Diff for /imach/src/imach.c between versions 1.14 and 1.130

version 1.14, 2002/02/20 17:05:44 version 1.130, 2009/05/26 06:44:34
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.130  2009/05/26 06:44:34  brouard
   individuals from different ages are interviewed on their health status    (Module): Max Covariate is now set to 20 instead of 8. A
   or degree of  disability. At least a second wave of interviews    lot of cleaning with variables initialized to 0. Trying to make
   ("longitudinal") should  measure each new individual health status.    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.129  2007/08/31 13:49:27  lievre
   of life states). More degrees you consider, more time is necessary to    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.128  2006/06/30 13:02:05  brouard
   the probabibility to be observed in state j at the second wave conditional    (Module): Clarifications on computing e.j
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Revision 1.127  2006/04/28 18:11:50  brouard
   is a covariate. If you want to have a more complex model than "constant and    (Module): Yes the sum of survivors was wrong since
   age", you should modify the program where the markup    imach-114 because nhstepm was no more computed in the age
     *Covariates have to be included here again* invites you to do it.    loop. Now we define nhstepma in the age loop.
   More covariates you add, less is the speed of the convergence.    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
   The advantage that this computer programme claims, comes from that if the    and then all the health expectancies with variances or standard
   delay between waves is not identical for each individual, or if some    deviation (needs data from the Hessian matrices) which slows the
   individual missed an interview, the information is not rounded or lost, but    computation.
   taken into account using an interpolation or extrapolation.    In the future we should be able to stop the program is only health
   hPijx is the probability to be    expectancies and graph are needed without standard deviations.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.126  2006/04/28 17:23:28  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Yes the sum of survivors was wrong since
   quarter trimester, semester or year) is model as a multinomial logistic.    imach-114 because nhstepm was no more computed in the age
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    loop. Now we define nhstepma in the age loop.
   and the contribution of each individual to the likelihood is simply hPijx.    Version 0.98h
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.125  2006/04/04 15:20:31  lievre
   of the life expectancies. It also computes the prevalence limits.    Errors in calculation of health expectancies. Age was not initialized.
      Forecasting file added.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.124  2006/03/22 17:13:53  lievre
   This software have been partly granted by Euro-REVES, a concerted action    Parameters are printed with %lf instead of %f (more numbers after the comma).
   from the European Union.    The log-likelihood is printed in the log file
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.123  2006/03/20 10:52:43  brouard
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): <title> changed, corresponds to .htm file
   **********************************************************************/    name. <head> headers where missing.
    
 #include <math.h>    * imach.c (Module): Weights can have a decimal point as for
 #include <stdio.h>    English (a comma might work with a correct LC_NUMERIC environment,
 #include <stdlib.h>    otherwise the weight is truncated).
 #include <unistd.h>    Modification of warning when the covariates values are not 0 or
     1.
 #define MAXLINE 256    Version 0.98g
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.122  2006/03/20 09:45:41  brouard
 #define windows    (Module): Weights can have a decimal point as for
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    English (a comma might work with a correct LC_NUMERIC environment,
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    1.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Version 0.98g
   
 #define NINTERVMAX 8    Revision 1.121  2006/03/16 17:45:01  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Module): Comments concerning covariates added
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): refinements in the computation of lli if
 #define MAXN 20000    status=-2 in order to have more reliable computation if stepm is
 #define YEARM 12. /* Number of months per year */    not 1 month. Version 0.98f
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 int nvar;    not 1 month. Version 0.98f
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.119  2006/03/15 17:42:26  brouard
 int nlstate=2; /* Number of live states */    (Module): Bug if status = -2, the loglikelihood was
 int ndeath=1; /* Number of dead states */    computed as likelihood omitting the logarithm. Version O.98e
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0, fprev,lprev;    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 int *wav; /* Number of waves for this individuual 0 is possible */    table of variances if popbased=1 .
 int maxwav; /* Maxim number of waves */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Function pstamp added
 int mle, weightopt;    (Module): Version 0.98d
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.117  2006/03/14 17:16:22  brouard
 double jmean; /* Mean space between 2 waves */    (Module): varevsij Comments added explaining the second
 double **oldm, **newm, **savm; /* Working pointers to matrices */    table of variances if popbased=1 .
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    (Module): Function pstamp added
 FILE *ficgp, *fichtm,*ficresprob;    (Module): Version 0.98d
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.116  2006/03/06 10:29:27  brouard
  FILE  *ficresvij;    (Module): Variance-covariance wrong links and
   char fileresv[FILENAMELENGTH];    varian-covariance of ej. is needed (Saito).
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.114  2006/02/26 12:57:58  brouard
 #define FTOL 1.0e-10    (Module): Some improvements in processing parameter
     filename with strsep.
 #define NRANSI  
 #define ITMAX 200    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define TOL 2.0e-4    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.112  2006/01/30 09:55:26  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 #define GOLD 1.618034    Revision 1.111  2006/01/25 20:38:18  brouard
 #define GLIMIT 100.0    (Module): Lots of cleaning and bugs added (Gompertz)
 #define TINY 1.0e-20    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.110  2006/01/25 00:51:50  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Lots of cleaning and bugs added (Gompertz)
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.109  2006/01/24 19:37:15  brouard
 #define rint(a) floor(a+0.5)    (Module): Comments (lines starting with a #) are allowed in data.
   
 static double sqrarg;    Revision 1.108  2006/01/19 18:05:42  lievre
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Gnuplot problem appeared...
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    To be fixed
   
 int imx;    Revision 1.107  2006/01/19 16:20:37  brouard
 int stepm;    Test existence of gnuplot in imach path
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.106  2006/01/19 13:24:36  brouard
 int m,nb;    Some cleaning and links added in html output
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.105  2006/01/05 20:23:19  lievre
 double **pmmij, ***probs, ***mobaverage;    *** empty log message ***
   
 double *weight;    Revision 1.104  2005/09/30 16:11:43  lievre
 int **s; /* Status */    (Module): sump fixed, loop imx fixed, and simplifications.
 double *agedc, **covar, idx;    (Module): If the status is missing at the last wave but we know
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    contributions to the likelihood is 1 - Prob of dying from last
 double ftolhess; /* Tolerance for computing hessian */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name )    Revision 1.103  2005/09/30 15:54:49  lievre
 {    (Module): sump fixed, loop imx fixed, and simplifications.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.101  2004/09/15 10:38:38  brouard
    s = strrchr( path, '\\' );           /* find last / */    Fix on curr_time
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.100  2004/07/12 18:29:06  brouard
       extern char       *getwd( );    Add version for Mac OS X. Just define UNIX in Makefile
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.99  2004/06/05 08:57:40  brouard
 #else    *** empty log message ***
       extern char       *getcwd( );  
     Revision 1.98  2004/05/16 15:05:56  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    New version 0.97 . First attempt to estimate force of mortality
 #endif    directly from the data i.e. without the need of knowing the health
          return( GLOCK_ERROR_GETCWD );    state at each age, but using a Gompertz model: log u =a + b*age .
       }    This is the basic analysis of mortality and should be done before any
       strcpy( name, path );             /* we've got it */    other analysis, in order to test if the mortality estimated from the
    } else {                             /* strip direcotry from path */    cross-longitudinal survey is different from the mortality estimated
       s++;                              /* after this, the filename */    from other sources like vital statistic data.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    The same imach parameter file can be used but the option for mle should be -3.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Agnès, who wrote this part of the code, tried to keep most of the
       dirc[l1-l2] = 0;                  /* add zero */    former routines in order to include the new code within the former code.
    }  
    l1 = strlen( dirc );                 /* length of directory */    The output is very simple: only an estimate of the intercept and of
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    the slope with 95% confident intervals.
    return( 0 );                         /* we're done */  
 }    Current limitations:
     A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 /******************************************/    B) There is no computation of Life Expectancy nor Life Table.
   
 void replace(char *s, char*t)    Revision 1.97  2004/02/20 13:25:42  lievre
 {    Version 0.96d. Population forecasting command line is (temporarily)
   int i;    suppressed.
   int lg=20;  
   i=0;    Revision 1.96  2003/07/15 15:38:55  brouard
   lg=strlen(t);    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   for(i=0; i<= lg; i++) {    rewritten within the same printf. Workaround: many printfs.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.95  2003/07/08 07:54:34  brouard
   }    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 int nbocc(char *s, char occ)  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
   int i,j=0;    Just cleaning
   int lg=20;  
   i=0;    Revision 1.93  2003/06/25 16:33:55  brouard
   lg=strlen(s);    (Module): On windows (cygwin) function asctime_r doesn't
   for(i=0; i<= lg; i++) {    exist so I changed back to asctime which exists.
   if  (s[i] == occ ) j++;    (Module): Version 0.96b
   }  
   return j;    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   int i,lg,j,p=0;    * imach.c (Repository): Duplicated warning errors corrected.
   i=0;    (Repository): Elapsed time after each iteration is now output. It
   for(j=0; j<=strlen(t)-1; j++) {    helps to forecast when convergence will be reached. Elapsed time
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    is stamped in powell.  We created a new html file for the graphs
   }    concerning matrix of covariance. It has extension -cov.htm.
   
   lg=strlen(t);    Revision 1.90  2003/06/24 12:34:15  brouard
   for(j=0; j<p; j++) {    (Module): Some bugs corrected for windows. Also, when
     (u[j] = t[j]);    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
      u[p]='\0';  
     Revision 1.89  2003/06/24 12:30:52  brouard
    for(j=0; j<= lg; j++) {    (Module): Some bugs corrected for windows. Also, when
     if (j>=(p+1))(v[j-p-1] = t[j]);    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
 /********************** nrerror ********************/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 void nrerror(char error_text[])    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.86  2003/06/17 20:04:08  brouard
   exit(1);    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   double *v;    current date of interview. It may happen when the death was just
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    prior to the death. In this case, dh was negative and likelihood
   if (!v) nrerror("allocation failure in vector");    was wrong (infinity). We still send an "Error" but patch by
   return v-nl+NR_END;    assuming that the date of death was just one stepm after the
 }    interview.
     (Repository): Because some people have very long ID (first column)
 /************************ free vector ******************/    we changed int to long in num[] and we added a new lvector for
 void free_vector(double*v, int nl, int nh)    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   free((FREE_ARG)(v+nl-NR_END));    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /************************ivector *******************************/    * imach.c (Repository): Replace "freqsummary" at a correct
 int *ivector(long nl,long nh)    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   int *v;    parcimony.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.83  2003/06/10 13:39:11  lievre
 }    *** empty log message ***
   
 /******************free ivector **************************/    Revision 1.82  2003/06/05 15:57:20  brouard
 void free_ivector(int *v, long nl, long nh)    Add log in  imach.c and  fullversion number is now printed.
 {  
   free((FREE_ARG)(v+nl-NR_END));  */
 }  /*
      Interpolated Markov Chain
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Short summary of the programme:
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    
 {    This program computes Healthy Life Expectancies from
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   int **m;    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
   /* allocate pointers to rows */    case of a health survey which is our main interest) -2- at least a
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    second wave of interviews ("longitudinal") which measure each change
   if (!m) nrerror("allocation failure 1 in matrix()");    (if any) in individual health status.  Health expectancies are
   m += NR_END;    computed from the time spent in each health state according to a
   m -= nrl;    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
      simplest model is the multinomial logistic model where pij is the
   /* allocate rows and set pointers to them */    probability to be observed in state j at the second wave
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    conditional to be observed in state i at the first wave. Therefore
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m[nrl] += NR_END;    'age' is age and 'sex' is a covariate. If you want to have a more
   m[nrl] -= ncl;    complex model than "constant and age", you should modify the program
      where the markup *Covariates have to be included here again* invites
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    you to do it.  More covariates you add, slower the
      convergence.
   /* return pointer to array of pointers to rows */  
   return m;    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /****************** free_imatrix *************************/    intermediate interview, the information is lost, but taken into
 void free_imatrix(m,nrl,nrh,ncl,nch)    account using an interpolation or extrapolation.  
       int **m;  
       long nch,ncl,nrh,nrl;    hPijx is the probability to be observed in state i at age x+h
      /* free an int matrix allocated by imatrix() */    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    states. This elementary transition (by month, quarter,
   free((FREE_ARG) (m+nrl-NR_END));    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /******************* matrix *******************************/    hPijx.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    of the life expectancies. It also computes the period (stable) prevalence. 
   double **m;    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));             Institut national d'études démographiques, Paris.
   if (!m) nrerror("allocation failure 1 in matrix()");    This software have been partly granted by Euro-REVES, a concerted action
   m += NR_END;    from the European Union.
   m -= nrl;    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    can be accessed at http://euroreves.ined.fr/imach .
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m[nrl] -= ncl;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    **********************************************************************/
   return m;  /*
 }    main
     read parameterfile
 /*************************free matrix ************************/    read datafile
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    concatwav
 {    freqsummary
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (mle >= 1)
   free((FREE_ARG)(m+nrl-NR_END));      mlikeli
 }    print results files
     if mle==1 
 /******************* ma3x *******************************/       computes hessian
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    open gnuplot file
   double ***m;    open html file
     period (stable) prevalence
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));     for age prevalim()
   if (!m) nrerror("allocation failure 1 in matrix()");    h Pij x
   m += NR_END;    variance of p varprob
   m -= nrl;    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Variance-covariance of DFLE
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    prevalence()
   m[nrl] += NR_END;     movingaverage()
   m[nrl] -= ncl;    varevsij() 
     if popbased==1 varevsij(,popbased)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    total life expectancies
     Variance of period (stable) prevalence
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));   end
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  */
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;   
    #include <math.h>
   for (i=nrl+1; i<=nrh; i++) {  #include <stdio.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #include <stdlib.h>
     for (j=ncl+1; j<=nch; j++)  #include <string.h>
       m[i][j]=m[i][j-1]+nlay;  #include <unistd.h>
   }  
   return m;  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /*************************free ma3x ************************/  #include <errno.h>
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  extern int errno;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /* #include <sys/time.h> */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <time.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 /***************** f1dim *************************/  /* #define _(String) gettext (String) */
 extern int ncom;  
 extern double *pcom,*xicom;  #define MAXLINE 256
 extern double (*nrfunc)(double []);  
    #define GNUPLOTPROGRAM "gnuplot"
 double f1dim(double x)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
   int j;  
   double f;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double *xt;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    
   xt=vector(1,ncom);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  #define NINTERVMAX 8
   return f;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 20 /* Maximum number of covariates */
 /*****************brent *************************/  #define MAXN 20000
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   int iter;  #define AGEBASE 40
   double a,b,d,etemp;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double fu,fv,fw,fx;  #ifdef UNIX
   double ftemp;  #define DIRSEPARATOR '/'
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define CHARSEPARATOR "/"
   double e=0.0;  #define ODIRSEPARATOR '\\'
    #else
   a=(ax < cx ? ax : cx);  #define DIRSEPARATOR '\\'
   b=(ax > cx ? ax : cx);  #define CHARSEPARATOR "\\"
   x=w=v=bx;  #define ODIRSEPARATOR '/'
   fw=fv=fx=(*f)(x);  #endif
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  /* $Id$ */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /* $State$ */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
 #ifdef DEBUG  char fullversion[]="$Revision$ $Date$"; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char strstart[80];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 #endif  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int nvar=0;
       *xmin=x;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
       return fx;  int npar=NPARMAX;
     }  int nlstate=2; /* Number of live states */
     ftemp=fu;  int ndeath=1; /* Number of dead states */
     if (fabs(e) > tol1) {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       r=(x-w)*(fx-fv);  int popbased=0;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  int *wav; /* Number of waves for this individuual 0 is possible */
       q=2.0*(q-r);  int maxwav=0; /* Maxim number of waves */
       if (q > 0.0) p = -p;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       q=fabs(q);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       etemp=e;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       e=d;                     to the likelihood and the sum of weights (done by funcone)*/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int mle=1, weightopt=0;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       else {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         d=p/q;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         u=x+d;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
         if (u-a < tol2 || b-u < tol2)  double jmean=1; /* Mean space between 2 waves */
           d=SIGN(tol1,xm-x);  double **oldm, **newm, **savm; /* Working pointers to matrices */
       }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     } else {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *ficlog, *ficrespow;
     }  int globpr=0; /* Global variable for printing or not */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double fretone; /* Only one call to likelihood */
     fu=(*f)(u);  long ipmx=0; /* Number of contributions */
     if (fu <= fx) {  double sw; /* Sum of weights */
       if (u >= x) a=x; else b=x;  char filerespow[FILENAMELENGTH];
       SHFT(v,w,x,u)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         SHFT(fv,fw,fx,fu)  FILE *ficresilk;
         } else {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
           if (u < x) a=u; else b=u;  FILE *ficresprobmorprev;
           if (fu <= fw || w == x) {  FILE *fichtm, *fichtmcov; /* Html File */
             v=w;  FILE *ficreseij;
             w=u;  char filerese[FILENAMELENGTH];
             fv=fw;  FILE *ficresstdeij;
             fw=fu;  char fileresstde[FILENAMELENGTH];
           } else if (fu <= fv || v == x || v == w) {  FILE *ficrescveij;
             v=u;  char filerescve[FILENAMELENGTH];
             fv=fu;  FILE  *ficresvij;
           }  char fileresv[FILENAMELENGTH];
         }  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  char title[MAXLINE];
   *xmin=x;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return fx;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /****************** mnbrak ***********************/  int  outcmd=0;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
             double (*func)(double))  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   double ulim,u,r,q, dum;  char filerest[FILENAMELENGTH];
   double fu;  char fileregp[FILENAMELENGTH];
    char popfile[FILENAMELENGTH];
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       SHFT(dum,*fb,*fa,dum)  struct timezone tzp;
       }  extern int gettimeofday();
   *cx=(*bx)+GOLD*(*bx-*ax);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   *fc=(*func)(*cx);  long time_value;
   while (*fb > *fc) {  extern long time();
     r=(*bx-*ax)*(*fb-*fc);  char strcurr[80], strfor[80];
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char *endptr;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  long lval;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double dval;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  #define NR_END 1
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define FREE_ARG char*
       fu=(*func)(u);  #define FTOL 1.0e-10
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define NRANSI 
           SHFT(*fb,*fc,fu,(*func)(u))  #define ITMAX 200 
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define TOL 2.0e-4 
       u=ulim;  
       fu=(*func)(u);  #define CGOLD 0.3819660 
     } else {  #define ZEPS 1.0e-10 
       u=(*cx)+GOLD*(*cx-*bx);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       fu=(*func)(u);  
     }  #define GOLD 1.618034 
     SHFT(*ax,*bx,*cx,u)  #define GLIMIT 100.0 
       SHFT(*fa,*fb,*fc,fu)  #define TINY 1.0e-20 
       }  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /*************** linmin ************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 int ncom;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double *pcom,*xicom;  #define rint(a) floor(a+0.5)
 double (*nrfunc)(double []);  
    static double sqrarg;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double brent(double ax, double bx, double cx,  int agegomp= AGEGOMP;
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  int imx; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int stepm=1;
               double *fc, double (*func)(double));  /* Stepm, step in month: minimum step interpolation*/
   int j;  
   double xx,xmin,bx,ax;  int estepm;
   double fx,fb,fa;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    
   ncom=n;  int m,nb;
   pcom=vector(1,n);  long *num;
   xicom=vector(1,n);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   nrfunc=func;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (j=1;j<=n;j++) {  double **pmmij, ***probs;
     pcom[j]=p[j];  double *ageexmed,*agecens;
     xicom[j]=xi[j];  double dateintmean=0;
   }  
   ax=0.0;  double *weight;
   xx=1.0;  int **s; /* Status */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double *agedc, **covar, idx;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 #ifdef DEBUG  double *lsurv, *lpop, *tpop;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for (j=1;j<=n;j++) {  double ftolhess; /* Tolerance for computing hessian */
     xi[j] *= xmin;  
     p[j] += xi[j];  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 /*************** powell ************************/    char  *ss;                            /* pointer */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int   l1, l2;                         /* length counters */
             double (*func)(double []))  
 {    l1 = strlen(path );                   /* length of path */
   void linmin(double p[], double xi[], int n, double *fret,    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
               double (*func)(double []));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int i,ibig,j;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double del,t,*pt,*ptt,*xit;      strcpy( name, path );               /* we got the fullname name because no directory */
   double fp,fptt;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double *xits;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   pt=vector(1,n);      /* get current working directory */
   ptt=vector(1,n);      /*    extern  char* getcwd ( char *buf , int len);*/
   xit=vector(1,n);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   xits=vector(1,n);        return( GLOCK_ERROR_GETCWD );
   *fret=(*func)(p);      }
   for (j=1;j<=n;j++) pt[j]=p[j];      /* got dirc from getcwd*/
   for (*iter=1;;++(*iter)) {      printf(" DIRC = %s \n",dirc);
     fp=(*fret);    } else {                              /* strip direcotry from path */
     ibig=0;      ss++;                               /* after this, the filename */
     del=0.0;      l2 = strlen( ss );                  /* length of filename */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     for (i=1;i<=n;i++)      strcpy( name, ss );         /* save file name */
       printf(" %d %.12f",i, p[i]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     printf("\n");      dirc[l1-l2] = 0;                    /* add zero */
     for (i=1;i<=n;i++) {      printf(" DIRC2 = %s \n",dirc);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    }
       fptt=(*fret);    /* We add a separator at the end of dirc if not exists */
 #ifdef DEBUG    l1 = strlen( dirc );                  /* length of directory */
       printf("fret=%lf \n",*fret);    if( dirc[l1-1] != DIRSEPARATOR ){
 #endif      dirc[l1] =  DIRSEPARATOR;
       printf("%d",i);fflush(stdout);      dirc[l1+1] = 0; 
       linmin(p,xit,n,fret,func);      printf(" DIRC3 = %s \n",dirc);
       if (fabs(fptt-(*fret)) > del) {    }
         del=fabs(fptt-(*fret));    ss = strrchr( name, '.' );            /* find last / */
         ibig=i;    if (ss >0){
       }      ss++;
 #ifdef DEBUG      strcpy(ext,ss);                     /* save extension */
       printf("%d %.12e",i,(*fret));      l1= strlen( name);
       for (j=1;j<=n;j++) {      l2= strlen(ss)+1;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      strncpy( finame, name, l1-l2);
         printf(" x(%d)=%.12e",j,xit[j]);      finame[l1-l2]= 0;
       }    }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    return( 0 );                          /* we're done */
       printf("\n");  }
 #endif  
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /******************************************/
 #ifdef DEBUG  
       int k[2],l;  void replace_back_to_slash(char *s, char*t)
       k[0]=1;  {
       k[1]=-1;    int i;
       printf("Max: %.12e",(*func)(p));    int lg=0;
       for (j=1;j<=n;j++)    i=0;
         printf(" %.12e",p[j]);    lg=strlen(t);
       printf("\n");    for(i=0; i<= lg; i++) {
       for(l=0;l<=1;l++) {      (s[i] = t[i]);
         for (j=1;j<=n;j++) {      if (t[i]== '\\') s[i]='/';
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int nbocc(char *s, char occ)
       }  {
 #endif    int i,j=0;
     int lg=20;
     i=0;
       free_vector(xit,1,n);    lg=strlen(s);
       free_vector(xits,1,n);    for(i=0; i<= lg; i++) {
       free_vector(ptt,1,n);    if  (s[i] == occ ) j++;
       free_vector(pt,1,n);    }
       return;    return j;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  void cutv(char *u,char *v, char*t, char occ)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       pt[j]=p[j];       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     }       gives u="abcedf" and v="ghi2j" */
     fptt=(*func)(ptt);    int i,lg,j,p=0;
     if (fptt < fp) {    i=0;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    for(j=0; j<=strlen(t)-1; j++) {
       if (t < 0.0) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         linmin(p,xit,n,fret,func);    }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    lg=strlen(t);
           xi[j][n]=xit[j];    for(j=0; j<p; j++) {
         }      (u[j] = t[j]);
 #ifdef DEBUG    }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);       u[p]='\0';
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);     for(j=0; j<= lg; j++) {
         printf("\n");      if (j>=(p+1))(v[j-p-1] = t[j]);
 #endif    }
       }  }
     }  
   }  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /**** Prevalence limit ****************/  {
     fprintf(stderr,"ERREUR ...\n");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  /*********************** vector *******************/
   double *vector(int nl, int nh)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    double *v;
   double **matprod2();    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double **out, cov[NCOVMAX], **pmij();    if (!v) nrerror("allocation failure in vector");
   double **newm;    return v-nl+NR_END;
   double agefin, delaymax=50 ; /* Max number of years to converge */  }
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /************************ free vector ******************/
     for (j=1;j<=nlstate+ndeath;j++){  void free_vector(double*v, int nl, int nh)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
     }    free((FREE_ARG)(v+nl-NR_END));
   }
    cov[1]=1.;  
    /************************ivector *******************************/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int *ivector(long nl,long nh)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    int *v;
     /* Covariates have to be included here again */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      cov[2]=agefin;    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
       for (k=1; k<=cptcovn;k++) {  }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free((FREE_ARG)(v+nl-NR_END));
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /************************lvector *******************************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  long *lvector(long nl,long nh)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  {
     long *v;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
     savm=oldm;    return v-nl+NR_END;
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /******************free lvector **************************/
       min=1.;  void free_lvector(long *v, long nl, long nh)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    free((FREE_ARG)(v+nl-NR_END));
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /******************* imatrix *******************************/
         max=FMAX(max,prlim[i][j]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         min=FMIN(min,prlim[i][j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       }  { 
       maxmin=max-min;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       maxmax=FMAX(maxmax,maxmin);    int **m; 
     }    
     if(maxmax < ftolpl){    /* allocate pointers to rows */ 
       return prlim;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
 }    m -= nrl; 
     
 /*************** transition probabilities ***************/    
     /* allocate rows and set pointers to them */ 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double s1, s2;    m[nrl] += NR_END; 
   /*double t34;*/    m[nrl] -= ncl; 
   int i,j,j1, nc, ii, jj;    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(i=1; i<= nlstate; i++){    
     for(j=1; j<i;j++){    /* return pointer to array of pointers to rows */ 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return m; 
         /*s2 += param[i][j][nc]*cov[nc];*/  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
       ps[i][j]=s2;        int **m;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        long nch,ncl,nrh,nrl; 
     }       /* free an int matrix allocated by imatrix() */ 
     for(j=i+1; j<=nlstate+ndeath;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG) (m+nrl-NR_END)); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  } 
       }  
       ps[i][j]=(s2);  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
   }  {
     /*ps[3][2]=1;*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   for(i=1; i<= nlstate; i++){  
      s1=0;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=1; j<i; j++)    if (!m) nrerror("allocation failure 1 in matrix()");
       s1+=exp(ps[i][j]);    m += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m -= nrl;
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=1; j<i; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl] += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl] -= ncl;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   } /* end i */    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){     */
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /******************* ma3x *******************************/
    }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     printf("\n ");  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     printf("\n ");printf("%lf ",cov[2]);*/    double ***m;
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   goto end;*/    if (!m) nrerror("allocation failure 1 in matrix()");
     return ps;    m += NR_END;
 }    m -= nrl;
   
 /**************** Product of 2 matrices ******************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      a pointer to pointers identical to out */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   long i, j, k;    m[nrl][ncl] += NR_END;
   for(i=nrl; i<= nrh; i++)    m[nrl][ncl] -= nll;
     for(k=ncolol; k<=ncoloh; k++)    for (j=ncl+1; j<=nch; j++) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      m[nrl][j]=m[nrl][j-1]+nlay;
         out[i][k] +=in[i][j]*b[j][k];    
     for (i=nrl+1; i<=nrh; i++) {
   return out;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 }      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
     }
 /************* Higher Matrix Product ***************/    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 {    */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  }
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*************************free ma3x ************************/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      (typically every 2 years instead of every month which is too big).  {
      Model is determined by parameters x and covariates have to be    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      included manually here.    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
      */  }
   
   int i, j, d, h, k;  /*************** function subdirf ***********/
   double **out, cov[NCOVMAX];  char *subdirf(char fileres[])
   double **newm;  {
     /* Caution optionfilefiname is hidden */
   /* Hstepm could be zero and should return the unit matrix */    strcpy(tmpout,optionfilefiname);
   for (i=1;i<=nlstate+ndeath;i++)    strcat(tmpout,"/"); /* Add to the right */
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,fileres);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    return tmpout;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** function subdirf2 ***********/
   for(h=1; h <=nhstepm; h++){  char *subdirf2(char fileres[], char *preop)
     for(d=1; d <=hstepm; d++){  {
       newm=savm;    
       /* Covariates have to be included here again */    /* Caution optionfilefiname is hidden */
       cov[1]=1.;    strcpy(tmpout,optionfilefiname);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    strcat(tmpout,"/");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,preop);
       for (k=1; k<=cptcovage;k++)    strcat(tmpout,fileres);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return tmpout;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    /* Caution optionfilefiname is hidden */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    strcpy(tmpout,optionfilefiname);
       savm=oldm;    strcat(tmpout,"/");
       oldm=newm;    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     for(i=1; i<=nlstate+ndeath; i++)    strcat(tmpout,fileres);
       for(j=1;j<=nlstate+ndeath;j++) {    return tmpout;
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /***************** f1dim *************************/
       }  extern int ncom; 
   } /* end h */  extern double *pcom,*xicom;
   return po;  extern double (*nrfunc)(double []); 
 }   
   double f1dim(double x) 
   { 
 /*************** log-likelihood *************/    int j; 
 double func( double *x)    double f;
 {    double *xt; 
   int i, ii, j, k, mi, d, kk;   
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    xt=vector(1,ncom); 
   double **out;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double sw; /* Sum of weights */    f=(*nrfunc)(xt); 
   double lli; /* Individual log likelihood */    free_vector(xt,1,ncom); 
   long ipmx;    return f; 
   /*extern weight */  } 
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*****************brent *************************/
   /*for(i=1;i<imx;i++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     printf(" %d\n",s[4][i]);  { 
   */    int iter; 
   cov[1]=1.;    double a,b,d,etemp;
     double fu,fv,fw,fx;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double ftemp;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double e=0.0; 
     for(mi=1; mi<= wav[i]-1; mi++){   
       for (ii=1;ii<=nlstate+ndeath;ii++)    a=(ax < cx ? ax : cx); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    b=(ax > cx ? ax : cx); 
       for(d=0; d<dh[mi][i]; d++){    x=w=v=bx; 
         newm=savm;    fw=fv=fx=(*f)(x); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    for (iter=1;iter<=ITMAX;iter++) { 
         for (kk=1; kk<=cptcovage;kk++) {      xm=0.5*(a+b); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
              printf(".");fflush(stdout);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      fprintf(ficlog,".");fflush(ficlog);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #ifdef DEBUG
         savm=oldm;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         oldm=newm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
              /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
          #endif
       } /* end mult */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
              *xmin=x; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        return fx; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      } 
       ipmx +=1;      ftemp=fu;
       sw += weight[i];      if (fabs(e) > tol1) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        r=(x-w)*(fx-fv); 
     } /* end of wave */        q=(x-v)*(fx-fw); 
   } /* end of individual */        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        if (q > 0.0) p = -p; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        q=fabs(q); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        etemp=e; 
   return -l;        e=d; 
 }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 /*********** Maximum Likelihood Estimation ***************/          d=p/q; 
           u=x+d; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          if (u-a < tol2 || b-u < tol2) 
 {            d=SIGN(tol1,xm-x); 
   int i,j, iter;        } 
   double **xi,*delti;      } else { 
   double fret;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   xi=matrix(1,npar,1,npar);      } 
   for (i=1;i<=npar;i++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for (j=1;j<=npar;j++)      fu=(*f)(u); 
       xi[i][j]=(i==j ? 1.0 : 0.0);      if (fu <= fx) { 
   printf("Powell\n");        if (u >= x) a=x; else b=x; 
   powell(p,xi,npar,ftol,&iter,&fret,func);        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          } else { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 }              v=w; 
               w=u; 
 /**** Computes Hessian and covariance matrix ***/              fv=fw; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))              fw=fu; 
 {            } else if (fu <= fv || v == x || v == w) { 
   double  **a,**y,*x,pd;              v=u; 
   double **hess;              fv=fu; 
   int i, j,jk;            } 
   int *indx;          } 
     } 
   double hessii(double p[], double delta, int theta, double delti[]);    nrerror("Too many iterations in brent"); 
   double hessij(double p[], double delti[], int i, int j);    *xmin=x; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    return fx; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  } 
   
   hess=matrix(1,npar,1,npar);  /****************** mnbrak ***********************/
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for (i=1;i<=npar;i++){              double (*func)(double)) 
     printf("%d",i);fflush(stdout);  { 
     hess[i][i]=hessii(p,ftolhess,i,delti);    double ulim,u,r,q, dum;
     /*printf(" %f ",p[i]);*/    double fu; 
     /*printf(" %lf ",hess[i][i]);*/   
   }    *fa=(*func)(*ax); 
      *fb=(*func)(*bx); 
   for (i=1;i<=npar;i++) {    if (*fb > *fa) { 
     for (j=1;j<=npar;j++)  {      SHFT(dum,*ax,*bx,dum) 
       if (j>i) {        SHFT(dum,*fb,*fa,dum) 
         printf(".%d%d",i,j);fflush(stdout);        } 
         hess[i][j]=hessij(p,delti,i,j);    *cx=(*bx)+GOLD*(*bx-*ax); 
         hess[j][i]=hess[i][j];        *fc=(*func)(*cx); 
         /*printf(" %lf ",hess[i][j]);*/    while (*fb > *fc) { 
       }      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
   }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   printf("\n");        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      if ((*bx-u)*(u-*cx) > 0.0) { 
          fu=(*func)(u); 
   a=matrix(1,npar,1,npar);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   y=matrix(1,npar,1,npar);        fu=(*func)(u); 
   x=vector(1,npar);        if (fu < *fc) { 
   indx=ivector(1,npar);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   for (i=1;i<=npar;i++)            SHFT(*fb,*fc,fu,(*func)(u)) 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            } 
   ludcmp(a,npar,indx,&pd);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   for (j=1;j<=npar;j++) {        fu=(*func)(u); 
     for (i=1;i<=npar;i++) x[i]=0;      } else { 
     x[j]=1;        u=(*cx)+GOLD*(*cx-*bx); 
     lubksb(a,npar,indx,x);        fu=(*func)(u); 
     for (i=1;i<=npar;i++){      } 
       matcov[i][j]=x[i];      SHFT(*ax,*bx,*cx,u) 
     }        SHFT(*fa,*fb,*fc,fu) 
   }        } 
   } 
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  /*************** linmin ************************/
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  int ncom; 
     }  double *pcom,*xicom;
     printf("\n");  double (*nrfunc)(double []); 
   }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /* Recompute Inverse */  { 
   for (i=1;i<=npar;i++)    double brent(double ax, double bx, double cx, 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];                 double (*f)(double), double tol, double *xmin); 
   ludcmp(a,npar,indx,&pd);    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /*  printf("\n#Hessian matrix recomputed#\n");                double *fc, double (*func)(double)); 
     int j; 
   for (j=1;j<=npar;j++) {    double xx,xmin,bx,ax; 
     for (i=1;i<=npar;i++) x[i]=0;    double fx,fb,fa;
     x[j]=1;   
     lubksb(a,npar,indx,x);    ncom=n; 
     for (i=1;i<=npar;i++){    pcom=vector(1,n); 
       y[i][j]=x[i];    xicom=vector(1,n); 
       printf("%.3e ",y[i][j]);    nrfunc=func; 
     }    for (j=1;j<=n;j++) { 
     printf("\n");      pcom[j]=p[j]; 
   }      xicom[j]=xi[j]; 
   */    } 
     ax=0.0; 
   free_matrix(a,1,npar,1,npar);    xx=1.0; 
   free_matrix(y,1,npar,1,npar);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   free_vector(x,1,npar);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   free_ivector(indx,1,npar);  #ifdef DEBUG
   free_matrix(hess,1,npar,1,npar);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 /*************** hessian matrix ****************/      p[j] += xi[j]; 
 double hessii( double x[], double delta, int theta, double delti[])    } 
 {    free_vector(xicom,1,n); 
   int i;    free_vector(pcom,1,n); 
   int l=1, lmax=20;  } 
   double k1,k2;  
   double p2[NPARMAX+1];  char *asc_diff_time(long time_sec, char ascdiff[])
   double res;  {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    long sec_left, days, hours, minutes;
   double fx;    days = (time_sec) / (60*60*24);
   int k=0,kmax=10;    sec_left = (time_sec) % (60*60*24);
   double l1;    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   fx=func(x);    minutes = (sec_left) /60;
   for (i=1;i<=npar;i++) p2[i]=x[i];    sec_left = (sec_left) % (60);
   for(l=0 ; l <=lmax; l++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     l1=pow(10,l);    return ascdiff;
     delts=delt;  }
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  /*************** powell ************************/
       p2[theta]=x[theta] +delt;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       k1=func(p2)-fx;              double (*func)(double [])) 
       p2[theta]=x[theta]-delt;  { 
       k2=func(p2)-fx;    void linmin(double p[], double xi[], int n, double *fret, 
       /*res= (k1-2.0*fx+k2)/delt/delt; */                double (*func)(double [])); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    int i,ibig,j; 
          double del,t,*pt,*ptt,*xit;
 #ifdef DEBUG    double fp,fptt;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double *xits;
 #endif    int niterf, itmp;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    pt=vector(1,n); 
         k=kmax;    ptt=vector(1,n); 
       }    xit=vector(1,n); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    xits=vector(1,n); 
         k=kmax; l=lmax*10.;    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    for (*iter=1;;++(*iter)) { 
         delts=delt;      fp=(*fret); 
       }      ibig=0; 
     }      del=0.0; 
   }      last_time=curr_time;
   delti[theta]=delts;      (void) gettimeofday(&curr_time,&tzp);
   return res;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
        fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
      for (i=1;i<=n;i++) {
 double hessij( double x[], double delti[], int thetai,int thetaj)        printf(" %d %.12f",i, p[i]);
 {        fprintf(ficlog," %d %.12lf",i, p[i]);
   int i;        fprintf(ficrespow," %.12lf", p[i]);
   int l=1, l1, lmax=20;      }
   double k1,k2,k3,k4,res,fx;      printf("\n");
   double p2[NPARMAX+1];      fprintf(ficlog,"\n");
   int k;      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   fx=func(x);        tm = *localtime(&curr_time.tv_sec);
   for (k=1; k<=2; k++) {        strcpy(strcurr,asctime(&tm));
     for (i=1;i<=npar;i++) p2[i]=x[i];  /*       asctime_r(&tm,strcurr); */
     p2[thetai]=x[thetai]+delti[thetai]/k;        forecast_time=curr_time; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        itmp = strlen(strcurr);
     k1=func(p2)-fx;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
            strcurr[itmp-1]='\0';
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     k2=func(p2)-fx;        for(niterf=10;niterf<=30;niterf+=10){
            forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     p2[thetai]=x[thetai]-delti[thetai]/k;          tmf = *localtime(&forecast_time.tv_sec);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*      asctime_r(&tmf,strfor); */
     k3=func(p2)-fx;          strcpy(strfor,asctime(&tmf));
            itmp = strlen(strfor);
     p2[thetai]=x[thetai]-delti[thetai]/k;          if(strfor[itmp-1]=='\n')
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          strfor[itmp-1]='\0';
     k4=func(p2)-fx;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 #ifdef DEBUG        }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      }
 #endif      for (i=1;i<=n;i++) { 
   }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   return res;        fptt=(*fret); 
 }  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
 /************** Inverse of matrix **************/        fprintf(ficlog,"fret=%lf \n",*fret);
 void ludcmp(double **a, int n, int *indx, double *d)  #endif
 {        printf("%d",i);fflush(stdout);
   int i,imax,j,k;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double big,dum,sum,temp;        linmin(p,xit,n,fret,func); 
   double *vv;        if (fabs(fptt-(*fret)) > del) { 
            del=fabs(fptt-(*fret)); 
   vv=vector(1,n);          ibig=i; 
   *d=1.0;        } 
   for (i=1;i<=n;i++) {  #ifdef DEBUG
     big=0.0;        printf("%d %.12e",i,(*fret));
     for (j=1;j<=n;j++)        fprintf(ficlog,"%d %.12e",i,(*fret));
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (j=1;j<=n;j++) {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     vv[i]=1.0/big;          printf(" x(%d)=%.12e",j,xit[j]);
   }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for (j=1;j<=n;j++) {        }
     for (i=1;i<j;i++) {        for(j=1;j<=n;j++) {
       sum=a[i][j];          printf(" p=%.12e",p[j]);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          fprintf(ficlog," p=%.12e",p[j]);
       a[i][j]=sum;        }
     }        printf("\n");
     big=0.0;        fprintf(ficlog,"\n");
     for (i=j;i<=n;i++) {  #endif
       sum=a[i][j];      } 
       for (k=1;k<j;k++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         sum -= a[i][k]*a[k][j];  #ifdef DEBUG
       a[i][j]=sum;        int k[2],l;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        k[0]=1;
         big=dum;        k[1]=-1;
         imax=i;        printf("Max: %.12e",(*func)(p));
       }        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     if (j != imax) {          printf(" %.12e",p[j]);
       for (k=1;k<=n;k++) {          fprintf(ficlog," %.12e",p[j]);
         dum=a[imax][k];        }
         a[imax][k]=a[j][k];        printf("\n");
         a[j][k]=dum;        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
       *d = -(*d);          for (j=1;j<=n;j++) {
       vv[imax]=vv[j];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     indx[j]=imax;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     if (a[j][j] == 0.0) a[j][j]=TINY;          }
     if (j != n) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       dum=1.0/(a[j][j]);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        }
     }  #endif
   }  
   free_vector(vv,1,n);  /* Doesn't work */  
 ;        free_vector(xit,1,n); 
 }        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 void lubksb(double **a, int n, int *indx, double b[])        free_vector(pt,1,n); 
 {        return; 
   int i,ii=0,ip,j;      } 
   double sum;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
        for (j=1;j<=n;j++) { 
   for (i=1;i<=n;i++) {        ptt[j]=2.0*p[j]-pt[j]; 
     ip=indx[i];        xit[j]=p[j]-pt[j]; 
     sum=b[ip];        pt[j]=p[j]; 
     b[ip]=b[i];      } 
     if (ii)      fptt=(*func)(ptt); 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      if (fptt < fp) { 
     else if (sum) ii=i;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     b[i]=sum;        if (t < 0.0) { 
   }          linmin(p,xit,n,fret,func); 
   for (i=n;i>=1;i--) {          for (j=1;j<=n;j++) { 
     sum=b[i];            xi[j][ibig]=xi[j][n]; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            xi[j][n]=xit[j]; 
     b[i]=sum/a[i][i];          }
   }  #ifdef DEBUG
 }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /************ Frequencies ********************/          for(j=1;j<=n;j++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)            printf(" %.12e",xit[j]);
 {  /* Some frequencies */            fprintf(ficlog," %.12e",xit[j]);
            }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          printf("\n");
   double ***freq; /* Frequencies */          fprintf(ficlog,"\n");
   double *pp;  #endif
   double pos;        }
   FILE *ficresp;      } 
   char fileresp[FILENAMELENGTH];    } 
   } 
   pp=vector(1,nlstate);  
  probs= ma3x(1,130 ,1,8, 1,8);  /**** Prevalence limit (stable or period prevalence)  ****************/
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     exit(0);       matrix by transitions matrix until convergence is reached */
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int i, ii,j,k;
   j1=0;    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   j=cptcoveff;    double **out, cov[NCOVMAX], **pmij();
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   for(k1=1; k1<=j;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    for (ii=1;ii<=nlstate+ndeath;ii++)
        j1++;      for (j=1;j<=nlstate+ndeath;j++){
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          scanf("%d", i);*/      }
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)       cov[1]=1.;
            for(m=agemin; m <= agemax+3; m++)   
              freq[i][jk][m]=0;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        for (i=1; i<=imx; i++) {      newm=savm;
          bool=1;      /* Covariates have to be included here again */
          if  (cptcovn>0) {       cov[2]=agefin;
            for (z1=1; z1<=cptcoveff; z1++)    
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for (k=1; k<=cptcovn;k++) {
                bool=0;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
           if (bool==1) {        }
            for(m=fprev; m<=lprev; m++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              if(agev[m][i]==0) agev[m][i]=agemax+1;        for (k=1; k<=cptcovprod;k++)
              if(agev[m][i]==1) agev[m][i]=agemax+2;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
            }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#********** Variable ");      savm=oldm;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      oldm=newm;
        fprintf(ficresp, "**********\n#");      maxmax=0.;
         }      for(j=1;j<=nlstate;j++){
        for(i=1; i<=nlstate;i++)        min=1.;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        max=0.;
        fprintf(ficresp, "\n");        for(i=1; i<=nlstate; i++) {
                  sumnew=0;
   for(i=(int)agemin; i <= (int)agemax+3; i++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     if(i==(int)agemax+3)          prlim[i][j]= newm[i][j]/(1-sumnew);
       printf("Total");          max=FMAX(max,prlim[i][j]);
     else          min=FMIN(min,prlim[i][j]);
       printf("Age %d", i);        }
     for(jk=1; jk <=nlstate ; jk++){        maxmin=max-min;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        maxmax=FMAX(maxmax,maxmin);
         pp[jk] += freq[jk][m][i];      }
     }      if(maxmax < ftolpl){
     for(jk=1; jk <=nlstate ; jk++){        return prlim;
       for(m=-1, pos=0; m <=0 ; m++)      }
         pos += freq[jk][m][i];    }
       if(pp[jk]>=1.e-10)  }
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else  /*************** transition probabilities ***************/ 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
     }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
      for(jk=1; jk <=nlstate ; jk++){    double s1, s2;
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /*double t34;*/
         pp[jk] += freq[jk][m][i];    int i,j,j1, nc, ii, jj;
      }  
       for(i=1; i<= nlstate; i++){
     for(jk=1,pos=0; jk <=nlstate ; jk++)        for(j=1; j<i;j++){
       pos += pp[jk];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for(jk=1; jk <=nlstate ; jk++){            /*s2 += param[i][j][nc]*cov[nc];*/
       if(pos>=1.e-5)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       else          }
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ps[i][j]=s2;
       if( i <= (int) agemax){  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         if(pos>=1.e-5){        }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for(j=i+1; j<=nlstate+ndeath;j++){
           probs[i][jk][j1]= pp[jk]/pos;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       else          }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ps[i][j]=s2;
       }        }
     }      }
     for(jk=-1; jk <=nlstate+ndeath; jk++)      /*ps[3][2]=1;*/
       for(m=-1; m <=nlstate+ndeath; m++)      
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      for(i=1; i<= nlstate; i++){
     if(i <= (int) agemax)        s1=0;
       fprintf(ficresp,"\n");        for(j=1; j<i; j++)
     printf("\n");          s1+=exp(ps[i][j]);
     }        for(j=i+1; j<=nlstate+ndeath; j++)
     }          s1+=exp(ps[i][j]);
  }        ps[i][i]=1./(s1+1.);
          for(j=1; j<i; j++)
   fclose(ficresp);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for(j=i+1; j<=nlstate+ndeath; j++)
   free_vector(pp,1,nlstate);          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 }  /* End of Freq */      } /* end i */
       
 /************* Waves Concatenation ***************/      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          ps[ii][jj]=0;
 {          ps[ii][ii]=1;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        }
      Death is a valid wave (if date is known).      }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
      */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
   int i, mi, m;  /*       } */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /*       printf("\n "); */
      double sum=0., jmean=0.;*/  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
   int j, k=0,jk, ju, jl;         /*
   double sum=0.;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   jmin=1e+5;        goto end;*/
   jmax=-1;      return ps;
   jmean=0.;  }
   for(i=1; i<=imx; i++){  
     mi=0;  /**************** Product of 2 matrices ******************/
     m=firstpass;  
     while(s[m][i] <= nlstate){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       if(s[m][i]>=1)  {
         mw[++mi][i]=m;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       if(m >=lastpass)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         break;    /* in, b, out are matrice of pointers which should have been initialized 
       else       before: only the contents of out is modified. The function returns
         m++;       a pointer to pointers identical to out */
     }/* end while */    long i, j, k;
     if (s[m][i] > nlstate){    for(i=nrl; i<= nrh; i++)
       mi++;     /* Death is another wave */      for(k=ncolol; k<=ncoloh; k++)
       /* if(mi==0)  never been interviewed correctly before death */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
          /* Only death is a correct wave */          out[i][k] +=in[i][j]*b[j][k];
       mw[mi][i]=m;  
     }    return out;
   }
     wav[i]=mi;  
     if(mi==0)  
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  /************* Higher Matrix Product ***************/
   }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for(i=1; i<=imx; i++){  {
     for(mi=1; mi<wav[i];mi++){    /* Computes the transition matrix starting at age 'age' over 
       if (stepm <=0)       'nhstepm*hstepm*stepm' months (i.e. until
         dh[mi][i]=1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       else{       nhstepm*hstepm matrices. 
         if (s[mw[mi+1][i]][i] > nlstate) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           if (agedc[i] < 2*AGESUP) {       (typically every 2 years instead of every month which is too big 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       for the memory).
           if(j==0) j=1;  /* Survives at least one month after exam */       Model is determined by parameters x and covariates have to be 
           k=k+1;       included manually here. 
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;       */
           sum=sum+j;  
           /* if (j<10) printf("j=%d num=%d ",j,i); */    int i, j, d, h, k;
           }    double **out, cov[NCOVMAX];
         }    double **newm;
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* Hstepm could be zero and should return the unit matrix */
           k=k+1;    for (i=1;i<=nlstate+ndeath;i++)
           if (j >= jmax) jmax=j;      for (j=1;j<=nlstate+ndeath;j++){
           else if (j <= jmin)jmin=j;        oldm[i][j]=(i==j ? 1.0 : 0.0);
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        po[i][j][0]=(i==j ? 1.0 : 0.0);
           sum=sum+j;      }
         }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         jk= j/stepm;    for(h=1; h <=nhstepm; h++){
         jl= j -jk*stepm;      for(d=1; d <=hstepm; d++){
         ju= j -(jk+1)*stepm;        newm=savm;
         if(jl <= -ju)        /* Covariates have to be included here again */
           dh[mi][i]=jk;        cov[1]=1.;
         else        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           dh[mi][i]=jk+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         if(dh[mi][i]==0)        for (k=1; k<=cptcovage;k++)
           dh[mi][i]=1; /* At least one step */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
  }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 /*********** Tricode ****************************/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 void tricode(int *Tvar, int **nbcode, int imx)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 {        savm=oldm;
   int Ndum[20],ij=1, k, j, i;        oldm=newm;
   int cptcode=0;      }
   cptcoveff=0;      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   for (k=0; k<19; k++) Ndum[k]=0;          po[i][j][h]=newm[i][j];
   for (k=1; k<=7; k++) ncodemax[k]=0;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      /*printf("h=%d ",h);*/
     for (i=1; i<=imx; i++) {    } /* end h */
       ij=(int)(covar[Tvar[j]][i]);  /*     printf("\n H=%d \n",h); */
       Ndum[ij]++;    return po;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  }
       if (ij > cptcode) cptcode=ij;  
     }  
   /*************** log-likelihood *************/
     for (i=0; i<=cptcode; i++) {  double func( double *x)
       if(Ndum[i]!=0) ncodemax[j]++;  {
     }    int i, ii, j, k, mi, d, kk;
     ij=1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
     double sw; /* Sum of weights */
     for (i=1; i<=ncodemax[j]; i++) {    double lli; /* Individual log likelihood */
       for (k=0; k<=19; k++) {    int s1, s2;
         if (Ndum[k] != 0) {    double bbh, survp;
           nbcode[Tvar[j]][ij]=k;    long ipmx;
           ij++;    /*extern weight */
         }    /* We are differentiating ll according to initial status */
         if (ij > ncodemax[j]) break;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }      /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
   }      */
     cov[1]=1.;
  for (k=0; k<19; k++) Ndum[k]=0;  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];    if(mle==1){
       Ndum[ij]++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
  for (i=1; i<=10; i++) {            for (j=1;j<=nlstate+ndeath;j++){
    if((Ndum[i]!=0) && (i<=ncov)){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      ij++;            }
    }          for(d=0; d<dh[mi][i]; d++){
  }            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     cptcoveff=ij-1;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /*********** Health Expectancies ****************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            savm=oldm;
 {            oldm=newm;
   /* Health expectancies */          } /* end mult */
   int i, j, nhstepm, hstepm, h;        
   double age, agelim,hf;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double ***p3mat;          /* But now since version 0.9 we anticipate for bias at large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
   fprintf(ficreseij,"# Health expectancies\n");           * (in months) between two waves is not a multiple of stepm, we rounded to 
   fprintf(ficreseij,"# Age");           * the nearest (and in case of equal distance, to the lowest) interval but now
   for(i=1; i<=nlstate;i++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for(j=1; j<=nlstate;j++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       fprintf(ficreseij," %1d-%1d",i,j);           * probability in order to take into account the bias as a fraction of the way
   fprintf(ficreseij,"\n");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   hstepm=1*YEARM; /*  Every j years of age (in month) */           * For stepm=1 the results are the same as for previous versions of Imach.
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           * For stepm > 1 the results are less biased than in previous versions. 
            */
   agelim=AGESUP;          s1=s[mw[mi][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s2=s[mw[mi+1][i]][i];
     /* nhstepm age range expressed in number of stepm */          bbh=(double)bh[mi][i]/(double)stepm; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          /* bias bh is positive if real duration
     /* Typically if 20 years = 20*12/6=40 stepm */           * is higher than the multiple of stepm and negative otherwise.
     if (stepm >= YEARM) hstepm=1;           */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if( s2 > nlstate){ 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            /* i.e. if s2 is a death state and if the date of death is known 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */               then the contribution to the likelihood is the probability to 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                 die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
     for(i=1; i<=nlstate;i++)               In version up to 0.92 likelihood was computed
       for(j=1; j<=nlstate;j++)          as if date of death was unknown. Death was treated as any other
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          health state: the date of the interview describes the actual state
           eij[i][j][(int)age] +=p3mat[i][j][h];          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
              (healthy, disable or death) and IMaCh was corrected; but when we
     hf=1;          introduced the exact date of death then we should have modified
     if (stepm >= YEARM) hf=stepm/YEARM;          the contribution of an exact death to the likelihood. This new
     fprintf(ficreseij,"%.0f",age );          contribution is smaller and very dependent of the step unit
     for(i=1; i<=nlstate;i++)          stepm. It is no more the probability to die between last interview
       for(j=1; j<=nlstate;j++){          and month of death but the probability to survive from last
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
     fprintf(ficreseij,"\n");          Jackson for correcting this bug.  Former versions increased
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
 }          lower mortality.
             */
 /************ Variance ******************/            lli=log(out[s1][s2] - savm[s1][s2]);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  
   /* Variance of health expectancies */          } else if  (s2==-2) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for (j=1,survp=0. ; j<=nlstate; j++) 
   double **newm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double **dnewm,**doldm;            /*survp += out[s1][j]; */
   int i, j, nhstepm, hstepm, h;            lli= log(survp);
   int k, cptcode;          }
   double *xp;          
   double **gp, **gm;          else if  (s2==-4) { 
   double ***gradg, ***trgradg;            for (j=3,survp=0. ; j<=nlstate; j++)  
   double ***p3mat;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double age,agelim;            lli= log(survp); 
   int theta;          } 
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");          else if  (s2==-5) { 
   fprintf(ficresvij,"# Age");            for (j=1,survp=0. ; j<=2; j++)  
   for(i=1; i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(j=1; j<=nlstate;j++)            lli= log(survp); 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          } 
   fprintf(ficresvij,"\n");          
           else{
   xp=vector(1,npar);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   dnewm=matrix(1,nlstate,1,npar);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   doldm=matrix(1,nlstate,1,nlstate);          } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   hstepm=1*YEARM; /* Every year of age */          /*if(lli ==000.0)*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   agelim = AGESUP;          ipmx +=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          sw += weight[i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (stepm >= YEARM) hstepm=1;        } /* end of wave */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } /* end of individual */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }  else if(mle==2){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gp=matrix(0,nhstepm,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gm=matrix(0,nhstepm,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(theta=1; theta <=npar; theta++){            for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<=npar; i++){ /* Computes gradient */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(d=0; d<=dh[mi][i]; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (popbased==1) {            for (kk=1; kk<=cptcovage;kk++) {
         for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           prlim[i][i]=probs[(int)age][i][ij];            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<= nlstate; j++){            savm=oldm;
         for(h=0; h<=nhstepm; h++){            oldm=newm;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          } /* end mult */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1; i<=npar; i++) /* Computes gradient */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ipmx +=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            sw += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       if (popbased==1) {      } /* end of individual */
         for(i=1; i<=nlstate;i++)    }  else if(mle==3){  /* exponential inter-extrapolation */
           prlim[i][i]=probs[(int)age][i][ij];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(h=0; h<=nhstepm; h++){            for (j=1;j<=nlstate+ndeath;j++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
       for(j=1; j<= nlstate; j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(h=0; h<=nhstepm; h++){            for (kk=1; kk<=cptcovage;kk++) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
     } /* End theta */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            savm=oldm;
             oldm=newm;
     for(h=0; h<=nhstepm; h++)          } /* end mult */
       for(j=1; j<=nlstate;j++)        
         for(theta=1; theta <=npar; theta++)          s1=s[mw[mi][i]][i];
           trgradg[h][j][theta]=gradg[h][theta][j];          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
     for(i=1;i<=nlstate;i++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(j=1;j<=nlstate;j++)          ipmx +=1;
         vareij[i][j][(int)age] =0.;          sw += weight[i];
     for(h=0;h<=nhstepm;h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(k=0;k<=nhstepm;k++){        } /* end of wave */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      } /* end of individual */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for(i=1;i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(j=1;j<=nlstate;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             vareij[i][j][(int)age] += doldm[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     h=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) h=stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresvij,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<=nlstate;j++){            newm=savm;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficresvij,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_matrix(gp,0,nhstepm,1,nlstate);            }
     free_matrix(gm,0,nhstepm,1,nlstate);          
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
   } /* End age */            oldm=newm;
            } /* end mult */
   free_vector(xp,1,npar);        
   free_matrix(doldm,1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
   free_matrix(dnewm,1,nlstate,1,nlstate);          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
 }            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
 /************ Variance of prevlim ******************/            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          }
 {          ipmx +=1;
   /* Variance of prevalence limit */          sw += weight[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **newm;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **dnewm,**doldm;        } /* end of wave */
   int i, j, nhstepm, hstepm;      } /* end of individual */
   int k, cptcode;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double *xp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *gp, *gm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **gradg, **trgradg;        for(mi=1; mi<= wav[i]-1; mi++){
   double age,agelim;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int theta;            for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"# Age");            }
   for(i=1; i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresvpl," %1d-%1d",i,i);            newm=savm;
   fprintf(ficresvpl,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   xp=vector(1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   dnewm=matrix(1,nlstate,1,npar);            }
   doldm=matrix(1,nlstate,1,nlstate);          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=1*YEARM; /* Every year of age */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            savm=oldm;
   agelim = AGESUP;            oldm=newm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          } /* end mult */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        
     if (stepm >= YEARM) hstepm=1;          s1=s[mw[mi][i]][i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          s2=s[mw[mi+1][i]][i];
     gradg=matrix(1,npar,1,nlstate);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     gp=vector(1,nlstate);          ipmx +=1;
     gm=vector(1,nlstate);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(theta=1; theta <=npar; theta++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */        } /* end of wave */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end of individual */
       }    } /* End of if */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(i=1;i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         gp[i] = prlim[i][i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        return -l;
       for(i=1; i<=npar; i++) /* Computes gradient */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*************** log-likelihood *************/
       for(i=1;i<=nlstate;i++)  double funcone( double *x)
         gm[i] = prlim[i][i];  {
     /* Same as likeli but slower because of a lot of printf and if */
       for(i=1;i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     } /* End theta */    double **out;
     double lli; /* Individual log likelihood */
     trgradg =matrix(1,nlstate,1,npar);    double llt;
     int s1, s2;
     for(j=1; j<=nlstate;j++)    double bbh, survp;
       for(theta=1; theta <=npar; theta++)    /*extern weight */
         trgradg[j][theta]=gradg[theta][j];    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for(i=1;i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
       varpl[i][(int)age] =0.;      printf(" %d\n",s[4][i]);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    cov[1]=1.;
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     fprintf(ficresvpl,"%.0f ",age );    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1; i<=nlstate;i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficresvpl,"\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
     free_vector(gp,1,nlstate);          for (j=1;j<=nlstate+ndeath;j++){
     free_vector(gm,1,nlstate);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gradg,1,npar,1,nlstate);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   free_vector(xp,1,npar);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(doldm,1,nlstate,1,npar);          for (kk=1; kk<=cptcovage;kk++) {
   free_matrix(dnewm,1,nlstate,1,nlstate);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
 }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************ Variance of one-step probabilities  ******************/          savm=oldm;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          oldm=newm;
 {        } /* end mult */
   int i, j;        
   int k=0, cptcode;        s1=s[mw[mi][i]][i];
   double **dnewm,**doldm;        s2=s[mw[mi+1][i]][i];
   double *xp;        bbh=(double)bh[mi][i]/(double)stepm; 
   double *gp, *gm;        /* bias is positive if real duration
   double **gradg, **trgradg;         * is higher than the multiple of stepm and negative otherwise.
   double age,agelim, cov[NCOVMAX];         */
   int theta;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   char fileresprob[FILENAMELENGTH];          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
   strcpy(fileresprob,"prob");          for (j=1,survp=0. ; j<=nlstate; j++) 
   strcat(fileresprob,fileres);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          lli= log(survp);
     printf("Problem with resultfile: %s\n", fileresprob);        }else if (mle==1){
   }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   xp=vector(1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   cov[1]=1;          lli=log(out[s1][s2]); /* Original formula */
   for (age=bage; age<=fage; age ++){        } /* End of if */
     cov[2]=age;        ipmx +=1;
     gradg=matrix(1,npar,1,9);        sw += weight[i];
     trgradg=matrix(1,9,1,npar);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        if(globpr){
              fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     for(theta=1; theta <=npar; theta++){   %11.6f %11.6f %11.6f ", \
       for(i=1; i<=npar; i++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            llt +=ll[k]*gipmx/gsw;
                fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       k=0;          }
       for(i=1; i<= (nlstate+ndeath); i++){          fprintf(ficresilk," %10.6f\n", -llt);
         for(j=1; j<=(nlstate+ndeath);j++){        }
            k=k+1;      } /* end of wave */
           gp[k]=pmmij[i][j];    } /* end of individual */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(i=1; i<=npar; i++)    if(globpr==0){ /* First time we count the contributions and weights */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      gipmx=ipmx;
          gsw=sw;
     }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    return -l;
       k=0;  }
       for(i=1; i<=(nlstate+ndeath); i++){  
         for(j=1; j<=(nlstate+ndeath);j++){  
           k=k+1;  /*************** function likelione ***********/
           gm[k]=pmmij[i][j];  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         }  {
       }    /* This routine should help understanding what is done with 
             the selection of individuals/waves and
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)       to check the exact contribution to the likelihood.
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         Plotting could be done.
     }     */
     int k;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  
       for(theta=1; theta <=npar; theta++)    if(*globpri !=0){ /* Just counts and sums, no printings */
       trgradg[j][theta]=gradg[theta][j];      strcpy(fileresilk,"ilk"); 
        strcat(fileresilk,fileres);
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      pmij(pmmij,cov,ncovmodel,x,nlstate);      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      k=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      for(i=1; i<=(nlstate+ndeath); i++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(j=1; j<=(nlstate+ndeath);j++){      for(k=1; k<=nlstate; k++) 
          k=k+1;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
          gm[k]=pmmij[i][j];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         }    }
      }  
          *fretone=(*funcone)(p);
      /*printf("\n%d ",(int)age);    if(*globpri !=0){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      fclose(ficresilk);
              fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    } 
      }*/    return;
   }
   fprintf(ficresprob,"\n%d ",(int)age);  
   
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  /*********** Maximum Likelihood Estimation ***************/
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
     int i,j, iter;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double **xi;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    double fret;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double fretone; /* Only one call to likelihood */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /*  char filerespow[FILENAMELENGTH];*/
 }    xi=matrix(1,npar,1,npar);
  free_vector(xp,1,npar);    for (i=1;i<=npar;i++)
 fclose(ficresprob);      for (j=1;j<=npar;j++)
  exit(0);        xi[i][j]=(i==j ? 1.0 : 0.0);
 }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
 /***********************************************/    strcat(filerespow,fileres);
 /**************** Main Program *****************/    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 /***********************************************/      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 /*int main(int argc, char *argv[])*/    }
 int main()    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 {    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double agedeb, agefin,hf;    fprintf(ficrespow,"\n");
   double agemin=1.e20, agemax=-1.e20;  
     powell(p,xi,npar,ftol,&iter,&fret,func);
   double fret;  
   double **xi,tmp,delta;    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
   double dum; /* Dummy variable */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double ***p3mat;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int *indx;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];  }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];  /**** Computes Hessian and covariance matrix ***/
   char filerest[FILENAMELENGTH];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   char fileregp[FILENAMELENGTH];  {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double  **a,**y,*x,pd;
   int firstobs=1, lastobs=10;    double **hess;
   int sdeb, sfin; /* Status at beginning and end */    int i, j,jk;
   int c,  h , cpt,l;    int *indx;
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   int mobilav=0, fprevfore=1, lprevfore=1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   int hstepm, nhstepm;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
   double bage, fage, age, agelim, agebase;    hess=matrix(1,npar,1,npar);
   double ftolpl=FTOL;  
   double **prlim;    printf("\nCalculation of the hessian matrix. Wait...\n");
   double *severity;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double ***param; /* Matrix of parameters */    for (i=1;i<=npar;i++){
   double  *p;      printf("%d",i);fflush(stdout);
   double **matcov; /* Matrix of covariance */      fprintf(ficlog,"%d",i);fflush(ficlog);
   double ***delti3; /* Scale */     
   double *delti; /* Scale */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double ***eij, ***vareij;      
   double **varpl; /* Variances of prevalence limits by age */      /*  printf(" %f ",p[i]);
   double *epj, vepp;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double kk1;    }
     
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    for (i=1;i<=npar;i++) {
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for (j=1;j<=npar;j++)  {
         if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   char z[1]="c", occ;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 #include <sys/time.h>          hess[i][j]=hessij(p,delti,i,j,func,npar);
 #include <time.h>          
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          hess[j][i]=hess[i][j];    
   /* long total_usecs;          /*printf(" %lf ",hess[i][j]);*/
   struct timeval start_time, end_time;        }
        }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    }
     printf("\n");
     fprintf(ficlog,"\n");
   printf("\nIMACH, Version 0.64b");  
   printf("\nEnter the parameter file name: ");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 #ifdef windows    
   scanf("%s",pathtot);    a=matrix(1,npar,1,npar);
   getcwd(pathcd, size);    y=matrix(1,npar,1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    x=vector(1,npar);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    indx=ivector(1,npar);
   /* cutv(path,optionfile,pathtot,'\\');*/    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 split(pathtot, path,optionfile);    ludcmp(a,npar,indx,&pd);
   chdir(path);  
   replace(pathc,path);    for (j=1;j<=npar;j++) {
 #endif      for (i=1;i<=npar;i++) x[i]=0;
 #ifdef unix      x[j]=1;
   scanf("%s",optionfile);      lubksb(a,npar,indx,x);
 #endif      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
 /*-------- arguments in the command line --------*/      }
     }
   strcpy(fileres,"r");  
   strcat(fileres, optionfile);    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
   /*---------arguments file --------*/    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        printf("%.3e ",hess[i][j]);
     printf("Problem with optionfile %s\n",optionfile);        fprintf(ficlog,"%.3e ",hess[i][j]);
     goto end;      }
   }      printf("\n");
       fprintf(ficlog,"\n");
   strcpy(filereso,"o");    }
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    /* Recompute Inverse */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    /*  printf("\n#Hessian matrix recomputed#\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    for (j=1;j<=npar;j++) {
     puts(line);      for (i=1;i<=npar;i++) x[i]=0;
     fputs(line,ficparo);      x[j]=1;
   }      lubksb(a,npar,indx,x);
   ungetc(c,ficpar);      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        printf("%.3e ",y[i][j]);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        fprintf(ficlog,"%.3e ",y[i][j]);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      }
 while((c=getc(ficpar))=='#' && c!= EOF){      printf("\n");
     ungetc(c,ficpar);      fprintf(ficlog,"\n");
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    */
     fputs(line,ficparo);  
   }    free_matrix(a,1,npar,1,npar);
   ungetc(c,ficpar);    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);    free_ivector(indx,1,npar);
  while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(hess,1,npar,1,npar);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);  }
     fputs(line,ficparo);  
   }  /*************** hessian matrix ****************/
   ungetc(c,ficpar);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
   fscanf(ficpar,"fprevalence=%d lprevalence=%d mob_average=%d\n",&fprevfore,&lprevfore,&mobilav);    int i;
      int l=1, lmax=20;
   covar=matrix(0,NCOVMAX,1,n);    double k1,k2;
   cptcovn=0;    double p2[NPARMAX+1];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   ncovmodel=2+cptcovn;    double fx;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int k=0,kmax=10;
      double l1;
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */    fx=func(x);
   while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=npar;i++) p2[i]=x[i];
     ungetc(c,ficpar);    for(l=0 ; l <=lmax; l++){
     fgets(line, MAXLINE, ficpar);      l1=pow(10,l);
     puts(line);      delts=delt;
     fputs(line,ficparo);      for(k=1 ; k <kmax; k=k+1){
   }        delt = delta*(l1*k);
   ungetc(c,ficpar);        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        p2[theta]=x[theta]-delt;
     for(i=1; i <=nlstate; i++)        k2=func(p2)-fx;
     for(j=1; j <=nlstate+ndeath-1; j++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fscanf(ficpar,"%1d%1d",&i1,&j1);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       fprintf(ficparo,"%1d%1d",i1,j1);        
       printf("%1d%1d",i,j);  #ifdef DEBUG
       for(k=1; k<=ncovmodel;k++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fscanf(ficpar," %lf",&param[i][j][k]);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         printf(" %lf",param[i][j][k]);  #endif
         fprintf(ficparo," %lf",param[i][j][k]);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       fscanf(ficpar,"\n");          k=kmax;
       printf("\n");        }
       fprintf(ficparo,"\n");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10.;
          }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   p=param[1][1];        }
        }
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    delti[theta]=delts;
     ungetc(c,ficpar);    return res; 
     fgets(line, MAXLINE, ficpar);    
     puts(line);  }
     fputs(line,ficparo);  
   }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   ungetc(c,ficpar);  {
     int i;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int l=1, l1, lmax=20;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double k1,k2,k3,k4,res,fx;
   for(i=1; i <=nlstate; i++){    double p2[NPARMAX+1];
     for(j=1; j <=nlstate+ndeath-1; j++){    int k;
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);    fx=func(x);
       fprintf(ficparo,"%1d%1d",i1,j1);    for (k=1; k<=2; k++) {
       for(k=1; k<=ncovmodel;k++){      for (i=1;i<=npar;i++) p2[i]=x[i];
         fscanf(ficpar,"%le",&delti3[i][j][k]);      p2[thetai]=x[thetai]+delti[thetai]/k;
         printf(" %le",delti3[i][j][k]);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         fprintf(ficparo," %le",delti3[i][j][k]);      k1=func(p2)-fx;
       }    
       fscanf(ficpar,"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
       printf("\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fprintf(ficparo,"\n");      k2=func(p2)-fx;
     }    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   delti=delti3[1][1];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k3=func(p2)-fx;
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){      p2[thetai]=x[thetai]-delti[thetai]/k;
     ungetc(c,ficpar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fgets(line, MAXLINE, ficpar);      k4=func(p2)-fx;
     puts(line);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     fputs(line,ficparo);  #ifdef DEBUG
   }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   ungetc(c,ficpar);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    #endif
   matcov=matrix(1,npar,1,npar);    }
   for(i=1; i <=npar; i++){    return res;
     fscanf(ficpar,"%s",&str);  }
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  /************** Inverse of matrix **************/
     for(j=1; j <=i; j++){  void ludcmp(double **a, int n, int *indx, double *d) 
       fscanf(ficpar," %le",&matcov[i][j]);  { 
       printf(" %.5le",matcov[i][j]);    int i,imax,j,k; 
       fprintf(ficparo," %.5le",matcov[i][j]);    double big,dum,sum,temp; 
     }    double *vv; 
     fscanf(ficpar,"\n");   
     printf("\n");    vv=vector(1,n); 
     fprintf(ficparo,"\n");    *d=1.0; 
   }    for (i=1;i<=n;i++) { 
   for(i=1; i <=npar; i++)      big=0.0; 
     for(j=i+1;j<=npar;j++)      for (j=1;j<=n;j++) 
       matcov[i][j]=matcov[j][i];        if ((temp=fabs(a[i][j])) > big) big=temp; 
          if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   printf("\n");      vv[i]=1.0/big; 
     } 
     for (j=1;j<=n;j++) { 
     /*-------- data file ----------*/      for (i=1;i<j;i++) { 
     if((ficres =fopen(fileres,"w"))==NULL) {        sum=a[i][j]; 
       printf("Problem with resultfile: %s\n", fileres);goto end;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
     fprintf(ficres,"#%s\n",version);      } 
          big=0.0; 
     if((fic=fopen(datafile,"r"))==NULL)    {      for (i=j;i<=n;i++) { 
       printf("Problem with datafile: %s\n", datafile);goto end;        sum=a[i][j]; 
     }        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
     n= lastobs;        a[i][j]=sum; 
     severity = vector(1,maxwav);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     outcome=imatrix(1,maxwav+1,1,n);          big=dum; 
     num=ivector(1,n);          imax=i; 
     moisnais=vector(1,n);        } 
     annais=vector(1,n);      } 
     moisdc=vector(1,n);      if (j != imax) { 
     andc=vector(1,n);        for (k=1;k<=n;k++) { 
     agedc=vector(1,n);          dum=a[imax][k]; 
     cod=ivector(1,n);          a[imax][k]=a[j][k]; 
     weight=vector(1,n);          a[j][k]=dum; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        } 
     mint=matrix(1,maxwav,1,n);        *d = -(*d); 
     anint=matrix(1,maxwav,1,n);        vv[imax]=vv[j]; 
     s=imatrix(1,maxwav+1,1,n);      } 
     adl=imatrix(1,maxwav+1,1,n);          indx[j]=imax; 
     tab=ivector(1,NCOVMAX);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     ncodemax=ivector(1,8);      if (j != n) { 
         dum=1.0/(a[j][j]); 
     i=1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     while (fgets(line, MAXLINE, fic) != NULL)    {      } 
       if ((i >= firstobs) && (i <=lastobs)) {    } 
            free_vector(vv,1,n);  /* Doesn't work */
         for (j=maxwav;j>=1;j--){  ;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  } 
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  void lubksb(double **a, int n, int *indx, double b[]) 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  { 
         }    int i,ii=0,ip,j; 
            double sum; 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      sum=b[ip]; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      b[ip]=b[i]; 
       if (ii) 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for (j=ncov;j>=1;j--){      else if (sum) ii=i; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      b[i]=sum; 
         }    } 
         num[i]=atol(stra);    for (i=n;i>=1;i--) { 
              sum=b[i]; 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      b[i]=sum/a[i][i]; 
     } 
         i=i+1;  } 
       }  
     }  void pstamp(FILE *fichier)
     /* printf("ii=%d", ij);  {
        scanf("%d",i);*/    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   imx=i-1; /* Number of individuals */  }
   
   /* for (i=1; i<=imx; i++){  /************ Frequencies ********************/
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  {  /* Some frequencies */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    
     }    int i, m, jk, k1,i1, j1, bool, z1,j;
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    int first;
     double ***freq; /* Frequencies */
   /* Calculation of the number of parameter from char model*/    double *pp, **prop;
   Tvar=ivector(1,15);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   Tprod=ivector(1,15);    char fileresp[FILENAMELENGTH];
   Tvaraff=ivector(1,15);    
   Tvard=imatrix(1,15,1,2);    pp=vector(1,nlstate);
   Tage=ivector(1,15);          prop=matrix(1,nlstate,iagemin,iagemax+3);
        strcpy(fileresp,"p");
   if (strlen(model) >1){    strcat(fileresp,fileres);
     j=0, j1=0, k1=1, k2=1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
     j=nbocc(model,'+');      printf("Problem with prevalence resultfile: %s\n", fileresp);
     j1=nbocc(model,'*');      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     cptcovn=j+1;      exit(0);
     cptcovprod=j1;    }
        freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        j1=0;
     strcpy(modelsav,model);    
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    j=cptcoveff;
       printf("Error. Non available option model=%s ",model);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       goto end;  
     }    first=1;
      
     for(i=(j+1); i>=1;i--){    for(k1=1; k1<=j;k1++){
       cutv(stra,strb,modelsav,'+');      for(i1=1; i1<=ncodemax[k1];i1++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        j1++;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       /*scanf("%d",i);*/          scanf("%d", i);*/
       if (strchr(strb,'*')) {        for (i=-5; i<=nlstate+ndeath; i++)  
         cutv(strd,strc,strb,'*');          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         if (strcmp(strc,"age")==0) {            for(m=iagemin; m <= iagemax+3; m++)
           cptcovprod--;              freq[i][jk][m]=0;
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);      for (i=1; i<=nlstate; i++)  
           cptcovage++;        for(m=iagemin; m <= iagemax+3; m++)
             Tage[cptcovage]=i;          prop[i][m]=0;
             /*printf("stre=%s ", stre);*/        
         }        dateintsum=0;
         else if (strcmp(strd,"age")==0) {        k2cpt=0;
           cptcovprod--;        for (i=1; i<=imx; i++) {
           cutv(strb,stre,strc,'V');          bool=1;
           Tvar[i]=atoi(stre);          if  (cptcovn>0) {
           cptcovage++;            for (z1=1; z1<=cptcoveff; z1++) 
           Tage[cptcovage]=i;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         }                bool=0;
         else {          }
           cutv(strb,stre,strc,'V');          if (bool==1){
           Tvar[i]=ncov+k1;            for(m=firstpass; m<=lastpass; m++){
           cutv(strb,strc,strd,'V');              k2=anint[m][i]+(mint[m][i]/12.);
           Tprod[k1]=i;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           Tvard[k1][1]=atoi(strc);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           Tvard[k1][2]=atoi(stre);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           Tvar[cptcovn+k2]=Tvard[k1][1];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                if (m<lastpass) {
           for (k=1; k<=lastobs;k++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           k1++;                }
           k2=k2+2;                
         }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }                  dateintsum=dateintsum+k2;
       else {                  k2cpt++;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                }
        /*  scanf("%d",i);*/                /*}*/
       cutv(strd,strc,strb,'V');            }
       Tvar[i]=atoi(strc);          }
       }        }
       strcpy(modelsav,stra);           
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         scanf("%d",i);*/        pstamp(ficresp);
     }        if  (cptcovn>0) {
 }          fprintf(ficresp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          fprintf(ficresp, "**********\n#");
   printf("cptcovprod=%d ", cptcovprod);        }
   scanf("%d ",i);*/        for(i=1; i<=nlstate;i++) 
     fclose(fic);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
     /*  if(mle==1){*/        
     if (weightopt != 1) { /* Maximisation without weights*/        for(i=iagemin; i <= iagemax+3; i++){
       for(i=1;i<=n;i++) weight[i]=1.0;          if(i==iagemax+3){
     }            fprintf(ficlog,"Total");
     /*-calculation of age at interview from date of interview and age at death -*/          }else{
     agev=matrix(1,maxwav,1,imx);            if(first==1){
               first=0;
    for (i=1; i<=imx; i++)              printf("See log file for details...\n");
      for(m=2; (m<= maxwav); m++)            }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            fprintf(ficlog,"Age %d", i);
          anint[m][i]=9999;          }
          s[m][i]=-1;          for(jk=1; jk <=nlstate ; jk++){
        }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                  pp[jk] += freq[jk][m][i]; 
     for (i=1; i<=imx; i++)  {          }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(jk=1; jk <=nlstate ; jk++){
       for(m=1; (m<= maxwav); m++){            for(m=-1, pos=0; m <=0 ; m++)
         if(s[m][i] >0){              pos += freq[jk][m][i];
           if (s[m][i] == nlstate+1) {            if(pp[jk]>=1.e-10){
             if(agedc[i]>0)              if(first==1){
               if(moisdc[i]!=99 && andc[i]!=9999)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               agev[m][i]=agedc[i];              }
             else {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               if (andc[i]!=9999){            }else{
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              if(first==1)
               agev[m][i]=-1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }            }
           }          }
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for(jk=1; jk <=nlstate ; jk++){
             if(mint[m][i]==99 || anint[m][i]==9999)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               agev[m][i]=1;              pp[jk] += freq[jk][m][i];
             else if(agev[m][i] <agemin){          }       
               agemin=agev[m][i];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            pos += pp[jk];
             }            posprop += prop[jk][i];
             else if(agev[m][i] >agemax){          }
               agemax=agev[m][i];          for(jk=1; jk <=nlstate ; jk++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            if(pos>=1.e-5){
             }              if(first==1)
             /*agev[m][i]=anint[m][i]-annais[i];*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             /*   agev[m][i] = age[i]+2*m;*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }            }else{
           else { /* =9 */              if(first==1)
             agev[m][i]=1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             s[m][i]=-1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }            }
         }            if( i <= iagemax){
         else /*= 0 Unknown */              if(pos>=1.e-5){
           agev[m][i]=1;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     }              }
     for (i=1; i<=imx; i++)  {              else
       for(m=1; (m<= maxwav); m++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         if (s[m][i] > (nlstate+ndeath)) {            }
           printf("Error: Wrong value in nlstate or ndeath\n");            }
           goto end;          
         }          for(jk=-1; jk <=nlstate+ndeath; jk++)
       }            for(m=-1; m <=nlstate+ndeath; m++)
     }              if(freq[jk][m][i] !=0 ) {
               if(first==1)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(severity,1,maxwav);              }
     free_imatrix(outcome,1,maxwav+1,1,n);          if(i <= iagemax)
     free_vector(moisnais,1,n);            fprintf(ficresp,"\n");
     free_vector(annais,1,n);          if(first==1)
     free_matrix(mint,1,maxwav,1,n);            printf("Others in log...\n");
     free_matrix(anint,1,maxwav,1,n);          fprintf(ficlog,"\n");
     free_vector(moisdc,1,n);        }
     free_vector(andc,1,n);      }
     }
        dateintmean=dateintsum/k2cpt; 
     wav=ivector(1,imx);   
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fclose(ficresp);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
        free_vector(pp,1,nlstate);
     /* Concatenates waves */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    /* End of Freq */
   }
   
       Tcode=ivector(1,100);  /************ Prevalence ********************/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       ncodemax[1]=1;  {  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             in each health status at the date of interview (if between dateprev1 and dateprev2).
    codtab=imatrix(1,100,1,10);       We still use firstpass and lastpass as another selection.
    h=0;    */
    m=pow(2,cptcoveff);   
      int i, m, jk, k1, i1, j1, bool, z1,j;
    for(k=1;k<=cptcoveff; k++){    double ***freq; /* Frequencies */
      for(i=1; i <=(m/pow(2,k));i++){    double *pp, **prop;
        for(j=1; j <= ncodemax[k]; j++){    double pos,posprop; 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double  y2; /* in fractional years */
            h++;    int iagemin, iagemax;
            if (h>m) h=1;codtab[h][k]=j;  
          }    iagemin= (int) agemin;
        }    iagemax= (int) agemax;
      }    /*pp=vector(1,nlstate);*/
    }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
    /*for(i=1; i <=m ;i++){    
      for(k=1; k <=cptcovn; k++){    j=cptcoveff;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      }    
      printf("\n");    for(k1=1; k1<=j;k1++){
    }      for(i1=1; i1<=ncodemax[k1];i1++){
    scanf("%d",i);*/        j1++;
            
    /* Calculates basic frequencies. Computes observed prevalence at single age        for (i=1; i<=nlstate; i++)  
        and prints on file fileres'p'. */          for(m=iagemin; m <= iagemax+3; m++)
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);            prop[i][m]=0.0;
        
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i<=imx; i++) { /* Each individual */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          bool=1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if  (cptcovn>0) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (z1=1; z1<=cptcoveff; z1++) 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                      bool=0;
     /* For Powell, parameters are in a vector p[] starting at p[1]          } 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          if (bool==1) { 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     if(mle==1){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     /*--------- results files --------------*/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                      prop[s[m][i]][(int)agev[m][i]] += weight[i];
    jk=1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
    fprintf(ficres,"# Parameters\n");                } 
    printf("# Parameters\n");              }
    for(i=1,jk=1; i <=nlstate; i++){            } /* end selection of waves */
      for(k=1; k <=(nlstate+ndeath); k++){          }
        if (k != i)        }
          {        for(i=iagemin; i <= iagemax+3; i++){  
            printf("%d%d ",i,k);          
            fprintf(ficres,"%1d%1d ",i,k);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
            for(j=1; j <=ncovmodel; j++){            posprop += prop[jk][i]; 
              printf("%f ",p[jk]);          } 
              fprintf(ficres,"%f ",p[jk]);  
              jk++;          for(jk=1; jk <=nlstate ; jk++){     
            }            if( i <=  iagemax){ 
            printf("\n");              if(posprop>=1.e-5){ 
            fprintf(ficres,"\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
          }              } else
      }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
    }            } 
  if(mle==1){          }/* end jk */ 
     /* Computing hessian and covariance matrix */        }/* end i */ 
     ftolhess=ftol; /* Usually correct */      } /* end i1 */
     hesscov(matcov, p, npar, delti, ftolhess, func);    } /* end k1 */
  }    
     fprintf(ficres,"# Scales\n");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     printf("# Scales\n");    /*free_vector(pp,1,nlstate);*/
      for(i=1,jk=1; i <=nlstate; i++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for(j=1; j <=nlstate+ndeath; j++){  }  /* End of prevalence */
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);  /************* Waves Concatenation ***************/
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             printf(" %.5e",delti[jk]);  {
             fprintf(ficres," %.5e",delti[jk]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             jk++;       Death is a valid wave (if date is known).
           }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           printf("\n");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           fprintf(ficres,"\n");       and mw[mi+1][i]. dh depends on stepm.
         }       */
       }  
       }    int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     k=1;       double sum=0., jmean=0.;*/
     fprintf(ficres,"# Covariance\n");    int first;
     printf("# Covariance\n");    int j, k=0,jk, ju, jl;
     for(i=1;i<=npar;i++){    double sum=0.;
       /*  if (k>nlstate) k=1;    first=0;
       i1=(i-1)/(ncovmodel*nlstate)+1;    jmin=1e+5;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    jmax=-1;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    jmean=0.;
       fprintf(ficres,"%3d",i);    for(i=1; i<=imx; i++){
       printf("%3d",i);      mi=0;
       for(j=1; j<=i;j++){      m=firstpass;
         fprintf(ficres," %.5e",matcov[i][j]);      while(s[m][i] <= nlstate){
         printf(" %.5e",matcov[i][j]);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       }          mw[++mi][i]=m;
       fprintf(ficres,"\n");        if(m >=lastpass)
       printf("\n");          break;
       k++;        else
     }          m++;
          }/* end while */
     while((c=getc(ficpar))=='#' && c!= EOF){      if (s[m][i] > nlstate){
       ungetc(c,ficpar);        mi++;     /* Death is another wave */
       fgets(line, MAXLINE, ficpar);        /* if(mi==0)  never been interviewed correctly before death */
       puts(line);           /* Only death is a correct wave */
       fputs(line,ficparo);        mw[mi][i]=m;
     }      }
     ungetc(c,ficpar);  
        wav[i]=mi;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      if(mi==0){
            nbwarn++;
     if (fage <= 2) {        if(first==0){
       bage = agemin;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fage = agemax;          first=1;
     }        }
         if(first==1){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
       } /* end mi==0 */
        } /* End individuals */
 /*------------ gnuplot -------------*/  
 chdir(pathcd);    for(i=1; i<=imx; i++){
   if((ficgp=fopen("graph.plt","w"))==NULL) {      for(mi=1; mi<wav[i];mi++){
     printf("Problem with file graph.gp");goto end;        if (stepm <=0)
   }          dh[mi][i]=1;
 #ifdef windows        else{
   fprintf(ficgp,"cd \"%s\" \n",pathc);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 #endif            if (agedc[i] < 2*AGESUP) {
 m=pow(2,cptcoveff);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
  /* 1eme*/              else if(j<0){
   for (cpt=1; cpt<= nlstate ; cpt ++) {                nberr++;
    for (k1=1; k1<= m ; k1 ++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
 #ifdef windows                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #endif                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 #ifdef unix              }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);              k=k+1;
 #endif              if (j >= jmax){
                 jmax=j;
 for (i=1; i<= nlstate ; i ++) {                ijmax=i;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (j <= jmin){
 }                jmin=j;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                ijmin=i;
     for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
      for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix            k=k+1;
 fprintf(ficgp,"\nset ter gif small size 400,300");            if (j >= jmax) {
 #endif              jmax=j;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              ijmax=i;
    }            }
   }            else if (j <= jmin){
   /*2 eme*/              jmin=j;
               ijmin=i;
   for (k1=1; k1<= m ; k1 ++) {            }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for (i=1; i<= nlstate+1 ; i ++) {            if(j<0){
       k=2*i;              nberr++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            sum=sum+j;
 }            }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          jk= j/stepm;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          jl= j -jk*stepm;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          ju= j -(jk+1)*stepm;
       for (j=1; j<= nlstate+1 ; j ++) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if(jl==0){
         else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=jk;
 }                bh[mi][i]=0;
       fprintf(ficgp,"\" t\"\" w l 0,");            }else{ /* We want a negative bias in order to only have interpolation ie
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                    * at the price of an extra matrix product in likelihood */
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=jk+1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=ju;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            }else{
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if(jl <= -ju){
       else fprintf(ficgp,"\" t\"\" w l 0,");              dh[mi][i]=jk;
     }              bh[mi][i]=jl;       /* bias is positive if real duration
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
              }
   /*3eme*/            else{
               dh[mi][i]=jk+1;
   for (k1=1; k1<= m ; k1 ++) {              bh[mi][i]=ju;
     for (cpt=1; cpt<= nlstate ; cpt ++) {            }
       k=2+nlstate*(cpt-1);            if(dh[mi][i]==0){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              dh[mi][i]=1; /* At least one step */
       for (i=1; i< nlstate ; i ++) {              bh[mi][i]=ju; /* At least one step */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          } /* end if mle */
     }        }
   }      } /* end wave */
      }
   /* CV preval stat */    jmean=sum/k;
   for (k1=1; k1<= m ; k1 ++) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     for (cpt=1; cpt<nlstate ; cpt ++) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       k=3;   }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  
       for (i=1; i< nlstate ; i ++)  /*********** Tricode ****************************/
         fprintf(ficgp,"+$%d",k+i+1);  void tricode(int *Tvar, int **nbcode, int imx)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  {
          
       l=3+(nlstate+ndeath)*cpt;    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=19;
         l=3+(nlstate+ndeath)*cpt;    int cptcode=0;
         fprintf(ficgp,"+$%d",l+i+1);    cptcoveff=0; 
       }   
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for (k=0; k<maxncov; k++) Ndum[k]=0;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for (k=1; k<=7; k++) ncodemax[k]=0;
     }  
   }      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   /* proba elementaires */                                 modality*/ 
    for(i=1,jk=1; i <=nlstate; i++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     for(k=1; k <=(nlstate+ndeath); k++){        Ndum[ij]++; /*store the modality */
       if (k != i) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         for(j=1; j <=ncovmodel; j++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/                                         Tvar[j]. If V=sex and male is 0 and 
           /*fprintf(ficgp,"%s",alph[1]);*/                                         female is 1, then  cptcode=1.*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      }
           jk++;  
           fprintf(ficgp,"\n");      for (i=0; i<=cptcode; i++) {
         }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }      }
     }  
     }      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
   for(jk=1; jk <=m; jk++) {        for (k=0; k<= maxncov; k++) {
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          if (Ndum[k] != 0) {
    i=1;            nbcode[Tvar[j]][ij]=k; 
    for(k2=1; k2<=nlstate; k2++) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      k3=i;            
      for(k=1; k<=(nlstate+ndeath); k++) {            ij++;
        if (k != k2){          }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          if (ij > ncodemax[j]) break; 
 ij=1;        }  
         for(j=3; j <=ncovmodel; j++) {      } 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;   for (k=0; k< maxncov; k++) Ndum[k]=0;
           }  
           else   for (i=1; i<=ncovmodel-2; i++) { 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         }     ij=Tvar[i];
           fprintf(ficgp,")/(1");     Ndum[ij]++;
           }
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   ij=1;
 ij=1;   for (i=1; i<= maxncov; i++) {
           for(j=3; j <=ncovmodel; j++){     if((Ndum[i]!=0) && (i<=ncovcol)){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       Tvaraff[ij]=i; /*For printing */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       ij++;
             ij++;     }
           }   }
           else   
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   cptcoveff=ij-1; /*Number of simple covariates*/
           }  }
           fprintf(ficgp,")");  
         }  /*********** Health Expectancies ****************/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         i=i+ncovmodel;  
        }  {
      }    /* Health expectancies, no variances */
    }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
        double ***p3mat;
   fclose(ficgp);    double eip;
      
 chdir(path);    pstamp(ficreseij);
     free_matrix(agev,1,maxwav,1,imx);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     free_ivector(wav,1,imx);    fprintf(ficreseij,"# Age");
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    for(i=1; i<=nlstate;i++){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      for(j=1; j<=nlstate;j++){
            fprintf(ficreseij," e%1d%1d ",i,j);
     free_imatrix(s,1,maxwav+1,1,n);      }
          fprintf(ficreseij," e%1d. ",i);
        }
     free_ivector(num,1,n);    fprintf(ficreseij,"\n");
     free_vector(agedc,1,n);  
     free_vector(weight,1,n);    
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    if(estepm < stepm){
     fclose(ficparo);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fclose(ficres);    }
     /*  }*/    else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
    /*________fin mle=1_________*/     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
     /* No more information from the sample is required now */     * to the curvature of the survival function. If, for the same date, we 
   /* Reads comments: lines beginning with '#' */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   while((c=getc(ficpar))=='#' && c!= EOF){     * to compare the new estimate of Life expectancy with the same linear 
     ungetc(c,ficpar);     * hypothesis. A more precise result, taking into account a more precise
     fgets(line, MAXLINE, ficpar);     * curvature will be obtained if estepm is as small as stepm. */
     puts(line);  
     fputs(line,ficparo);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       Look at hpijx to understand the reason of that which relies in memory size
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);       and note for a fixed period like estepm months */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 /*--------- index.htm --------*/       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   strcpy(optionfilehtm,optionfile);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcat(optionfilehtm,".htm");       results. So we changed our mind and took the option of the best precision.
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    */
     printf("Problem with %s \n",optionfilehtm);goto end;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
     agelim=AGESUP;
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">    /* If stepm=6 months */
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 Total number of observations=%d <br>         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>      
 <hr  size=\"2\" color=\"#EC5E5E\">  /* nhstepm age range expressed in number of stepm */
 <li>Outputs files<br><br>\n    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    /* if (stepm >= YEARM) hstepm=1;*/
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    for (age=bage; age<=fage; age ++){ 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>      /* if (stepm >= YEARM) hstepm=1;*/
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
       /* If stepm=6 months */
  fprintf(fichtm," <li>Graphs</li><p>");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
  m=cptcoveff;      
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
  j1=0;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  for(k1=1; k1<=m;k1++){      
    for(i1=1; i1<=ncodemax[k1];i1++){      printf("%d|",(int)age);fflush(stdout);
        j1++;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        if (cptcovn > 0) {      
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      /* Computing expectancies */
          for (cpt=1; cpt<=cptcoveff;cpt++)      for(i=1; i<=nlstate;i++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        for(j=1; j<=nlstate;j++)
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
        }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  
        }      fprintf(ficreseij,"%3.0f",age );
     for(cpt=1; cpt<=nlstate;cpt++) {      for(i=1; i<=nlstate;i++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        eip=0;
 interval) in state (%d): v%s%d%d.gif <br>        for(j=1; j<=nlstate;j++){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            eip +=eij[i][j][(int)age];
      }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
      for(cpt=1; cpt<=nlstate;cpt++) {        }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        fprintf(ficreseij,"%9.4f", eip );
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      }
      }      fprintf(ficreseij,"\n");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      
 health expectancies in states (1) and (2): e%s%d.gif<br>    }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(fichtm,"\n</body>");    printf("\n");
    }    fprintf(ficlog,"\n");
  }    
 fclose(fichtm);  }
   
   /*--------------- Prevalence limit --------------*/  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
    
   strcpy(filerespl,"pl");  {
   strcat(filerespl,fileres);    /* Covariances of health expectancies eij and of total life expectancies according
   if((ficrespl=fopen(filerespl,"w"))==NULL) {     to initial status i, ei. .
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    int nhstepma, nstepma; /* Decreasing with age */
   fprintf(ficrespl,"#Prevalence limit\n");    double age, agelim, hf;
   fprintf(ficrespl,"#Age ");    double ***p3matp, ***p3matm, ***varhe;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double **dnewm,**doldm;
   fprintf(ficrespl,"\n");    double *xp, *xm;
      double **gp, **gm;
   prlim=matrix(1,nlstate,1,nlstate);    double ***gradg, ***trgradg;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int theta;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double eip, vip;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   k=0;    xp=vector(1,npar);
   agebase=agemin;    xm=vector(1,npar);
   agelim=agemax;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   ftolpl=1.e-10;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   i1=cptcoveff;    
   if (cptcovn < 1){i1=1;}    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresstdeij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i<=nlstate;i++){
         k=k+1;      for(j=1; j<=nlstate;j++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         fprintf(ficrespl,"\n#******");      fprintf(ficresstdeij," e%1d. ",i);
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresstdeij,"\n");
         fprintf(ficrespl,"******\n");  
            pstamp(ficrescveij);
         for (age=agebase; age<=agelim; age++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficrescveij,"# Age");
           fprintf(ficrespl,"%.0f",age );    for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate;j++){
           fprintf(ficrespl," %.5f", prlim[i][i]);        cptj= (j-1)*nlstate+i;
           fprintf(ficrespl,"\n");        for(i2=1; i2<=nlstate;i2++)
         }          for(j2=1; j2<=nlstate;j2++){
       }            cptj2= (j2-1)*nlstate+i2;
     }            if(cptj2 <= cptj)
   fclose(ficrespl);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   /*------------- h Pij x at various ages ------------*/      }
      fprintf(ficrescveij,"\n");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    if(estepm < stepm){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   printf("Computing pij: result on file '%s' \n", filerespij);    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   stepsize=(int) (stepm+YEARM-1)/YEARM;     * This is mainly to measure the difference between two models: for example
   /*if (stepm<=24) stepsize=2;*/     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   agelim=AGESUP;     * progression in between and thus overestimating or underestimating according
   hstepm=stepsize*YEARM; /* Every year of age */     * to the curvature of the survival function. If, for the same date, we 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   k=0;     * hypothesis. A more precise result, taking into account a more precise
   for(cptcov=1;cptcov<=i1;cptcov++){     * curvature will be obtained if estepm is as small as stepm. */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficrespij,"\n#****** ");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(j=1;j<=cptcoveff;j++)       nhstepm is the number of hstepm from age to agelim 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       nstepm is the number of stepm from age to agelin. 
         fprintf(ficrespij,"******\n");       Look at hpijx to understand the reason of that which relies in memory size
               and note for a fixed period like estepm months */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       survival function given by stepm (the optimization length). Unfortunately it
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       means that if the survival funtion is printed only each two years of age and if
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           oldm=oldms;savm=savms;       results. So we changed our mind and took the option of the best precision.
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      */
           fprintf(ficrespij,"# Age");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)    /* If stepm=6 months */
               fprintf(ficrespij," %1d-%1d",i,j);    /* nhstepm age range expressed in number of stepm */
           fprintf(ficrespij,"\n");    agelim=AGESUP;
           for (h=0; h<=nhstepm; h++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             for(i=1; i<=nlstate;i++)    /* if (stepm >= YEARM) hstepm=1;*/
               for(j=1; j<=nlstate+ndeath;j++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    
             fprintf(ficrespij,"\n");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           fprintf(ficrespij,"\n");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   }  
     for (age=bage; age<=fage; age ++){ 
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fclose(ficrespij);      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   /*---------- Forecasting ------------------*/  
       /* If stepm=6 months */
   strcpy(fileresf,"f");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   strcat(fileresf,fileres);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if((ficresf=fopen(fileresf,"w"))==NULL) {      
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   /* Mobile average */         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
   /* for (agedeb=bage; agedeb<=fage; agedeb++)        for(i=1; i<=npar; i++){ 
     for (i=1; i<=nlstate;i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++)          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       printf("%f %d i=%d j1=%d\n", probs[(int)agedeb][i][cptcod],(int) agedeb,i,cptcod);*/        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
   if (mobilav==1) {        for(j=1; j<= nlstate; j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate; i++){
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)            for(h=0; h<=nhstepm-1; h++){
       for (i=1; i<=nlstate;i++)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           mobaverage[(int)agedeb][i][cptcod]=0.;            }
              }
     for (agedeb=bage+4; agedeb<=fage; agedeb++){        }
       for (i=1; i<=nlstate;i++){       
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(ij=1; ij<= nlstate*nlstate; ij++)
           for (cpt=0;cpt<=4;cpt++){          for(h=0; h<=nhstepm-1; h++){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }          }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      }/* End theta */
         }      
       }      
     }        for(h=0; h<=nhstepm-1; h++)
   }        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            trgradg[h][j][theta]=gradg[h][theta][j];
   if (stepm<=24) stepsize=2;      
   
   agelim=AGESUP;       for(ij=1;ij<=nlstate*nlstate;ij++)
   hstepm=stepsize*YEARM; /* Every year of age */        for(ji=1;ji<=nlstate*nlstate;ji++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          varhe[ij][ji][(int)age] =0.;
   hstepm=12;  
    k=0;       printf("%d|",(int)age);fflush(stdout);
   for(cptcov=1;cptcov<=i1;cptcov++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       for(h=0;h<=nhstepm-1;h++){
       k=k+1;        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficresf,"\n#****** ");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for(j=1;j<=cptcoveff;j++) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(ij=1;ij<=nlstate*nlstate;ij++)
       }            for(ji=1;ji<=nlstate*nlstate;ji++)
                    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       fprintf(ficresf,"******\n");        }
       }
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for (agedeb=fage; agedeb>=bage; agedeb--){      for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);        for(j=1; j<=nlstate;j++)
        if (mobilav==1) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         for(j=1; j<=nlstate;j++)            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
           fprintf(ficresf,"%.5f ",mobaverage[(int)agedeb][j][cptcod]);            
         }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         else {  
           for(j=1; j<=nlstate;j++)          }
           fprintf(ficresf,"%.5f ",probs[(int)agedeb][j][cptcod]);  
         }      fprintf(ficresstdeij,"%3.0f",age );
              for(i=1; i<=nlstate;i++){
       for(j=1; j<=ndeath;j++) fprintf(ficresf,"0.");        eip=0.;
       }        vip=0.;
       for (cpt=1; cpt<=NCOVMAX;cpt++)          for(j=1; j<=nlstate;j++){
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          eip += eij[i][j][(int)age];
                  for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         /*printf("stepm=%d hstepm=%d nhstepm=%d \n",stepm,hstepm,nhstepm);*/        }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
         oldm=oldms;savm=savms;      fprintf(ficresstdeij,"\n");
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
                      fprintf(ficrescveij,"%3.0f",age );
         for (h=0; h<=nhstepm; h++){      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++){
           if (h*hstepm/YEARM*stepm==cpt)          cptj= (j-1)*nlstate+i;
  fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);          for(i2=1; i2<=nlstate;i2++)
                      for(j2=1; j2<=nlstate;j2++){
           for(j=1; j<=nlstate+ndeath;j++) {              cptj2= (j2-1)*nlstate+i2;
             kk1=0.;              if(cptj2 <= cptj)
             for(i=1; i<=nlstate;i++) {                        fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
               if (mobilav==1)            }
               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];        }
               else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];      fprintf(ficrescveij,"\n");
             }         
             if (h*hstepm/YEARM*stepm==cpt) fprintf(ficresf," %.5f ", kk1);    }
           }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("\n");
   fclose(ficresf);    fprintf(ficlog,"\n");
   /*---------- Health expectancies and variances ------------*/  
     free_vector(xm,1,npar);
   strcpy(filerest,"t");    free_vector(xp,1,npar);
   strcat(filerest,fileres);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   if((ficrest=fopen(filerest,"w"))==NULL) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }  }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   strcpy(filerese,"e");  {
   strcat(filerese,fileres);    /* Variance of health expectancies */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /* double **newm;*/
   }    double **dnewm,**doldm;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
  strcpy(fileresv,"v");    int k, cptcode;
   strcat(fileresv,fileres);    double *xp;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double **gp, **gm;  /* for var eij */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   k=0;    double ***p3mat;
   for(cptcov=1;cptcov<=i1;cptcov++){    double age,agelim, hf;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***mobaverage;
       k=k+1;    int theta;
       fprintf(ficrest,"\n#****** ");    char digit[4];
       for(j=1;j<=cptcoveff;j++)    char digitp[25];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    char fileresprobmorprev[FILENAMELENGTH];
   
       fprintf(ficreseij,"\n#****** ");    if(popbased==1){
       for(j=1;j<=cptcoveff;j++)      if(mobilav!=0)
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficreseij,"******\n");      else strcpy(digitp,"-populbased-nomobil-");
     }
       fprintf(ficresvij,"\n#****** ");    else 
       for(j=1;j<=cptcoveff;j++)      strcpy(digitp,"-stablbased-");
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       oldm=oldms;savm=savms;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          printf(" Error in movingaverage mobilav=%d\n",mobilav);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    }
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
          strcpy(fileresprobmorprev,"prmorprev"); 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    sprintf(digit,"%-d",ij);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fprintf(ficrest,"\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
            strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       hf=1;    strcat(fileresprobmorprev,fileres);
       if (stepm >= YEARM) hf=stepm/YEARM;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       epj=vector(1,nlstate+1);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       for(age=bage; age <=fage ;age++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
         if (popbased==1) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           for(i=1; i<=nlstate;i++)   
             prlim[i][i]=probs[(int)age][i][k];    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    pstamp(ficresprobmorprev);
            fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficrest," %.0f",age);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      fprintf(ficresprobmorprev," p.%-d SE",j);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      for(i=1; i<=nlstate;i++)
           }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           epj[nlstate+1] +=epj[j];    }  
         }    fprintf(ficresprobmorprev,"\n");
         for(i=1, vepp=0.;i <=nlstate;i++)    fprintf(ficgp,"\n# Routine varevsij");
           for(j=1;j <=nlstate;j++)    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
             vepp += vareij[i][j][(int)age];    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         for(j=1;j <=nlstate;j++){  /*   } */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    pstamp(ficresvij);
         fprintf(ficrest,"\n");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       }    if(popbased==1)
     }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   }    else
              fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
            fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
  fclose(ficreseij);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
  fclose(ficresvij);    fprintf(ficresvij,"\n");
   fclose(ficrest);  
   fclose(ficpar);    xp=vector(1,npar);
   free_vector(epj,1,nlstate+1);    dnewm=matrix(1,nlstate,1,npar);
   /*  scanf("%d ",i); */    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   /*------- Variance limit prevalence------*/      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
 strcpy(fileresvpl,"vpl");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   strcat(fileresvpl,fileres);    gpp=vector(nlstate+1,nlstate+ndeath);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    gmp=vector(nlstate+1,nlstate+ndeath);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     exit(0);    
   }    if(estepm < stepm){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
  k=0;    else  hstepm=estepm;   
  for(cptcov=1;cptcov<=i1;cptcov++){    /* For example we decided to compute the life expectancy with the smallest unit */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      k=k+1;       nhstepm is the number of hstepm from age to agelim 
      fprintf(ficresvpl,"\n#****** ");       nstepm is the number of stepm from age to agelin. 
      for(j=1;j<=cptcoveff;j++)       Look at function hpijx to understand why (it is linked to memory size questions) */
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      fprintf(ficresvpl,"******\n");       survival function given by stepm (the optimization length). Unfortunately it
             means that if the survival funtion is printed every two years of age and if
      varpl=matrix(1,nlstate,(int) bage, (int) fage);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      oldm=oldms;savm=savms;       results. So we changed our mind and took the option of the best precision.
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    */
    }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  }    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficresvpl);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /*---------- End : free ----------------*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      gm=matrix(0,nhstepm,1,nlstate);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
    
        for(theta=1; theta <=npar; theta++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);        if (popbased==1) {
            if(mobilav ==0){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   printf("End of Imach\n");          }else{ /* mobilav */ 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          }
   /*printf("Total time was %d uSec.\n", total_usecs);*/        }
   /*------ End -----------*/    
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
  end:            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 #ifdef windows              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  chdir(pathcd);          }
 #endif        }
          /* This for computing probability of death (h=1 means
  system("..\\gp37mgw\\wgnuplot graph.plt");           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
 #ifdef windows        */
   while (z[0] != 'q') {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     chdir(pathcd);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     printf("\nType e to edit output files, c to start again, and q for exiting: ");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     scanf("%s",z);        }    
     if (z[0] == 'c') system("./imach");        /* end probability of death */
     else if (z[0] == 'e') {  
       chdir(path);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       system(optionfilehtm);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     else if (z[0] == 'q') exit(0);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }   
 #endif        if (popbased==1) {
 }          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sum the number of covariates including ages as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.14  
changed lines
  Added in v.1.130


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>