Diff for /imach/src/imach.c between versions 1.14 and 1.113

version 1.14, 2002/02/20 17:05:44 version 1.113, 2006/02/24 14:20:24
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.113  2006/02/24 14:20:24  brouard
   individuals from different ages are interviewed on their health status    (Module): Memory leaks checks with valgrind and:
   or degree of  disability. At least a second wave of interviews    datafile was not closed, some imatrix were not freed and on matrix
   ("longitudinal") should  measure each new individual health status.    allocation too.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.112  2006/01/30 09:55:26  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.111  2006/01/25 20:38:18  brouard
   the probabibility to be observed in state j at the second wave conditional    (Module): Lots of cleaning and bugs added (Gompertz)
   to be observed in state i at the first wave. Therefore the model is:    (Module): Comments can be added in data file. Missing date values
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    can be a simple dot '.'.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.110  2006/01/25 00:51:50  brouard
     *Covariates have to be included here again* invites you to do it.    (Module): Lots of cleaning and bugs added (Gompertz)
   More covariates you add, less is the speed of the convergence.  
     Revision 1.109  2006/01/24 19:37:15  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Comments (lines starting with a #) are allowed in data.
   delay between waves is not identical for each individual, or if some  
   individual missed an interview, the information is not rounded or lost, but    Revision 1.108  2006/01/19 18:05:42  lievre
   taken into account using an interpolation or extrapolation.    Gnuplot problem appeared...
   hPijx is the probability to be    To be fixed
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.107  2006/01/19 16:20:37  brouard
   unobserved intermediate  states. This elementary transition (by month or    Test existence of gnuplot in imach path
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.106  2006/01/19 13:24:36  brouard
   and the contribution of each individual to the likelihood is simply hPijx.    Some cleaning and links added in html output
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.105  2006/01/05 20:23:19  lievre
   of the life expectancies. It also computes the prevalence limits.    *** empty log message ***
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.104  2005/09/30 16:11:43  lievre
            Institut national d'études démographiques, Paris.    (Module): sump fixed, loop imx fixed, and simplifications.
   This software have been partly granted by Euro-REVES, a concerted action    (Module): If the status is missing at the last wave but we know
   from the European Union.    that the person is alive, then we can code his/her status as -2
   It is copyrighted identically to a GNU software product, ie programme and    (instead of missing=-1 in earlier versions) and his/her
   software can be distributed freely for non commercial use. Latest version    contributions to the likelihood is 1 - Prob of dying from last
   can be accessed at http://euroreves.ined.fr/imach .    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   **********************************************************************/    the healthy state at last known wave). Version is 0.98
    
 #include <math.h>    Revision 1.103  2005/09/30 15:54:49  lievre
 #include <stdio.h>    (Module): sump fixed, loop imx fixed, and simplifications.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.101  2004/09/15 10:38:38  brouard
 /*#define DEBUG*/    Fix on curr_time
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.100  2004/07/12 18:29:06  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Add version for Mac OS X. Just define UNIX in Makefile
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.99  2004/06/05 08:57:40  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    *** empty log message ***
   
 #define NINTERVMAX 8    Revision 1.98  2004/05/16 15:05:56  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    New version 0.97 . First attempt to estimate force of mortality
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    directly from the data i.e. without the need of knowing the health
 #define NCOVMAX 8 /* Maximum number of covariates */    state at each age, but using a Gompertz model: log u =a + b*age .
 #define MAXN 20000    This is the basic analysis of mortality and should be done before any
 #define YEARM 12. /* Number of months per year */    other analysis, in order to test if the mortality estimated from the
 #define AGESUP 130    cross-longitudinal survey is different from the mortality estimated
 #define AGEBASE 40    from other sources like vital statistic data.
   
     The same imach parameter file can be used but the option for mle should be -3.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Agnès, who wrote this part of the code, tried to keep most of the
 int npar=NPARMAX;    former routines in order to include the new code within the former code.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    The output is very simple: only an estimate of the intercept and of
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    the slope with 95% confident intervals.
 int popbased=0, fprev,lprev;  
     Current limitations:
 int *wav; /* Number of waves for this individuual 0 is possible */    A) Even if you enter covariates, i.e. with the
 int maxwav; /* Maxim number of waves */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int jmin, jmax; /* min, max spacing between 2 waves */    B) There is no computation of Life Expectancy nor Life Table.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.97  2004/02/20 13:25:42  lievre
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Version 0.96d. Population forecasting command line is (temporarily)
 double jmean; /* Mean space between 2 waves */    suppressed.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.96  2003/07/15 15:38:55  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 FILE *ficgp, *fichtm,*ficresprob;    rewritten within the same printf. Workaround: many printfs.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.95  2003/07/08 07:54:34  brouard
  FILE  *ficresvij;    * imach.c (Repository):
   char fileresv[FILENAMELENGTH];    (Repository): Using imachwizard code to output a more meaningful covariance
  FILE  *ficresvpl;    matrix (cov(a12,c31) instead of numbers.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define NR_END 1    Just cleaning
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define NRANSI    exist so I changed back to asctime which exists.
 #define ITMAX 200    (Module): Version 0.96b
   
 #define TOL 2.0e-4    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define CGOLD 0.3819660    exist so I changed back to asctime which exists.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 #define GOLD 1.618034    (Repository): Elapsed time after each iteration is now output. It
 #define GLIMIT 100.0    helps to forecast when convergence will be reached. Elapsed time
 #define TINY 1.0e-20    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.90  2003/06/24 12:34:15  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    of the covariance matrix to be input.
 #define rint(a) floor(a+0.5)  
     Revision 1.89  2003/06/24 12:30:52  brouard
 static double sqrarg;    (Module): Some bugs corrected for windows. Also, when
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    mle=-1 a template is output in file "or"mypar.txt with the design
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    of the covariance matrix to be input.
   
 int imx;    Revision 1.88  2003/06/23 17:54:56  brouard
 int stepm;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.87  2003/06/18 12:26:01  brouard
 int m,nb;    Version 0.96
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.86  2003/06/17 20:04:08  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 double *weight;  
 int **s; /* Status */    Revision 1.85  2003/06/17 13:12:43  brouard
 double *agedc, **covar, idx;    * imach.c (Repository): Check when date of death was earlier that
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    was wrong (infinity). We still send an "Error" but patch by
 double ftolhess; /* Tolerance for computing hessian */    assuming that the date of death was just one stepm after the
     interview.
 /**************** split *************************/    (Repository): Because some people have very long ID (first column)
 static  int split( char *path, char *dirc, char *name )    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
    char *s;                             /* pointer */    truncation)
    int  l1, l2;                         /* length counters */    (Repository): No more line truncation errors.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.84  2003/06/13 21:44:43  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    * imach.c (Repository): Replace "freqsummary" at a correct
    s = strrchr( path, '\\' );           /* find last / */    place. It differs from routine "prevalence" which may be called
    if ( s == NULL ) {                   /* no directory, so use current */    many times. Probs is memory consuming and must be used with
 #if     defined(__bsd__)                /* get current working directory */    parcimony.
       extern char       *getwd( );    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.83  2003/06/10 13:39:11  lievre
 #else    *** empty log message ***
       extern char       *getcwd( );  
     Revision 1.82  2003/06/05 15:57:20  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Add log in  imach.c and  fullversion number is now printed.
 #endif  
          return( GLOCK_ERROR_GETCWD );  */
       }  /*
       strcpy( name, path );             /* we've got it */     Interpolated Markov Chain
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Short summary of the programme:
       l2 = strlen( s );                 /* length of filename */    
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    This program computes Healthy Life Expectancies from
       strcpy( name, s );                /* save file name */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    first survey ("cross") where individuals from different ages are
       dirc[l1-l2] = 0;                  /* add zero */    interviewed on their health status or degree of disability (in the
    }    case of a health survey which is our main interest) -2- at least a
    l1 = strlen( dirc );                 /* length of directory */    second wave of interviews ("longitudinal") which measure each change
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (if any) in individual health status.  Health expectancies are
    return( 0 );                         /* we're done */    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 /******************************************/    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 void replace(char *s, char*t)    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 {    'age' is age and 'sex' is a covariate. If you want to have a more
   int i;    complex model than "constant and age", you should modify the program
   int lg=20;    where the markup *Covariates have to be included here again* invites
   i=0;    you to do it.  More covariates you add, slower the
   lg=strlen(t);    convergence.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    The advantage of this computer programme, compared to a simple
     if (t[i]== '\\') s[i]='/';    multinomial logistic model, is clear when the delay between waves is not
   }    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 int nbocc(char *s, char occ)  
 {    hPijx is the probability to be observed in state i at age x+h
   int i,j=0;    conditional to the observed state i at age x. The delay 'h' can be
   int lg=20;    split into an exact number (nh*stepm) of unobserved intermediate
   i=0;    states. This elementary transition (by month, quarter,
   lg=strlen(s);    semester or year) is modelled as a multinomial logistic.  The hPx
   for(i=0; i<= lg; i++) {    matrix is simply the matrix product of nh*stepm elementary matrices
   if  (s[i] == occ ) j++;    and the contribution of each individual to the likelihood is simply
   }    hPijx.
   return j;  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 void cutv(char *u,char *v, char*t, char occ)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int i,lg,j,p=0;             Institut national d'études démographiques, Paris.
   i=0;    This software have been partly granted by Euro-REVES, a concerted action
   for(j=0; j<=strlen(t)-1; j++) {    from the European Union.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    It is copyrighted identically to a GNU software product, ie programme and
   }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     (u[j] = t[j]);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   }    
      u[p]='\0';    **********************************************************************/
   /*
    for(j=0; j<= lg; j++) {    main
     if (j>=(p+1))(v[j-p-1] = t[j]);    read parameterfile
   }    read datafile
 }    concatwav
     freqsummary
 /********************** nrerror ********************/    if (mle >= 1)
       mlikeli
 void nrerror(char error_text[])    print results files
 {    if mle==1 
   fprintf(stderr,"ERREUR ...\n");       computes hessian
   fprintf(stderr,"%s\n",error_text);    read end of parameter file: agemin, agemax, bage, fage, estepm
   exit(1);        begin-prev-date,...
 }    open gnuplot file
 /*********************** vector *******************/    open html file
 double *vector(int nl, int nh)    stable prevalence
 {     for age prevalim()
   double *v;    h Pij x
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    variance of p varprob
   if (!v) nrerror("allocation failure in vector");    forecasting if prevfcast==1 prevforecast call prevalence()
   return v-nl+NR_END;    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /************************ free vector ******************/     movingaverage()
 void free_vector(double*v, int nl, int nh)    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   free((FREE_ARG)(v+nl-NR_END));    total life expectancies
 }    Variance of stable prevalence
    end
 /************************ivector *******************************/  */
 int *ivector(long nl,long nh)  
 {  
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));   
   if (!v) nrerror("allocation failure in ivector");  #include <math.h>
   return v-nl+NR_END;  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /******************free ivector **************************/  #include <unistd.h>
 void free_ivector(int *v, long nl, long nh)  
 {  #include <limits.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 /******************* imatrix *******************************/  extern int errno;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /* #include <sys/time.h> */
 {  #include <time.h>
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #include "timeval.h"
   int **m;  
    /* #include <libintl.h> */
   /* allocate pointers to rows */  /* #define _(String) gettext (String) */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define MAXLINE 256
   m += NR_END;  
   m -= nrl;  #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    #define FILENAMELENGTH 132
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    #define NINTERVMAX 8
   /* return pointer to array of pointers to rows */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   return m;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /****************** free_imatrix *************************/  #define YEARM 12. /* Number of months per year */
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define AGESUP 130
       int **m;  #define AGEBASE 40
       long nch,ncl,nrh,nrl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
      /* free an int matrix allocated by imatrix() */  #ifdef UNIX
 {  #define DIRSEPARATOR '/'
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define CHARSEPARATOR "/"
   free((FREE_ARG) (m+nrl-NR_END));  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 /******************* matrix *******************************/  #define CHARSEPARATOR "\\"
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define ODIRSEPARATOR '/'
 {  #endif
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /* $Id$ */
   /* $State$ */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   m += NR_END;  char fullversion[]="$Revision$ $Date$"; 
   m -= nrl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int npar=NPARMAX;
   m[nrl] += NR_END;  int nlstate=2; /* Number of live states */
   m[nrl] -= ncl;  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int popbased=0;
   return m;  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /*************************free matrix ************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG)(m+nrl-NR_END));  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /******************* ma3x *******************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double ***m;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficlog, *ficrespow;
   if (!m) nrerror("allocation failure 1 in matrix()");  int globpr; /* Global variable for printing or not */
   m += NR_END;  double fretone; /* Only one call to likelihood */
   m -= nrl;  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filerespow[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl] += NR_END;  FILE *ficresilk;
   m[nrl] -= ncl;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char filerese[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  FILE  *ficresvij;
   m[nrl][ncl] += NR_END;  char fileresv[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  FILE  *ficresvpl;
   for (j=ncl+1; j<=nch; j++)  char fileresvpl[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  char title[MAXLINE];
    char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     for (j=ncl+1; j<=nch; j++)  char command[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  int  outcmd=0;
   }  
   return m;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /*************************free ma3x ************************/  char filerest[FILENAMELENGTH];
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /***************** f1dim *************************/  extern int gettimeofday();
 extern int ncom;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 extern double *pcom,*xicom;  long time_value;
 extern double (*nrfunc)(double []);  extern long time();
    char strcurr[80], strfor[80];
 double f1dim(double x)  
 {  char *endptr;
   int j;  long lval;
   double f;  
   double *xt;  #define NR_END 1
    #define FREE_ARG char*
   xt=vector(1,ncom);  #define FTOL 1.0e-10
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define NRANSI 
   free_vector(xt,1,ncom);  #define ITMAX 200 
   return f;  
 }  #define TOL 2.0e-4 
   
 /*****************brent *************************/  #define CGOLD 0.3819660 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   int iter;  
   double a,b,d,etemp;  #define GOLD 1.618034 
   double fu,fv,fw,fx;  #define GLIMIT 100.0 
   double ftemp;  #define TINY 1.0e-20 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   a=(ax < cx ? ax : cx);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   b=(ax > cx ? ax : cx);    
   x=w=v=bx;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   fw=fv=fx=(*f)(x);  #define rint(a) floor(a+0.5)
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  static double sqrarg;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     printf(".");fflush(stdout);  int agegomp= AGEGOMP;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int imx; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int stepm=1;
 #endif  /* Stepm, step in month: minimum step interpolation*/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  int estepm;
       return fx;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }  
     ftemp=fu;  int m,nb;
     if (fabs(e) > tol1) {  long *num;
       r=(x-w)*(fx-fv);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       q=(x-v)*(fx-fw);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       p=(x-v)*q-(x-w)*r;  double **pmmij, ***probs;
       q=2.0*(q-r);  double *ageexmed,*agecens;
       if (q > 0.0) p = -p;  double dateintmean=0;
       q=fabs(q);  
       etemp=e;  double *weight;
       e=d;  int **s; /* Status */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  double *agedc, **covar, idx;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       else {  double *lsurv, *lpop, *tpop;
         d=p/q;  
         u=x+d;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
         if (u-a < tol2 || b-u < tol2)  double ftolhess; /* Tolerance for computing hessian */
           d=SIGN(tol1,xm-x);  
       }  /**************** split *************************/
     } else {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     fu=(*f)(u);    */ 
     if (fu <= fx) {    char  *ss;                            /* pointer */
       if (u >= x) a=x; else b=x;    int   l1, l2;                         /* length counters */
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    l1 = strlen(path );                   /* length of path */
         } else {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
           if (u < x) a=u; else b=u;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
           if (fu <= fw || w == x) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
             v=w;      strcpy( name, path );               /* we got the fullname name because no directory */
             w=u;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
             fv=fw;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
             fw=fu;      /* get current working directory */
           } else if (fu <= fv || v == x || v == w) {      /*    extern  char* getcwd ( char *buf , int len);*/
             v=u;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
             fv=fu;        return( GLOCK_ERROR_GETCWD );
           }      }
         }      /* got dirc from getcwd*/
   }      printf(" DIRC = %s \n",dirc);
   nrerror("Too many iterations in brent");    } else {                              /* strip direcotry from path */
   *xmin=x;      ss++;                               /* after this, the filename */
   return fx;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /****************** mnbrak ***********************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      printf(" DIRC2 = %s \n",dirc);
             double (*func)(double))    }
 {    /* We add a separator at the end of dirc if not exists */
   double ulim,u,r,q, dum;    l1 = strlen( dirc );                  /* length of directory */
   double fu;    if( dirc[l1-1] != DIRSEPARATOR ){
        dirc[l1] =  DIRSEPARATOR;
   *fa=(*func)(*ax);      dirc[l1+1] = 0; 
   *fb=(*func)(*bx);      printf(" DIRC3 = %s \n",dirc);
   if (*fb > *fa) {    }
     SHFT(dum,*ax,*bx,dum)    ss = strrchr( name, '.' );            /* find last / */
       SHFT(dum,*fb,*fa,dum)    if (ss >0){
       }      ss++;
   *cx=(*bx)+GOLD*(*bx-*ax);      strcpy(ext,ss);                     /* save extension */
   *fc=(*func)(*cx);      l1= strlen( name);
   while (*fb > *fc) {      l2= strlen(ss)+1;
     r=(*bx-*ax)*(*fb-*fc);      strncpy( finame, name, l1-l2);
     q=(*bx-*cx)*(*fb-*fa);      finame[l1-l2]= 0;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    return( 0 );                          /* we're done */
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /******************************************/
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void replace_back_to_slash(char *s, char*t)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    int i;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    int lg=0;
       u=ulim;    i=0;
       fu=(*func)(u);    lg=strlen(t);
     } else {    for(i=0; i<= lg; i++) {
       u=(*cx)+GOLD*(*cx-*bx);      (s[i] = t[i]);
       fu=(*func)(u);      if (t[i]== '\\') s[i]='/';
     }    }
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /*************** linmin ************************/    int lg=20;
     i=0;
 int ncom;    lg=strlen(s);
 double *pcom,*xicom;    for(i=0; i<= lg; i++) {
 double (*nrfunc)(double []);    if  (s[i] == occ ) j++;
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    return j;
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  void cutv(char *u,char *v, char*t, char occ)
   double f1dim(double x);  {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
               double *fc, double (*func)(double));       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   int j;       gives u="abcedf" and v="ghi2j" */
   double xx,xmin,bx,ax;    int i,lg,j,p=0;
   double fx,fb,fa;    i=0;
      for(j=0; j<=strlen(t)-1; j++) {
   ncom=n;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   pcom=vector(1,n);    }
   xicom=vector(1,n);  
   nrfunc=func;    lg=strlen(t);
   for (j=1;j<=n;j++) {    for(j=0; j<p; j++) {
     pcom[j]=p[j];      (u[j] = t[j]);
     xicom[j]=xi[j];    }
   }       u[p]='\0';
   ax=0.0;  
   xx=1.0;     for(j=0; j<= lg; j++) {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      if (j>=(p+1))(v[j-p-1] = t[j]);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    }
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /********************** nrerror ********************/
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  void nrerror(char error_text[])
     p[j] += xi[j];  {
   }    fprintf(stderr,"ERREUR ...\n");
   free_vector(xicom,1,n);    fprintf(stderr,"%s\n",error_text);
   free_vector(pcom,1,n);    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /*************** powell ************************/  double *vector(int nl, int nh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!v) nrerror("allocation failure in vector");
               double (*func)(double []));    return v-nl+NR_END;
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /************************ free vector ******************/
   double *xits;  void free_vector(double*v, int nl, int nh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /************************ivector *******************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  int *ivector(long nl,long nh)
   for (*iter=1;;++(*iter)) {  {
     fp=(*fret);    int *v;
     ibig=0;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     del=0.0;    if (!v) nrerror("allocation failure in ivector");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return v-nl+NR_END;
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /******************free ivector **************************/
     for (i=1;i<=n;i++) {  void free_ivector(int *v, long nl, long nh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
 #endif  /************************lvector *******************************/
       printf("%d",i);fflush(stdout);  long *lvector(long nl,long nh)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    long *v;
         del=fabs(fptt-(*fret));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         ibig=i;    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /******************free lvector **************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  void free_lvector(long *v, long nl, long nh)
         printf(" x(%d)=%.12e",j,xit[j]);  {
       }    free((FREE_ARG)(v+nl-NR_END));
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /******************* imatrix *******************************/
 #endif  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  { 
 #ifdef DEBUG    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       int k[2],l;    int **m; 
       k[0]=1;    
       k[1]=-1;    /* allocate pointers to rows */ 
       printf("Max: %.12e",(*func)(p));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       for (j=1;j<=n;j++)    if (!m) nrerror("allocation failure 1 in matrix()"); 
         printf(" %.12e",p[j]);    m += NR_END; 
       printf("\n");    m -= nrl; 
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /* allocate rows and set pointers to them */ 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
 #endif    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
       free_vector(xit,1,n);    /* return pointer to array of pointers to rows */ 
       free_vector(xits,1,n);    return m; 
       free_vector(ptt,1,n);  } 
       free_vector(pt,1,n);  
       return;  /****************** free_imatrix *************************/
     }  void free_imatrix(m,nrl,nrh,ncl,nch)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        int **m;
     for (j=1;j<=n;j++) {        long nch,ncl,nrh,nrl; 
       ptt[j]=2.0*p[j]-pt[j];       /* free an int matrix allocated by imatrix() */ 
       xit[j]=p[j]-pt[j];  { 
       pt[j]=p[j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     fptt=(*func)(ptt);  } 
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /******************* matrix *******************************/
       if (t < 0.0) {  double **matrix(long nrl, long nrh, long ncl, long nch)
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           xi[j][ibig]=xi[j][n];    double **m;
           xi[j][n]=xit[j];  
         }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m += NR_END;
         for(j=1;j<=n;j++)    m -= nrl;
           printf(" %.12e",xit[j]);  
         printf("\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 /**** Prevalence limit ****************/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*************************free matrix ************************/
      matrix by transitions matrix until convergence is reached */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   int i, ii,j,k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(m+nrl-NR_END));
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /******************* ma3x *******************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
   for (ii=1;ii<=nlstate+ndeath;ii++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for (j=1;j<=nlstate+ndeath;j++){    double ***m;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
    cov[1]=1.;    m += NR_END;
      m -= nrl;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     newm=savm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /* Covariates have to be included here again */    m[nrl] += NR_END;
      cov[2]=agefin;    m[nrl] -= ncl;
    
       for (k=1; k<=cptcovn;k++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (k=1; k<=cptcovage;k++)    m[nrl][ncl] += NR_END;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl][ncl] -= nll;
       for (k=1; k<=cptcovprod;k++)    for (j=ncl+1; j<=nch; j++) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      m[nrl][j]=m[nrl][j-1]+nlay;
     
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    for (i=nrl+1; i<=nrh; i++) {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        m[i][j]=m[i][j-1]+nlay;
     }
     savm=oldm;    return m; 
     oldm=newm;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     maxmax=0.;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for(j=1;j<=nlstate;j++){    */
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /*************************free ma3x ************************/
         sumnew=0;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         max=FMAX(max,prlim[i][j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         min=FMIN(min,prlim[i][j]);    free((FREE_ARG)(m+nrl-NR_END));
       }  }
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
     if(maxmax < ftolpl){  {
       return prlim;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/"); /* Add to the right */
 }    strcat(tmpout,fileres);
     return tmpout;
 /*************** transition probabilities ***************/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*************** function subdirf2 ***********/
 {  char *subdirf2(char fileres[], char *preop)
   double s1, s2;  {
   /*double t34;*/    
   int i,j,j1, nc, ii, jj;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     for(i=1; i<= nlstate; i++){    strcat(tmpout,"/");
     for(j=1; j<i;j++){    strcat(tmpout,preop);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,fileres);
         /*s2 += param[i][j][nc]*cov[nc];*/    return tmpout;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /*************** function subdirf3 ***********/
       ps[i][j]=s2;  char *subdirf3(char fileres[], char *preop, char *preop2)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    
     for(j=i+1; j<=nlstate+ndeath;j++){    /* Caution optionfilefiname is hidden */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcpy(tmpout,optionfilefiname);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,"/");
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcat(tmpout,preop);
       }    strcat(tmpout,preop2);
       ps[i][j]=(s2);    strcat(tmpout,fileres);
     }    return tmpout;
   }  }
     /*ps[3][2]=1;*/  
   /***************** f1dim *************************/
   for(i=1; i<= nlstate; i++){  extern int ncom; 
      s1=0;  extern double *pcom,*xicom;
     for(j=1; j<i; j++)  extern double (*nrfunc)(double []); 
       s1+=exp(ps[i][j]);   
     for(j=i+1; j<=nlstate+ndeath; j++)  double f1dim(double x) 
       s1+=exp(ps[i][j]);  { 
     ps[i][i]=1./(s1+1.);    int j; 
     for(j=1; j<i; j++)    double f;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double *xt; 
     for(j=i+1; j<=nlstate+ndeath; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xt=vector(1,ncom); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   } /* end i */    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    return f; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  } 
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
     int iter; 
     double a,b,d,etemp;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double fu,fv,fw,fx;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double ftemp;
      printf("%lf ",ps[ii][jj]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
    }    double e=0.0; 
     printf("\n ");   
     }    a=(ax < cx ? ax : cx); 
     printf("\n ");printf("%lf ",cov[2]);*/    b=(ax > cx ? ax : cx); 
 /*    x=w=v=bx; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    fw=fv=fx=(*f)(x); 
   goto end;*/    for (iter=1;iter<=ITMAX;iter++) { 
     return ps;      xm=0.5*(a+b); 
 }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 /**************** Product of 2 matrices ******************/      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #ifdef DEBUG
 {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   /* in, b, out are matrice of pointers which should have been initialized  #endif
      before: only the contents of out is modified. The function returns      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      a pointer to pointers identical to out */        *xmin=x; 
   long i, j, k;        return fx; 
   for(i=nrl; i<= nrh; i++)      } 
     for(k=ncolol; k<=ncoloh; k++)      ftemp=fu;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      if (fabs(e) > tol1) { 
         out[i][k] +=in[i][j]*b[j][k];        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   return out;        p=(x-v)*q-(x-w)*r; 
 }        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
         q=fabs(q); 
 /************* Higher Matrix Product ***************/        etemp=e; 
         e=d; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        else { 
      duration (i.e. until          d=p/q; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          u=x+d; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          if (u-a < tol2 || b-u < tol2) 
      (typically every 2 years instead of every month which is too big).            d=SIGN(tol1,xm-x); 
      Model is determined by parameters x and covariates have to be        } 
      included manually here.      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      */      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   int i, j, d, h, k;      fu=(*f)(u); 
   double **out, cov[NCOVMAX];      if (fu <= fx) { 
   double **newm;        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   /* Hstepm could be zero and should return the unit matrix */          SHFT(fv,fw,fx,fu) 
   for (i=1;i<=nlstate+ndeath;i++)          } else { 
     for (j=1;j<=nlstate+ndeath;j++){            if (u < x) a=u; else b=u; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);            if (fu <= fw || w == x) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);              v=w; 
     }              w=u; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */              fv=fw; 
   for(h=1; h <=nhstepm; h++){              fw=fu; 
     for(d=1; d <=hstepm; d++){            } else if (fu <= fv || v == x || v == w) { 
       newm=savm;              v=u; 
       /* Covariates have to be included here again */              fv=fu; 
       cov[1]=1.;            } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    } 
       for (k=1; k<=cptcovage;k++)    nrerror("Too many iterations in brent"); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    *xmin=x; 
       for (k=1; k<=cptcovprod;k++)    return fx; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  } 
   
   /****************** mnbrak ***********************/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,              double (*func)(double)) 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  { 
       savm=oldm;    double ulim,u,r,q, dum;
       oldm=newm;    double fu; 
     }   
     for(i=1; i<=nlstate+ndeath; i++)    *fa=(*func)(*ax); 
       for(j=1;j<=nlstate+ndeath;j++) {    *fb=(*func)(*bx); 
         po[i][j][h]=newm[i][j];    if (*fb > *fa) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      SHFT(dum,*ax,*bx,dum) 
          */        SHFT(dum,*fb,*fa,dum) 
       }        } 
   } /* end h */    *cx=(*bx)+GOLD*(*bx-*ax); 
   return po;    *fc=(*func)(*cx); 
 }    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 /*************** log-likelihood *************/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 double func( double *x)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   int i, ii, j, k, mi, d, kk;      if ((*bx-u)*(u-*cx) > 0.0) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        fu=(*func)(u); 
   double **out;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double sw; /* Sum of weights */        fu=(*func)(u); 
   double lli; /* Individual log likelihood */        if (fu < *fc) { 
   long ipmx;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   /*extern weight */            SHFT(*fb,*fc,fu,(*func)(u)) 
   /* We are differentiating ll according to initial status */            } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /*for(i=1;i<imx;i++)        u=ulim; 
     printf(" %d\n",s[4][i]);        fu=(*func)(u); 
   */      } else { 
   cov[1]=1.;        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      SHFT(*ax,*bx,*cx,u) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        SHFT(*fa,*fb,*fc,fu) 
     for(mi=1; mi<= wav[i]-1; mi++){        } 
       for (ii=1;ii<=nlstate+ndeath;ii++)  } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  /*************** linmin ************************/
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  int ncom; 
         for (kk=1; kk<=cptcovage;kk++) {  double *pcom,*xicom;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  double (*nrfunc)(double []); 
         }   
          void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double brent(double ax, double bx, double cx, 
         savm=oldm;                 double (*f)(double), double tol, double *xmin); 
         oldm=newm;    double f1dim(double x); 
            void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                        double *fc, double (*func)(double)); 
       } /* end mult */    int j; 
          double xx,xmin,bx,ax; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double fx,fb,fa;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/   
       ipmx +=1;    ncom=n; 
       sw += weight[i];    pcom=vector(1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    xicom=vector(1,n); 
     } /* end of wave */    nrfunc=func; 
   } /* end of individual */    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      xicom[j]=xi[j]; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    ax=0.0; 
   return -l;    xx=1.0; 
 }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 /*********** Maximum Likelihood Estimation ***************/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  #endif
 {    for (j=1;j<=n;j++) { 
   int i,j, iter;      xi[j] *= xmin; 
   double **xi,*delti;      p[j] += xi[j]; 
   double fret;    } 
   xi=matrix(1,npar,1,npar);    free_vector(xicom,1,n); 
   for (i=1;i<=npar;i++)    free_vector(pcom,1,n); 
     for (j=1;j<=npar;j++)  } 
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  char *asc_diff_time(long time_sec, char ascdiff[])
   powell(p,xi,npar,ftol,&iter,&fret,func);  {
     long sec_left, days, hours, minutes;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    days = (time_sec) / (60*60*24);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 /**** Computes Hessian and covariance matrix ***/    sec_left = (sec_left) % (60);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 {    return ascdiff;
   double  **a,**y,*x,pd;  }
   double **hess;  
   int i, j,jk;  /*************** powell ************************/
   int *indx;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   double hessii(double p[], double delta, int theta, double delti[]);  { 
   double hessij(double p[], double delti[], int i, int j);    void linmin(double p[], double xi[], int n, double *fret, 
   void lubksb(double **a, int npar, int *indx, double b[]) ;                double (*func)(double [])); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   hess=matrix(1,npar,1,npar);    double fp,fptt;
     double *xits;
   printf("\nCalculation of the hessian matrix. Wait...\n");    int niterf, itmp;
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);    pt=vector(1,n); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    ptt=vector(1,n); 
     /*printf(" %f ",p[i]);*/    xit=vector(1,n); 
     /*printf(" %lf ",hess[i][i]);*/    xits=vector(1,n); 
   }    *fret=(*func)(p); 
      for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (i=1;i<=npar;i++) {    for (*iter=1;;++(*iter)) { 
     for (j=1;j<=npar;j++)  {      fp=(*fret); 
       if (j>i) {      ibig=0; 
         printf(".%d%d",i,j);fflush(stdout);      del=0.0; 
         hess[i][j]=hessij(p,delti,i,j);      last_time=curr_time;
         hess[j][i]=hess[i][j];          (void) gettimeofday(&curr_time,&tzp);
         /*printf(" %lf ",hess[i][j]);*/      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       }      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   }      */
   printf("\n");     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(ficrespow," %.12lf", p[i]);
   a=matrix(1,npar,1,npar);      }
   y=matrix(1,npar,1,npar);      printf("\n");
   x=vector(1,npar);      fprintf(ficlog,"\n");
   indx=ivector(1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
   for (i=1;i<=npar;i++)      if(*iter <=3){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        tm = *localtime(&curr_time.tv_sec);
   ludcmp(a,npar,indx,&pd);        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
   for (j=1;j<=npar;j++) {        forecast_time=curr_time; 
     for (i=1;i<=npar;i++) x[i]=0;        itmp = strlen(strcurr);
     x[j]=1;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     lubksb(a,npar,indx,x);          strcurr[itmp-1]='\0';
     for (i=1;i<=npar;i++){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       matcov[i][j]=x[i];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        for(niterf=10;niterf<=30;niterf+=10){
   }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
   printf("\n#Hessian matrix#\n");  /*      asctime_r(&tmf,strfor); */
   for (i=1;i<=npar;i++) {          strcpy(strfor,asctime(&tmf));
     for (j=1;j<=npar;j++) {          itmp = strlen(strfor);
       printf("%.3e ",hess[i][j]);          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
     printf("\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   /* Recompute Inverse */      }
   for (i=1;i<=npar;i++)      for (i=1;i<=n;i++) { 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   ludcmp(a,npar,indx,&pd);        fptt=(*fret); 
   #ifdef DEBUG
   /*  printf("\n#Hessian matrix recomputed#\n");        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   for (j=1;j<=npar;j++) {  #endif
     for (i=1;i<=npar;i++) x[i]=0;        printf("%d",i);fflush(stdout);
     x[j]=1;        fprintf(ficlog,"%d",i);fflush(ficlog);
     lubksb(a,npar,indx,x);        linmin(p,xit,n,fret,func); 
     for (i=1;i<=npar;i++){        if (fabs(fptt-(*fret)) > del) { 
       y[i][j]=x[i];          del=fabs(fptt-(*fret)); 
       printf("%.3e ",y[i][j]);          ibig=i; 
     }        } 
     printf("\n");  #ifdef DEBUG
   }        printf("%d %.12e",i,(*fret));
   */        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   free_matrix(a,1,npar,1,npar);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   free_matrix(y,1,npar,1,npar);          printf(" x(%d)=%.12e",j,xit[j]);
   free_vector(x,1,npar);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   free_ivector(indx,1,npar);        }
   free_matrix(hess,1,npar,1,npar);        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
 }        }
         printf("\n");
 /*************** hessian matrix ****************/        fprintf(ficlog,"\n");
 double hessii( double x[], double delta, int theta, double delti[])  #endif
 {      } 
   int i;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   int l=1, lmax=20;  #ifdef DEBUG
   double k1,k2;        int k[2],l;
   double p2[NPARMAX+1];        k[0]=1;
   double res;        k[1]=-1;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        printf("Max: %.12e",(*func)(p));
   double fx;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int k=0,kmax=10;        for (j=1;j<=n;j++) {
   double l1;          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   fx=func(x);        }
   for (i=1;i<=npar;i++) p2[i]=x[i];        printf("\n");
   for(l=0 ; l <=lmax; l++){        fprintf(ficlog,"\n");
     l1=pow(10,l);        for(l=0;l<=1;l++) {
     delts=delt;          for (j=1;j<=n;j++) {
     for(k=1 ; k <kmax; k=k+1){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       delt = delta*(l1*k);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       p2[theta]=x[theta] +delt;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       k1=func(p2)-fx;          }
       p2[theta]=x[theta]-delt;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       k2=func(p2)-fx;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       /*res= (k1-2.0*fx+k2)/delt/delt; */        }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  #endif
        
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        free_vector(xit,1,n); 
 #endif        free_vector(xits,1,n); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        free_vector(ptt,1,n); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        free_vector(pt,1,n); 
         k=kmax;        return; 
       }      } 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         k=kmax; l=lmax*10.;      for (j=1;j<=n;j++) { 
       }        ptt[j]=2.0*p[j]-pt[j]; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        xit[j]=p[j]-pt[j]; 
         delts=delt;        pt[j]=p[j]; 
       }      } 
     }      fptt=(*func)(ptt); 
   }      if (fptt < fp) { 
   delti[theta]=delts;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   return res;        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
 }          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 double hessij( double x[], double delti[], int thetai,int thetaj)            xi[j][n]=xit[j]; 
 {          }
   int i;  #ifdef DEBUG
   int l=1, l1, lmax=20;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double k1,k2,k3,k4,res,fx;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double p2[NPARMAX+1];          for(j=1;j<=n;j++){
   int k;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   fx=func(x);          }
   for (k=1; k<=2; k++) {          printf("\n");
     for (i=1;i<=npar;i++) p2[i]=x[i];          fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;      } 
      } 
     p2[thetai]=x[thetai]+delti[thetai]/k;  } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  /**** Prevalence limit (stable prevalence)  ****************/
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k3=func(p2)-fx;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         matrix by transitions matrix until convergence is reached */
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    int i, ii,j,k;
     k4=func(p2)-fx;    double min, max, maxmin, maxmax,sumnew=0.;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double **matprod2();
 #ifdef DEBUG    double **out, cov[NCOVMAX], **pmij();
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double **newm;
 #endif    double agefin, delaymax=50 ; /* Max number of years to converge */
   }  
   return res;    for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************** Inverse of matrix **************/      }
 void ludcmp(double **a, int n, int *indx, double *d)  
 {     cov[1]=1.;
   int i,imax,j,k;   
   double big,dum,sum,temp;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double *vv;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        newm=savm;
   vv=vector(1,n);      /* Covariates have to be included here again */
   *d=1.0;       cov[2]=agefin;
   for (i=1;i<=n;i++) {    
     big=0.0;        for (k=1; k<=cptcovn;k++) {
     for (j=1;j<=n;j++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       if ((temp=fabs(a[i][j])) > big) big=temp;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        }
     vv[i]=1.0/big;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
   for (j=1;j<=n;j++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (i=1;i<j;i++) {  
       sum=a[i][j];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       a[i][j]=sum;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     big=0.0;  
     for (i=j;i<=n;i++) {      savm=oldm;
       sum=a[i][j];      oldm=newm;
       for (k=1;k<j;k++)      maxmax=0.;
         sum -= a[i][k]*a[k][j];      for(j=1;j<=nlstate;j++){
       a[i][j]=sum;        min=1.;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        max=0.;
         big=dum;        for(i=1; i<=nlstate; i++) {
         imax=i;          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     }          prlim[i][j]= newm[i][j]/(1-sumnew);
     if (j != imax) {          max=FMAX(max,prlim[i][j]);
       for (k=1;k<=n;k++) {          min=FMIN(min,prlim[i][j]);
         dum=a[imax][k];        }
         a[imax][k]=a[j][k];        maxmin=max-min;
         a[j][k]=dum;        maxmax=FMAX(maxmax,maxmin);
       }      }
       *d = -(*d);      if(maxmax < ftolpl){
       vv[imax]=vv[j];        return prlim;
     }      }
     indx[j]=imax;    }
     if (a[j][j] == 0.0) a[j][j]=TINY;  }
     if (j != n) {  
       dum=1.0/(a[j][j]);  /*************** transition probabilities ***************/ 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
   free_vector(vv,1,n);  /* Doesn't work */    double s1, s2;
 ;    /*double t34;*/
 }    int i,j,j1, nc, ii, jj;
   
 void lubksb(double **a, int n, int *indx, double b[])      for(i=1; i<= nlstate; i++){
 {        for(j=1; j<i;j++){
   int i,ii=0,ip,j;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double sum;            /*s2 += param[i][j][nc]*cov[nc];*/
              s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (i=1;i<=n;i++) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     ip=indx[i];          }
     sum=b[ip];          ps[i][j]=s2;
     b[ip]=b[i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     if (ii)        }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(j=i+1; j<=nlstate+ndeath;j++){
     else if (sum) ii=i;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     b[i]=sum;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   for (i=n;i>=1;i--) {          }
     sum=b[i];          ps[i][j]=s2;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        }
     b[i]=sum/a[i][i];      }
   }      /*ps[3][2]=1;*/
 }      
       for(i=1; i<= nlstate; i++){
 /************ Frequencies ********************/        s1=0;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        for(j=1; j<i; j++)
 {  /* Some frequencies */          s1+=exp(ps[i][j]);
          for(j=i+1; j<=nlstate+ndeath; j++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          s1+=exp(ps[i][j]);
   double ***freq; /* Frequencies */        ps[i][i]=1./(s1+1.);
   double *pp;        for(j=1; j<i; j++)
   double pos;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   FILE *ficresp;        for(j=i+1; j<=nlstate+ndeath; j++)
   char fileresp[FILENAMELENGTH];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   pp=vector(1,nlstate);      } /* end i */
  probs= ma3x(1,130 ,1,8, 1,8);      
   strcpy(fileresp,"p");      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   strcat(fileresp,fileres);        for(jj=1; jj<= nlstate+ndeath; jj++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {          ps[ii][jj]=0;
     printf("Problem with prevalence resultfile: %s\n", fileresp);          ps[ii][ii]=1;
     exit(0);        }
   }      }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      
   j1=0;  
   /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   j=cptcoveff;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*         printf("ddd %lf ",ps[ii][jj]); */
   /*       } */
   for(k1=1; k1<=j;k1++){  /*       printf("\n "); */
    for(i1=1; i1<=ncodemax[k1];i1++){  /*        } */
        j1++;  /*        printf("\n ");printf("%lf ",cov[2]); */
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);         /*
          scanf("%d", i);*/        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for (i=-1; i<=nlstate+ndeath; i++)          goto end;*/
          for (jk=-1; jk<=nlstate+ndeath; jk++)        return ps;
            for(m=agemin; m <= agemax+3; m++)  }
              freq[i][jk][m]=0;  
          /**************** Product of 2 matrices ******************/
        for (i=1; i<=imx; i++) {  
          bool=1;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          if  (cptcovn>0) {  {
            for (z1=1; z1<=cptcoveff; z1++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                bool=0;    /* in, b, out are matrice of pointers which should have been initialized 
          }       before: only the contents of out is modified. The function returns
           if (bool==1) {       a pointer to pointers identical to out */
            for(m=fprev; m<=lprev; m++){    long i, j, k;
              if(agev[m][i]==0) agev[m][i]=agemax+1;    for(i=nrl; i<= nrh; i++)
              if(agev[m][i]==1) agev[m][i]=agemax+2;      for(k=ncolol; k<=ncoloh; k++)
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          out[i][k] +=in[i][j]*b[j][k];
            }  
          }    return out;
        }  }
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /************* Higher Matrix Product ***************/
        fprintf(ficresp, "**********\n#");  
         }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
        for(i=1; i<=nlstate;i++)  {
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* Computes the transition matrix starting at age 'age' over 
        fprintf(ficresp, "\n");       'nhstepm*hstepm*stepm' months (i.e. until
               age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for(i=(int)agemin; i <= (int)agemax+3; i++){       nhstepm*hstepm matrices. 
     if(i==(int)agemax+3)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       printf("Total");       (typically every 2 years instead of every month which is too big 
     else       for the memory).
       printf("Age %d", i);       Model is determined by parameters x and covariates have to be 
     for(jk=1; jk <=nlstate ; jk++){       included manually here. 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
         pp[jk] += freq[jk][m][i];       */
     }  
     for(jk=1; jk <=nlstate ; jk++){    int i, j, d, h, k;
       for(m=-1, pos=0; m <=0 ; m++)    double **out, cov[NCOVMAX];
         pos += freq[jk][m][i];    double **newm;
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /* Hstepm could be zero and should return the unit matrix */
       else    for (i=1;i<=nlstate+ndeath;i++)
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
      for(jk=1; jk <=nlstate ; jk++){      }
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         pp[jk] += freq[jk][m][i];    for(h=1; h <=nhstepm; h++){
      }      for(d=1; d <=hstepm; d++){
         newm=savm;
     for(jk=1,pos=0; jk <=nlstate ; jk++)        /* Covariates have to be included here again */
       pos += pp[jk];        cov[1]=1.;
     for(jk=1; jk <=nlstate ; jk++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       if(pos>=1.e-5)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (k=1; k<=cptcovage;k++)
       else          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovprod;k++)
       if( i <= (int) agemax){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         if(pos>=1.e-5){  
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
           probs[i][jk][j1]= pp[jk]/pos;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       else                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        savm=oldm;
       }        oldm=newm;
     }      }
     for(jk=-1; jk <=nlstate+ndeath; jk++)      for(i=1; i<=nlstate+ndeath; i++)
       for(m=-1; m <=nlstate+ndeath; m++)        for(j=1;j<=nlstate+ndeath;j++) {
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          po[i][j][h]=newm[i][j];
     if(i <= (int) agemax)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       fprintf(ficresp,"\n");           */
     printf("\n");        }
     }    } /* end h */
     }    return po;
  }  }
    
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*************** log-likelihood *************/
   free_vector(pp,1,nlstate);  double func( double *x)
   {
 }  /* End of Freq */    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
 /************* Waves Concatenation ***************/    double **out;
     double sw; /* Sum of weights */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double lli; /* Individual log likelihood */
 {    int s1, s2;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double bbh, survp;
      Death is a valid wave (if date is known).    long ipmx;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    /*extern weight */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    /* We are differentiating ll according to initial status */
      and mw[mi+1][i]. dh depends on stepm.    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      */    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   int i, mi, m;    */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    cov[1]=1.;
      double sum=0., jmean=0.;*/  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   int j, k=0,jk, ju, jl;  
   double sum=0.;    if(mle==1){
   jmin=1e+5;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jmax=-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   jmean=0.;        for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=imx; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     mi=0;            for (j=1;j<=nlstate+ndeath;j++){
     m=firstpass;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(s[m][i]>=1)            }
         mw[++mi][i]=m;          for(d=0; d<dh[mi][i]; d++){
       if(m >=lastpass)            newm=savm;
         break;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else            for (kk=1; kk<=cptcovage;kk++) {
         m++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }/* end while */            }
     if (s[m][i] > nlstate){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       mi++;     /* Death is another wave */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /* if(mi==0)  never been interviewed correctly before death */            savm=oldm;
          /* Only death is a correct wave */            oldm=newm;
       mw[mi][i]=m;          } /* end mult */
     }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     wav[i]=mi;          /* But now since version 0.9 we anticipate for bias at large stepm.
     if(mi==0)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for(i=1; i<=imx; i++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     for(mi=1; mi<wav[i];mi++){           * probability in order to take into account the bias as a fraction of the way
       if (stepm <=0)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         dh[mi][i]=1;           * -stepm/2 to stepm/2 .
       else{           * For stepm=1 the results are the same as for previous versions of Imach.
         if (s[mw[mi+1][i]][i] > nlstate) {           * For stepm > 1 the results are less biased than in previous versions. 
           if (agedc[i] < 2*AGESUP) {           */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          s1=s[mw[mi][i]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */          s2=s[mw[mi+1][i]][i];
           k=k+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           if (j >= jmax) jmax=j;          /* bias bh is positive if real duration
           if (j <= jmin) jmin=j;           * is higher than the multiple of stepm and negative otherwise.
           sum=sum+j;           */
           /* if (j<10) printf("j=%d num=%d ",j,i); */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           }          if( s2 > nlstate){ 
         }            /* i.e. if s2 is a death state and if the date of death is known 
         else{               then the contribution to the likelihood is the probability to 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));               die between last step unit time and current  step unit time, 
           k=k+1;               which is also equal to probability to die before dh 
           if (j >= jmax) jmax=j;               minus probability to die before dh-stepm . 
           else if (j <= jmin)jmin=j;               In version up to 0.92 likelihood was computed
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          as if date of death was unknown. Death was treated as any other
           sum=sum+j;          health state: the date of the interview describes the actual state
         }          and not the date of a change in health state. The former idea was
         jk= j/stepm;          to consider that at each interview the state was recorded
         jl= j -jk*stepm;          (healthy, disable or death) and IMaCh was corrected; but when we
         ju= j -(jk+1)*stepm;          introduced the exact date of death then we should have modified
         if(jl <= -ju)          the contribution of an exact death to the likelihood. This new
           dh[mi][i]=jk;          contribution is smaller and very dependent of the step unit
         else          stepm. It is no more the probability to die between last interview
           dh[mi][i]=jk+1;          and month of death but the probability to survive from last
         if(dh[mi][i]==0)          interview up to one month before death multiplied by the
           dh[mi][i]=1; /* At least one step */          probability to die within a month. Thanks to Chris
       }          Jackson for correcting this bug.  Former versions increased
     }          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
   jmean=sum/k;          lower mortality.
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            */
  }            lli=log(out[s1][s2] - savm[s1][s2]);
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  
 {          } else if  (s2==-2) {
   int Ndum[20],ij=1, k, j, i;            for (j=1,survp=0. ; j<=nlstate; j++) 
   int cptcode=0;              survp += out[s1][j];
   cptcoveff=0;            lli= survp;
            }
   for (k=0; k<19; k++) Ndum[k]=0;          
   for (k=1; k<=7; k++) ncodemax[k]=0;          else if  (s2==-4) {
             for (j=3,survp=0. ; j<=nlstate; j++) 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              survp += out[s1][j];
     for (i=1; i<=imx; i++) {            lli= survp;
       ij=(int)(covar[Tvar[j]][i]);          }
       Ndum[ij]++;          
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          else if  (s2==-5) {
       if (ij > cptcode) cptcode=ij;            for (j=1,survp=0. ; j<=2; j++) 
     }              survp += out[s1][j];
             lli= survp;
     for (i=0; i<=cptcode; i++) {          }
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  
     ij=1;          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (i=1; i<=ncodemax[j]; i++) {          } 
       for (k=0; k<=19; k++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if (Ndum[k] != 0) {          /*if(lli ==000.0)*/
           nbcode[Tvar[j]][ij]=k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ij++;          ipmx +=1;
         }          sw += weight[i];
         if (ij > ncodemax[j]) break;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }          } /* end of wave */
     }      } /* end of individual */
   }      }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  for (k=0; k<19; k++) Ndum[k]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  for (i=1; i<=ncovmodel-2; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=Tvar[i];            for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  ij=1;          for(d=0; d<=dh[mi][i]; d++){
  for (i=1; i<=10; i++) {            newm=savm;
    if((Ndum[i]!=0) && (i<=ncov)){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Tvaraff[ij]=i;            for (kk=1; kk<=cptcovage;kk++) {
      ij++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    }            }
  }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     cptcoveff=ij-1;            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /*********** Health Expectancies ****************/        
           s1=s[mw[mi][i]][i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   /* Health expectancies */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i, j, nhstepm, hstepm, h;          ipmx +=1;
   double age, agelim,hf;          sw += weight[i];
   double ***p3mat;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   fprintf(ficreseij,"# Health expectancies\n");      } /* end of individual */
   fprintf(ficreseij,"# Age");    }  else if(mle==3){  /* exponential inter-extrapolation */
   for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficreseij," %1d-%1d",i,j);        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   hstepm=1*YEARM; /*  Every j years of age (in month) */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   agelim=AGESUP;          for(d=0; d<dh[mi][i]; d++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            newm=savm;
     /* nhstepm age range expressed in number of stepm */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            for (kk=1; kk<=cptcovage;kk++) {
     /* Typically if 20 years = 20*12/6=40 stepm */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            savm=oldm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            oldm=newm;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            } /* end mult */
         
           s1=s[mw[mi][i]][i];
     for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
       for(j=1; j<=nlstate;j++)          bbh=(double)bh[mi][i]/(double)stepm; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           eij[i][j][(int)age] +=p3mat[i][j][h];          ipmx +=1;
         }          sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     hf=1;        } /* end of wave */
     if (stepm >= YEARM) hf=stepm/YEARM;      } /* end of individual */
     fprintf(ficreseij,"%.0f",age );    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate;j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficreseij,"\n");            for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
 /************ Variance ******************/            newm=savm;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* Variance of health expectancies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            }
   double **newm;          
   double **dnewm,**doldm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm, h;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k, cptcode;            savm=oldm;
   double *xp;            oldm=newm;
   double **gp, **gm;          } /* end mult */
   double ***gradg, ***trgradg;        
   double ***p3mat;          s1=s[mw[mi][i]][i];
   double age,agelim;          s2=s[mw[mi+1][i]][i];
   int theta;          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
    fprintf(ficresvij,"# Covariances of life expectancies\n");          }else{
   fprintf(ficresvij,"# Age");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=nlstate;j++)          ipmx +=1;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          sw += weight[i];
   fprintf(ficresvij,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   xp=vector(1,npar);        } /* end of wave */
   dnewm=matrix(1,nlstate,1,npar);      } /* end of individual */
   doldm=matrix(1,nlstate,1,nlstate);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=1*YEARM; /* Every year of age */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(mi=1; mi<= wav[i]-1; mi++){
   agelim = AGESUP;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (j=1;j<=nlstate+ndeath;j++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(d=0; d<dh[mi][i]; d++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            newm=savm;
     gp=matrix(0,nhstepm,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gm=matrix(0,nhstepm,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){ /* Computes gradient */          
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            oldm=newm;
           } /* end mult */
       if (popbased==1) {        
         for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
           prlim[i][i]=probs[(int)age][i][ij];          s2=s[mw[mi+1][i]][i];
       }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                ipmx +=1;
       for(j=1; j<= nlstate; j++){          sw += weight[i];
         for(h=0; h<=nhstepm; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        } /* end of wave */
         }      } /* end of individual */
       }    } /* End of if */
        for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(i=1; i<=npar; i++) /* Computes gradient */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return -l;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
   
       if (popbased==1) {  /*************** log-likelihood *************/
         for(i=1; i<=nlstate;i++)  double funcone( double *x)
           prlim[i][i]=probs[(int)age][i][ij];  {
       }    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
       for(j=1; j<= nlstate; j++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         for(h=0; h<=nhstepm; h++){    double **out;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double lli; /* Individual log likelihood */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double llt;
         }    int s1, s2;
       }    double bbh, survp;
     /*extern weight */
       for(j=1; j<= nlstate; j++)    /* We are differentiating ll according to initial status */
         for(h=0; h<=nhstepm; h++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
     } /* End theta */    */
     cov[1]=1.;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(theta=1; theta <=npar; theta++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           trgradg[h][j][theta]=gradg[h][theta][j];      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1;i<=nlstate;i++)          for (j=1;j<=nlstate+ndeath;j++){
       for(j=1;j<=nlstate;j++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         vareij[i][j][(int)age] =0.;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(h=0;h<=nhstepm;h++){          }
       for(k=0;k<=nhstepm;k++){        for(d=0; d<dh[mi][i]; d++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          newm=savm;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(i=1;i<=nlstate;i++)          for (kk=1; kk<=cptcovage;kk++) {
           for(j=1;j<=nlstate;j++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             vareij[i][j][(int)age] += doldm[i][j];          }
       }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     h=1;          savm=oldm;
     if (stepm >= YEARM) h=stepm/YEARM;          oldm=newm;
     fprintf(ficresvij,"%.0f ",age );        } /* end mult */
     for(i=1; i<=nlstate;i++)        
       for(j=1; j<=nlstate;j++){        s1=s[mw[mi][i]][i];
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        s2=s[mw[mi+1][i]][i];
       }        bbh=(double)bh[mi][i]/(double)stepm; 
     fprintf(ficresvij,"\n");        /* bias is positive if real duration
     free_matrix(gp,0,nhstepm,1,nlstate);         * is higher than the multiple of stepm and negative otherwise.
     free_matrix(gm,0,nhstepm,1,nlstate);         */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } else if (mle==1){
   } /* End age */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          } else if(mle==2){
   free_vector(xp,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   free_matrix(doldm,1,nlstate,1,npar);        } else if(mle==3){  /* exponential inter-extrapolation */
   free_matrix(dnewm,1,nlstate,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
 }          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 /************ Variance of prevlim ******************/          lli=log(out[s1][s2]); /* Original formula */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        } /* End of if */
 {        ipmx +=1;
   /* Variance of prevalence limit */        sw += weight[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **newm;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **dnewm,**doldm;        if(globpr){
   int i, j, nhstepm, hstepm;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   int k, cptcode;   %10.6f %10.6f %10.6f ", \
   double *xp;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double *gp, *gm;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double **gradg, **trgradg;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double age,agelim;            llt +=ll[k]*gipmx/gsw;
   int theta;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
              }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          fprintf(ficresilk," %10.6f\n", -llt);
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)      } /* end of wave */
       fprintf(ficresvpl," %1d-%1d",i,i);    } /* end of individual */
   fprintf(ficresvpl,"\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   xp=vector(1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   dnewm=matrix(1,nlstate,1,npar);    if(globpr==0){ /* First time we count the contributions and weights */
   doldm=matrix(1,nlstate,1,nlstate);      gipmx=ipmx;
        gsw=sw;
   hstepm=1*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    return -l;
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /*************** function likelione ***********/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     gradg=matrix(1,npar,1,nlstate);  {
     gp=vector(1,nlstate);    /* This routine should help understanding what is done with 
     gm=vector(1,nlstate);       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
     for(theta=1; theta <=npar; theta++){       Plotting could be done.
       for(i=1; i<=npar; i++){ /* Computes gradient */     */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int k;
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if(*globpri !=0){ /* Just counts and sums, no printings */
       for(i=1;i<=nlstate;i++)      strcpy(fileresilk,"ilk"); 
         gp[i] = prlim[i][i];      strcat(fileresilk,fileres);
          if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("Problem with resultfile: %s\n", fileresilk);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         gm[i] = prlim[i][i];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(i=1;i<=nlstate;i++)      for(k=1; k<=nlstate; k++) 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     } /* End theta */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     trgradg =matrix(1,nlstate,1,npar);  
     *fretone=(*funcone)(p);
     for(j=1; j<=nlstate;j++)    if(*globpri !=0){
       for(theta=1; theta <=npar; theta++)      fclose(ficresilk);
         trgradg[j][theta]=gradg[theta][j];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
     for(i=1;i<=nlstate;i++)    } 
       varpl[i][(int)age] =0.;    return;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /*********** Maximum Likelihood Estimation ***************/
   
     fprintf(ficresvpl,"%.0f ",age );  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int i,j, iter;
     fprintf(ficresvpl,"\n");    double **xi;
     free_vector(gp,1,nlstate);    double fret;
     free_vector(gm,1,nlstate);    double fretone; /* Only one call to likelihood */
     free_matrix(gradg,1,npar,1,nlstate);    /*  char filerespow[FILENAMELENGTH];*/
     free_matrix(trgradg,1,nlstate,1,npar);    xi=matrix(1,npar,1,npar);
   } /* End age */    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
   free_vector(xp,1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
   free_matrix(doldm,1,nlstate,1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
 }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
 /************ Variance of one-step probabilities  ******************/      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    }
 {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int i, j;    for (i=1;i<=nlstate;i++)
   int k=0, cptcode;      for(j=1;j<=nlstate+ndeath;j++)
   double **dnewm,**doldm;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double *xp;    fprintf(ficrespow,"\n");
   double *gp, *gm;  
   double **gradg, **trgradg;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double age,agelim, cov[NCOVMAX];  
   int theta;    fclose(ficrespow);
   char fileresprob[FILENAMELENGTH];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   strcpy(fileresprob,"prob");    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprob);  
   }  /**** Computes Hessian and covariance matrix ***/
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    {
     double  **a,**y,*x,pd;
   xp=vector(1,npar);    double **hess;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int i, j,jk;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    int *indx;
    
   cov[1]=1;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   for (age=bage; age<=fage; age ++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     cov[2]=age;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     gradg=matrix(1,npar,1,9);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     trgradg=matrix(1,9,1,npar);    double gompertz(double p[]);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    hess=matrix(1,npar,1,npar);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
        printf("\nCalculation of the hessian matrix. Wait...\n");
     for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(i=1; i<=npar; i++)    for (i=1;i<=npar;i++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("%d",i);fflush(stdout);
            fprintf(ficlog,"%d",i);fflush(ficlog);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);     
           hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       k=0;      
       for(i=1; i<= (nlstate+ndeath); i++){      /*  printf(" %f ",p[i]);
         for(j=1; j<=(nlstate+ndeath);j++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
            k=k+1;    }
           gp[k]=pmmij[i][j];    
         }    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
         if (j>i) { 
       for(i=1; i<=npar; i++)          printf(".%d%d",i,j);fflush(stdout);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
              hess[i][j]=hessij(p,delti,i,j,func,npar);
           
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          hess[j][i]=hess[i][j];    
       k=0;          /*printf(" %lf ",hess[i][j]);*/
       for(i=1; i<=(nlstate+ndeath); i++){        }
         for(j=1; j<=(nlstate+ndeath);j++){      }
           k=k+1;    }
           gm[k]=pmmij[i][j];    printf("\n");
         }    fprintf(ficlog,"\n");
       }  
          printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      
     }    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    x=vector(1,npar);
       for(theta=1; theta <=npar; theta++)    indx=ivector(1,npar);
       trgradg[j][theta]=gradg[theta][j];    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    ludcmp(a,npar,indx,&pd);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
     for (j=1;j<=npar;j++) {
      pmij(pmmij,cov,ncovmodel,x,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
      k=0;      lubksb(a,npar,indx,x);
      for(i=1; i<=(nlstate+ndeath); i++){      for (i=1;i<=npar;i++){ 
        for(j=1; j<=(nlstate+ndeath);j++){        matcov[i][j]=x[i];
          k=k+1;      }
          gm[k]=pmmij[i][j];    }
         }  
      }    printf("\n#Hessian matrix#\n");
          fprintf(ficlog,"\n#Hessian matrix#\n");
      /*printf("\n%d ",(int)age);    for (i=1;i<=npar;i++) { 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for (j=1;j<=npar;j++) { 
                printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      }
      }*/      printf("\n");
       fprintf(ficlog,"\n");
   fprintf(ficresprob,"\n%d ",(int)age);    }
   
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    /* Recompute Inverse */
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    for (i=1;i<=npar;i++)
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   }    ludcmp(a,npar,indx,&pd);
   
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /*  printf("\n#Hessian matrix recomputed#\n");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (j=1;j<=npar;j++) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
  free_vector(xp,1,npar);      lubksb(a,npar,indx,x);
 fclose(ficresprob);      for (i=1;i<=npar;i++){ 
  exit(0);        y[i][j]=x[i];
 }        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
 /***********************************************/      }
 /**************** Main Program *****************/      printf("\n");
 /***********************************************/      fprintf(ficlog,"\n");
     }
 /*int main(int argc, char *argv[])*/    */
 int main()  
 {    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    free_vector(x,1,npar);
   double agedeb, agefin,hf;    free_ivector(indx,1,npar);
   double agemin=1.e20, agemax=-1.e20;    free_matrix(hess,1,npar,1,npar);
   
   double fret;  
   double **xi,tmp,delta;  }
   
   double dum; /* Dummy variable */  /*************** hessian matrix ****************/
   double ***p3mat;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int *indx;  {
   char line[MAXLINE], linepar[MAXLINE];    int i;
   char title[MAXLINE];    int l=1, lmax=20;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    double k1,k2;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];    double p2[NPARMAX+1];
   char filerest[FILENAMELENGTH];    double res;
   char fileregp[FILENAMELENGTH];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double fx;
   int firstobs=1, lastobs=10;    int k=0,kmax=10;
   int sdeb, sfin; /* Status at beginning and end */    double l1;
   int c,  h , cpt,l;  
   int ju,jl, mi;    fx=func(x);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for (i=1;i<=npar;i++) p2[i]=x[i];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    for(l=0 ; l <=lmax; l++){
   int mobilav=0, fprevfore=1, lprevfore=1;      l1=pow(10,l);
   int hstepm, nhstepm;      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   double bage, fage, age, agelim, agebase;        delt = delta*(l1*k);
   double ftolpl=FTOL;        p2[theta]=x[theta] +delt;
   double **prlim;        k1=func(p2)-fx;
   double *severity;        p2[theta]=x[theta]-delt;
   double ***param; /* Matrix of parameters */        k2=func(p2)-fx;
   double  *p;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   double **matcov; /* Matrix of covariance */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   double ***delti3; /* Scale */        
   double *delti; /* Scale */  #ifdef DEBUG
   double ***eij, ***vareij;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **varpl; /* Variances of prevalence limits by age */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double *epj, vepp;  #endif
   double kk1;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";          k=kmax;
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
   char z[1]="c", occ;        }
 #include <sys/time.h>        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 #include <time.h>          delts=delt;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }
   /* long total_usecs;      }
   struct timeval start_time, end_time;    }
      delti[theta]=delts;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    return res; 
     
   }
   printf("\nIMACH, Version 0.64b");  
   printf("\nEnter the parameter file name: ");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
 #ifdef windows    int i;
   scanf("%s",pathtot);    int l=1, l1, lmax=20;
   getcwd(pathcd, size);    double k1,k2,k3,k4,res,fx;
   /*cygwin_split_path(pathtot,path,optionfile);    double p2[NPARMAX+1];
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int k;
   /* cutv(path,optionfile,pathtot,'\\');*/  
     fx=func(x);
 split(pathtot, path,optionfile);    for (k=1; k<=2; k++) {
   chdir(path);      for (i=1;i<=npar;i++) p2[i]=x[i];
   replace(pathc,path);      p2[thetai]=x[thetai]+delti[thetai]/k;
 #endif      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 #ifdef unix      k1=func(p2)-fx;
   scanf("%s",optionfile);    
 #endif      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /*-------- arguments in the command line --------*/      k2=func(p2)-fx;
     
   strcpy(fileres,"r");      p2[thetai]=x[thetai]-delti[thetai]/k;
   strcat(fileres, optionfile);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
   /*---------arguments file --------*/    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     printf("Problem with optionfile %s\n",optionfile);      k4=func(p2)-fx;
     goto end;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   }  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   strcpy(filereso,"o");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   strcat(filereso,fileres);  #endif
   if((ficparo=fopen(filereso,"w"))==NULL) {    }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    return res;
   }  }
   
   /* Reads comments: lines beginning with '#' */  /************** Inverse of matrix **************/
   while((c=getc(ficpar))=='#' && c!= EOF){  void ludcmp(double **a, int n, int *indx, double *d) 
     ungetc(c,ficpar);  { 
     fgets(line, MAXLINE, ficpar);    int i,imax,j,k; 
     puts(line);    double big,dum,sum,temp; 
     fputs(line,ficparo);    double *vv; 
   }   
   ungetc(c,ficpar);    vv=vector(1,n); 
     *d=1.0; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for (i=1;i<=n;i++) { 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      big=0.0; 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      for (j=1;j<=n;j++) 
 while((c=getc(ficpar))=='#' && c!= EOF){        if ((temp=fabs(a[i][j])) > big) big=temp; 
     ungetc(c,ficpar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fgets(line, MAXLINE, ficpar);      vv[i]=1.0/big; 
     puts(line);    } 
     fputs(line,ficparo);    for (j=1;j<=n;j++) { 
   }      for (i=1;i<j;i++) { 
   ungetc(c,ficpar);        sum=a[i][j]; 
          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);        a[i][j]=sum; 
  while((c=getc(ficpar))=='#' && c!= EOF){      } 
     ungetc(c,ficpar);      big=0.0; 
     fgets(line, MAXLINE, ficpar);      for (i=j;i<=n;i++) { 
     puts(line);        sum=a[i][j]; 
     fputs(line,ficparo);        for (k=1;k<j;k++) 
   }          sum -= a[i][k]*a[k][j]; 
   ungetc(c,ficpar);        a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d mob_average=%d\n",&fprevfore,&lprevfore,&mobilav);          big=dum; 
            imax=i; 
   covar=matrix(0,NCOVMAX,1,n);        } 
   cptcovn=0;      } 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      if (j != imax) { 
         for (k=1;k<=n;k++) { 
   ncovmodel=2+cptcovn;          dum=a[imax][k]; 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
   /* Read guess parameters */        } 
   /* Reads comments: lines beginning with '#' */        *d = -(*d); 
   while((c=getc(ficpar))=='#' && c!= EOF){        vv[imax]=vv[j]; 
     ungetc(c,ficpar);      } 
     fgets(line, MAXLINE, ficpar);      indx[j]=imax; 
     puts(line);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fputs(line,ficparo);      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   ungetc(c,ficpar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        } 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    } 
     for(i=1; i <=nlstate; i++)    free_vector(vv,1,n);  /* Doesn't work */
     for(j=1; j <=nlstate+ndeath-1; j++){  ;
       fscanf(ficpar,"%1d%1d",&i1,&j1);  } 
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);  void lubksb(double **a, int n, int *indx, double b[]) 
       for(k=1; k<=ncovmodel;k++){  { 
         fscanf(ficpar," %lf",&param[i][j][k]);    int i,ii=0,ip,j; 
         printf(" %lf",param[i][j][k]);    double sum; 
         fprintf(ficparo," %lf",param[i][j][k]);   
       }    for (i=1;i<=n;i++) { 
       fscanf(ficpar,"\n");      ip=indx[i]; 
       printf("\n");      sum=b[ip]; 
       fprintf(ficparo,"\n");      b[ip]=b[i]; 
     }      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      else if (sum) ii=i; 
       b[i]=sum; 
   p=param[1][1];    } 
      for (i=n;i>=1;i--) { 
   /* Reads comments: lines beginning with '#' */      sum=b[i]; 
   while((c=getc(ficpar))=='#' && c!= EOF){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     ungetc(c,ficpar);      b[i]=sum/a[i][i]; 
     fgets(line, MAXLINE, ficpar);    } 
     puts(line);  } 
     fputs(line,ficparo);  
   }  /************ Frequencies ********************/
   ungetc(c,ficpar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   for(i=1; i <=nlstate; i++){    int first;
     for(j=1; j <=nlstate+ndeath-1; j++){    double ***freq; /* Frequencies */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double *pp, **prop;
       printf("%1d%1d",i,j);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       fprintf(ficparo,"%1d%1d",i1,j1);    FILE *ficresp;
       for(k=1; k<=ncovmodel;k++){    char fileresp[FILENAMELENGTH];
         fscanf(ficpar,"%le",&delti3[i][j][k]);    
         printf(" %le",delti3[i][j][k]);    pp=vector(1,nlstate);
         fprintf(ficparo," %le",delti3[i][j][k]);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       }    strcpy(fileresp,"p");
       fscanf(ficpar,"\n");    strcat(fileresp,fileres);
       printf("\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fprintf(ficparo,"\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
     }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   }      exit(0);
   delti=delti3[1][1];    }
      freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   /* Reads comments: lines beginning with '#' */    j1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    j=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);    first=1;
   }  
   ungetc(c,ficpar);    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   matcov=matrix(1,npar,1,npar);        j1++;
   for(i=1; i <=npar; i++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     fscanf(ficpar,"%s",&str);          scanf("%d", i);*/
     printf("%s",str);        for (i=-5; i<=nlstate+ndeath; i++)  
     fprintf(ficparo,"%s",str);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     for(j=1; j <=i; j++){            for(m=iagemin; m <= iagemax+3; m++)
       fscanf(ficpar," %le",&matcov[i][j]);              freq[i][jk][m]=0;
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);      for (i=1; i<=nlstate; i++)  
     }        for(m=iagemin; m <= iagemax+3; m++)
     fscanf(ficpar,"\n");          prop[i][m]=0;
     printf("\n");        
     fprintf(ficparo,"\n");        dateintsum=0;
   }        k2cpt=0;
   for(i=1; i <=npar; i++)        for (i=1; i<=imx; i++) {
     for(j=i+1;j<=npar;j++)          bool=1;
       matcov[i][j]=matcov[j][i];          if  (cptcovn>0) {
                for (z1=1; z1<=cptcoveff; z1++) 
   printf("\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
           }
     /*-------- data file ----------*/          if (bool==1){
     if((ficres =fopen(fileres,"w"))==NULL) {            for(m=firstpass; m<=lastpass; m++){
       printf("Problem with resultfile: %s\n", fileres);goto end;              k2=anint[m][i]+(mint[m][i]/12.);
     }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     fprintf(ficres,"#%s\n",version);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
     if((fic=fopen(datafile,"r"))==NULL)    {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       printf("Problem with datafile: %s\n", datafile);goto end;                if (m<lastpass) {
     }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     n= lastobs;                }
     severity = vector(1,maxwav);                
     outcome=imatrix(1,maxwav+1,1,n);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     num=ivector(1,n);                  dateintsum=dateintsum+k2;
     moisnais=vector(1,n);                  k2cpt++;
     annais=vector(1,n);                }
     moisdc=vector(1,n);                /*}*/
     andc=vector(1,n);            }
     agedc=vector(1,n);          }
     cod=ivector(1,n);        }
     weight=vector(1,n);         
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     mint=matrix(1,maxwav,1,n);  fprintf(ficresp, "#Local time at start: %s", strstart);
     anint=matrix(1,maxwav,1,n);        if  (cptcovn>0) {
     s=imatrix(1,maxwav+1,1,n);          fprintf(ficresp, "\n#********** Variable "); 
     adl=imatrix(1,maxwav+1,1,n);              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     tab=ivector(1,NCOVMAX);          fprintf(ficresp, "**********\n#");
     ncodemax=ivector(1,8);        }
         for(i=1; i<=nlstate;i++) 
     i=1;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     while (fgets(line, MAXLINE, fic) != NULL)    {        fprintf(ficresp, "\n");
       if ((i >= firstobs) && (i <=lastobs)) {        
                for(i=iagemin; i <= iagemax+3; i++){
         for (j=maxwav;j>=1;j--){          if(i==iagemax+3){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            fprintf(ficlog,"Total");
           strcpy(line,stra);          }else{
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if(first==1){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              first=0;
         }              printf("See log file for details...\n");
                    }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"Age %d", i);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          }
           for(jk=1; jk <=nlstate ; jk++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              pp[jk] += freq[jk][m][i]; 
           }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1; jk <=nlstate ; jk++){
         for (j=ncov;j>=1;j--){            for(m=-1, pos=0; m <=0 ; m++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              pos += freq[jk][m][i];
         }            if(pp[jk]>=1.e-10){
         num[i]=atol(stra);              if(first==1){
                      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
         i=i+1;              if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     /* printf("ii=%d", ij);            }
        scanf("%d",i);*/          }
   imx=i-1; /* Number of individuals */  
           for(jk=1; jk <=nlstate ; jk++){
   /* for (i=1; i<=imx; i++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              pp[jk] += freq[jk][m][i];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          }       
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     }            pos += pp[jk];
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/            posprop += prop[jk][i];
           }
   /* Calculation of the number of parameter from char model*/          for(jk=1; jk <=nlstate ; jk++){
   Tvar=ivector(1,15);            if(pos>=1.e-5){
   Tprod=ivector(1,15);              if(first==1)
   Tvaraff=ivector(1,15);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   Tvard=imatrix(1,15,1,2);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   Tage=ivector(1,15);                  }else{
                  if(first==1)
   if (strlen(model) >1){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     j=0, j1=0, k1=1, k2=1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     j=nbocc(model,'+');            }
     j1=nbocc(model,'*');            if( i <= iagemax){
     cptcovn=j+1;              if(pos>=1.e-5){
     cptcovprod=j1;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                    /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     strcpy(modelsav,model);              }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              else
       printf("Error. Non available option model=%s ",model);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       goto end;            }
     }          }
              
     for(i=(j+1); i>=1;i--){          for(jk=-1; jk <=nlstate+ndeath; jk++)
       cutv(stra,strb,modelsav,'+');            for(m=-1; m <=nlstate+ndeath; m++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              if(freq[jk][m][i] !=0 ) {
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              if(first==1)
       /*scanf("%d",i);*/                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       if (strchr(strb,'*')) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         cutv(strd,strc,strb,'*');              }
         if (strcmp(strc,"age")==0) {          if(i <= iagemax)
           cptcovprod--;            fprintf(ficresp,"\n");
           cutv(strb,stre,strd,'V');          if(first==1)
           Tvar[i]=atoi(stre);            printf("Others in log...\n");
           cptcovage++;          fprintf(ficlog,"\n");
             Tage[cptcovage]=i;        }
             /*printf("stre=%s ", stre);*/      }
         }    }
         else if (strcmp(strd,"age")==0) {    dateintmean=dateintsum/k2cpt; 
           cptcovprod--;   
           cutv(strb,stre,strc,'V');    fclose(ficresp);
           Tvar[i]=atoi(stre);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           cptcovage++;    free_vector(pp,1,nlstate);
           Tage[cptcovage]=i;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         }    /* End of Freq */
         else {  }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncov+k1;  /************ Prevalence ********************/
           cutv(strb,strc,strd,'V');  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           Tprod[k1]=i;  {  
           Tvard[k1][1]=atoi(strc);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           Tvard[k1][2]=atoi(stre);       in each health status at the date of interview (if between dateprev1 and dateprev2).
           Tvar[cptcovn+k2]=Tvard[k1][1];       We still use firstpass and lastpass as another selection.
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    */
           for (k=1; k<=lastobs;k++)   
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           k1++;    double ***freq; /* Frequencies */
           k2=k2+2;    double *pp, **prop;
         }    double pos,posprop; 
       }    double  y2; /* in fractional years */
       else {    int iagemin, iagemax;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/    iagemin= (int) agemin;
       cutv(strd,strc,strb,'V');    iagemax= (int) agemax;
       Tvar[i]=atoi(strc);    /*pp=vector(1,nlstate);*/
       }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       strcpy(modelsav,stra);      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    j1=0;
         scanf("%d",i);*/    
     }    j=cptcoveff;
 }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    for(k1=1; k1<=j;k1++){
   printf("cptcovprod=%d ", cptcovprod);      for(i1=1; i1<=ncodemax[k1];i1++){
   scanf("%d ",i);*/        j1++;
     fclose(fic);        
         for (i=1; i<=nlstate; i++)  
     /*  if(mle==1){*/          for(m=iagemin; m <= iagemax+3; m++)
     if (weightopt != 1) { /* Maximisation without weights*/            prop[i][m]=0.0;
       for(i=1;i<=n;i++) weight[i]=1.0;       
     }        for (i=1; i<=imx; i++) { /* Each individual */
     /*-calculation of age at interview from date of interview and age at death -*/          bool=1;
     agev=matrix(1,maxwav,1,imx);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
    for (i=1; i<=imx; i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      for(m=2; (m<= maxwav); m++)                bool=0;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          } 
          anint[m][i]=9999;          if (bool==1) { 
          s[m][i]=-1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for (i=1; i<=imx; i++)  {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(m=1; (m<= maxwav); m++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         if(s[m][i] >0){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           if (s[m][i] == nlstate+1) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             if(agedc[i]>0)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               if(moisdc[i]!=99 && andc[i]!=9999)                  prop[s[m][i]][iagemax+3] += weight[i]; 
               agev[m][i]=agedc[i];                } 
             else {              }
               if (andc[i]!=9999){            } /* end selection of waves */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          }
               agev[m][i]=-1;        }
               }        for(i=iagemin; i <= iagemax+3; i++){  
             }          
           }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           else if(s[m][i] !=9){ /* Should no more exist */            posprop += prop[jk][i]; 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          } 
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;          for(jk=1; jk <=nlstate ; jk++){     
             else if(agev[m][i] <agemin){            if( i <=  iagemax){ 
               agemin=agev[m][i];              if(posprop>=1.e-5){ 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                probs[i][jk][j1]= prop[jk][i]/posprop;
             }              } 
             else if(agev[m][i] >agemax){            } 
               agemax=agev[m][i];          }/* end jk */ 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }/* end i */ 
             }      } /* end i1 */
             /*agev[m][i]=anint[m][i]-annais[i];*/    } /* end k1 */
             /*   agev[m][i] = age[i]+2*m;*/    
           }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           else { /* =9 */    /*free_vector(pp,1,nlstate);*/
             agev[m][i]=1;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             s[m][i]=-1;  }  /* End of prevalence */
           }  
         }  /************* Waves Concatenation ***************/
         else /*= 0 Unknown */  
           agev[m][i]=1;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
        /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     }       Death is a valid wave (if date is known).
     for (i=1; i<=imx; i++)  {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for(m=1; (m<= maxwav); m++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         if (s[m][i] > (nlstate+ndeath)) {       and mw[mi+1][i]. dh depends on stepm.
           printf("Error: Wrong value in nlstate or ndeath\n");         */
           goto end;  
         }    int i, mi, m;
       }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     }       double sum=0., jmean=0.;*/
     int first;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int j, k=0,jk, ju, jl;
     double sum=0.;
     free_vector(severity,1,maxwav);    first=0;
     free_imatrix(outcome,1,maxwav+1,1,n);    jmin=1e+5;
     free_vector(moisnais,1,n);    jmax=-1;
     free_vector(annais,1,n);    jmean=0.;
     free_matrix(mint,1,maxwav,1,n);    for(i=1; i<=imx; i++){
     free_matrix(anint,1,maxwav,1,n);      mi=0;
     free_vector(moisdc,1,n);      m=firstpass;
     free_vector(andc,1,n);      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
              mw[++mi][i]=m;
     wav=ivector(1,imx);        if(m >=lastpass)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          break;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        else
              m++;
     /* Concatenates waves */      }/* end while */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
       Tcode=ivector(1,100);           /* Only death is a correct wave */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        mw[mi][i]=m;
       ncodemax[1]=1;      }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
            wav[i]=mi;
    codtab=imatrix(1,100,1,10);      if(mi==0){
    h=0;        nbwarn++;
    m=pow(2,cptcoveff);        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    for(k=1;k<=cptcoveff; k++){          first=1;
      for(i=1; i <=(m/pow(2,k));i++){        }
        for(j=1; j <= ncodemax[k]; j++){        if(first==1){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
            h++;        }
            if (h>m) h=1;codtab[h][k]=j;      } /* end mi==0 */
          }    } /* End individuals */
        }  
      }    for(i=1; i<=imx; i++){
    }      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
           dh[mi][i]=1;
    /*for(i=1; i <=m ;i++){        else{
      for(k=1; k <=cptcovn; k++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);            if (agedc[i] < 2*AGESUP) {
      }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
      printf("\n");              if(j==0) j=1;  /* Survives at least one month after exam */
    }              else if(j<0){
    scanf("%d",i);*/                nberr++;
                    printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    /* Calculates basic frequencies. Computes observed prevalence at single age                j=1; /* Temporary Dangerous patch */
        and prints on file fileres'p'. */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              k=k+1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if (j >= jmax){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                jmax=j;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                ijmax=i;
                    }
     /* For Powell, parameters are in a vector p[] starting at p[1]              if (j <= jmin){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                jmin=j;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                ijmin=i;
               }
     if(mle==1){              sum=sum+j;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                }
     /*--------- results files --------------*/          }
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          else{
                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    jk=1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    fprintf(ficres,"# Parameters\n");  
    printf("# Parameters\n");            k=k+1;
    for(i=1,jk=1; i <=nlstate; i++){            if (j >= jmax) {
      for(k=1; k <=(nlstate+ndeath); k++){              jmax=j;
        if (k != i)              ijmax=i;
          {            }
            printf("%d%d ",i,k);            else if (j <= jmin){
            fprintf(ficres,"%1d%1d ",i,k);              jmin=j;
            for(j=1; j <=ncovmodel; j++){              ijmin=i;
              printf("%f ",p[jk]);            }
              fprintf(ficres,"%f ",p[jk]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
              jk++;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
            }            if(j<0){
            printf("\n");              nberr++;
            fprintf(ficres,"\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }            }
    }            sum=sum+j;
  if(mle==1){          }
     /* Computing hessian and covariance matrix */          jk= j/stepm;
     ftolhess=ftol; /* Usually correct */          jl= j -jk*stepm;
     hesscov(matcov, p, npar, delti, ftolhess, func);          ju= j -(jk+1)*stepm;
  }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     fprintf(ficres,"# Scales\n");            if(jl==0){
     printf("# Scales\n");              dh[mi][i]=jk;
      for(i=1,jk=1; i <=nlstate; i++){              bh[mi][i]=0;
       for(j=1; j <=nlstate+ndeath; j++){            }else{ /* We want a negative bias in order to only have interpolation ie
         if (j!=i) {                    * at the price of an extra matrix product in likelihood */
           fprintf(ficres,"%1d%1d",i,j);              dh[mi][i]=jk+1;
           printf("%1d%1d",i,j);              bh[mi][i]=ju;
           for(k=1; k<=ncovmodel;k++){            }
             printf(" %.5e",delti[jk]);          }else{
             fprintf(ficres," %.5e",delti[jk]);            if(jl <= -ju){
             jk++;              dh[mi][i]=jk;
           }              bh[mi][i]=jl;       /* bias is positive if real duration
           printf("\n");                                   * is higher than the multiple of stepm and negative otherwise.
           fprintf(ficres,"\n");                                   */
         }            }
       }            else{
       }              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
     k=1;            }
     fprintf(ficres,"# Covariance\n");            if(dh[mi][i]==0){
     printf("# Covariance\n");              dh[mi][i]=1; /* At least one step */
     for(i=1;i<=npar;i++){              bh[mi][i]=ju; /* At least one step */
       /*  if (k>nlstate) k=1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       i1=(i-1)/(ncovmodel*nlstate)+1;            }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          } /* end if mle */
       printf("%s%d%d",alph[k],i1,tab[i]);*/        }
       fprintf(ficres,"%3d",i);      } /* end wave */
       printf("%3d",i);    }
       for(j=1; j<=i;j++){    jmean=sum/k;
         fprintf(ficres," %.5e",matcov[i][j]);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         printf(" %.5e",matcov[i][j]);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       }   }
       fprintf(ficres,"\n");  
       printf("\n");  /*********** Tricode ****************************/
       k++;  void tricode(int *Tvar, int **nbcode, int imx)
     }  {
        
     while((c=getc(ficpar))=='#' && c!= EOF){    int Ndum[20],ij=1, k, j, i, maxncov=19;
       ungetc(c,ficpar);    int cptcode=0;
       fgets(line, MAXLINE, ficpar);    cptcoveff=0; 
       puts(line);   
       fputs(line,ficparo);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     }    for (k=1; k<=7; k++) ncodemax[k]=0;
     ungetc(c,ficpar);  
      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                     modality*/ 
     if (fage <= 2) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       bage = agemin;        Ndum[ij]++; /*store the modality */
       fage = agemax;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                                         female is 1, then  cptcode=1.*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      }
   
          for (i=0; i<=cptcode; i++) {
 /*------------ gnuplot -------------*/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 chdir(pathcd);      }
   if((ficgp=fopen("graph.plt","w"))==NULL) {  
     printf("Problem with file graph.gp");goto end;      ij=1; 
   }      for (i=1; i<=ncodemax[j]; i++) {
 #ifdef windows        for (k=0; k<= maxncov; k++) {
   fprintf(ficgp,"cd \"%s\" \n",pathc);          if (Ndum[k] != 0) {
 #endif            nbcode[Tvar[j]][ij]=k; 
 m=pow(2,cptcoveff);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              
  /* 1eme*/            ij++;
   for (cpt=1; cpt<= nlstate ; cpt ++) {          }
    for (k1=1; k1<= m ; k1 ++) {          if (ij > ncodemax[j]) break; 
         }  
 #ifdef windows      } 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    }  
 #endif  
 #ifdef unix   for (k=0; k< maxncov; k++) Ndum[k]=0;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);  
 #endif   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 for (i=1; i<= nlstate ; i ++) {     ij=Tvar[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     Ndum[ij]++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");   }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);   ij=1;
     for (i=1; i<= nlstate ; i ++) {   for (i=1; i<= maxncov; i++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     if((Ndum[i]!=0) && (i<=ncovcol)){
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Tvaraff[ij]=i; /*For printing */
 }       ij++;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);     }
      for (i=1; i<= nlstate ; i ++) {   }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");   cptcoveff=ij-1; /*Number of simple covariates*/
 }    }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix  /*********** Health Expectancies ****************/
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }  {
   }    /* Health expectancies */
   /*2 eme*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     double age, agelim, hf;
   for (k1=1; k1<= m ; k1 ++) {    double ***p3mat,***varhe;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    double **dnewm,**doldm;
        double *xp;
     for (i=1; i<= nlstate+1 ; i ++) {    double **gp, **gm;
       k=2*i;    double ***gradg, ***trgradg;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    int theta;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    xp=vector(1,npar);
 }      dnewm=matrix(1,nlstate*nlstate,1,npar);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficreseij,"# Local time at start: %s", strstart);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficreseij,"# Health expectancies\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"# Age");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficreseij,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if(estepm < stepm){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf ("Problem %d lower than %d\n",estepm, stepm);
 }      }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    else  hstepm=estepm;   
       else fprintf(ficgp,"\" t\"\" w l 0,");    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
   /*3eme*/     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   for (k1=1; k1<= m ; k1 ++) {     * to compare the new estimate of Life expectancy with the same linear 
     for (cpt=1; cpt<= nlstate ; cpt ++) {     * hypothesis. A more precise result, taking into account a more precise
       k=2+nlstate*(cpt-1);     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);  
       for (i=1; i< nlstate ; i ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* CV preval stat */       survival function given by stepm (the optimization length). Unfortunately it
   for (k1=1; k1<= m ; k1 ++) {       means that if the survival funtion is printed only each two years of age and if
     for (cpt=1; cpt<nlstate ; cpt ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       k=3;       results. So we changed our mind and took the option of the best precision.
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    */
       for (i=1; i< nlstate ; i ++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    agelim=AGESUP;
          for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       l=3+(nlstate+ndeath)*cpt;      /* nhstepm age range expressed in number of stepm */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       for (i=1; i< nlstate ; i ++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         l=3+(nlstate+ndeath)*cpt;      /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficgp,"+$%d",l+i+1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   }    
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /* proba elementaires */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    for(i=1,jk=1; i <=nlstate; i++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     for(k=1; k <=(nlstate+ndeath); k++){   
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/  
           /*fprintf(ficgp,"%s",alph[1]);*/      /* Computing  Variances of health expectancies */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;       for(theta=1; theta <=npar; theta++){
           fprintf(ficgp,"\n");        for(i=1; i<=npar; i++){ 
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }    
         cptj=0;
   for(jk=1; jk <=m; jk++) {        for(j=1; j<= nlstate; j++){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          for(i=1; i<=nlstate; i++){
    i=1;            cptj=cptj+1;
    for(k2=1; k2<=nlstate; k2++) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
      k3=i;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      for(k=1; k<=(nlstate+ndeath); k++) {            }
        if (k != k2){          }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        }
 ij=1;       
         for(j=3; j <=ncovmodel; j++) {       
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(i=1; i<=npar; i++) 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             ij++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }        
           else        cptj=0;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(j=1; j<= nlstate; j++){
         }          for(i=1;i<=nlstate;i++){
           fprintf(ficgp,")/(1");            cptj=cptj+1;
                    for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 ij=1;            }
           for(j=3; j <=ncovmodel; j++){          }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(j=1; j<= nlstate*nlstate; j++)
             ij++;          for(h=0; h<=nhstepm-1; h++){
           }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           else          }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       } 
           }     
           fprintf(ficgp,")");  /* End theta */
         }  
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;       for(h=0; h<=nhstepm-1; h++)
        }        for(j=1; j<=nlstate*nlstate;j++)
      }          for(theta=1; theta <=npar; theta++)
    }            trgradg[h][j][theta]=gradg[h][theta][j];
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);       
   }  
           for(i=1;i<=nlstate*nlstate;i++)
   fclose(ficgp);        for(j=1;j<=nlstate*nlstate;j++)
              varhe[i][j][(int)age] =0.;
 chdir(path);  
     free_matrix(agev,1,maxwav,1,imx);       printf("%d|",(int)age);fflush(stdout);
     free_ivector(wav,1,imx);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       for(h=0;h<=nhstepm-1;h++){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(k=0;k<=nhstepm-1;k++){
              matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     free_imatrix(s,1,maxwav+1,1,n);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
              for(i=1;i<=nlstate*nlstate;i++)
                for(j=1;j<=nlstate*nlstate;j++)
     free_ivector(num,1,n);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     free_vector(agedc,1,n);        }
     free_vector(weight,1,n);      }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      /* Computing expectancies */
     fclose(ficparo);      for(i=1; i<=nlstate;i++)
     fclose(ficres);        for(j=1; j<=nlstate;j++)
     /*  }*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
    /*________fin mle=1_________*/            
      /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
            }
     /* No more information from the sample is required now */  
   /* Reads comments: lines beginning with '#' */      fprintf(ficreseij,"%3.0f",age );
   while((c=getc(ficpar))=='#' && c!= EOF){      cptj=0;
     ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate;j++){
     puts(line);          cptj++;
     fputs(line,ficparo);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   }        }
   ungetc(c,ficpar);      fprintf(ficreseij,"\n");
       
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 /*--------- index.htm --------*/      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(optionfilehtm,optionfile);    }
   strcat(optionfilehtm,".htm");    printf("\n");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    fprintf(ficlog,"\n");
     printf("Problem with %s \n",optionfilehtm);goto end;  
   }    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 Total number of observations=%d <br>  }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>  
 <hr  size=\"2\" color=\"#EC5E5E\">  /************ Variance ******************/
 <li>Outputs files<br><br>\n  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  {
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    /* Variance of health expectancies */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    /* double **newm;*/
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    double **dnewm,**doldm;
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    double **dnewmp,**doldmp;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    int i, j, nhstepm, hstepm, h, nstepm ;
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    int k, cptcode;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    double *xp;
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>    double **gp, **gm;  /* for var eij */
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
  fprintf(fichtm," <li>Graphs</li><p>");    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
  m=cptcoveff;    double ***p3mat;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double age,agelim, hf;
     double ***mobaverage;
  j1=0;    int theta;
  for(k1=1; k1<=m;k1++){    char digit[4];
    for(i1=1; i1<=ncodemax[k1];i1++){    char digitp[25];
        j1++;  
        if (cptcovn > 0) {    char fileresprobmorprev[FILENAMELENGTH];
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)    if(popbased==1){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);      if(mobilav!=0)
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        strcpy(digitp,"-populbased-mobilav-");
        }      else strcpy(digitp,"-populbased-nomobil-");
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        else 
        for(cpt=1; cpt<nlstate;cpt++){      strcpy(digitp,"-stablbased-");
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    if (mobilav!=0) {
        }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(cpt=1; cpt<=nlstate;cpt++) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 interval) in state (%d): v%s%d%d.gif <br>        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        }
      }    }
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    strcpy(fileresprobmorprev,"prmorprev"); 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    sprintf(digit,"%-d",ij);
      }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 health expectancies in states (1) and (2): e%s%d.gif<br>    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    strcat(fileresprobmorprev,fileres);
 fprintf(fichtm,"\n</body>");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
    }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
  }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 fclose(fichtm);    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /*--------------- Prevalence limit --------------*/   
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   strcpy(filerespl,"pl");    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
   strcat(filerespl,fileres);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      for(i=1; i<=nlstate;i++)
   fprintf(ficrespl,"#Prevalence limit\n");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fprintf(ficrespl,"#Age ");    }  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficresprobmorprev,"\n");
   fprintf(ficrespl,"\n");    fprintf(ficgp,"\n# Routine varevsij");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   } */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fprintf(ficresvij, "#Local time at start: %s", strstart);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   k=0;    fprintf(ficresvij,"# Age");
   agebase=agemin;    for(i=1; i<=nlstate;i++)
   agelim=agemax;      for(j=1; j<=nlstate;j++)
   ftolpl=1.e-10;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   i1=cptcoveff;    fprintf(ficresvij,"\n");
   if (cptcovn < 1){i1=1;}  
     xp=vector(1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    dnewm=matrix(1,nlstate,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    doldm=matrix(1,nlstate,1,nlstate);
         k=k+1;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    gpp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficrespl,"******\n");    gmp=vector(nlstate+1,nlstate+ndeath);
            trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         for (age=agebase; age<=agelim; age++){    
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if(estepm < stepm){
           fprintf(ficrespl,"%.0f",age );      printf ("Problem %d lower than %d\n",estepm, stepm);
           for(i=1; i<=nlstate;i++)    }
           fprintf(ficrespl," %.5f", prlim[i][i]);    else  hstepm=estepm;   
           fprintf(ficrespl,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
   fclose(ficrespl);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   /*------------- h Pij x at various ages ------------*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       means that if the survival funtion is printed every two years of age and if
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;       results. So we changed our mind and took the option of the best precision.
   }    */
   printf("Computing pij: result on file '%s' \n", filerespij);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /*if (stepm<=24) stepsize=2;*/      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   agelim=AGESUP;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=stepsize*YEARM; /* Every year of age */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(theta=1; theta <=npar; theta++){
       k=k+1;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         fprintf(ficrespij,"\n#****** ");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for(j=1;j<=cptcoveff;j++)        }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficrespij,"******\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        if (popbased==1) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          if(mobilav ==0){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            for(i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              prlim[i][i]=probs[(int)age][i][ij];
           oldm=oldms;savm=savms;          }else{ /* mobilav */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(i=1; i<=nlstate;i++)
           fprintf(ficrespij,"# Age");              prlim[i][i]=mobaverage[(int)age][i][ij];
           for(i=1; i<=nlstate;i++)          }
             for(j=1; j<=nlstate+ndeath;j++)        }
               fprintf(ficrespij," %1d-%1d",i,j);    
           fprintf(ficrespij,"\n");        for(j=1; j<= nlstate; j++){
           for (h=0; h<=nhstepm; h++){          for(h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             for(i=1; i<=nlstate;i++)              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
               for(j=1; j<=nlstate+ndeath;j++)          }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        }
             fprintf(ficrespij,"\n");        /* This for computing probability of death (h=1 means
           }           computed over hstepm matrices product = hstepm*stepm months) 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           as a weighted average of prlim.
           fprintf(ficrespij,"\n");        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/        /* end probability of death */
   
   fclose(ficrespij);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /*---------- Forecasting ------------------*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcpy(fileresf,"f");   
   strcat(fileresf,fileres);        if (popbased==1) {
   if((ficresf=fopen(fileresf,"w"))==NULL) {          if(mobilav ==0){
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   printf("Computing forecasting: result on file '%s' \n", fileresf);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   /* Mobile average */              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   /* for (agedeb=bage; agedeb<=fage; agedeb++)        }
     for (i=1; i<=nlstate;i++)  
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++)        for(j=1; j<= nlstate; j++){
       printf("%f %d i=%d j1=%d\n", probs[(int)agedeb][i][cptcod],(int) agedeb,i,cptcod);*/          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* This for computing probability of death (h=1 means
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)           computed over hstepm matrices product = hstepm*stepm months) 
       for (i=1; i<=nlstate;i++)           as a weighted average of prlim.
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        */
           mobaverage[(int)agedeb][i][cptcod]=0.;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gmp[j]=0.; i<= nlstate; i++)
     for (agedeb=bage+4; agedeb<=fage; agedeb++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for (i=1; i<=nlstate;i++){        }    
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /* end probability of death */
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        for(j=1; j<= nlstate; j++) /* vareij */
           }          for(h=0; h<=nhstepm; h++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
       }  
     }          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=24) stepsize=2;      } /* End theta */
   
   agelim=AGESUP;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      for(h=0; h<=nhstepm; h++) /* veij */
   hstepm=12;        for(j=1; j<=nlstate;j++)
    k=0;          for(theta=1; theta <=npar; theta++)
   for(cptcov=1;cptcov<=i1;cptcov++){            trgradg[h][j][theta]=gradg[h][theta][j];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       fprintf(ficresf,"\n#****** ");        for(theta=1; theta <=npar; theta++)
       for(j=1;j<=cptcoveff;j++) {          trgradgp[j][theta]=gradgp[theta][j];
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       }  
            hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficresf,"******\n");      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");          vareij[i][j][(int)age] =0.;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
       for(h=0;h<=nhstepm;h++){
       for (agedeb=fage; agedeb>=bage; agedeb--){        for(k=0;k<=nhstepm;k++){
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
        if (mobilav==1) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         for(j=1; j<=nlstate;j++)          for(i=1;i<=nlstate;i++)
           fprintf(ficresf,"%.5f ",mobaverage[(int)agedeb][j][cptcod]);            for(j=1;j<=nlstate;j++)
         }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         else {        }
           for(j=1; j<=nlstate;j++)      }
           fprintf(ficresf,"%.5f ",probs[(int)agedeb][j][cptcod]);    
         }      /* pptj */
              matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for(j=1; j<=ndeath;j++) fprintf(ficresf,"0.");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       for (cpt=1; cpt<=NCOVMAX;cpt++)          for(i=nlstate+1;i<=nlstate+ndeath;i++)
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          varppt[j][i]=doldmp[j][i];
              /* end ppptj */
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      /*  x centered again */
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         /*printf("stepm=%d hstepm=%d nhstepm=%d \n",stepm,hstepm,nhstepm);*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (popbased==1) {
         oldm=oldms;savm=savms;        if(mobilav ==0){
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(i=1; i<=nlstate;i++)
                            prlim[i][i]=probs[(int)age][i][ij];
         for (h=0; h<=nhstepm; h++){        }else{ /* mobilav */ 
                  for(i=1; i<=nlstate;i++)
           if (h*hstepm/YEARM*stepm==cpt)            prlim[i][i]=mobaverage[(int)age][i][ij];
  fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);        }
                }
           for(j=1; j<=nlstate+ndeath;j++) {               
             kk1=0.;      /* This for computing probability of death (h=1 means
             for(i=1; i<=nlstate;i++) {                 computed over hstepm (estepm) matrices product = hstepm*stepm months) 
               if (mobilav==1)         as a weighted average of prlim.
               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];      */
               else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];      for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }            for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             if (h*hstepm/YEARM*stepm==cpt) fprintf(ficresf," %.5f ", kk1);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           }      }    
         }      /* end probability of death */
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
       }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=nlstate;i++){
   fclose(ficresf);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   /*---------- Health expectancies and variances ------------*/        }
       } 
   strcpy(filerest,"t");      fprintf(ficresprobmorprev,"\n");
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {      fprintf(ficresvij,"%.0f ",age );
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
   strcpy(filerese,"e");      free_matrix(gp,0,nhstepm,1,nlstate);
   strcat(filerese,fileres);      free_matrix(gm,0,nhstepm,1,nlstate);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
  strcpy(fileresv,"v");    free_vector(gmp,nlstate+1,nlstate+ndeath);
   strcat(fileresv,fileres);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   k=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       k=k+1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficrest,"\n#****** ");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficrest,"******\n");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
       fprintf(ficreseij,"\n#****** ");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       for(j=1;j<=cptcoveff;j++)    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
       fprintf(ficresvij,"\n#****** ");    free_matrix(dnewm,1,nlstate,1,npar);
       for(j=1;j<=cptcoveff;j++)    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficresvij,"******\n");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fclose(ficresprobmorprev);
       oldm=oldms;savm=savms;    fflush(ficgp);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      fflush(fichtm); 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  }  /* end varevsij */
       oldm=oldms;savm=savms;  
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /************ Variance of prevlim ******************/
        void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* Variance of prevalence limit */
       fprintf(ficrest,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
            double **newm;
       hf=1;    double **dnewm,**doldm;
       if (stepm >= YEARM) hf=stepm/YEARM;    int i, j, nhstepm, hstepm;
       epj=vector(1,nlstate+1);    int k, cptcode;
       for(age=bage; age <=fage ;age++){    double *xp;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double *gp, *gm;
         if (popbased==1) {    double **gradg, **trgradg;
           for(i=1; i<=nlstate;i++)    double age,agelim;
             prlim[i][i]=probs[(int)age][i][k];    int theta;
         }    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
            fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         fprintf(ficrest," %.0f",age);    fprintf(ficresvpl,"# Age");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    for(i=1; i<=nlstate;i++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficresvpl," %1d-%1d",i,i);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(ficresvpl,"\n");
           }  
           epj[nlstate+1] +=epj[j];    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
         for(i=1, vepp=0.;i <=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];    hstepm=1*YEARM; /* Every year of age */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         for(j=1;j <=nlstate;j++){    agelim = AGESUP;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficrest,"\n");      if (stepm >= YEARM) hstepm=1;
       }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     }      gradg=matrix(1,npar,1,nlstate);
   }      gp=vector(1,nlstate);
              gm=vector(1,nlstate);
          
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
  fclose(ficreseij);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  fclose(ficresvij);        }
   fclose(ficrest);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fclose(ficpar);        for(i=1;i<=nlstate;i++)
   free_vector(epj,1,nlstate+1);          gp[i] = prlim[i][i];
   /*  scanf("%d ",i); */      
         for(i=1; i<=npar; i++) /* Computes gradient */
   /*------- Variance limit prevalence------*/            xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 strcpy(fileresvpl,"vpl");        for(i=1;i<=nlstate;i++)
   strcat(fileresvpl,fileres);          gm[i] = prlim[i][i];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for(i=1;i<=nlstate;i++)
     exit(0);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
       trgradg =matrix(1,nlstate,1,npar);
  k=0;  
  for(cptcov=1;cptcov<=i1;cptcov++){      for(j=1; j<=nlstate;j++)
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(theta=1; theta <=npar; theta++)
      k=k+1;          trgradg[j][theta]=gradg[theta][j];
      fprintf(ficresvpl,"\n#****** ");  
      for(j=1;j<=cptcoveff;j++)      for(i=1;i<=nlstate;i++)
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        varpl[i][(int)age] =0.;
      fprintf(ficresvpl,"******\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      for(i=1;i<=nlstate;i++)
      oldm=oldms;savm=savms;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
    }      fprintf(ficresvpl,"%.0f ",age );
  }      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   fclose(ficresvpl);      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   /*---------- End : free ----------------*/      free_vector(gm,1,nlstate);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    } /* End age */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
      free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(dnewm,1,nlstate,1,nlstate);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
    /************ Variance of one-step probabilities  ******************/
   free_matrix(matcov,1,npar,1,npar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   free_vector(delti,1,npar);  {
      int i, j=0,  i1, k1, l1, t, tj;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   printf("End of Imach\n");    int first=1, first1;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    double *xp;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    double *gp, *gm;
   /*------ End -----------*/    double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
  end:    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 #ifdef windows    int theta;
  chdir(pathcd);    char fileresprob[FILENAMELENGTH];
 #endif    char fileresprobcov[FILENAMELENGTH];
      char fileresprobcor[FILENAMELENGTH];
  system("..\\gp37mgw\\wgnuplot graph.plt");  
     double ***varpij;
 #ifdef windows  
   while (z[0] != 'q') {    strcpy(fileresprob,"prob"); 
     chdir(pathcd);    strcat(fileresprob,fileres);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     scanf("%s",z);      printf("Problem with resultfile: %s\n", fileresprob);
     if (z[0] == 'c') system("./imach");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     else if (z[0] == 'e') {    }
       chdir(path);    strcpy(fileresprobcov,"probcov"); 
       system(optionfilehtm);    strcat(fileresprobcov,fileres);
     }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     else if (z[0] == 'q') exit(0);      printf("Problem with resultfile: %s\n", fileresprobcov);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 #endif    }
 }    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.14  
changed lines
  Added in v.1.113


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>