate;i++){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
               kk1=0.;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                 for(j=1; j<=nlstate;j++){    gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    gm=matrix(0,nhstepm,1,nlstate*nlstate);
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    for (age=bage; age<=fage; age ++){ 
             }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      /* if (stepm >= YEARM) hstepm=1;*/
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* If stepm=6 months */
         }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   /******/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      /* Computing  Variances of health expectancies */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){         decrease memory allocation */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(theta=1; theta <=npar; theta++){
           nhstepm = nhstepm/hstepm;        for(i=1; i<=npar; i++){ 
                    xp[i] = x[i] + (i==theta ?delti[theta]:0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           for (h=0; h<=nhstepm; h++){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<= nlstate; j++){
             }          for(i=1; i<=nlstate; i++){
             for(j=1; j<=nlstate+ndeath;j++) {            for(h=0; h<=nhstepm-1; h++){
               kk1=0.;kk2=0;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               for(i=1; i<=nlstate;i++) {                            gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }
               }          }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }       
           }        for(ij=1; ij<= nlstate*nlstate; ij++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(h=0; h<=nhstepm-1; h++){
         }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       }          }
    }      }/* End theta */
   }      
        
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   if (popforecast==1) {          for(theta=1; theta <=npar; theta++)
     free_ivector(popage,0,AGESUP);            trgradg[h][j][theta]=gradg[h][theta][j];
     free_vector(popeffectif,0,AGESUP);      
     free_vector(popcount,0,AGESUP);  
   }       for(ij=1;ij<=nlstate*nlstate;ij++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(ji=1;ji<=nlstate*nlstate;ji++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          varhe[ij][ji][(int)age] =0.;
   fclose(ficrespop);  
 }       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /***********************************************/       for(h=0;h<=nhstepm-1;h++){
 /**************** Main Program *****************/        for(k=0;k<=nhstepm-1;k++){
 /***********************************************/          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 int main(int argc, char *argv[])          for(ij=1;ij<=nlstate*nlstate;ij++)
 {            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        }
   double agedeb, agefin,hf;      }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
       /* Computing expectancies */
   double fret;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double **xi,tmp,delta;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   double dum; /* Dummy variable */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double ***p3mat;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   int *indx;            
   char line[MAXLINE], linepar[MAXLINE];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];  
   int firstobs=1, lastobs=10;          }
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;      fprintf(ficresstdeij,"%3.0f",age );
   int ju,jl, mi;      for(i=1; i<=nlstate;i++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        eip=0.;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        vip=0.;
   int mobilav=0,popforecast=0;        for(j=1; j<=nlstate;j++){
   int hstepm, nhstepm;          eip += eij[i][j][(int)age];
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   double bage, fage, age, agelim, agebase;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   double ftolpl=FTOL;        }
   double **prlim;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   double *severity;      }
   double ***param; /* Matrix of parameters */      fprintf(ficresstdeij,"\n");
   double  *p;  
   double **matcov; /* Matrix of covariance */      fprintf(ficrescveij,"%3.0f",age );
   double ***delti3; /* Scale */      for(i=1; i<=nlstate;i++)
   double *delti; /* Scale */        for(j=1; j<=nlstate;j++){
   double ***eij, ***vareij;          cptj= (j-1)*nlstate+i;
   double **varpl; /* Variances of prevalence limits by age */          for(i2=1; i2<=nlstate;i2++)
   double *epj, vepp;            for(j2=1; j2<=nlstate;j2++){
   double kk1, kk2;              cptj2= (j2-1)*nlstate+i2;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;              if(cptj2 <= cptj)
                  fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
       fprintf(ficrescveij,"\n");
      
   char z[1]="c", occ;    }
 #include <sys/time.h>    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 #include <time.h>    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /* long total_usecs;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   struct timeval start_time, end_time;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficlog,"\n");
   getcwd(pathcd, size);  
     free_vector(xm,1,npar);
   printf("\n%s",version);    free_vector(xp,1,npar);
   if(argc <=1){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     printf("\nEnter the parameter file name: ");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     scanf("%s",pathtot);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }  }
   else{  
     strcpy(pathtot,argv[1]);  /************ Variance ******************/
   }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  {
   /*cygwin_split_path(pathtot,path,optionfile);    /* Variance of health expectancies */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* cutv(path,optionfile,pathtot,'\\');*/    /* double **newm;*/
     double **dnewm,**doldm;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double **dnewmp,**doldmp;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int i, j, nhstepm, hstepm, h, nstepm ;
   chdir(path);    int k, cptcode;
   replace(pathc,path);    double *xp;
     double **gp, **gm;  /* for var eij */
 /*-------- arguments in the command line --------*/    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   /* Log file */    double *gpp, *gmp; /* for var p point j */
   strcat(filelog, optionfilefiname);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   strcat(filelog,".log");    /* */    double ***p3mat;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    double age,agelim, hf;
     printf("Problem with logfile %s\n",filelog);    double ***mobaverage;
     goto end;    int theta;
   }    char digit[4];
   fprintf(ficlog,"Log filename:%s\n",filelog);    char digitp[25];
   fprintf(ficlog,"\n%s",version);  
   fprintf(ficlog,"\nEnter the parameter file name: ");    char fileresprobmorprev[FILENAMELENGTH];
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   fflush(ficlog);    if(popbased==1){
       if(mobilav!=0)
   /* */        strcpy(digitp,"-populbased-mobilav-");
   strcpy(fileres,"r");      else strcpy(digitp,"-populbased-nomobil-");
   strcat(fileres, optionfilefiname);    }
   strcat(fileres,".txt");    /* Other files have txt extension */    else 
       strcpy(digitp,"-stablbased-");
   /*---------arguments file --------*/  
     if (mobilav!=0) {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with optionfile %s\n",optionfile);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     goto end;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
     }
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    strcpy(fileresprobmorprev,"prmorprev"); 
   if((ficparo=fopen(filereso,"w"))==NULL) {    sprintf(digit,"%-d",ij);
     printf("Problem with Output resultfile: %s\n", filereso);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     goto end;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   }    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     puts(line);   
     fputs(line,ficparo);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    pstamp(ficresprobmorprev);
   ungetc(c,ficpar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      fprintf(ficresprobmorprev," p.%-d SE",j);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for(i=1; i<=nlstate;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     ungetc(c,ficpar);    }  
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobmorprev,"\n");
     puts(line);    fprintf(ficgp,"\n# Routine varevsij");
     fputs(line,ficparo);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   ungetc(c,ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
        varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   covar=matrix(0,NCOVMAX,1,n);    pstamp(ficresvij);
   cptcovn=0;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   ncovmodel=2+cptcovn;    else
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
   /* Read guess parameters */    for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=nlstate;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     ungetc(c,ficpar);    fprintf(ficresvij,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    xp=vector(1,npar);
     fputs(line,ficparo);    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
   ungetc(c,ficpar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     for(j=1; j <=nlstate+ndeath-1; j++){    gpp=vector(nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    gmp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"%1d%1d",i1,j1);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if(mle==1)    
         printf("%1d%1d",i,j);    if(estepm < stepm){
       fprintf(ficlog,"%1d%1d",i,j);      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);    else  hstepm=estepm;   
         if(mle==1){    /* For example we decided to compute the life expectancy with the smallest unit */
           printf(" %lf",param[i][j][k]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficlog," %lf",param[i][j][k]);       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
         else       Look at function hpijx to understand why (it is linked to memory size questions) */
           fprintf(ficlog," %lf",param[i][j][k]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficparo," %lf",param[i][j][k]);       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed every two years of age and if
       fscanf(ficpar,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       if(mle==1)       results. So we changed our mind and took the option of the best precision.
         printf("\n");    */
       fprintf(ficlog,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficparo,"\n");    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   p=param[1][1];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
   /* Reads comments: lines beginning with '#' */      gm=matrix(0,nhstepm,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(theta=1; theta <=npar; theta++){
     puts(line);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     fputs(line,ficparo);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        if (popbased==1) {
   for(i=1; i <=nlstate; i++){          if(mobilav ==0){
     for(j=1; j <=nlstate+ndeath-1; j++){            for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);              prlim[i][i]=probs[(int)age][i][ij];
       printf("%1d%1d",i,j);          }else{ /* mobilav */ 
       fprintf(ficparo,"%1d%1d",i1,j1);            for(i=1; i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){              prlim[i][i]=mobaverage[(int)age][i][ij];
         fscanf(ficpar,"%le",&delti3[i][j][k]);          }
         printf(" %le",delti3[i][j][k]);        }
         fprintf(ficparo," %le",delti3[i][j][k]);    
       }        for(j=1; j<= nlstate; j++){
       fscanf(ficpar,"\n");          for(h=0; h<=nhstepm; h++){
       printf("\n");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficparo,"\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
   }        }
   delti=delti3[1][1];        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   /* Reads comments: lines beginning with '#' */           as a weighted average of prlim.
   while((c=getc(ficpar))=='#' && c!= EOF){        */
     ungetc(c,ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fgets(line, MAXLINE, ficpar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     puts(line);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fputs(line,ficparo);        }    
   }        /* end probability of death */
   ungetc(c,ficpar);  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   matcov=matrix(1,npar,1,npar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   for(i=1; i <=npar; i++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fscanf(ficpar,"%s",&str);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if(mle==1)   
       printf("%s",str);        if (popbased==1) {
     fprintf(ficlog,"%s",str);          if(mobilav ==0){
     fprintf(ficparo,"%s",str);            for(i=1; i<=nlstate;i++)
     for(j=1; j <=i; j++){              prlim[i][i]=probs[(int)age][i][ij];
       fscanf(ficpar," %le",&matcov[i][j]);          }else{ /* mobilav */ 
       if(mle==1){            for(i=1; i<=nlstate;i++)
         printf(" %.5le",matcov[i][j]);              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficlog," %.5le",matcov[i][j]);          }
       }        }
       else  
         fprintf(ficlog," %.5le",matcov[i][j]);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       fprintf(ficparo," %.5le",matcov[i][j]);          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     fscanf(ficpar,"\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     if(mle==1)          }
       printf("\n");        }
     fprintf(ficlog,"\n");        /* This for computing probability of death (h=1 means
     fprintf(ficparo,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   for(i=1; i <=npar; i++)        */
     for(j=i+1;j<=npar;j++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       matcov[i][j]=matcov[j][i];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if(mle==1)        }    
     printf("\n");        /* end probability of death */
   fprintf(ficlog,"\n");  
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
     /*-------- Rewriting paramater file ----------*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
      strcpy(rfileres,"r");    /* "Rparameterfile */          }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     if((ficres =fopen(rfileres,"w"))==NULL) {        }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      } /* End theta */
     }  
     fprintf(ficres,"#%s\n",version);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      
     /*-------- data file ----------*/      for(h=0; h<=nhstepm; h++) /* veij */
     if((fic=fopen(datafile,"r"))==NULL)    {        for(j=1; j<=nlstate;j++)
       printf("Problem with datafile: %s\n", datafile);goto end;          for(theta=1; theta <=npar; theta++)
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            trgradg[h][j][theta]=gradg[h][theta][j];
     }  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     n= lastobs;        for(theta=1; theta <=npar; theta++)
     severity = vector(1,maxwav);          trgradgp[j][theta]=gradgp[theta][j];
     outcome=imatrix(1,maxwav+1,1,n);    
     num=ivector(1,n);  
     moisnais=vector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     annais=vector(1,n);      for(i=1;i<=nlstate;i++)
     moisdc=vector(1,n);        for(j=1;j<=nlstate;j++)
     andc=vector(1,n);          vareij[i][j][(int)age] =0.;
     agedc=vector(1,n);  
     cod=ivector(1,n);      for(h=0;h<=nhstepm;h++){
     weight=vector(1,n);        for(k=0;k<=nhstepm;k++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     mint=matrix(1,maxwav,1,n);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     anint=matrix(1,maxwav,1,n);          for(i=1;i<=nlstate;i++)
     s=imatrix(1,maxwav+1,1,n);            for(j=1;j<=nlstate;j++)
     adl=imatrix(1,maxwav+1,1,n);                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     tab=ivector(1,NCOVMAX);        }
     ncodemax=ivector(1,8);      }
     
     i=1;      /* pptj */
     while (fgets(line, MAXLINE, fic) != NULL)    {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       if ((i >= firstobs) && (i <=lastobs)) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
              for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for (j=maxwav;j>=1;j--){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          varppt[j][i]=doldmp[j][i];
           strcpy(line,stra);      /* end ppptj */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /*  x centered again */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      if (popbased==1) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            prlim[i][i]=probs[(int)age][i][ij];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            prlim[i][i]=mobaverage[(int)age][i][ij];
         for (j=ncovcol;j>=1;j--){        }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
         }               
         num[i]=atol(stra);      /* This for computing probability of death (h=1 means
                 computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){         as a weighted average of prlim.
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         i=i+1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
     /* printf("ii=%d", ij);      /* end probability of death */
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /* for (i=1; i<=imx; i++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(i=1; i<=nlstate;i++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        }
     }*/      } 
    /*  for (i=1; i<=imx; i++){      fprintf(ficresprobmorprev,"\n");
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   /* Calculation of the number of parameter from char model*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        }
   Tprod=ivector(1,15);      fprintf(ficresvij,"\n");
   Tvaraff=ivector(1,15);      free_matrix(gp,0,nhstepm,1,nlstate);
   Tvard=imatrix(1,15,1,2);      free_matrix(gm,0,nhstepm,1,nlstate);
   Tage=ivector(1,15);            free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   if (strlen(model) >1){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     j=0, j1=0, k1=1, k2=1;    } /* End age */
     j=nbocc(model,'+');    free_vector(gpp,nlstate+1,nlstate+ndeath);
     j1=nbocc(model,'*');    free_vector(gmp,nlstate+1,nlstate+ndeath);
     cptcovn=j+1;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     cptcovprod=j1;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     strcpy(modelsav,model);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       printf("Error. Non available option model=%s ",model);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficlog,"Error. Non available option model=%s ",model);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       goto end;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     for(i=(j+1); i>=1;i--){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       /*scanf("%d",i);*/  */
       if (strchr(strb,'*')) {  /* Model includes a product */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;    free_vector(xp,1,npar);
           cutv(strb,stre,strd,'V');    free_matrix(doldm,1,nlstate,1,nlstate);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    free_matrix(dnewm,1,nlstate,1,npar);
           cptcovage++;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             Tage[cptcovage]=i;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             /*printf("stre=%s ", stre);*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    fclose(ficresprobmorprev);
           cptcovprod--;    fflush(ficgp);
           cutv(strb,stre,strc,'V');    fflush(fichtm); 
           Tvar[i]=atoi(stre);  }  /* end varevsij */
           cptcovage++;  
           Tage[cptcovage]=i;  /************ Variance of prevlim ******************/
         }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         else {  /* Age is not in the model */  {
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    /* Variance of prevalence limit */
           Tvar[i]=ncovcol+k1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    double **newm;
           Tprod[k1]=i;    double **dnewm,**doldm;
           Tvard[k1][1]=atoi(strc); /* m*/    int i, j, nhstepm, hstepm;
           Tvard[k1][2]=atoi(stre); /* n */    int k, cptcode;
           Tvar[cptcovn+k2]=Tvard[k1][1];    double *xp;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double *gp, *gm;
           for (k=1; k<=lastobs;k++)    double **gradg, **trgradg;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double age,agelim;
           k1++;    int theta;
           k2=k2+2;    
         }    pstamp(ficresvpl);
       }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       else { /* no more sum */    fprintf(ficresvpl,"# Age");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    for(i=1; i<=nlstate;i++)
        /*  scanf("%d",i);*/        fprintf(ficresvpl," %1d-%1d",i,i);
       cutv(strd,strc,strb,'V');    fprintf(ficresvpl,"\n");
       Tvar[i]=atoi(strc);  
       }    xp=vector(1,npar);
       strcpy(modelsav,stra);      dnewm=matrix(1,nlstate,1,npar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    doldm=matrix(1,nlstate,1,nlstate);
         scanf("%d",i);*/    
     } /* end of loop + */    hstepm=1*YEARM; /* Every year of age */
   } /* end model */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      agelim = AGESUP;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("cptcovprod=%d ", cptcovprod);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      if (stepm >= YEARM) hstepm=1;
   scanf("%d ",i);*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     fclose(fic);      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
     /*  if(mle==1){*/      gm=vector(1,nlstate);
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient */
     /*-calculation of age at interview from date of interview and age at death -*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     agev=matrix(1,maxwav,1,imx);        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (i=1; i<=imx; i++) {        for(i=1;i<=nlstate;i++)
       for(m=2; (m<= maxwav); m++) {          gp[i] = prlim[i][i];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      
          anint[m][i]=9999;        for(i=1; i<=npar; i++) /* Computes gradient */
          s[m][i]=-1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        for(i=1;i<=nlstate;i++)
       }          gm[i] = prlim[i][i];
     }  
         for(i=1;i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      } /* End theta */
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){      trgradg =matrix(1,nlstate,1,npar);
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)      for(j=1; j<=nlstate;j++)
               if(moisdc[i]!=99 && andc[i]!=9999)        for(theta=1; theta <=npar; theta++)
                 agev[m][i]=agedc[i];          trgradg[j][theta]=gradg[theta][j];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {      for(i=1;i<=nlstate;i++)
               if (andc[i]!=9999){        varpl[i][(int)age] =0.;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
               agev[m][i]=-1;      for(i=1;i<=nlstate;i++)
               }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             }  
           }      fprintf(ficresvpl,"%.0f ",age );
           else if(s[m][i] !=9){ /* Should no more exist */      for(i=1; i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
             if(mint[m][i]==99 || anint[m][i]==9999)      fprintf(ficresvpl,"\n");
               agev[m][i]=1;      free_vector(gp,1,nlstate);
             else if(agev[m][i] <agemin){      free_vector(gm,1,nlstate);
               agemin=agev[m][i];      free_matrix(gradg,1,npar,1,nlstate);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      free_matrix(trgradg,1,nlstate,1,npar);
             }    } /* End age */
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];    free_vector(xp,1,npar);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    free_matrix(doldm,1,nlstate,1,npar);
             }    free_matrix(dnewm,1,nlstate,1,nlstate);
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/  }
           }  
           else { /* =9 */  /************ Variance of one-step probabilities  ******************/
             agev[m][i]=1;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
             s[m][i]=-1;  {
           }    int i, j=0,  i1, k1, l1, t, tj;
         }    int k2, l2, j1,  z1;
         else /*= 0 Unknown */    int k=0,l, cptcode;
           agev[m][i]=1;    int first=1, first1, first2;
       }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        double **dnewm,**doldm;
     }    double *xp;
     for (i=1; i<=imx; i++)  {    double *gp, *gm;
       for(m=1; (m<= maxwav); m++){    double **gradg, **trgradg;
         if (s[m][i] > (nlstate+ndeath)) {    double **mu;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      double age,agelim, cov[NCOVMAX+1];
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           goto end;    int theta;
         }    char fileresprob[FILENAMELENGTH];
       }    char fileresprobcov[FILENAMELENGTH];
     }    char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     free_vector(severity,1,maxwav);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     free_imatrix(outcome,1,maxwav+1,1,n);      printf("Problem with resultfile: %s\n", fileresprob);
     free_vector(moisnais,1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     free_vector(annais,1,n);    }
     /* free_matrix(mint,1,maxwav,1,n);    strcpy(fileresprobcov,"probcov"); 
        free_matrix(anint,1,maxwav,1,n);*/    strcat(fileresprobcov,fileres);
     free_vector(moisdc,1,n);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     free_vector(andc,1,n);      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
     wav=ivector(1,imx);    strcpy(fileresprobcor,"probcor"); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    strcat(fileresprobcor,fileres);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcor);
     /* Concatenates waves */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       Tcode=ivector(1,100);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       ncodemax[1]=1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
          pstamp(ficresprob);
    codtab=imatrix(1,100,1,10);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
    h=0;    fprintf(ficresprob,"# Age");
    m=pow(2,cptcoveff);    pstamp(ficresprobcov);
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
    for(k=1;k<=cptcoveff; k++){    fprintf(ficresprobcov,"# Age");
      for(i=1; i <=(m/pow(2,k));i++){    pstamp(ficresprobcor);
        for(j=1; j <= ncodemax[k]; j++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(ficresprobcor,"# Age");
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    for(i=1; i<=nlstate;i++)
          }      for(j=1; j<=(nlstate+ndeath);j++){
        }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
      }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
    }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      }  
       codtab[1][2]=1;codtab[2][2]=2; */   /* fprintf(ficresprob,"\n");
    /* for(i=1; i <=m ;i++){    fprintf(ficresprobcov,"\n");
       for(k=1; k <=cptcovn; k++){    fprintf(ficresprobcor,"\n");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   */
       }    xp=vector(1,npar);
       printf("\n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       scanf("%d",i);*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    /* Calculates basic frequencies. Computes observed prevalence at single age    first=1;
        and prints on file fileres'p'. */    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
        fprintf(fichtm,"\n");
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    file %s<br>\n",optionfilehtmcov);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  and drawn. It helps understanding how is the covariance between two incidences.\
         They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
     if(mle==1){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      
     /*--------- results files --------------*/    cov[1]=1;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    /* tj=cptcoveff; */
      tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
    jk=1;    j1=0;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for(j1=1; j1<=tj;j1++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /*for(i1=1; i1<=ncodemax[t];i1++){ */
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /*j1++;*/
    for(i=1,jk=1; i <=nlstate; i++){        if  (cptcovn>0) {
      for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficresprob, "\n#********** Variable "); 
        if (k != i)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          {          fprintf(ficresprob, "**********\n#\n");
            printf("%d%d ",i,k);          fprintf(ficresprobcov, "\n#********** Variable "); 
            fprintf(ficlog,"%d%d ",i,k);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficres,"%1d%1d ",i,k);          fprintf(ficresprobcov, "**********\n#\n");
            for(j=1; j <=ncovmodel; j++){          
              printf("%f ",p[jk]);          fprintf(ficgp, "\n#********** Variable "); 
              fprintf(ficlog,"%f ",p[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficres,"%f ",p[jk]);          fprintf(ficgp, "**********\n#\n");
              jk++;          
            }          
            printf("\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            fprintf(ficlog,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficres,"\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          }          
      }          fprintf(ficresprobcor, "\n#********** Variable ");    
    }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    if(mle==1){          fprintf(ficresprobcor, "**********\n#");    
      /* Computing hessian and covariance matrix */        }
      ftolhess=ftol; /* Usually correct */        
      hesscov(matcov, p, npar, delti, ftolhess, func);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
    }        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        gp=vector(1,(nlstate)*(nlstate+ndeath));
    printf("# Scales (for hessian or gradient estimation)\n");        gm=vector(1,(nlstate)*(nlstate+ndeath));
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        for (age=bage; age<=fage; age ++){ 
    for(i=1,jk=1; i <=nlstate; i++){          cov[2]=age;
      for(j=1; j <=nlstate+ndeath; j++){          for (k=1; k<=cptcovn;k++) {
        if (j!=i) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
          fprintf(ficres,"%1d%1d",i,j);                                                           * 1  1 1 1 1
          printf("%1d%1d",i,j);                                                           * 2  2 1 1 1
          fprintf(ficlog,"%1d%1d",i,j);                                                           * 3  1 2 1 1
          for(k=1; k<=ncovmodel;k++){                                                           */
            printf(" %.5e",delti[jk]);            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
            fprintf(ficlog," %.5e",delti[jk]);          }
            fprintf(ficres," %.5e",delti[jk]);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            jk++;          for (k=1; k<=cptcovprod;k++)
          }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          printf("\n");          
          fprintf(ficlog,"\n");      
          fprintf(ficres,"\n");          for(theta=1; theta <=npar; theta++){
        }            for(i=1; i<=npar; i++)
      }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    }            
                pmij(pmmij,cov,ncovmodel,xp,nlstate);
    k=1;            
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            k=0;
    if(mle==1)            for(i=1; i<= (nlstate); i++){
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              for(j=1; j<=(nlstate+ndeath);j++){
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                k=k+1;
    for(i=1;i<=npar;i++){                gp[k]=pmmij[i][j];
      /*  if (k>nlstate) k=1;              }
          i1=(i-1)/(ncovmodel*nlstate)+1;            }
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            
          printf("%s%d%d",alph[k],i1,tab[i]);*/            for(i=1; i<=npar; i++)
      fprintf(ficres,"%3d",i);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      if(mle==1)      
        printf("%3d",i);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      fprintf(ficlog,"%3d",i);            k=0;
      for(j=1; j<=i;j++){            for(i=1; i<=(nlstate); i++){
        fprintf(ficres," %.5e",matcov[i][j]);              for(j=1; j<=(nlstate+ndeath);j++){
        if(mle==1)                k=k+1;
          printf(" %.5e",matcov[i][j]);                gm[k]=pmmij[i][j];
        fprintf(ficlog," %.5e",matcov[i][j]);              }
      }            }
      fprintf(ficres,"\n");       
      if(mle==1)            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
        printf("\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
      fprintf(ficlog,"\n");          }
      k++;  
    }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
    while((c=getc(ficpar))=='#' && c!= EOF){              trgradg[j][theta]=gradg[theta][j];
      ungetc(c,ficpar);          
      fgets(line, MAXLINE, ficpar);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
      puts(line);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      fputs(line,ficparo);  
    }          pmij(pmmij,cov,ncovmodel,x,nlstate);
    ungetc(c,ficpar);          
    estepm=0;          k=0;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          for(i=1; i<=(nlstate); i++){
    if (estepm==0 || estepm < stepm) estepm=stepm;            for(j=1; j<=(nlstate+ndeath);j++){
    if (fage <= 2) {              k=k+1;
      bage = ageminpar;              mu[k][(int) age]=pmmij[i][j];
      fage = agemaxpar;            }
    }          }
              for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              varpij[i][j][(int)age] = doldm[i][j];
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
              /*printf("\n%d ",(int)age);
    while((c=getc(ficpar))=='#' && c!= EOF){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      ungetc(c,ficpar);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      fgets(line, MAXLINE, ficpar);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      puts(line);            }*/
      fputs(line,ficparo);  
    }          fprintf(ficresprob,"\n%d ",(int)age);
    ungetc(c,ficpar);          fprintf(ficresprobcov,"\n%d ",(int)age);
            fprintf(ficresprobcor,"\n%d ",(int)age);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
    while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
      ungetc(c,ficpar);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
      fgets(line, MAXLINE, ficpar);          }
      puts(line);          i=0;
      fputs(line,ficparo);          for (k=1; k<=(nlstate);k++){
    }            for (l=1; l<=(nlstate+ndeath);l++){ 
    ungetc(c,ficpar);              i++;
                fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              for (j=1; j<=i;j++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fscanf(ficpar,"pop_based=%d\n",&popbased);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   fprintf(ficparo,"pop_based=%d\n",popbased);                }
   fprintf(ficres,"pop_based=%d\n",popbased);              }
            }/* end of loop for state */
   while((c=getc(ficpar))=='#' && c!= EOF){        } /* end of loop for age */
     ungetc(c,ficpar);        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     puts(line);        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fputs(line,ficparo);        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }        
   ungetc(c,ficpar);        /* Confidence intervalle of pij  */
         /*
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          fprintf(ficgp,"\nunset parametric;unset label");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     ungetc(c,ficpar);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     fgets(line, MAXLINE, ficpar);        */
     puts(line);  
     fputs(line,ficparo);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   }        first1=1;first2=2;
   ungetc(c,ficpar);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            if(l2==k2) continue;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            j=(k2-1)*(nlstate+ndeath)+l2;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
 /*------------ gnuplot -------------*/                if(i<=j) continue;
   strcpy(optionfilegnuplot,optionfilefiname);                for (age=bage; age<=fage; age ++){ 
   strcat(optionfilegnuplot,".gp");                  if ((int)age %5==0){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     printf("Problem with file %s",optionfilegnuplot);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fclose(ficgp);                    mu1=mu[i][(int) age]/stepm*YEARM ;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                    mu2=mu[j][(int) age]/stepm*YEARM;
 /*--------- index.htm --------*/                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   strcpy(optionfilehtm,optionfile);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   strcat(optionfilehtm,".htm");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                    if ((lc2 <0) || (lc1 <0) ){
     printf("Problem with %s \n",optionfilehtm), exit(0);                      if(first2==1){
   }                        first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                      }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 \n                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
 Total number of observations=%d <br>\n                      /* lc2=fabs(lc2); */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                    }
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li><h4>Parameter files</h4>\n                    /* Eigen vectors */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                    /*v21=sqrt(1.-v11*v11); *//* error */
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                    v21=(lc1-v1)/cv12*v11;
   fclose(fichtm);                    v12=-v21;
                     v22=v11;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                    tnalp=v21/v11;
                      if(first1==1){
 /*------------ free_vector  -------------*/                      first1=0;
  chdir(path);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
  free_ivector(wav,1,imx);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    /*printf(fignu*/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
  free_ivector(num,1,n);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  free_vector(agedc,1,n);                    if(first==1){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                      first=0;
  fclose(ficparo);                      fprintf(ficgp,"\nset parametric;unset label");
  fclose(ficres);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   /*--------------- Prevalence limit --------------*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   strcpy(filerespl,"pl");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   strcat(filerespl,fileres);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fprintf(ficrespl,"#Prevalence limit\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fprintf(ficrespl,"#Age ");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    }else{
   fprintf(ficrespl,"\n");                      first=0;
                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   prlim=matrix(1,nlstate,1,nlstate);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    }/* if first */
   k=0;                  } /* age mod 5 */
   agebase=ageminpar;                } /* end loop age */
   agelim=agemaxpar;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   ftolpl=1.e-10;                first=1;
   i1=cptcoveff;              } /*l12 */
   if (cptcovn < 1){i1=1;}            } /* k12 */
           } /*l1 */
   for(cptcov=1;cptcov<=i1;cptcov++){        }/* k1 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* } /* loop covariates */
         k=k+1;    }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         fprintf(ficrespl,"\n#******");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         printf("\n#******");    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         fprintf(ficlog,"\n#******");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
         for(j=1;j<=cptcoveff;j++) {    free_vector(xp,1,npar);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprob);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprobcov);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprobcor);
         }    fflush(ficgp);
         fprintf(ficrespl,"******\n");    fflush(fichtmcov);
         printf("******\n");  }
         fprintf(ficlog,"******\n");  
          
         for (age=agebase; age<=agelim; age++){  /******************* Printing html file ***********/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           fprintf(ficrespl,"%.0f",age );                    int lastpass, int stepm, int weightopt, char model[],\
           for(i=1; i<=nlstate;i++)                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           fprintf(ficrespl," %.5f", prlim[i][i]);                    int popforecast, int estepm ,\
           fprintf(ficrespl,"\n");                    double jprev1, double mprev1,double anprev1, \
         }                    double jprev2, double mprev2,double anprev2){
       }    int jj1, k1, i1, cpt;
     }  
   fclose(ficrespl);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   /*------------- h Pij x at various ages ------------*/  </ul>");
       fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   if((ficrespij=fopen(filerespij,"w"))==NULL) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     fprintf(fichtm,"\
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   printf("Computing pij: result on file '%s' \n", filerespij);     fprintf(fichtm,"\
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   stepsize=(int) (stepm+YEARM-1)/YEARM;     fprintf(fichtm,"\
   /*if (stepm<=24) stepsize=2;*/   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
   agelim=AGESUP;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   hstepm=stepsize*YEARM; /* Every year of age */     fprintf(fichtm,"\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   /* hstepm=1;   aff par mois*/  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){   m=pow(2,cptcoveff);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");   jj1=0;
         for(j=1;j<=cptcoveff;j++)   for(k1=1; k1<=m;k1++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficrespij,"******\n");       jj1++;
               if (cptcovn > 0) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         for (cpt=1; cpt<=cptcoveff;cpt++) 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           /*      nhstepm=nhstepm*YEARM; aff par mois*/       }
        /* Pij */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
           oldm=oldms;savm=savms;  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         /* Quasi-incidences */
           fprintf(ficrespij,"# Age");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           for(i=1; i<=nlstate;i++)   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
             for(j=1; j<=nlstate+ndeath;j++)  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
               fprintf(ficrespij," %1d-%1d",i,j);         /* Period (stable) prevalence in each health state */
           fprintf(ficrespij,"\n");         for(cpt=1; cpt<nlstate;cpt++){
            for (h=0; h<=nhstepm; h++){           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             for(i=1; i<=nlstate;i++)         }
               for(j=1; j<=nlstate+ndeath;j++)       for(cpt=1; cpt<=nlstate;cpt++) {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
             fprintf(ficrespij,"\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
              }       }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     } /* end i1 */
           fprintf(ficrespij,"\n");   }/* End k1 */
         }   fprintf(fichtm,"</ul>");
     }  
   }  
    fprintf(fichtm,"\
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   fclose(ficrespij);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   /*---------- Forecasting ------------------*/   fprintf(fichtm,"\
   if((stepm == 1) && (strcmp(model,".")==0)){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }   fprintf(fichtm,"\
   else{   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     erreur=108;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   fprintf(fichtm,"\
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
   /*---------- Health expectancies and variances ------------*/   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   strcpy(filerest,"t");             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   strcat(filerest,fileres);   fprintf(fichtm,"\
   if((ficrest=fopen(filerest,"w"))==NULL) {   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;   fprintf(fichtm,"\
   }   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
   printf("Computing Total LEs with variances: file '%s' \n", filerest);           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);   fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   strcpy(filerese,"e");  
   strcat(filerese,fileres);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*      <br>",fileres,fileres,fileres,fileres); */
   }  /*  else  */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);   m=pow(2,cptcoveff);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       jj1++;
   calagedate=-1;       if (cptcovn > 0) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   k=0;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       }
       k=k+1;       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficrest,"\n#****** ");         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       for(j=1;j<=cptcoveff;j++)  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       fprintf(ficrest,"******\n");       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fprintf(ficreseij,"\n#****** ");  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
       for(j=1;j<=cptcoveff;j++)  true period expectancies (those weighted with period prevalences are also\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   drawn in addition to the population based expectancies computed using\
       fprintf(ficreseij,"******\n");   observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       fprintf(ficresvij,"\n#****** ");     } /* end i1 */
       for(j=1;j<=cptcoveff;j++)   }/* End k1 */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"</ul>");
       fprintf(ficresvij,"******\n");   fflush(fichtm);
   }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  /******************* Gnuplot file **************/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    char dirfileres[132],optfileres[132];
       oldm=oldms;savm=savms;    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    int ng=0;
       if(popbased==1){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  /*     printf("Problem with file %s",optionfilegnuplot); */
        }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /*#ifdef windows */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fprintf(ficrest,"\n");      /*#endif */
     m=pow(2,cptcoveff);
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    strcpy(dirfileres,optionfilefiname);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcpy(optfileres,"vpl");
         if (popbased==1) {   /* 1eme*/
           for(i=1; i<=nlstate;i++)    for (cpt=1; cpt<= nlstate ; cpt ++) {
             prlim[i][i]=probs[(int)age][i][k];      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         }       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
               fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
         fprintf(ficrest," %4.0f",age);       fprintf(ficgp,"set xlabel \"Age\" \n\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  set ylabel \"Probability\" \n\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  set ter png small size 320, 240\n\
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }       for (i=1; i<= nlstate ; i ++) {
           epj[nlstate+1] +=epj[j];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         }         else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
         for(i=1, vepp=0.;i <=nlstate;i++)       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           for(j=1;j <=nlstate;j++)       for (i=1; i<= nlstate ; i ++) {
             vepp += vareij[i][j][(int)age];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(j=1;j <=nlstate;j++){       } 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         }       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficrest,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }  
   }       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 free_matrix(mint,1,maxwav,1,n);     }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    }
     free_vector(weight,1,n);    /*2 eme*/
   fclose(ficreseij);    
   fclose(ficresvij);    for (k1=1; k1<= m ; k1 ++) { 
   fclose(ficrest);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   fclose(ficpar);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
   free_vector(epj,1,nlstate+1);      
        for (i=1; i<= nlstate+1 ; i ++) {
   /*------- Variance limit prevalence------*/          k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   strcpy(fileresvpl,"vpl");        for (j=1; j<= nlstate+1 ; j ++) {
   strcat(fileresvpl,fileres);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        }   
     exit(0);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   k=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }   
       k=k+1;        fprintf(ficgp,"\" t\"\" w l lt 0,");
       fprintf(ficresvpl,"\n#****** ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresvpl,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
              }   
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
       oldm=oldms;savm=savms;        else fprintf(ficgp,"\" t\"\" w l lt 0,");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
     }    }
  }    
     /*3eme*/
   fclose(ficresvpl);    
     for (k1=1; k1<= m ; k1 ++) { 
   /*---------- End : free ----------------*/      for (cpt=1; cpt<= nlstate ; cpt ++) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        /*       k=2+nlstate*(2*cpt-2); */
          k=2+(nlstate+1)*(cpt-1);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"set ter png small size 320, 240\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_matrix(matcov,1,npar,1,npar);          
   free_vector(delti,1,npar);        */
   free_matrix(agev,1,maxwav,1,imx);        for (i=1; i< nlstate ; i ++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   fprintf(fichtm,"\n</body>");          
   fclose(fichtm);        } 
   fclose(ficgp);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
        }
     }
   if(erreur >0){    
     printf("End of Imach with error or warning %d\n",erreur);    /* CV preval stable (period) */
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    for (k1=1; k1<= m ; k1 ++) { 
   }else{      for (cpt=1; cpt<=nlstate ; cpt ++) {
    printf("End of Imach\n");        k=3;
    fprintf(ficlog,"End of Imach\n");        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   printf("See log file on %s\n",filelog);  set ter png small size 320, 240\n\
   fclose(ficlog);  unset log y\n\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for (i=1; i< nlstate ; i ++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(ficgp,"+$%d",k+i+1);
   /*------ End -----------*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
  end:        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 #ifdef windows        for (i=1; i< nlstate ; i ++) {
   /* chdir(pathcd);*/          l=3+(nlstate+ndeath)*cpt;
 #endif          fprintf(ficgp,"+$%d",l+i+1);
  /*system("wgnuplot graph.plt");*/        }
  /*system("../gp37mgw/wgnuplot graph.plt");*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
  /*system("cd ../gp37mgw");*/      } 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    }  
  strcpy(plotcmd,GNUPLOTPROGRAM);    
  strcat(plotcmd," ");    /* proba elementaires */
  strcat(plotcmd,optionfilegnuplot);    for(i=1,jk=1; i <=nlstate; i++){
  system(plotcmd);      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
 #ifdef windows          for(j=1; j <=ncovmodel; j++){
   while (z[0] != 'q') {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     /* chdir(path); */            jk++; 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            fprintf(ficgp,"\n");
     scanf("%s",z);          }
     if (z[0] == 'c') system("./imach");        }
     else if (z[0] == 'e') system(optionfilehtm);      }
     else if (z[0] == 'g') system(plotcmd);     }
     else if (z[0] == 'q') exit(0);    /*goto avoid;*/
   }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 #endif       for(jk=1; jk <=m; jk++) {
 }         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.147


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>