Diff for /imach/src/imach.c between versions 1.14 and 1.81

version 1.14, 2002/02/20 17:05:44 version 1.81, 2003/06/05 15:41:51
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************             Interpolated Markov Chain
   This program computes Healthy Life Expectancies from cross-longitudinal  
   data. Cross-longitudinal consist in a first survey ("cross") where    Short summary of the programme:
   individuals from different ages are interviewed on their health status    
   or degree of  disability. At least a second wave of interviews    This program computes Healthy Life Expectancies from
   ("longitudinal") should  measure each new individual health status.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   Health expectancies are computed from the transistions observed between    first survey ("cross") where individuals from different ages are
   waves and are computed for each degree of severity of disability (number    interviewed on their health status or degree of disability (in the
   of life states). More degrees you consider, more time is necessary to    case of a health survey which is our main interest) -2- at least a
   reach the Maximum Likelihood of the parameters involved in the model.    second wave of interviews ("longitudinal") which measure each change
   The simplest model is the multinomial logistic model where pij is    (if any) in individual health status.  Health expectancies are
   the probabibility to be observed in state j at the second wave conditional    computed from the time spent in each health state according to a
   to be observed in state i at the first wave. Therefore the model is:    model. More health states you consider, more time is necessary to reach the
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Maximum Likelihood of the parameters involved in the model.  The
   is a covariate. If you want to have a more complex model than "constant and    simplest model is the multinomial logistic model where pij is the
   age", you should modify the program where the markup    probability to be observed in state j at the second wave
     *Covariates have to be included here again* invites you to do it.    conditional to be observed in state i at the first wave. Therefore
   More covariates you add, less is the speed of the convergence.    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
   The advantage that this computer programme claims, comes from that if the    complex model than "constant and age", you should modify the program
   delay between waves is not identical for each individual, or if some    where the markup *Covariates have to be included here again* invites
   individual missed an interview, the information is not rounded or lost, but    you to do it.  More covariates you add, slower the
   taken into account using an interpolation or extrapolation.    convergence.
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    The advantage of this computer programme, compared to a simple
   x. The delay 'h' can be split into an exact number (nh*stepm) of    multinomial logistic model, is clear when the delay between waves is not
   unobserved intermediate  states. This elementary transition (by month or    identical for each individual. Also, if a individual missed an
   quarter trimester, semester or year) is model as a multinomial logistic.    intermediate interview, the information is lost, but taken into
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    account using an interpolation or extrapolation.  
   and the contribution of each individual to the likelihood is simply hPijx.  
     hPijx is the probability to be observed in state i at age x+h
   Also this programme outputs the covariance matrix of the parameters but also    conditional to the observed state i at age x. The delay 'h' can be
   of the life expectancies. It also computes the prevalence limits.    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    semester or year) is modelled as a multinomial logistic.  The hPx
            Institut national d'études démographiques, Paris.    matrix is simply the matrix product of nh*stepm elementary matrices
   This software have been partly granted by Euro-REVES, a concerted action    and the contribution of each individual to the likelihood is simply
   from the European Union.    hPijx.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Also this programme outputs the covariance matrix of the parameters but also
   can be accessed at http://euroreves.ined.fr/imach .    of the life expectancies. It also computes the stable prevalence. 
   **********************************************************************/    
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <math.h>             Institut national d'études démographiques, Paris.
 #include <stdio.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <stdlib.h>    from the European Union.
 #include <unistd.h>    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXLINE 256    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define windows    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    **********************************************************************/
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    main
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    read parameterfile
     read datafile
 #define NINTERVMAX 8    concatwav
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    if (mle >= 1)
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */      mlikeli
 #define NCOVMAX 8 /* Maximum number of covariates */    print results files
 #define MAXN 20000    if mle==1 
 #define YEARM 12. /* Number of months per year */       computes hessian
 #define AGESUP 130    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define AGEBASE 40        begin-prev-date,...
     open gnuplot file
     open html file
 int nvar;    stable prevalence
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;     for age prevalim()
 int npar=NPARMAX;    h Pij x
 int nlstate=2; /* Number of live states */    variance of p varprob
 int ndeath=1; /* Number of dead states */    forecasting if prevfcast==1 prevforecast call prevalence()
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    health expectancies
 int popbased=0, fprev,lprev;    Variance-covariance of DFLE
     prevalence()
 int *wav; /* Number of waves for this individuual 0 is possible */     movingaverage()
 int maxwav; /* Maxim number of waves */    varevsij() 
 int jmin, jmax; /* min, max spacing between 2 waves */    if popbased==1 varevsij(,popbased)
 int mle, weightopt;    total life expectancies
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Variance of stable prevalence
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */   end
 double jmean; /* Mean space between 2 waves */  */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob;   
 FILE *ficreseij;  #include <math.h>
   char filerese[FILENAMELENGTH];  #include <stdio.h>
  FILE  *ficresvij;  #include <stdlib.h>
   char fileresv[FILENAMELENGTH];  #include <unistd.h>
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 #define NR_END 1  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FREE_ARG char*  #define FILENAMELENGTH 80
 #define FTOL 1.0e-10  /*#define DEBUG*/
   #define windows
 #define NRANSI  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define ITMAX 200  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define TOL 2.0e-4  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10  #define NINTERVMAX 8
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define GOLD 1.618034  #define NCOVMAX 8 /* Maximum number of covariates */
 #define GLIMIT 100.0  #define MAXN 20000
 #define TINY 1.0e-20  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 static double maxarg1,maxarg2;  #define AGEBASE 40
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #ifdef windows
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define DIRSEPARATOR '\\'
    #define ODIRSEPARATOR '/'
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #else
 #define rint(a) floor(a+0.5)  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 static double sqrarg;  #endif
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  /* $Id$ */
   /* $Log$
 int imx;   * Revision 1.81  2003/06/05 15:41:51  brouard
 int stepm;   * *** empty log message ***
 /* Stepm, step in month: minimum step interpolation*/   *
   /* Revision 1.80  2003/06/05 15:34:14  brouard
 int m,nb;  /* Trying to add the true revision in the program and log
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /*
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /* Revision 1.79  2003/06/05 15:17:23  brouard
 double **pmmij, ***probs, ***mobaverage;  /* *** empty log message ***
   /* */
 double *weight;  /* $Revision$ */
 int **s; /* Status */  /* $Date$ */
 double *agedc, **covar, idx;  /* $State$ */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   char version[80]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  char fullversion[]="$Revision$ $Date$"; 
 double ftolhess; /* Tolerance for computing hessian */  int erreur; /* Error number */
   int nvar;
 /**************** split *************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 static  int split( char *path, char *dirc, char *name )  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
    char *s;                             /* pointer */  int ndeath=1; /* Number of dead states */
    int  l1, l2;                         /* length counters */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int *wav; /* Number of waves for this individuual 0 is possible */
    s = strrchr( path, '\\' );           /* find last / */  int maxwav; /* Maxim number of waves */
    if ( s == NULL ) {                   /* no directory, so use current */  int jmin, jmax; /* min, max spacing between 2 waves */
 #if     defined(__bsd__)                /* get current working directory */  int mle, weightopt;
       extern char       *getwd( );  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       if ( getwd( dirc ) == NULL ) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #else             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       extern char       *getcwd( );  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #endif  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
          return( GLOCK_ERROR_GETCWD );  FILE *ficlog, *ficrespow;
       }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       strcpy( name, path );             /* we've got it */  FILE *ficresprobmorprev;
    } else {                             /* strip direcotry from path */  FILE *fichtm; /* Html File */
       s++;                              /* after this, the filename */  FILE *ficreseij;
       l2 = strlen( s );                 /* length of filename */  char filerese[FILENAMELENGTH];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE  *ficresvij;
       strcpy( name, s );                /* save file name */  char fileresv[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  FILE  *ficresvpl;
       dirc[l1-l2] = 0;                  /* add zero */  char fileresvpl[FILENAMELENGTH];
    }  char title[MAXLINE];
    l1 = strlen( dirc );                 /* length of directory */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
    return( 0 );                         /* we're done */  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /******************************************/  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 void replace(char *s, char*t)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   int i;  
   int lg=20;  #define NR_END 1
   i=0;  #define FREE_ARG char*
   lg=strlen(t);  #define FTOL 1.0e-10
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  #define NRANSI 
     if (t[i]== '\\') s[i]='/';  #define ITMAX 200 
   }  
 }  #define TOL 2.0e-4 
   
 int nbocc(char *s, char occ)  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   int i,j=0;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   int lg=20;  
   i=0;  #define GOLD 1.618034 
   lg=strlen(s);  #define GLIMIT 100.0 
   for(i=0; i<= lg; i++) {  #define TINY 1.0e-20 
   if  (s[i] == occ ) j++;  
   }  static double maxarg1,maxarg2;
   return j;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 void cutv(char *u,char *v, char*t, char occ)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   int i,lg,j,p=0;  
   i=0;  static double sqrarg;
   for(j=0; j<=strlen(t)-1; j++) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   }  
   int imx; 
   lg=strlen(t);  int stepm;
   for(j=0; j<p; j++) {  /* Stepm, step in month: minimum step interpolation*/
     (u[j] = t[j]);  
   }  int estepm;
      u[p]='\0';  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
    for(j=0; j<= lg; j++) {  int m,nb;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double dateintmean=0;
 /********************** nrerror ********************/  
   double *weight;
 void nrerror(char error_text[])  int **s; /* Status */
 {  double *agedc, **covar, idx;
   fprintf(stderr,"ERREUR ...\n");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double *v;  {
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    char  *ss;                            /* pointer */
   if (!v) nrerror("allocation failure in vector");    int   l1, l2;                         /* length counters */
   return v-nl+NR_END;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /************************ free vector ******************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 void free_vector(double*v, int nl, int nh)    if ( ss == NULL ) {                   /* no directory, so use current */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   free((FREE_ARG)(v+nl-NR_END));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /************************ivector *******************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 int *ivector(long nl,long nh)        return( GLOCK_ERROR_GETCWD );
 {      }
   int *v;      strcpy( name, path );               /* we've got it */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    } else {                              /* strip direcotry from path */
   if (!v) nrerror("allocation failure in ivector");      ss++;                               /* after this, the filename */
   return v-nl+NR_END;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /******************free ivector **************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 void free_ivector(int *v, long nl, long nh)      dirc[l1-l2] = 0;                    /* add zero */
 {    }
   free((FREE_ARG)(v+nl-NR_END));    l1 = strlen( dirc );                  /* length of directory */
 }  #ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 /******************* imatrix *******************************/  #else
 int **imatrix(long nrl, long nrh, long ncl, long nch)    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #endif
 {    ss = strrchr( name, '.' );            /* find last / */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    ss++;
   int **m;    strcpy(ext,ss);                       /* save extension */
      l1= strlen( name);
   /* allocate pointers to rows */    l2= strlen(ss)+1;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    strncpy( finame, name, l1-l2);
   if (!m) nrerror("allocation failure 1 in matrix()");    finame[l1-l2]= 0;
   m += NR_END;    return( 0 );                          /* we're done */
   m -= nrl;  }
    
    
   /* allocate rows and set pointers to them */  /******************************************/
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void replace(char *s, char*t)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    int i;
      int lg=20;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    i=0;
      lg=strlen(t);
   /* return pointer to array of pointers to rows */    for(i=0; i<= lg; i++) {
   return m;      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /****************** free_imatrix *************************/  }
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  int nbocc(char *s, char occ)
       long nch,ncl,nrh,nrl;  {
      /* free an int matrix allocated by imatrix() */    int i,j=0;
 {    int lg=20;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    i=0;
   free((FREE_ARG) (m+nrl-NR_END));    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /******************* matrix *******************************/    }
 double **matrix(long nrl, long nrh, long ncl, long nch)    return j;
 {  }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  void cutv(char *u,char *v, char*t, char occ)
   {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    /* cuts string t into u and v where u is ended by char occ excluding it
   if (!m) nrerror("allocation failure 1 in matrix()");       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m += NR_END;       gives u="abcedf" and v="ghi2j" */
   m -= nrl;    int i,lg,j,p=0;
     i=0;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    for(j=0; j<=strlen(t)-1; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;  
     lg=strlen(t);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for(j=0; j<p; j++) {
   return m;      (u[j] = t[j]);
 }    }
        u[p]='\0';
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)     for(j=0; j<= lg; j++) {
 {      if (j>=(p+1))(v[j-p-1] = t[j]);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /********************** nrerror ********************/
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  void nrerror(char error_text[])
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    fprintf(stderr,"ERREUR ...\n");
   double ***m;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  /*********************** vector *******************/
   m += NR_END;  double *vector(int nl, int nh)
   m -= nrl;  {
     double *v;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m[nrl] += NR_END;    return v-nl+NR_END;
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    free((FREE_ARG)(v+nl-NR_END));
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  /************************ivector *******************************/
     m[nrl][j]=m[nrl][j-1]+nlay;  char *cvector(long nl,long nh)
    {
   for (i=nrl+1; i<=nrh; i++) {    char *v;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
     for (j=ncl+1; j<=nch; j++)    if (!v) nrerror("allocation failure in cvector");
       m[i][j]=m[i][j-1]+nlay;    return v-nl+NR_END;
   }  }
   return m;  
 }  /******************free ivector **************************/
   void free_cvector(char *v, long nl, long nh)
 /*************************free ma3x ************************/  {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /************************ivector *******************************/
   free((FREE_ARG)(m+nrl-NR_END));  int *ivector(long nl,long nh)
 }  {
     int *v;
 /***************** f1dim *************************/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 extern int ncom;    if (!v) nrerror("allocation failure in ivector");
 extern double *pcom,*xicom;    return v-nl+NR_END;
 extern double (*nrfunc)(double []);  }
    
 double f1dim(double x)  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   int j;  {
   double f;    free((FREE_ARG)(v+nl-NR_END));
   double *xt;  }
    
   xt=vector(1,ncom);  /******************* imatrix *******************************/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   f=(*nrfunc)(xt);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_vector(xt,1,ncom);  { 
   return f;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /*****************brent *************************/    /* allocate pointers to rows */ 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 {    if (!m) nrerror("allocation failure 1 in matrix()"); 
   int iter;    m += NR_END; 
   double a,b,d,etemp;    m -= nrl; 
   double fu,fv,fw,fx;    
   double ftemp;    
   double p,q,r,tol1,tol2,u,v,w,x,xm;    /* allocate rows and set pointers to them */ 
   double e=0.0;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   a=(ax < cx ? ax : cx);    m[nrl] += NR_END; 
   b=(ax > cx ? ax : cx);    m[nrl] -= ncl; 
   x=w=v=bx;    
   fw=fv=fx=(*f)(x);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   for (iter=1;iter<=ITMAX;iter++) {    
     xm=0.5*(a+b);    /* return pointer to array of pointers to rows */ 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    return m; 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  } 
     printf(".");fflush(stdout);  
 #ifdef DEBUG  /****************** free_imatrix *************************/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void free_imatrix(m,nrl,nrh,ncl,nch)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */        int **m;
 #endif        long nch,ncl,nrh,nrl; 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){       /* free an int matrix allocated by imatrix() */ 
       *xmin=x;  { 
       return fx;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     ftemp=fu;  } 
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /******************* matrix *******************************/
       q=(x-v)*(fx-fw);  double **matrix(long nrl, long nrh, long ncl, long nch)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       if (q > 0.0) p = -p;    double **m;
       q=fabs(q);  
       etemp=e;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       e=d;    if (!m) nrerror("allocation failure 1 in matrix()");
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m += NR_END;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m -= nrl;
       else {  
         d=p/q;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         u=x+d;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         if (u-a < tol2 || b-u < tol2)    m[nrl] += NR_END;
           d=SIGN(tol1,xm-x);    m[nrl] -= ncl;
       }  
     } else {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    return m;
     }    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     */
     fu=(*f)(u);  }
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /*************************free matrix ************************/
       SHFT(v,w,x,u)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         SHFT(fv,fw,fx,fu)  {
         } else {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           if (u < x) a=u; else b=u;    free((FREE_ARG)(m+nrl-NR_END));
           if (fu <= fw || w == x) {  }
             v=w;  
             w=u;  /******************* ma3x *******************************/
             fv=fw;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
             fw=fu;  {
           } else if (fu <= fv || v == x || v == w) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
             v=u;    double ***m;
             fv=fu;  
           }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
   nrerror("Too many iterations in brent");    m -= nrl;
   *xmin=x;  
   return fx;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /****************** mnbrak ***********************/    m[nrl] -= ncl;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             double (*func)(double))  
 {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double ulim,u,r,q, dum;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double fu;    m[nrl][ncl] += NR_END;
      m[nrl][ncl] -= nll;
   *fa=(*func)(*ax);    for (j=ncl+1; j<=nch; j++) 
   *fb=(*func)(*bx);      m[nrl][j]=m[nrl][j-1]+nlay;
   if (*fb > *fa) {    
     SHFT(dum,*ax,*bx,dum)    for (i=nrl+1; i<=nrh; i++) {
       SHFT(dum,*fb,*fa,dum)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
   *cx=(*bx)+GOLD*(*bx-*ax);        m[i][j]=m[i][j-1]+nlay;
   *fc=(*func)(*cx);    }
   while (*fb > *fc) {    return m; 
     r=(*bx-*ax)*(*fb-*fc);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     q=(*bx-*cx)*(*fb-*fa);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /*************************free ma3x ************************/
       fu=(*func)(u);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     } else if ((*cx-u)*(u-ulim) > 0.0) {  {
       fu=(*func)(u);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       if (fu < *fc) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    free((FREE_ARG)(m+nrl-NR_END));
           SHFT(*fb,*fc,fu,(*func)(u))  }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /***************** f1dim *************************/
       u=ulim;  extern int ncom; 
       fu=(*func)(u);  extern double *pcom,*xicom;
     } else {  extern double (*nrfunc)(double []); 
       u=(*cx)+GOLD*(*cx-*bx);   
       fu=(*func)(u);  double f1dim(double x) 
     }  { 
     SHFT(*ax,*bx,*cx,u)    int j; 
       SHFT(*fa,*fb,*fc,fu)    double f;
       }    double *xt; 
 }   
     xt=vector(1,ncom); 
 /*************** linmin ************************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 int ncom;    free_vector(xt,1,ncom); 
 double *pcom,*xicom;    return f; 
 double (*nrfunc)(double []);  } 
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /*****************brent *************************/
 {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double brent(double ax, double bx, double cx,  { 
                double (*f)(double), double tol, double *xmin);    int iter; 
   double f1dim(double x);    double a,b,d,etemp;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    double fu,fv,fw,fx;
               double *fc, double (*func)(double));    double ftemp;
   int j;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double xx,xmin,bx,ax;    double e=0.0; 
   double fx,fb,fa;   
      a=(ax < cx ? ax : cx); 
   ncom=n;    b=(ax > cx ? ax : cx); 
   pcom=vector(1,n);    x=w=v=bx; 
   xicom=vector(1,n);    fw=fv=fx=(*f)(x); 
   nrfunc=func;    for (iter=1;iter<=ITMAX;iter++) { 
   for (j=1;j<=n;j++) {      xm=0.5*(a+b); 
     pcom[j]=p[j];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     xicom[j]=xi[j];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   }      printf(".");fflush(stdout);
   ax=0.0;      fprintf(ficlog,".");fflush(ficlog);
   xx=1.0;  #ifdef DEBUG
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #ifdef DEBUG      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #endif
 #endif      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (j=1;j<=n;j++) {        *xmin=x; 
     xi[j] *= xmin;        return fx; 
     p[j] += xi[j];      } 
   }      ftemp=fu;
   free_vector(xicom,1,n);      if (fabs(e) > tol1) { 
   free_vector(pcom,1,n);        r=(x-w)*(fx-fv); 
 }        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
 /*************** powell ************************/        q=2.0*(q-r); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        if (q > 0.0) p = -p; 
             double (*func)(double []))        q=fabs(q); 
 {        etemp=e; 
   void linmin(double p[], double xi[], int n, double *fret,        e=d; 
               double (*func)(double []));        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int i,ibig,j;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double del,t,*pt,*ptt,*xit;        else { 
   double fp,fptt;          d=p/q; 
   double *xits;          u=x+d; 
   pt=vector(1,n);          if (u-a < tol2 || b-u < tol2) 
   ptt=vector(1,n);            d=SIGN(tol1,xm-x); 
   xit=vector(1,n);        } 
   xits=vector(1,n);      } else { 
   *fret=(*func)(p);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (j=1;j<=n;j++) pt[j]=p[j];      } 
   for (*iter=1;;++(*iter)) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     fp=(*fret);      fu=(*f)(u); 
     ibig=0;      if (fu <= fx) { 
     del=0.0;        if (u >= x) a=x; else b=x; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        SHFT(v,w,x,u) 
     for (i=1;i<=n;i++)          SHFT(fv,fw,fx,fu) 
       printf(" %d %.12f",i, p[i]);          } else { 
     printf("\n");            if (u < x) a=u; else b=u; 
     for (i=1;i<=n;i++) {            if (fu <= fw || w == x) { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];              v=w; 
       fptt=(*fret);              w=u; 
 #ifdef DEBUG              fv=fw; 
       printf("fret=%lf \n",*fret);              fw=fu; 
 #endif            } else if (fu <= fv || v == x || v == w) { 
       printf("%d",i);fflush(stdout);              v=u; 
       linmin(p,xit,n,fret,func);              fv=fu; 
       if (fabs(fptt-(*fret)) > del) {            } 
         del=fabs(fptt-(*fret));          } 
         ibig=i;    } 
       }    nrerror("Too many iterations in brent"); 
 #ifdef DEBUG    *xmin=x; 
       printf("%d %.12e",i,(*fret));    return fx; 
       for (j=1;j<=n;j++) {  } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /****************** mnbrak ***********************/
       }  
       for(j=1;j<=n;j++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         printf(" p=%.12e",p[j]);              double (*func)(double)) 
       printf("\n");  { 
 #endif    double ulim,u,r,q, dum;
     }    double fu; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {   
 #ifdef DEBUG    *fa=(*func)(*ax); 
       int k[2],l;    *fb=(*func)(*bx); 
       k[0]=1;    if (*fb > *fa) { 
       k[1]=-1;      SHFT(dum,*ax,*bx,dum) 
       printf("Max: %.12e",(*func)(p));        SHFT(dum,*fb,*fa,dum) 
       for (j=1;j<=n;j++)        } 
         printf(" %.12e",p[j]);    *cx=(*bx)+GOLD*(*bx-*ax); 
       printf("\n");    *fc=(*func)(*cx); 
       for(l=0;l<=1;l++) {    while (*fb > *fc) { 
         for (j=1;j<=n;j++) {      r=(*bx-*ax)*(*fb-*fc); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      q=(*bx-*cx)*(*fb-*fa); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       }      if ((*bx-u)*(u-*cx) > 0.0) { 
 #endif        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
       free_vector(xit,1,n);        if (fu < *fc) { 
       free_vector(xits,1,n);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       free_vector(ptt,1,n);            SHFT(*fb,*fc,fu,(*func)(u)) 
       free_vector(pt,1,n);            } 
       return;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        fu=(*func)(u); 
     for (j=1;j<=n;j++) {      } else { 
       ptt[j]=2.0*p[j]-pt[j];        u=(*cx)+GOLD*(*cx-*bx); 
       xit[j]=p[j]-pt[j];        fu=(*func)(u); 
       pt[j]=p[j];      } 
     }      SHFT(*ax,*bx,*cx,u) 
     fptt=(*func)(ptt);        SHFT(*fa,*fb,*fc,fu) 
     if (fptt < fp) {        } 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  } 
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /*************** linmin ************************/
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  int ncom; 
           xi[j][n]=xit[j];  double *pcom,*xicom;
         }  double (*nrfunc)(double []); 
 #ifdef DEBUG   
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         for(j=1;j<=n;j++)  { 
           printf(" %.12e",xit[j]);    double brent(double ax, double bx, double cx, 
         printf("\n");                 double (*f)(double), double tol, double *xmin); 
 #endif    double f1dim(double x); 
       }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     }                double *fc, double (*func)(double)); 
   }    int j; 
 }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
 /**** Prevalence limit ****************/   
     ncom=n; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    pcom=vector(1,n); 
 {    xicom=vector(1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    nrfunc=func; 
      matrix by transitions matrix until convergence is reached */    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   int i, ii,j,k;      xicom[j]=xi[j]; 
   double min, max, maxmin, maxmax,sumnew=0.;    } 
   double **matprod2();    ax=0.0; 
   double **out, cov[NCOVMAX], **pmij();    xx=1.0; 
   double **newm;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   for (ii=1;ii<=nlstate+ndeath;ii++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=nlstate+ndeath;j++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
     }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
    cov[1]=1.;      p[j] += xi[j]; 
      } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free_vector(xicom,1,n); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    free_vector(pcom,1,n); 
     newm=savm;  } 
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************** powell ************************/
    void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (k=1; k<=cptcovn;k++) {              double (*func)(double [])) 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  { 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    void linmin(double p[], double xi[], int n, double *fret, 
       }                double (*func)(double [])); 
       for (k=1; k<=cptcovage;k++)    int i,ibig,j; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double del,t,*pt,*ptt,*xit;
       for (k=1; k<=cptcovprod;k++)    double fp,fptt;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double *xits;
     pt=vector(1,n); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    ptt=vector(1,n); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    xit=vector(1,n); 
     xits=vector(1,n); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
     savm=oldm;    for (*iter=1;;++(*iter)) { 
     oldm=newm;      fp=(*fret); 
     maxmax=0.;      ibig=0; 
     for(j=1;j<=nlstate;j++){      del=0.0; 
       min=1.;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       max=0.;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       for(i=1; i<=nlstate; i++) {      fprintf(ficrespow,"%d %.12f",*iter,*fret);
         sumnew=0;      for (i=1;i<=n;i++) {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        printf(" %d %.12f",i, p[i]);
         prlim[i][j]= newm[i][j]/(1-sumnew);        fprintf(ficlog," %d %.12lf",i, p[i]);
         max=FMAX(max,prlim[i][j]);        fprintf(ficrespow," %.12lf", p[i]);
         min=FMIN(min,prlim[i][j]);      }
       }      printf("\n");
       maxmin=max-min;      fprintf(ficlog,"\n");
       maxmax=FMAX(maxmax,maxmin);      fprintf(ficrespow,"\n");
     }      for (i=1;i<=n;i++) { 
     if(maxmax < ftolpl){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       return prlim;        fptt=(*fret); 
     }  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
 }        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 /*************** transition probabilities ***************/        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        linmin(p,xit,n,fret,func); 
 {        if (fabs(fptt-(*fret)) > del) { 
   double s1, s2;          del=fabs(fptt-(*fret)); 
   /*double t34;*/          ibig=i; 
   int i,j,j1, nc, ii, jj;        } 
   #ifdef DEBUG
     for(i=1; i<= nlstate; i++){        printf("%d %.12e",i,(*fret));
     for(j=1; j<i;j++){        fprintf(ficlog,"%d %.12e",i,(*fret));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        for (j=1;j<=n;j++) {
         /*s2 += param[i][j][nc]*cov[nc];*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          printf(" x(%d)=%.12e",j,xit[j]);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       ps[i][j]=s2;        for(j=1;j<=n;j++) {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     for(j=i+1; j<=nlstate+ndeath;j++){        }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog,"\n");
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #endif
       }      } 
       ps[i][j]=(s2);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     }  #ifdef DEBUG
   }        int k[2],l;
     /*ps[3][2]=1;*/        k[0]=1;
         k[1]=-1;
   for(i=1; i<= nlstate; i++){        printf("Max: %.12e",(*func)(p));
      s1=0;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(j=1; j<i; j++)        for (j=1;j<=n;j++) {
       s1+=exp(ps[i][j]);          printf(" %.12e",p[j]);
     for(j=i+1; j<=nlstate+ndeath; j++)          fprintf(ficlog," %.12e",p[j]);
       s1+=exp(ps[i][j]);        }
     ps[i][i]=1./(s1+1.);        printf("\n");
     for(j=1; j<i; j++)        fprintf(ficlog,"\n");
       ps[i][j]= exp(ps[i][j])*ps[i][i];        for(l=0;l<=1;l++) {
     for(j=i+1; j<=nlstate+ndeath; j++)          for (j=1;j<=n;j++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   } /* end i */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(jj=1; jj<= nlstate+ndeath; jj++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       ps[ii][jj]=0;        }
       ps[ii][ii]=1;  #endif
     }  
   }  
         free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        free_vector(ptt,1,n); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        free_vector(pt,1,n); 
      printf("%lf ",ps[ii][jj]);        return; 
    }      } 
     printf("\n ");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     }      for (j=1;j<=n;j++) { 
     printf("\n ");printf("%lf ",cov[2]);*/        ptt[j]=2.0*p[j]-pt[j]; 
 /*        xit[j]=p[j]-pt[j]; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        pt[j]=p[j]; 
   goto end;*/      } 
     return ps;      fptt=(*func)(ptt); 
 }      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 /**************** Product of 2 matrices ******************/        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          for (j=1;j<=n;j++) { 
 {            xi[j][ibig]=xi[j][n]; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times            xi[j][n]=xit[j]; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          }
   /* in, b, out are matrice of pointers which should have been initialized  #ifdef DEBUG
      before: only the contents of out is modified. The function returns          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      a pointer to pointers identical to out */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   long i, j, k;          for(j=1;j<=n;j++){
   for(i=nrl; i<= nrh; i++)            printf(" %.12e",xit[j]);
     for(k=ncolol; k<=ncoloh; k++)            fprintf(ficlog," %.12e",xit[j]);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          }
         out[i][k] +=in[i][j]*b[j][k];          printf("\n");
           fprintf(ficlog,"\n");
   return out;  #endif
 }        }
       } 
     } 
 /************* Higher Matrix Product ***************/  } 
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /**** Prevalence limit (stable prevalence)  ****************/
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      duration (i.e. until  {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       matrix by transitions matrix until convergence is reached */
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be    int i, ii,j,k;
      included manually here.    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
      */    double **out, cov[NCOVMAX], **pmij();
     double **newm;
   int i, j, d, h, k;    double agefin, delaymax=50 ; /* Max number of years to converge */
   double **out, cov[NCOVMAX];  
   double **newm;    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   /* Hstepm could be zero and should return the unit matrix */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=nlstate+ndeath;i++)      }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);     cov[1]=1.;
       po[i][j][0]=(i==j ? 1.0 : 0.0);   
     }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for(h=1; h <=nhstepm; h++){      newm=savm;
     for(d=1; d <=hstepm; d++){      /* Covariates have to be included here again */
       newm=savm;       cov[2]=agefin;
       /* Covariates have to be included here again */    
       cov[1]=1.;        for (k=1; k<=cptcovn;k++) {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       for (k=1; k<=cptcovage;k++)        }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovprod;k++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;      savm=oldm;
       oldm=newm;      oldm=newm;
     }      maxmax=0.;
     for(i=1; i<=nlstate+ndeath; i++)      for(j=1;j<=nlstate;j++){
       for(j=1;j<=nlstate+ndeath;j++) {        min=1.;
         po[i][j][h]=newm[i][j];        max=0.;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        for(i=1; i<=nlstate; i++) {
          */          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   } /* end h */          prlim[i][j]= newm[i][j]/(1-sumnew);
   return po;          max=FMAX(max,prlim[i][j]);
 }          min=FMIN(min,prlim[i][j]);
         }
         maxmin=max-min;
 /*************** log-likelihood *************/        maxmax=FMAX(maxmax,maxmin);
 double func( double *x)      }
 {      if(maxmax < ftolpl){
   int i, ii, j, k, mi, d, kk;        return prlim;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      }
   double **out;    }
   double sw; /* Sum of weights */  }
   double lli; /* Individual log likelihood */  
   long ipmx;  /*************** transition probabilities ***************/ 
   /*extern weight */  
   /* We are differentiating ll according to initial status */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  {
   /*for(i=1;i<imx;i++)    double s1, s2;
     printf(" %d\n",s[4][i]);    /*double t34;*/
   */    int i,j,j1, nc, ii, jj;
   cov[1]=1.;  
       for(i=1; i<= nlstate; i++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;      for(j=1; j<i;j++){
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /*s2 += param[i][j][nc]*cov[nc];*/
     for(mi=1; mi<= wav[i]-1; mi++){          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (ii=1;ii<=nlstate+ndeath;ii++)          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        }
       for(d=0; d<dh[mi][i]; d++){        ps[i][j]=s2;
         newm=savm;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
         for (kk=1; kk<=cptcovage;kk++) {      for(j=i+1; j<=nlstate+ndeath;j++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         }          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                  /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        ps[i][j]=s2;
         savm=oldm;      }
         oldm=newm;    }
              /*ps[3][2]=1;*/
          
       } /* end mult */    for(i=1; i<= nlstate; i++){
             s1=0;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      for(j=1; j<i; j++)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        s1+=exp(ps[i][j]);
       ipmx +=1;      for(j=i+1; j<=nlstate+ndeath; j++)
       sw += weight[i];        s1+=exp(ps[i][j]);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      ps[i][i]=1./(s1+1.);
     } /* end of wave */      for(j=1; j<i; j++)
   } /* end of individual */        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    } /* end i */
   return -l;  
 }    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
 /*********** Maximum Likelihood Estimation ***************/        ps[ii][ii]=1;
       }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }
 {  
   int i,j, iter;  
   double **xi,*delti;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   double fret;      for(jj=1; jj<= nlstate+ndeath; jj++){
   xi=matrix(1,npar,1,npar);       printf("%lf ",ps[ii][jj]);
   for (i=1;i<=npar;i++)     }
     for (j=1;j<=npar;j++)      printf("\n ");
       xi[i][j]=(i==j ? 1.0 : 0.0);      }
   printf("Powell\n");      printf("\n ");printf("%lf ",cov[2]);*/
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*
     for(i=1; i<= npar; i++) printf("%f ",x[i]);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    goto end;*/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));      return ps;
   }
 }  
   /**************** Product of 2 matrices ******************/
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  {
   double  **a,**y,*x,pd;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double **hess;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int i, j,jk;    /* in, b, out are matrice of pointers which should have been initialized 
   int *indx;       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   double hessii(double p[], double delta, int theta, double delti[]);    long i, j, k;
   double hessij(double p[], double delti[], int i, int j);    for(i=nrl; i<= nrh; i++)
   void lubksb(double **a, int npar, int *indx, double b[]) ;      for(k=ncolol; k<=ncoloh; k++)
   void ludcmp(double **a, int npar, int *indx, double *d) ;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   hess=matrix(1,npar,1,npar);  
     return out;
   printf("\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  /************* Higher Matrix Product ***************/
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
      /* Computes the transition matrix starting at age 'age' over 
   for (i=1;i<=npar;i++) {       'nhstepm*hstepm*stepm' months (i.e. until
     for (j=1;j<=npar;j++)  {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       if (j>i) {       nhstepm*hstepm matrices. 
         printf(".%d%d",i,j);fflush(stdout);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         hess[i][j]=hessij(p,delti,i,j);       (typically every 2 years instead of every month which is too big 
         hess[j][i]=hess[i][j];           for the memory).
         /*printf(" %lf ",hess[i][j]);*/       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
     }  
   }       */
   printf("\n");  
     int i, j, d, h, k;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    double **out, cov[NCOVMAX];
      double **newm;
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);    /* Hstepm could be zero and should return the unit matrix */
   x=vector(1,npar);    for (i=1;i<=nlstate+ndeath;i++)
   indx=ivector(1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        po[i][j][0]=(i==j ? 1.0 : 0.0);
   ludcmp(a,npar,indx,&pd);      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (j=1;j<=npar;j++) {    for(h=1; h <=nhstepm; h++){
     for (i=1;i<=npar;i++) x[i]=0;      for(d=1; d <=hstepm; d++){
     x[j]=1;        newm=savm;
     lubksb(a,npar,indx,x);        /* Covariates have to be included here again */
     for (i=1;i<=npar;i++){        cov[1]=1.;
       matcov[i][j]=x[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("\n#Hessian matrix#\n");        for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=npar;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  
     }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     printf("\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Recompute Inverse */        savm=oldm;
   for (i=1;i<=npar;i++)        oldm=newm;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      }
   ludcmp(a,npar,indx,&pd);      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   /*  printf("\n#Hessian matrix recomputed#\n");          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   for (j=1;j<=npar;j++) {           */
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;    } /* end h */
     lubksb(a,npar,indx,x);    return po;
     for (i=1;i<=npar;i++){  }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  
     }  /*************** log-likelihood *************/
     printf("\n");  double func( double *x)
   }  {
   */    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   free_matrix(a,1,npar,1,npar);    double **out;
   free_matrix(y,1,npar,1,npar);    double sw; /* Sum of weights */
   free_vector(x,1,npar);    double lli; /* Individual log likelihood */
   free_ivector(indx,1,npar);    int s1, s2;
   free_matrix(hess,1,npar,1,npar);    double bbh, survp;
     long ipmx;
     /*extern weight */
 }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 /*************** hessian matrix ****************/    /*for(i=1;i<imx;i++) 
 double hessii( double x[], double delta, int theta, double delti[])      printf(" %d\n",s[4][i]);
 {    */
   int i;    cov[1]=1.;
   int l=1, lmax=20;  
   double k1,k2;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double p2[NPARMAX+1];  
   double res;    if(mle==1){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int k=0,kmax=10;        for(mi=1; mi<= wav[i]-1; mi++){
   double l1;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   fx=func(x);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++) p2[i]=x[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(l=0 ; l <=lmax; l++){            }
     l1=pow(10,l);          for(d=0; d<dh[mi][i]; d++){
     delts=delt;            newm=savm;
     for(k=1 ; k <kmax; k=k+1){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       delt = delta*(l1*k);            for (kk=1; kk<=cptcovage;kk++) {
       p2[theta]=x[theta] +delt;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       k1=func(p2)-fx;            }
       p2[theta]=x[theta]-delt;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       k2=func(p2)-fx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*res= (k1-2.0*fx+k2)/delt/delt; */            savm=oldm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            oldm=newm;
                } /* end mult */
 #ifdef DEBUG        
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 #endif          /* But now since version 0.9 we anticipate for bias and large stepm.
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           * (in months) between two waves is not a multiple of stepm, we rounded to 
         k=kmax;           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         k=kmax; l=lmax*10.;           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           * -stepm/2 to stepm/2 .
         delts=delt;           * For stepm=1 the results are the same as for previous versions of Imach.
       }           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
   }          s1=s[mw[mi][i]][i];
   delti[theta]=delts;          s2=s[mw[mi+1][i]][i];
   return res;          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
 }           * is higher than the multiple of stepm and negative otherwise.
            */
 double hessij( double x[], double delti[], int thetai,int thetaj)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 {          if( s2 > nlstate){ 
   int i;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   int l=1, l1, lmax=20;               to the likelihood is the probability to die between last step unit time and current 
   double k1,k2,k3,k4,res,fx;               step unit time, which is also the differences between probability to die before dh 
   double p2[NPARMAX+1];               and probability to die before dh-stepm . 
   int k;               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   fx=func(x);          health state: the date of the interview describes the actual state
   for (k=1; k<=2; k++) {          and not the date of a change in health state. The former idea was
     for (i=1;i<=npar;i++) p2[i]=x[i];          to consider that at each interview the state was recorded
     p2[thetai]=x[thetai]+delti[thetai]/k;          (healthy, disable or death) and IMaCh was corrected; but when we
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          introduced the exact date of death then we should have modified
     k1=func(p2)-fx;          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
     p2[thetai]=x[thetai]+delti[thetai]/k;          stepm. It is no more the probability to die between last interview
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          and month of death but the probability to survive from last
     k2=func(p2)-fx;          interview up to one month before death multiplied by the
            probability to die within a month. Thanks to Chris
     p2[thetai]=x[thetai]-delti[thetai]/k;          Jackson for correcting this bug.  Former versions increased
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          mortality artificially. The bad side is that we add another loop
     k3=func(p2)-fx;          which slows down the processing. The difference can be up to 10%
            lower mortality.
     p2[thetai]=x[thetai]-delti[thetai]/k;            */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            lli=log(out[s1][s2] - savm[s1][s2]);
     k4=func(p2)-fx;          }else{
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 #ifdef DEBUG            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          } 
 #endif          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
   return res;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 }          ipmx +=1;
           sw += weight[i];
 /************** Inverse of matrix **************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void ludcmp(double **a, int n, int *indx, double *d)        } /* end of wave */
 {      } /* end of individual */
   int i,imax,j,k;    }  else if(mle==2){
   double big,dum,sum,temp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *vv;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   vv=vector(1,n);          for (ii=1;ii<=nlstate+ndeath;ii++)
   *d=1.0;            for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=n;i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     big=0.0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=n;j++)            }
       if ((temp=fabs(a[i][j])) > big) big=temp;          for(d=0; d<=dh[mi][i]; d++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            newm=savm;
     vv[i]=1.0/big;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   for (j=1;j<=n;j++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1;i<j;i++) {            }
       sum=a[i][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       a[i][j]=sum;            savm=oldm;
     }            oldm=newm;
     big=0.0;          } /* end mult */
     for (i=j;i<=n;i++) {        
       sum=a[i][j];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (k=1;k<j;k++)          /* But now since version 0.9 we anticipate for bias and large stepm.
         sum -= a[i][k]*a[k][j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       a[i][j]=sum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * the nearest (and in case of equal distance, to the lowest) interval but now
         big=dum;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         imax=i;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     if (j != imax) {           * -stepm/2 to stepm/2 .
       for (k=1;k<=n;k++) {           * For stepm=1 the results are the same as for previous versions of Imach.
         dum=a[imax][k];           * For stepm > 1 the results are less biased than in previous versions. 
         a[imax][k]=a[j][k];           */
         a[j][k]=dum;          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       *d = -(*d);          bbh=(double)bh[mi][i]/(double)stepm; 
       vv[imax]=vv[j];          /* bias is positive if real duration
     }           * is higher than the multiple of stepm and negative otherwise.
     indx[j]=imax;           */
     if (a[j][j] == 0.0) a[j][j]=TINY;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if (j != n) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       dum=1.0/(a[j][j]);          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   free_vector(vv,1,n);  /* Doesn't work */          ipmx +=1;
 ;          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 void lubksb(double **a, int n, int *indx, double b[])      } /* end of individual */
 {    }  else if(mle==3){  /* exponential inter-extrapolation */
   int i,ii=0,ip,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   for (i=1;i<=n;i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     ip=indx[i];            for (j=1;j<=nlstate+ndeath;j++){
     sum=b[ip];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[ip]=b[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (ii)            }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          for(d=0; d<dh[mi][i]; d++){
     else if (sum) ii=i;            newm=savm;
     b[i]=sum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   for (i=n;i>=1;i--) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     sum=b[i];            }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     b[i]=sum/a[i][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************ Frequencies ********************/        
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 {  /* Some frequencies */          /* But now since version 0.9 we anticipate for bias and large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double ***freq; /* Frequencies */           * the nearest (and in case of equal distance, to the lowest) interval but now
   double *pp;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double pos;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   FILE *ficresp;           * probability in order to take into account the bias as a fraction of the way
   char fileresp[FILENAMELENGTH];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   pp=vector(1,nlstate);           * For stepm=1 the results are the same as for previous versions of Imach.
  probs= ma3x(1,130 ,1,8, 1,8);           * For stepm > 1 the results are less biased than in previous versions. 
   strcpy(fileresp,"p");           */
   strcat(fileresp,fileres);          s1=s[mw[mi][i]][i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {          s2=s[mw[mi+1][i]][i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          bbh=(double)bh[mi][i]/(double)stepm; 
     exit(0);          /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           */
   j1=0;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   j=cptcoveff;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for(k1=1; k1<=j;k1++){          ipmx +=1;
    for(i1=1; i1<=ncodemax[k1];i1++){          sw += weight[i];
        j1++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        } /* end of wave */
          scanf("%d", i);*/      } /* end of individual */
         for (i=-1; i<=nlstate+ndeath; i++)      }else{  /* ml=4 no inter-extrapolation */
          for (jk=-1; jk<=nlstate+ndeath; jk++)        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              freq[i][jk][m]=0;        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
        for (i=1; i<=imx; i++) {            for (j=1;j<=nlstate+ndeath;j++){
          bool=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          if  (cptcovn>0) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
            for (z1=1; z1<=cptcoveff; z1++)            }
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for(d=0; d<dh[mi][i]; d++){
                bool=0;            newm=savm;
          }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if (bool==1) {            for (kk=1; kk<=cptcovage;kk++) {
            for(m=fprev; m<=lprev; m++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              if(agev[m][i]==0) agev[m][i]=agemax+1;            }
              if(agev[m][i]==1) agev[m][i]=agemax+2;          
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            }            savm=oldm;
          }            oldm=newm;
        }          } /* end mult */
         if  (cptcovn>0) {        
          fprintf(ficresp, "\n#********** Variable ");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          ipmx +=1;
        fprintf(ficresp, "**********\n#");          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        for(i=1; i<=nlstate;i++)        } /* end of wave */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      } /* end of individual */
        fprintf(ficresp, "\n");    } /* End of if */
            for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for(i=(int)agemin; i <= (int)agemax+3; i++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     if(i==(int)agemax+3)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       printf("Total");    return -l;
     else  }
       printf("Age %d", i);  
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*********** Maximum Likelihood Estimation ***************/
         pp[jk] += freq[jk][m][i];  
     }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     for(jk=1; jk <=nlstate ; jk++){  {
       for(m=-1, pos=0; m <=0 ; m++)    int i,j, iter;
         pos += freq[jk][m][i];    double **xi;
       if(pp[jk]>=1.e-10)    double fret;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    char filerespow[FILENAMELENGTH];
       else    xi=matrix(1,npar,1,npar);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
      for(jk=1; jk <=nlstate ; jk++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    strcpy(filerespow,"pow"); 
         pp[jk] += freq[jk][m][i];    strcat(filerespow,fileres);
      }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     for(jk=1,pos=0; jk <=nlstate ; jk++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       pos += pp[jk];    }
     for(jk=1; jk <=nlstate ; jk++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       if(pos>=1.e-5)    for (i=1;i<=nlstate;i++)
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for(j=1;j<=nlstate+ndeath;j++)
       else        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    fprintf(ficrespow,"\n");
       if( i <= (int) agemax){    powell(p,xi,npar,ftol,&iter,&fret,func);
         if(pos>=1.e-5){  
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    fclose(ficrespow);
           probs[i][jk][j1]= pp[jk]/pos;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       else  
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  }
       }  
     }  /**** Computes Hessian and covariance matrix ***/
     for(jk=-1; jk <=nlstate+ndeath; jk++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(m=-1; m <=nlstate+ndeath; m++)  {
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double  **a,**y,*x,pd;
     if(i <= (int) agemax)    double **hess;
       fprintf(ficresp,"\n");    int i, j,jk;
     printf("\n");    int *indx;
     }  
     }    double hessii(double p[], double delta, int theta, double delti[]);
  }    double hessij(double p[], double delti[], int i, int j);
      void lubksb(double **a, int npar, int *indx, double b[]) ;
   fclose(ficresp);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);    hess=matrix(1,npar,1,npar);
   
 }  /* End of Freq */    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 /************* Waves Concatenation ***************/    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      fprintf(ficlog,"%d",i);fflush(ficlog);
 {      hess[i][i]=hessii(p,ftolhess,i,delti);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      /*printf(" %f ",p[i]);*/
      Death is a valid wave (if date is known).      /*printf(" %lf ",hess[i][i]);*/
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    
      and mw[mi+1][i]. dh depends on stepm.    for (i=1;i<=npar;i++) {
      */      for (j=1;j<=npar;j++)  {
         if (j>i) { 
   int i, mi, m;          printf(".%d%d",i,j);fflush(stdout);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      double sum=0., jmean=0.;*/          hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
   int j, k=0,jk, ju, jl;          /*printf(" %lf ",hess[i][j]);*/
   double sum=0.;        }
   jmin=1e+5;      }
   jmax=-1;    }
   jmean=0.;    printf("\n");
   for(i=1; i<=imx; i++){    fprintf(ficlog,"\n");
     mi=0;  
     m=firstpass;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     while(s[m][i] <= nlstate){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       if(s[m][i]>=1)    
         mw[++mi][i]=m;    a=matrix(1,npar,1,npar);
       if(m >=lastpass)    y=matrix(1,npar,1,npar);
         break;    x=vector(1,npar);
       else    indx=ivector(1,npar);
         m++;    for (i=1;i<=npar;i++)
     }/* end while */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     if (s[m][i] > nlstate){    ludcmp(a,npar,indx,&pd);
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    for (j=1;j<=npar;j++) {
          /* Only death is a correct wave */      for (i=1;i<=npar;i++) x[i]=0;
       mw[mi][i]=m;      x[j]=1;
     }      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     wav[i]=mi;        matcov[i][j]=x[i];
     if(mi==0)      }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    }
   }  
     printf("\n#Hessian matrix#\n");
   for(i=1; i<=imx; i++){    fprintf(ficlog,"\n#Hessian matrix#\n");
     for(mi=1; mi<wav[i];mi++){    for (i=1;i<=npar;i++) { 
       if (stepm <=0)      for (j=1;j<=npar;j++) { 
         dh[mi][i]=1;        printf("%.3e ",hess[i][j]);
       else{        fprintf(ficlog,"%.3e ",hess[i][j]);
         if (s[mw[mi+1][i]][i] > nlstate) {      }
           if (agedc[i] < 2*AGESUP) {      printf("\n");
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      fprintf(ficlog,"\n");
           if(j==0) j=1;  /* Survives at least one month after exam */    }
           k=k+1;  
           if (j >= jmax) jmax=j;    /* Recompute Inverse */
           if (j <= jmin) jmin=j;    for (i=1;i<=npar;i++)
           sum=sum+j;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           /* if (j<10) printf("j=%d num=%d ",j,i); */    ludcmp(a,npar,indx,&pd);
           }  
         }    /*  printf("\n#Hessian matrix recomputed#\n");
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    for (j=1;j<=npar;j++) {
           k=k+1;      for (i=1;i<=npar;i++) x[i]=0;
           if (j >= jmax) jmax=j;      x[j]=1;
           else if (j <= jmin)jmin=j;      lubksb(a,npar,indx,x);
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      for (i=1;i<=npar;i++){ 
           sum=sum+j;        y[i][j]=x[i];
         }        printf("%.3e ",y[i][j]);
         jk= j/stepm;        fprintf(ficlog,"%.3e ",y[i][j]);
         jl= j -jk*stepm;      }
         ju= j -(jk+1)*stepm;      printf("\n");
         if(jl <= -ju)      fprintf(ficlog,"\n");
           dh[mi][i]=jk;    }
         else    */
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)    free_matrix(a,1,npar,1,npar);
           dh[mi][i]=1; /* At least one step */    free_matrix(y,1,npar,1,npar);
       }    free_vector(x,1,npar);
     }    free_ivector(indx,1,npar);
   }    free_matrix(hess,1,npar,1,npar);
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }  }
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  /*************** hessian matrix ****************/
 {  double hessii( double x[], double delta, int theta, double delti[])
   int Ndum[20],ij=1, k, j, i;  {
   int cptcode=0;    int i;
   cptcoveff=0;    int l=1, lmax=20;
      double k1,k2;
   for (k=0; k<19; k++) Ndum[k]=0;    double p2[NPARMAX+1];
   for (k=1; k<=7; k++) ncodemax[k]=0;    double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double fx;
     for (i=1; i<=imx; i++) {    int k=0,kmax=10;
       ij=(int)(covar[Tvar[j]][i]);    double l1;
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    fx=func(x);
       if (ij > cptcode) cptcode=ij;    for (i=1;i<=npar;i++) p2[i]=x[i];
     }    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
     for (i=0; i<=cptcode; i++) {      delts=delt;
       if(Ndum[i]!=0) ncodemax[j]++;      for(k=1 ; k <kmax; k=k+1){
     }        delt = delta*(l1*k);
     ij=1;        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
     for (i=1; i<=ncodemax[j]; i++) {        k2=func(p2)-fx;
       for (k=0; k<=19; k++) {        /*res= (k1-2.0*fx+k2)/delt/delt; */
         if (Ndum[k] != 0) {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           nbcode[Tvar[j]][ij]=k;        
           ij++;  #ifdef DEBUG
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         if (ij > ncodemax[j]) break;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }    #endif
     }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   }          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
  for (k=0; k<19; k++) Ndum[k]=0;        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
  for (i=1; i<=ncovmodel-2; i++) {          k=kmax; l=lmax*10.;
       ij=Tvar[i];        }
       Ndum[ij]++;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     }          delts=delt;
         }
  ij=1;      }
  for (i=1; i<=10; i++) {    }
    if((Ndum[i]!=0) && (i<=ncov)){    delti[theta]=delts;
      Tvaraff[ij]=i;    return res; 
      ij++;    
    }  }
  }  
    double hessij( double x[], double delti[], int thetai,int thetaj)
     cptcoveff=ij-1;  {
 }    int i;
     int l=1, l1, lmax=20;
 /*********** Health Expectancies ****************/    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    int k;
 {  
   /* Health expectancies */    fx=func(x);
   int i, j, nhstepm, hstepm, h;    for (k=1; k<=2; k++) {
   double age, agelim,hf;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***p3mat;      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficreseij,"# Health expectancies\n");      k1=func(p2)-fx;
   fprintf(ficreseij,"# Age");    
   for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
     for(j=1; j<=nlstate;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fprintf(ficreseij," %1d-%1d",i,j);      k2=func(p2)-fx;
   fprintf(ficreseij,"\n");    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   hstepm=1*YEARM; /*  Every j years of age (in month) */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      k3=func(p2)-fx;
     
   agelim=AGESUP;      p2[thetai]=x[thetai]-delti[thetai]/k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     /* nhstepm age range expressed in number of stepm */      k4=func(p2)-fx;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     /* Typically if 20 years = 20*12/6=40 stepm */  #ifdef DEBUG
     if (stepm >= YEARM) hstepm=1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    return res;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    }
   
   /************** Inverse of matrix **************/
     for(i=1; i<=nlstate;i++)  void ludcmp(double **a, int n, int *indx, double *d) 
       for(j=1; j<=nlstate;j++)  { 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    int i,imax,j,k; 
           eij[i][j][(int)age] +=p3mat[i][j][h];    double big,dum,sum,temp; 
         }    double *vv; 
       
     hf=1;    vv=vector(1,n); 
     if (stepm >= YEARM) hf=stepm/YEARM;    *d=1.0; 
     fprintf(ficreseij,"%.0f",age );    for (i=1;i<=n;i++) { 
     for(i=1; i<=nlstate;i++)      big=0.0; 
       for(j=1; j<=nlstate;j++){      for (j=1;j<=n;j++) 
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficreseij,"\n");      vv[i]=1.0/big; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
   }    for (j=1;j<=n;j++) { 
 }      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
 /************ Variance ******************/        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        a[i][j]=sum; 
 {      } 
   /* Variance of health expectancies */      big=0.0; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=j;i<=n;i++) { 
   double **newm;        sum=a[i][j]; 
   double **dnewm,**doldm;        for (k=1;k<j;k++) 
   int i, j, nhstepm, hstepm, h;          sum -= a[i][k]*a[k][j]; 
   int k, cptcode;        a[i][j]=sum; 
   double *xp;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double **gp, **gm;          big=dum; 
   double ***gradg, ***trgradg;          imax=i; 
   double ***p3mat;        } 
   double age,agelim;      } 
   int theta;      if (j != imax) { 
         for (k=1;k<=n;k++) { 
    fprintf(ficresvij,"# Covariances of life expectancies\n");          dum=a[imax][k]; 
   fprintf(ficresvij,"# Age");          a[imax][k]=a[j][k]; 
   for(i=1; i<=nlstate;i++)          a[j][k]=dum; 
     for(j=1; j<=nlstate;j++)        } 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        *d = -(*d); 
   fprintf(ficresvij,"\n");        vv[imax]=vv[j]; 
       } 
   xp=vector(1,npar);      indx[j]=imax; 
   dnewm=matrix(1,nlstate,1,npar);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   doldm=matrix(1,nlstate,1,nlstate);      if (j != n) { 
          dum=1.0/(a[j][j]); 
   hstepm=1*YEARM; /* Every year of age */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      } 
   agelim = AGESUP;    } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    free_vector(vv,1,n);  /* Doesn't work */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  ;
     if (stepm >= YEARM) hstepm=1;  } 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void lubksb(double **a, int n, int *indx, double b[]) 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  { 
     gp=matrix(0,nhstepm,1,nlstate);    int i,ii=0,ip,j; 
     gm=matrix(0,nhstepm,1,nlstate);    double sum; 
    
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=n;i++) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */      ip=indx[i]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      sum=b[ip]; 
       }      b[ip]=b[i]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        if (ii) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
       if (popbased==1) {      b[i]=sum; 
         for(i=1; i<=nlstate;i++)    } 
           prlim[i][i]=probs[(int)age][i][ij];    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
            for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(j=1; j<= nlstate; j++){      b[i]=sum/a[i][i]; 
         for(h=0; h<=nhstepm; h++){    } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  /************ Frequencies ********************/
       }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
      {  /* Some frequencies */
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int first;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double ***freq; /* Frequencies */
     double *pp, **prop;
       if (popbased==1) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(i=1; i<=nlstate;i++)    FILE *ficresp;
           prlim[i][i]=probs[(int)age][i][ij];    char fileresp[FILENAMELENGTH];
       }    
     pp=vector(1,nlstate);
       for(j=1; j<= nlstate; j++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(h=0; h<=nhstepm; h++){    strcpy(fileresp,"p");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    strcat(fileresp,fileres);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    if((ficresp=fopen(fileresp,"w"))==NULL) {
         }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
       for(j=1; j<= nlstate; j++)    }
         for(h=0; h<=nhstepm; h++){    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    j1=0;
         }    
     } /* End theta */    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     first=1;
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    for(k1=1; k1<=j;k1++){
         for(theta=1; theta <=npar; theta++)      for(i1=1; i1<=ncodemax[k1];i1++){
           trgradg[h][j][theta]=gradg[h][theta][j];        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for(i=1;i<=nlstate;i++)          scanf("%d", i);*/
       for(j=1;j<=nlstate;j++)        for (i=-1; i<=nlstate+ndeath; i++)  
         vareij[i][j][(int)age] =0.;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     for(h=0;h<=nhstepm;h++){            for(m=iagemin; m <= iagemax+3; m++)
       for(k=0;k<=nhstepm;k++){              freq[i][jk][m]=0;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (i=1; i<=nlstate; i++)  
         for(i=1;i<=nlstate;i++)        for(m=iagemin; m <= iagemax+3; m++)
           for(j=1;j<=nlstate;j++)          prop[i][m]=0;
             vareij[i][j][(int)age] += doldm[i][j];        
       }        dateintsum=0;
     }        k2cpt=0;
     h=1;        for (i=1; i<=imx; i++) {
     if (stepm >= YEARM) h=stepm/YEARM;          bool=1;
     fprintf(ficresvij,"%.0f ",age );          if  (cptcovn>0) {
     for(i=1; i<=nlstate;i++)            for (z1=1; z1<=cptcoveff; z1++) 
       for(j=1; j<=nlstate;j++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);                bool=0;
       }          }
     fprintf(ficresvij,"\n");          if (bool==1){
     free_matrix(gp,0,nhstepm,1,nlstate);            for(m=firstpass; m<=lastpass; m++){
     free_matrix(gm,0,nhstepm,1,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              if ((k2>=dateprev1) && (k2<=dateprev2)) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   } /* End age */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                  if (m<lastpass) {
   free_vector(xp,1,npar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   free_matrix(doldm,1,nlstate,1,npar);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   free_matrix(dnewm,1,nlstate,1,nlstate);                }
                 
 }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
 /************ Variance of prevlim ******************/                  k2cpt++;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                }
 {              }
   /* Variance of prevalence limit */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   double **newm;        }
   double **dnewm,**doldm;         
   int i, j, nhstepm, hstepm;        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   int k, cptcode;  
   double *xp;        if  (cptcovn>0) {
   double *gp, *gm;          fprintf(ficresp, "\n#********** Variable "); 
   double **gradg, **trgradg;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double age,agelim;          fprintf(ficresp, "**********\n#");
   int theta;        }
            for(i=1; i<=nlstate;i++) 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   fprintf(ficresvpl,"# Age");        fprintf(ficresp, "\n");
   for(i=1; i<=nlstate;i++)        
       fprintf(ficresvpl," %1d-%1d",i,i);        for(i=iagemin; i <= iagemax+3; i++){
   fprintf(ficresvpl,"\n");          if(i==iagemax+3){
             fprintf(ficlog,"Total");
   xp=vector(1,npar);          }else{
   dnewm=matrix(1,nlstate,1,npar);            if(first==1){
   doldm=matrix(1,nlstate,1,nlstate);              first=0;
                printf("See log file for details...\n");
   hstepm=1*YEARM; /* Every year of age */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            fprintf(ficlog,"Age %d", i);
   agelim = AGESUP;          }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(jk=1; jk <=nlstate ; jk++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     if (stepm >= YEARM) hstepm=1;              pp[jk] += freq[jk][m][i]; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     gp=vector(1,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
     gm=vector(1,nlstate);              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
     for(theta=1; theta <=npar; theta++){              if(first==1){
       for(i=1; i<=npar; i++){ /* Computes gradient */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              }
       }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }else{
       for(i=1;i<=nlstate;i++)              if(first==1)
         gp[i] = prlim[i][i];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(i=1; i<=npar; i++) /* Computes gradient */            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
         gm[i] = prlim[i][i];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
       for(i=1;i<=nlstate;i++)          }       
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     } /* End theta */            pos += pp[jk];
             posprop += prop[jk][i];
     trgradg =matrix(1,nlstate,1,npar);          }
           for(jk=1; jk <=nlstate ; jk++){
     for(j=1; j<=nlstate;j++)            if(pos>=1.e-5){
       for(theta=1; theta <=npar; theta++)              if(first==1)
         trgradg[j][theta]=gradg[theta][j];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(i=1;i<=nlstate;i++)            }else{
       varpl[i][(int)age] =0.;              if(first==1)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(i=1;i<=nlstate;i++)            }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            if( i <= iagemax){
               if(pos>=1.e-5){
     fprintf(ficresvpl,"%.0f ",age );                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for(i=1; i<=nlstate;i++)                probs[i][jk][j1]= pp[jk]/pos;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     fprintf(ficresvpl,"\n");              }
     free_vector(gp,1,nlstate);              else
     free_vector(gm,1,nlstate);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     free_matrix(gradg,1,npar,1,nlstate);            }
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
   free_vector(xp,1,npar);            for(m=-1; m <=nlstate+ndeath; m++)
   free_matrix(doldm,1,nlstate,1,npar);              if(freq[jk][m][i] !=0 ) {
   free_matrix(dnewm,1,nlstate,1,nlstate);              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
 /************ Variance of one-step probabilities  ******************/          if(i <= iagemax)
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)            fprintf(ficresp,"\n");
 {          if(first==1)
   int i, j;            printf("Others in log...\n");
   int k=0, cptcode;          fprintf(ficlog,"\n");
   double **dnewm,**doldm;        }
   double *xp;      }
   double *gp, *gm;    }
   double **gradg, **trgradg;    dateintmean=dateintsum/k2cpt; 
   double age,agelim, cov[NCOVMAX];   
   int theta;    fclose(ficresp);
   char fileresprob[FILENAMELENGTH];    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   strcpy(fileresprob,"prob");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   strcat(fileresprob,fileres);    /* End of Freq */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprob);  
   }  /************ Prevalence ********************/
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   xp=vector(1,npar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       We still use firstpass and lastpass as another selection.
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    */
     
   cov[1]=1;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   for (age=bage; age<=fage; age ++){    double ***freq; /* Frequencies */
     cov[2]=age;    double *pp, **prop;
     gradg=matrix(1,npar,1,9);    double pos,posprop; 
     trgradg=matrix(1,9,1,npar);    double  y2; /* in fractional years */
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    int iagemin, iagemax;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
        iagemin= (int) agemin;
     for(theta=1; theta <=npar; theta++){    iagemax= (int) agemax;
       for(i=1; i<=npar; i++)    /*pp=vector(1,nlstate);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
          /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    j1=0;
        
       k=0;    j=cptcoveff;
       for(i=1; i<= (nlstate+ndeath); i++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(j=1; j<=(nlstate+ndeath);j++){    
            k=k+1;    for(k1=1; k1<=j;k1++){
           gp[k]=pmmij[i][j];      for(i1=1; i1<=ncodemax[k1];i1++){
         }        j1++;
       }        
         for (i=1; i<=nlstate; i++)  
       for(i=1; i<=npar; i++)          for(m=iagemin; m <= iagemax+3; m++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            prop[i][m]=0.0;
           
         for (i=1; i<=imx; i++) { /* Each individual */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          bool=1;
       k=0;          if  (cptcovn>0) {
       for(i=1; i<=(nlstate+ndeath); i++){            for (z1=1; z1<=cptcoveff; z1++) 
         for(j=1; j<=(nlstate+ndeath);j++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           k=k+1;                bool=0;
           gm[k]=pmmij[i][j];          } 
         }          if (bool==1) { 
       }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for(theta=1; theta <=npar; theta++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       trgradg[j][theta]=gradg[theta][j];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i]; 
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);                } 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);              }
             } /* end selection of waves */
      pmij(pmmij,cov,ncovmodel,x,nlstate);          }
         }
      k=0;        for(i=iagemin; i <= iagemax+3; i++){  
      for(i=1; i<=(nlstate+ndeath); i++){          
        for(j=1; j<=(nlstate+ndeath);j++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
          k=k+1;            posprop += prop[jk][i]; 
          gm[k]=pmmij[i][j];          } 
         }  
      }          for(jk=1; jk <=nlstate ; jk++){     
                  if( i <=  iagemax){ 
      /*printf("\n%d ",(int)age);              if(posprop>=1.e-5){ 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                probs[i][jk][j1]= prop[jk][i]/posprop;
                      } 
             } 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }/* end jk */ 
      }*/        }/* end i */ 
       } /* end i1 */
   fprintf(ficresprob,"\n%d ",(int)age);    } /* end k1 */
     
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    /*free_vector(pp,1,nlstate);*/
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  }  /* End of prevalence */
   
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  /************* Waves Concatenation ***************/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  {
 }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  free_vector(xp,1,npar);       Death is a valid wave (if date is known).
 fclose(ficresprob);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  exit(0);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 }       and mw[mi+1][i]. dh depends on stepm.
        */
 /***********************************************/  
 /**************** Main Program *****************/    int i, mi, m;
 /***********************************************/    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
 /*int main(int argc, char *argv[])*/    int first;
 int main()    int j, k=0,jk, ju, jl;
 {    double sum=0.;
     first=0;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    jmin=1e+5;
   double agedeb, agefin,hf;    jmax=-1;
   double agemin=1.e20, agemax=-1.e20;    jmean=0.;
     for(i=1; i<=imx; i++){
   double fret;      mi=0;
   double **xi,tmp,delta;      m=firstpass;
       while(s[m][i] <= nlstate){
   double dum; /* Dummy variable */        if(s[m][i]>=1)
   double ***p3mat;          mw[++mi][i]=m;
   int *indx;        if(m >=lastpass)
   char line[MAXLINE], linepar[MAXLINE];          break;
   char title[MAXLINE];        else
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];          m++;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];      }/* end while */
   char filerest[FILENAMELENGTH];      if (s[m][i] > nlstate){
   char fileregp[FILENAMELENGTH];        mi++;     /* Death is another wave */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        /* if(mi==0)  never been interviewed correctly before death */
   int firstobs=1, lastobs=10;           /* Only death is a correct wave */
   int sdeb, sfin; /* Status at beginning and end */        mw[mi][i]=m;
   int c,  h , cpt,l;      }
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      wav[i]=mi;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      if(mi==0){
   int mobilav=0, fprevfore=1, lprevfore=1;        if(first==0){
   int hstepm, nhstepm;          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;        if(first==1){
   double **prlim;          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
   double *severity;        }
   double ***param; /* Matrix of parameters */      } /* end mi==0 */
   double  *p;    } /* End individuals */
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    for(i=1; i<=imx; i++){
   double *delti; /* Scale */      for(mi=1; mi<wav[i];mi++){
   double ***eij, ***vareij;        if (stepm <=0)
   double **varpl; /* Variances of prevalence limits by age */          dh[mi][i]=1;
   double *epj, vepp;        else{
   double kk1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   char *alph[]={"a","a","b","c","d","e"}, str[4];            if(j==0) j=1;  /* Survives at least one month after exam */
             k=k+1;
             if (j >= jmax) jmax=j;
   char z[1]="c", occ;            if (j <= jmin) jmin=j;
 #include <sys/time.h>            sum=sum+j;
 #include <time.h>            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   /* long total_usecs;            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   struct timeval start_time, end_time;            }
            }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   printf("\nIMACH, Version 0.64b");            k=k+1;
   printf("\nEnter the parameter file name: ");            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
 #ifdef windows            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   scanf("%s",pathtot);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   getcwd(pathcd, size);            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*cygwin_split_path(pathtot,path,optionfile);            sum=sum+j;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          }
   /* cutv(path,optionfile,pathtot,'\\');*/          jk= j/stepm;
           jl= j -jk*stepm;
 split(pathtot, path,optionfile);          ju= j -(jk+1)*stepm;
   chdir(path);          if(mle <=1){ 
   replace(pathc,path);            if(jl==0){
 #endif              dh[mi][i]=jk;
 #ifdef unix              bh[mi][i]=0;
   scanf("%s",optionfile);            }else{ /* We want a negative bias in order to only have interpolation ie
 #endif                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
 /*-------- arguments in the command line --------*/              bh[mi][i]=ju;
             }
   strcpy(fileres,"r");          }else{
   strcat(fileres, optionfile);            if(jl <= -ju){
               dh[mi][i]=jk;
   /*---------arguments file --------*/              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                                   */
     printf("Problem with optionfile %s\n",optionfile);            }
     goto end;            else{
   }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   strcpy(filereso,"o");            }
   strcat(filereso,fileres);            if(dh[mi][i]==0){
   if((ficparo=fopen(filereso,"w"))==NULL) {              dh[mi][i]=1; /* At least one step */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              bh[mi][i]=ju; /* At least one step */
   }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){        } /* end if mle */
     ungetc(c,ficpar);      } /* end wave */
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    jmean=sum/k;
     fputs(line,ficparo);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   ungetc(c,ficpar);   }
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  /*********** Tricode ****************************/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  void tricode(int *Tvar, int **nbcode, int imx)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  {
 while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     fgets(line, MAXLINE, ficpar);    int cptcode=0;
     puts(line);    cptcoveff=0; 
     fputs(line,ficparo);   
   }    for (k=0; k<maxncov; k++) Ndum[k]=0;
   ungetc(c,ficpar);    for (k=1; k<=7; k++) ncodemax[k]=0;
    
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     ungetc(c,ficpar);                                 modality*/ 
     fgets(line, MAXLINE, ficpar);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     puts(line);        Ndum[ij]++; /*store the modality */
     fputs(line,ficparo);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   ungetc(c,ficpar);                                         Tvar[j]. If V=sex and male is 0 and 
                                           female is 1, then  cptcode=1.*/
   fscanf(ficpar,"fprevalence=%d lprevalence=%d mob_average=%d\n",&fprevfore,&lprevfore,&mobilav);      }
    
   covar=matrix(0,NCOVMAX,1,n);      for (i=0; i<=cptcode; i++) {
   cptcovn=0;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      }
   
   ncovmodel=2+cptcovn;      ij=1; 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for (i=1; i<=ncodemax[j]; i++) {
          for (k=0; k<= maxncov; k++) {
   /* Read guess parameters */          if (Ndum[k] != 0) {
   /* Reads comments: lines beginning with '#' */            nbcode[Tvar[j]][ij]=k; 
   while((c=getc(ficpar))=='#' && c!= EOF){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     ungetc(c,ficpar);            
     fgets(line, MAXLINE, ficpar);            ij++;
     puts(line);          }
     fputs(line,ficparo);          if (ij > ncodemax[j]) break; 
   }        }  
   ungetc(c,ficpar);      } 
      }  
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)   for (k=0; k< maxncov; k++) Ndum[k]=0;
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);   for (i=1; i<=ncovmodel-2; i++) { 
       fprintf(ficparo,"%1d%1d",i1,j1);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       printf("%1d%1d",i,j);     ij=Tvar[i];
       for(k=1; k<=ncovmodel;k++){     Ndum[ij]++;
         fscanf(ficpar," %lf",&param[i][j][k]);   }
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);   ij=1;
       }   for (i=1; i<= maxncov; i++) {
       fscanf(ficpar,"\n");     if((Ndum[i]!=0) && (i<=ncovcol)){
       printf("\n");       Tvaraff[ij]=i; /*For printing */
       fprintf(ficparo,"\n");       ij++;
     }     }
     }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   
    cptcoveff=ij-1; /*Number of simple covariates*/
   p=param[1][1];  }
    
   /* Reads comments: lines beginning with '#' */  /*********** Health Expectancies ****************/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     fgets(line, MAXLINE, ficpar);  
     puts(line);  {
     fputs(line,ficparo);    /* Health expectancies */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   ungetc(c,ficpar);    double age, agelim, hf;
     double ***p3mat,***varhe;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double **dnewm,**doldm;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double *xp;
   for(i=1; i <=nlstate; i++){    double **gp, **gm;
     for(j=1; j <=nlstate+ndeath-1; j++){    double ***gradg, ***trgradg;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int theta;
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for(k=1; k<=ncovmodel;k++){    xp=vector(1,npar);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
         printf(" %le",delti3[i][j][k]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficparo," %le",delti3[i][j][k]);    
       }    fprintf(ficreseij,"# Health expectancies\n");
       fscanf(ficpar,"\n");    fprintf(ficreseij,"# Age");
       printf("\n");    for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"\n");      for(j=1; j<=nlstate;j++)
     }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   }    fprintf(ficreseij,"\n");
   delti=delti3[1][1];  
      if(estepm < stepm){
   /* Reads comments: lines beginning with '#' */      printf ("Problem %d lower than %d\n",estepm, stepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     fgets(line, MAXLINE, ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
     puts(line);     * This is mainly to measure the difference between two models: for example
     fputs(line,ficparo);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   ungetc(c,ficpar);     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   matcov=matrix(1,npar,1,npar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   for(i=1; i <=npar; i++){     * to compare the new estimate of Life expectancy with the same linear 
     fscanf(ficpar,"%s",&str);     * hypothesis. A more precise result, taking into account a more precise
     printf("%s",str);     * curvature will be obtained if estepm is as small as stepm. */
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    /* For example we decided to compute the life expectancy with the smallest unit */
       fscanf(ficpar," %le",&matcov[i][j]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       printf(" %.5le",matcov[i][j]);       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficparo," %.5le",matcov[i][j]);       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
     fscanf(ficpar,"\n");       and note for a fixed period like estepm months */
     printf("\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficparo,"\n");       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
   for(i=1; i <=npar; i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(j=i+1;j<=npar;j++)       results. So we changed our mind and took the option of the best precision.
       matcov[i][j]=matcov[j][i];    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("\n");  
     agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     /*-------- data file ----------*/      /* nhstepm age range expressed in number of stepm */
     if((ficres =fopen(fileres,"w"))==NULL) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       printf("Problem with resultfile: %s\n", fileres);goto end;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficres,"#%s\n",version);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if((fic=fopen(datafile,"r"))==NULL)    {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       printf("Problem with datafile: %s\n", datafile);goto end;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     n= lastobs;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     severity = vector(1,maxwav);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     outcome=imatrix(1,maxwav+1,1,n);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     num=ivector(1,n);   
     moisnais=vector(1,n);  
     annais=vector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     moisdc=vector(1,n);  
     andc=vector(1,n);      /* Computing Variances of health expectancies */
     agedc=vector(1,n);  
     cod=ivector(1,n);       for(theta=1; theta <=npar; theta++){
     weight=vector(1,n);        for(i=1; i<=npar; i++){ 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     mint=matrix(1,maxwav,1,n);        }
     anint=matrix(1,maxwav,1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     s=imatrix(1,maxwav+1,1,n);    
     adl=imatrix(1,maxwav+1,1,n);            cptj=0;
     tab=ivector(1,NCOVMAX);        for(j=1; j<= nlstate; j++){
     ncodemax=ivector(1,8);          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
     i=1;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     while (fgets(line, MAXLINE, fic) != NULL)    {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       if ((i >= firstobs) && (i <=lastobs)) {            }
                  }
         for (j=maxwav;j>=1;j--){        }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       
           strcpy(line,stra);       
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=npar; i++) 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        cptj=0;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            cptj=cptj+1;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for (j=ncov;j>=1;j--){            }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }        }
         num[i]=atol(stra);        for(j=1; j<= nlstate*nlstate; j++)
                  for(h=0; h<=nhstepm-1; h++){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          }
        } 
         i=i+1;     
       }  /* End theta */
     }  
     /* printf("ii=%d", ij);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   /* for (i=1; i<=imx; i++){          for(theta=1; theta <=npar; theta++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            trgradg[h][j][theta]=gradg[h][theta][j];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }       for(i=1;i<=nlstate*nlstate;i++)
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        for(j=1;j<=nlstate*nlstate;j++)
           varhe[i][j][(int)age] =0.;
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);       printf("%d|",(int)age);fflush(stdout);
   Tprod=ivector(1,15);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   Tvaraff=ivector(1,15);       for(h=0;h<=nhstepm-1;h++){
   Tvard=imatrix(1,15,1,2);        for(k=0;k<=nhstepm-1;k++){
   Tage=ivector(1,15);                matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   if (strlen(model) >1){          for(i=1;i<=nlstate*nlstate;i++)
     j=0, j1=0, k1=1, k2=1;            for(j=1;j<=nlstate*nlstate;j++)
     j=nbocc(model,'+');              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     j1=nbocc(model,'*');        }
     cptcovn=j+1;      }
     cptcovprod=j1;      /* Computing expectancies */
          for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++)
     strcpy(modelsav,model);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       printf("Error. Non available option model=%s ",model);            
       goto end;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
              }
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');      fprintf(ficreseij,"%3.0f",age );
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      cptj=0;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      for(i=1; i<=nlstate;i++)
       /*scanf("%d",i);*/        for(j=1; j<=nlstate;j++){
       if (strchr(strb,'*')) {          cptj++;
         cutv(strd,strc,strb,'*');          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         if (strcmp(strc,"age")==0) {        }
           cptcovprod--;      fprintf(ficreseij,"\n");
           cutv(strb,stre,strd,'V');     
           Tvar[i]=atoi(stre);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           cptcovage++;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
             Tage[cptcovage]=i;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             /*printf("stre=%s ", stre);*/      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else if (strcmp(strd,"age")==0) {    }
           cptcovprod--;    printf("\n");
           cutv(strb,stre,strc,'V');    fprintf(ficlog,"\n");
           Tvar[i]=atoi(stre);  
           cptcovage++;    free_vector(xp,1,npar);
           Tage[cptcovage]=i;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         else {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           cutv(strb,stre,strc,'V');  }
           Tvar[i]=ncov+k1;  
           cutv(strb,strc,strd,'V');  /************ Variance ******************/
           Tprod[k1]=i;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           Tvard[k1][1]=atoi(strc);  {
           Tvard[k1][2]=atoi(stre);    /* Variance of health expectancies */
           Tvar[cptcovn+k2]=Tvard[k1][1];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    /* double **newm;*/
           for (k=1; k<=lastobs;k++)    double **dnewm,**doldm;
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double **dnewmp,**doldmp;
           k1++;    int i, j, nhstepm, hstepm, h, nstepm ;
           k2=k2+2;    int k, cptcode;
         }    double *xp;
       }    double **gp, **gm;  /* for var eij */
       else {    double ***gradg, ***trgradg; /*for var eij */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double **gradgp, **trgradgp; /* for var p point j */
        /*  scanf("%d",i);*/    double *gpp, *gmp; /* for var p point j */
       cutv(strd,strc,strb,'V');    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       Tvar[i]=atoi(strc);    double ***p3mat;
       }    double age,agelim, hf;
       strcpy(modelsav,stra);      double ***mobaverage;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int theta;
         scanf("%d",i);*/    char digit[4];
     }    char digitp[25];
 }  
      char fileresprobmorprev[FILENAMELENGTH];
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);    if(popbased==1){
   scanf("%d ",i);*/      if(mobilav!=0)
     fclose(fic);        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     /*  if(mle==1){*/    }
     if (weightopt != 1) { /* Maximisation without weights*/    else 
       for(i=1;i<=n;i++) weight[i]=1.0;      strcpy(digitp,"-stablbased-");
     }  
     /*-calculation of age at interview from date of interview and age at death -*/    if (mobilav!=0) {
     agev=matrix(1,maxwav,1,imx);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
    for (i=1; i<=imx; i++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      for(m=2; (m<= maxwav); m++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      }
          anint[m][i]=9999;    }
          s[m][i]=-1;  
        }    strcpy(fileresprobmorprev,"prmorprev"); 
        sprintf(digit,"%-d",ij);
     for (i=1; i<=imx; i++)  {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for(m=1; (m<= maxwav); m++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         if(s[m][i] >0){    strcat(fileresprobmorprev,fileres);
           if (s[m][i] == nlstate+1) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             if(agedc[i]>0)      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               if(moisdc[i]!=99 && andc[i]!=9999)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               agev[m][i]=agedc[i];    }
             else {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               if (andc[i]!=9999){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               agev[m][i]=-1;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
               }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             }      fprintf(ficresprobmorprev," p.%-d SE",j);
           }      for(i=1; i<=nlstate;i++)
           else if(s[m][i] !=9){ /* Should no more exist */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    }  
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficresprobmorprev,"\n");
               agev[m][i]=1;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
             else if(agev[m][i] <agemin){      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
               agemin=agev[m][i];      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      exit(0);
             }    }
             else if(agev[m][i] >agemax){    else{
               agemax=agev[m][i];      fprintf(ficgp,"\n# Routine varevsij");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    }
             }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
             /*agev[m][i]=anint[m][i]-annais[i];*/      printf("Problem with html file: %s\n", optionfilehtm);
             /*   agev[m][i] = age[i]+2*m;*/      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
           }      exit(0);
           else { /* =9 */    }
             agev[m][i]=1;    else{
             s[m][i]=-1;      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           }      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         }    }
         else /*= 0 Unknown */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           agev[m][i]=1;  
       }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
        fprintf(ficresvij,"# Age");
     }    for(i=1; i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {      for(j=1; j<=nlstate;j++)
       for(m=1; (m<= maxwav); m++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
         if (s[m][i] > (nlstate+ndeath)) {    fprintf(ficresvij,"\n");
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
     }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     free_vector(severity,1,maxwav);    gpp=vector(nlstate+1,nlstate+ndeath);
     free_imatrix(outcome,1,maxwav+1,1,n);    gmp=vector(nlstate+1,nlstate+ndeath);
     free_vector(moisnais,1,n);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     free_vector(annais,1,n);    
     free_matrix(mint,1,maxwav,1,n);    if(estepm < stepm){
     free_matrix(anint,1,maxwav,1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
     free_vector(moisdc,1,n);    }
     free_vector(andc,1,n);    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     wav=ivector(1,imx);       nhstepm is the number of hstepm from age to agelim 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);       nstepm is the number of stepm from age to agelin. 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);       Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like k years */
     /* Concatenates waves */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       Tcode=ivector(1,100);       results. So we changed our mind and took the option of the best precision.
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    */
       ncodemax[1]=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    agelim = AGESUP;
          for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    codtab=imatrix(1,100,1,10);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    h=0;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    m=pow(2,cptcoveff);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
    for(k=1;k<=cptcoveff; k++){      gp=matrix(0,nhstepm,1,nlstate);
      for(i=1; i <=(m/pow(2,k));i++){      gm=matrix(0,nhstepm,1,nlstate);
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;      for(theta=1; theta <=npar; theta++){
            if (h>m) h=1;codtab[h][k]=j;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
          }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        }        }
      }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
    /*for(i=1; i <=m ;i++){          if(mobilav ==0){
      for(k=1; k <=cptcovn; k++){            for(i=1; i<=nlstate;i++)
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);              prlim[i][i]=probs[(int)age][i][ij];
      }          }else{ /* mobilav */ 
      printf("\n");            for(i=1; i<=nlstate;i++)
    }              prlim[i][i]=mobaverage[(int)age][i][ij];
    scanf("%d",i);*/          }
            }
    /* Calculates basic frequencies. Computes observed prevalence at single age    
        and prints on file fileres'p'. */        for(j=1; j<= nlstate; j++){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* This for computing probability of death (h=1 means
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */           computed over hstepm matrices product = hstepm*stepm months) 
                 as a weighted average of prlim.
     /* For Powell, parameters are in a vector p[] starting at p[1]        */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
     if(mle==1){        }    
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        /* end probability of death */
     }  
            for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     /*--------- results files --------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    jk=1;   
    fprintf(ficres,"# Parameters\n");        if (popbased==1) {
    printf("# Parameters\n");          if(mobilav ==0){
    for(i=1,jk=1; i <=nlstate; i++){            for(i=1; i<=nlstate;i++)
      for(k=1; k <=(nlstate+ndeath); k++){              prlim[i][i]=probs[(int)age][i][ij];
        if (k != i)          }else{ /* mobilav */ 
          {            for(i=1; i<=nlstate;i++)
            printf("%d%d ",i,k);              prlim[i][i]=mobaverage[(int)age][i][ij];
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);        for(j=1; j<= nlstate; j++){
              jk++;          for(h=0; h<=nhstepm; h++){
            }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
            printf("\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            fprintf(ficres,"\n");          }
          }        }
      }        /* This for computing probability of death (h=1 means
    }           computed over hstepm matrices product = hstepm*stepm months) 
  if(mle==1){           as a weighted average of prlim.
     /* Computing hessian and covariance matrix */        */
     ftolhess=ftol; /* Usually correct */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     hesscov(matcov, p, npar, delti, ftolhess, func);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
  }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficres,"# Scales\n");        }    
     printf("# Scales\n");        /* end probability of death */
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){        for(j=1; j<= nlstate; j++) /* vareij */
         if (j!=i) {          for(h=0; h<=nhstepm; h++){
           fprintf(ficres,"%1d%1d",i,j);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           printf("%1d%1d",i,j);          }
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             fprintf(ficres," %.5e",delti[jk]);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             jk++;        }
           }  
           printf("\n");      } /* End theta */
           fprintf(ficres,"\n");  
         }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }  
       }      for(h=0; h<=nhstepm; h++) /* veij */
            for(j=1; j<=nlstate;j++)
     k=1;          for(theta=1; theta <=npar; theta++)
     fprintf(ficres,"# Covariance\n");            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       /*  if (k>nlstate) k=1;        for(theta=1; theta <=npar; theta++)
       i1=(i-1)/(ncovmodel*nlstate)+1;          trgradgp[j][theta]=gradgp[theta][j];
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       printf("%3d",i);      for(i=1;i<=nlstate;i++)
       for(j=1; j<=i;j++){        for(j=1;j<=nlstate;j++)
         fprintf(ficres," %.5e",matcov[i][j]);          vareij[i][j][(int)age] =0.;
         printf(" %.5e",matcov[i][j]);  
       }      for(h=0;h<=nhstepm;h++){
       fprintf(ficres,"\n");        for(k=0;k<=nhstepm;k++){
       printf("\n");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       k++;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     }          for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
     while((c=getc(ficpar))=='#' && c!= EOF){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);      }
       puts(line);    
       fputs(line,ficparo);      /* pptj */
     }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     ungetc(c,ficpar);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
              varppt[j][i]=doldmp[j][i];
     if (fage <= 2) {      /* end ppptj */
       bage = agemin;      /*  x centered again */
       fage = agemax;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      if (popbased==1) {
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
 /*------------ gnuplot -------------*/        }else{ /* mobilav */ 
 chdir(pathcd);          for(i=1; i<=nlstate;i++)
   if((ficgp=fopen("graph.plt","w"))==NULL) {            prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("Problem with file graph.gp");goto end;        }
   }      }
 #ifdef windows               
   fprintf(ficgp,"cd \"%s\" \n",pathc);      /* This for computing probability of death (h=1 means
 #endif         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 m=pow(2,cptcoveff);         as a weighted average of prlim.
        */
  /* 1eme*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
    for (k1=1; k1<= m ; k1 ++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
 #ifdef windows      /* end probability of death */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  
 #endif      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 #ifdef unix      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 #endif        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficresprobmorprev,"\n");
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficresvij,"%.0f ",age );
     for (i=1; i<= nlstate ; i ++) {      for(i=1; i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<=nlstate;j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 }        }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficresvij,"\n");
      for (i=1; i<= nlstate ; i ++) {      free_matrix(gp,0,nhstepm,1,nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      free_matrix(gm,0,nhstepm,1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 }        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #ifdef unix    } /* End age */
 fprintf(ficgp,"\nset ter gif small size 400,300");    free_vector(gpp,nlstate+1,nlstate+ndeath);
 #endif    free_vector(gmp,nlstate+1,nlstate+ndeath);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
    }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   /*2 eme*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   for (k1=1; k1<= m ; k1 ++) {  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for (i=1; i<= nlstate+1 ; i ++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
       k=2*i;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 }    */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_vector(xp,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(doldm,1,nlstate,1,nlstate);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(dnewm,1,nlstate,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 }      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficgp,"\" t\"\" w l 0,");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (j=1; j<= nlstate+1 ; j ++) {    fclose(ficresprobmorprev);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fclose(ficgp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fclose(fichtm);
 }    }  
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  /************ Variance of prevlim ******************/
     }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  {
   }    /* Variance of prevalence limit */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /*3eme*/    double **newm;
     double **dnewm,**doldm;
   for (k1=1; k1<= m ; k1 ++) {    int i, j, nhstepm, hstepm;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int k, cptcode;
       k=2+nlstate*(cpt-1);    double *xp;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    double *gp, *gm;
       for (i=1; i< nlstate ; i ++) {    double **gradg, **trgradg;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    double age,agelim;
       }    int theta;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     
     }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   }    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
   /* CV preval stat */        fprintf(ficresvpl," %1d-%1d",i,i);
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficresvpl,"\n");
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;    xp=vector(1,npar);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    dnewm=matrix(1,nlstate,1,npar);
       for (i=1; i< nlstate ; i ++)    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    hstepm=1*YEARM; /* Every year of age */
          hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       l=3+(nlstate+ndeath)*cpt;    agelim = AGESUP;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for (i=1; i< nlstate ; i ++) {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         l=3+(nlstate+ndeath)*cpt;      if (stepm >= YEARM) hstepm=1;
         fprintf(ficgp,"+$%d",l+i+1);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       }      gradg=matrix(1,npar,1,nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        gp=vector(1,nlstate);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      gm=vector(1,nlstate);
     }  
   }        for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   /* proba elementaires */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       if (k != i) {        for(i=1;i<=nlstate;i++)
         for(j=1; j <=ncovmodel; j++){          gp[i] = prlim[i][i];
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      
           /*fprintf(ficgp,"%s",alph[1]);*/        for(i=1; i<=npar; i++) /* Computes gradient */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           jk++;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficgp,"\n");        for(i=1;i<=nlstate;i++)
         }          gm[i] = prlim[i][i];
       }  
     }        for(i=1;i<=nlstate;i++)
     }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      trgradg =matrix(1,nlstate,1,npar);
    i=1;  
    for(k2=1; k2<=nlstate; k2++) {      for(j=1; j<=nlstate;j++)
      k3=i;        for(theta=1; theta <=npar; theta++)
      for(k=1; k<=(nlstate+ndeath); k++) {          trgradg[j][theta]=gradg[theta][j];
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      for(i=1;i<=nlstate;i++)
 ij=1;        varpl[i][(int)age] =0.;
         for(j=3; j <=ncovmodel; j++) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(i=1;i<=nlstate;i++)
             ij++;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           }  
           else      fprintf(ficresvpl,"%.0f ",age );
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for(i=1; i<=nlstate;i++)
         }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           fprintf(ficgp,")/(1");      fprintf(ficresvpl,"\n");
              free_vector(gp,1,nlstate);
         for(k1=1; k1 <=nlstate; k1++){        free_vector(gm,1,nlstate);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      free_matrix(gradg,1,npar,1,nlstate);
 ij=1;      free_matrix(trgradg,1,nlstate,1,npar);
           for(j=3; j <=ncovmodel; j++){    } /* End age */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_vector(xp,1,npar);
             ij++;    free_matrix(doldm,1,nlstate,1,npar);
           }    free_matrix(dnewm,1,nlstate,1,nlstate);
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  }
           }  
           fprintf(ficgp,")");  /************ Variance of one-step probabilities  ******************/
         }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  {
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    int i, j=0,  i1, k1, l1, t, tj;
         i=i+ncovmodel;    int k2, l2, j1,  z1;
        }    int k=0,l, cptcode;
      }    int first=1, first1;
    }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    double **dnewm,**doldm;
   }    double *xp;
        double *gp, *gm;
   fclose(ficgp);    double **gradg, **trgradg;
        double **mu;
 chdir(path);    double age,agelim, cov[NCOVMAX];
     free_matrix(agev,1,maxwav,1,imx);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     free_ivector(wav,1,imx);    int theta;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    char fileresprob[FILENAMELENGTH];
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    char fileresprobcov[FILENAMELENGTH];
        char fileresprobcor[FILENAMELENGTH];
     free_imatrix(s,1,maxwav+1,1,n);  
        double ***varpij;
      
     free_ivector(num,1,n);    strcpy(fileresprob,"prob"); 
     free_vector(agedc,1,n);    strcat(fileresprob,fileres);
     free_vector(weight,1,n);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      printf("Problem with resultfile: %s\n", fileresprob);
     fclose(ficparo);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     fclose(ficres);    }
     /*  }*/    strcpy(fileresprobcov,"probcov"); 
        strcat(fileresprobcov,fileres);
    /*________fin mle=1_________*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
     /* No more information from the sample is required now */    strcpy(fileresprobcor,"probcor"); 
   /* Reads comments: lines beginning with '#' */    strcat(fileresprobcor,fileres);
   while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobcor);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     puts(line);    }
     fputs(line,ficparo);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   ungetc(c,ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    
 /*--------- index.htm --------*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
   strcpy(optionfilehtm,optionfile);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   strcat(optionfilehtm,".htm");    fprintf(ficresprobcov,"# Age");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     printf("Problem with %s \n",optionfilehtm);goto end;    fprintf(ficresprobcov,"# Age");
   }  
   
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">    for(i=1; i<=nlstate;i++)
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      for(j=1; j<=(nlstate+ndeath);j++){
 Total number of observations=%d <br>        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>        fprintf(ficresprobcov," p%1d-%1d ",i,j);
 <hr  size=\"2\" color=\"#EC5E5E\">        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 <li>Outputs files<br><br>\n      }  
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n   /* fprintf(ficresprob,"\n");
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    fprintf(ficresprobcov,"\n");
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    fprintf(ficresprobcor,"\n");
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>   */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>   xp=vector(1,npar);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>    first=1;
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
  fprintf(fichtm," <li>Graphs</li><p>");      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
  m=cptcoveff;    }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    else{
       fprintf(ficgp,"\n# Routine varprob");
  j1=0;    }
  for(k1=1; k1<=m;k1++){    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
    for(i1=1; i1<=ncodemax[k1];i1++){      printf("Problem with html file: %s\n", optionfilehtm);
        j1++;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
        if (cptcovn > 0) {      exit(0);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
          for (cpt=1; cpt<=cptcoveff;cpt++)    else{
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      fprintf(fichtm,"\n");
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
        for(cpt=1; cpt<nlstate;cpt++){      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    }
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {    cov[1]=1;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    tj=cptcoveff;
 interval) in state (%d): v%s%d%d.gif <br>    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      j1=0;
      }    for(t=1; t<=tj;t++){
      for(cpt=1; cpt<=nlstate;cpt++) {      for(i1=1; i1<=ncodemax[t];i1++){ 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        j1++;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        if  (cptcovn>0) {
      }          fprintf(ficresprob, "\n#********** Variable "); 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 health expectancies in states (1) and (2): e%s%d.gif<br>          fprintf(ficresprob, "**********\n#\n");
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          fprintf(ficresprobcov, "\n#********** Variable "); 
 fprintf(fichtm,"\n</body>");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    }          fprintf(ficresprobcov, "**********\n#\n");
  }          
 fclose(fichtm);          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*--------------- Prevalence limit --------------*/          fprintf(ficgp, "**********\n#\n");
            
   strcpy(filerespl,"pl");          
   strcat(filerespl,fileres);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   }          
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          fprintf(ficresprobcor, "\n#********** Variable ");    
   fprintf(ficrespl,"#Prevalence limit\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficrespl,"#Age ");          fprintf(ficresprobcor, "**********\n#");    
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }
   fprintf(ficrespl,"\n");        
          for (age=bage; age<=fage; age ++){ 
   prlim=matrix(1,nlstate,1,nlstate);          cov[2]=age;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (k=1; k<=cptcovn;k++) {
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for (k=1; k<=cptcovprod;k++)
   k=0;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   agebase=agemin;          
   agelim=agemax;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   ftolpl=1.e-10;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   i1=cptcoveff;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   if (cptcovn < 1){i1=1;}          gm=vector(1,(nlstate)*(nlstate+ndeath));
       
   for(cptcov=1;cptcov<=i1;cptcov++){          for(theta=1; theta <=npar; theta++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(i=1; i<=npar; i++)
         k=k+1;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            
         fprintf(ficrespl,"\n#******");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         for(j=1;j<=cptcoveff;j++)            
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            k=0;
         fprintf(ficrespl,"******\n");            for(i=1; i<= (nlstate); i++){
                      for(j=1; j<=(nlstate+ndeath);j++){
         for (age=agebase; age<=agelim; age++){                k=k+1;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                gp[k]=pmmij[i][j];
           fprintf(ficrespl,"%.0f",age );              }
           for(i=1; i<=nlstate;i++)            }
           fprintf(ficrespl," %.5f", prlim[i][i]);            
           fprintf(ficrespl,"\n");            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       }      
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fclose(ficrespl);            k=0;
             for(i=1; i<=(nlstate); i++){
   /*------------- h Pij x at various ages ------------*/              for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                gm[k]=pmmij[i][j];
   if((ficrespij=fopen(filerespij,"w"))==NULL) {              }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            }
   }       
   printf("Computing pij: result on file '%s' \n", filerespij);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   agelim=AGESUP;            for(theta=1; theta <=npar; theta++)
   hstepm=stepsize*YEARM; /* Every year of age */              trgradg[j][theta]=gradg[theta][j];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          
            matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   k=0;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   for(cptcov=1;cptcov<=i1;cptcov++){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       k=k+1;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficrespij,"\n#****** ");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          pmij(pmmij,cov,ncovmodel,x,nlstate);
         fprintf(ficrespij,"******\n");          
                  k=0;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for(i=1; i<=(nlstate); i++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for(j=1; j<=(nlstate+ndeath);j++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              k=k+1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              mu[k][(int) age]=pmmij[i][j];
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           fprintf(ficrespij,"# Age");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           for(i=1; i<=nlstate;i++)            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             for(j=1; j<=nlstate+ndeath;j++)              varpij[i][j][(int)age] = doldm[i][j];
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");          /*printf("\n%d ",(int)age);
           for (h=0; h<=nhstepm; h++){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             for(i=1; i<=nlstate;i++)            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               for(j=1; j<=nlstate+ndeath;j++)            }*/
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");          fprintf(ficresprob,"\n%d ",(int)age);
           }          fprintf(ficresprobcov,"\n%d ",(int)age);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresprobcor,"\n%d ",(int)age);
           fprintf(ficrespij,"\n");  
         }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   fclose(ficrespij);          i=0;
           for (k=1; k<=(nlstate);k++){
   /*---------- Forecasting ------------------*/            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
   strcpy(fileresf,"f");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   strcat(fileresf,fileres);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   if((ficresf=fopen(fileresf,"w"))==NULL) {              for (j=1; j<=i;j++){
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   printf("Computing forecasting: result on file '%s' \n", fileresf);              }
             }
   /* Mobile average */          }/* end of loop for state */
         } /* end of loop for age */
   /* for (agedeb=bage; agedeb<=fage; agedeb++)  
     for (i=1; i<=nlstate;i++)        /* Confidence intervalle of pij  */
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++)        /*
       printf("%f %d i=%d j1=%d\n", probs[(int)agedeb][i][cptcod],(int) agedeb,i,cptcod);*/          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   if (mobilav==1) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       for (i=1; i<=nlstate;i++)        */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
            first1=1;
     for (agedeb=bage+4; agedeb<=fage; agedeb++){        for (k2=1; k2<=(nlstate);k2++){
       for (i=1; i<=nlstate;i++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if(l2==k2) continue;
           for (cpt=0;cpt<=4;cpt++){            j=(k2-1)*(nlstate+ndeath)+l2;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            for (k1=1; k1<=(nlstate);k1++){
           }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                if(l1==k1) continue;
         }                i=(k1-1)*(nlstate+ndeath)+l1;
       }                if(i<=j) continue;
     }                  for (age=bage; age<=fage; age ++){ 
   }                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   if (stepm<=24) stepsize=2;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
   agelim=AGESUP;                    mu2=mu[j][(int) age]/stepm*YEARM;
   hstepm=stepsize*YEARM; /* Every year of age */                    c12=cv12/sqrt(v1*v2);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                    /* Computing eigen value of matrix of covariance */
   hstepm=12;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    k=0;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   for(cptcov=1;cptcov<=i1;cptcov++){                    /* Eigen vectors */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       k=k+1;                    /*v21=sqrt(1.-v11*v11); *//* error */
       fprintf(ficresf,"\n#****** ");                    v21=(lc1-v1)/cv12*v11;
       for(j=1;j<=cptcoveff;j++) {                    v12=-v21;
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v22=v11;
       }                    tnalp=v21/v11;
                          if(first1==1){
       fprintf(ficresf,"******\n");                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");                    }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
       for (agedeb=fage; agedeb>=bage; agedeb--){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        if (mobilav==1) {                    if(first==1){
         for(j=1; j<=nlstate;j++)                      first=0;
           fprintf(ficresf,"%.5f ",mobaverage[(int)agedeb][j][cptcod]);                      fprintf(ficgp,"\nset parametric;unset label");
         }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         else {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           for(j=1; j<=nlstate;j++)                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
           fprintf(ficresf,"%.5f ",probs[(int)agedeb][j][cptcod]);                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
         }                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                              fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
       for(j=1; j<=ndeath;j++) fprintf(ficresf,"0.");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       for (cpt=1; cpt<=NCOVMAX;cpt++)                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                      mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    }else{
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                      first=0;
         /*printf("stepm=%d hstepm=%d nhstepm=%d \n",stepm,hstepm,nhstepm);*/                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         oldm=oldms;savm=savms;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         for (h=0; h<=nhstepm; h++){                    }/* if first */
                          } /* age mod 5 */
           if (h*hstepm/YEARM*stepm==cpt)                } /* end loop age */
  fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                          first=1;
           for(j=1; j<=nlstate+ndeath;j++) {              } /*l12 */
             kk1=0.;            } /* k12 */
             for(i=1; i<=nlstate;i++) {                  } /*l1 */
               if (mobilav==1)        }/* k1 */
               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];      } /* loop covariates */
               else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];    }
             }        free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
             if (h*hstepm/YEARM*stepm==cpt) fprintf(ficresf," %.5f ", kk1);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           }    free_vector(xp,1,npar);
         }    fclose(ficresprob);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fclose(ficresprobcov);
       }    fclose(ficresprobcor);
     }    fclose(ficgp);
   }    fclose(fichtm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   fclose(ficresf);  
   /*---------- Health expectancies and variances ------------*/  
   /******************* Printing html file ***********/
   strcpy(filerest,"t");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   strcat(filerest,fileres);                    int lastpass, int stepm, int weightopt, char model[],\
   if((ficrest=fopen(filerest,"w"))==NULL) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                    int popforecast, int estepm ,\
   }                    double jprev1, double mprev1,double anprev1, \
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   strcpy(filerese,"e");    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
   strcat(filerese,fileres);      printf("Problem with %s \n",optionfilehtm), exit(0);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
  strcpy(fileresv,"v");   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   strcat(fileresv,fileres);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   - Life expectancies by age and initial health status (estepm=%2d months): 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
   }    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){   m=cptcoveff;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       k=k+1;  
       fprintf(ficrest,"\n#****** ");   jj1=0;
       for(j=1;j<=cptcoveff;j++)   for(k1=1; k1<=m;k1++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficrest,"******\n");       jj1++;
        if (cptcovn > 0) {
       fprintf(ficreseij,"\n#****** ");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       for(j=1;j<=cptcoveff;j++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficreseij,"******\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
       fprintf(ficresvij,"\n#****** ");       /* Pij */
       for(j=1;j<=cptcoveff;j++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
       fprintf(ficresvij,"******\n");       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
       oldm=oldms;savm=savms;         /* Stable prevalence in each health state */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);           for(cpt=1; cpt<nlstate;cpt++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
       oldm=oldms;savm=savms;  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);         }
             for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       fprintf(ficrest,"\n");       }
               fprintf(fichtm,"\n<br>- Total life expectancy by age and
       hf=1;  health expectancies in states (1) and (2): e%s%d.png<br>
       if (stepm >= YEARM) hf=stepm/YEARM;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
       epj=vector(1,nlstate+1);     } /* end i1 */
       for(age=bage; age <=fage ;age++){   }/* End k1 */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   fprintf(fichtm,"</ul>");
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
         }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
           - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
         fprintf(ficrest," %.0f",age);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
           }   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
           epj[nlstate+1] +=epj[j];  
         }  /*  if(popforecast==1) fprintf(fichtm,"\n */
         for(i=1, vepp=0.;i <=nlstate;i++)  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           for(j=1;j <=nlstate;j++)  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
             vepp += vareij[i][j][(int)age];  /*      <br>",fileres,fileres,fileres,fileres); */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  /*  else  */
         for(j=1;j <=nlstate;j++){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         }  
         fprintf(ficrest,"\n");   m=cptcoveff;
       }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }  
   }   jj1=0;
           for(k1=1; k1<=m;k1++){
             for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
  fclose(ficreseij);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  fclose(ficresvij);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   fclose(ficrest);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   fclose(ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   free_vector(epj,1,nlstate+1);       }
   /*  scanf("%d ",i); */       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident
   /*------- Variance limit prevalence------*/    interval) in state (%d): v%s%d%d.png <br>
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
 strcpy(fileresvpl,"vpl");       }
   strcat(fileresvpl,fileres);     } /* end i1 */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   }/* End k1 */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   fprintf(fichtm,"</ul>");
     exit(0);  fclose(fichtm);
   }  }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
   /******************* Gnuplot file **************/
  k=0;  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      k=k+1;    int ng;
      fprintf(ficresvpl,"\n#****** ");    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
      for(j=1;j<=cptcoveff;j++)      printf("Problem with file %s",optionfilegnuplot);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
      fprintf(ficresvpl,"******\n");    }
        
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    /*#ifdef windows */
      oldm=oldms;savm=savms;      fprintf(ficgp,"cd \"%s\" \n",pathc);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      /*#endif */
    }  m=pow(2,cptcoveff);
  }    
    /* 1eme*/
   fclose(ficresvpl);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
   /*---------- End : free ----------------*/       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       for (i=1; i<= nlstate ; i ++) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       for (i=1; i<= nlstate ; i ++) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
   free_matrix(matcov,1,npar,1,npar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
   free_vector(delti,1,npar);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   printf("End of Imach\n");       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */     }
      }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    /*2 eme*/
   /*printf("Total time was %d uSec.\n", total_usecs);*/    
   /*------ End -----------*/    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
  end:      
 #ifdef windows      for (i=1; i<= nlstate+1 ; i ++) {
  chdir(pathcd);        k=2*i;
 #endif        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
  system("..\\gp37mgw\\wgnuplot graph.plt");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
 #ifdef windows        }   
   while (z[0] != 'q') {        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     chdir(pathcd);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
     scanf("%s",z);        for (j=1; j<= nlstate+1 ; j ++) {
     if (z[0] == 'c') system("./imach");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     else if (z[0] == 'e') {          else fprintf(ficgp," \%%*lf (\%%*lf)");
       chdir(path);        }   
       system(optionfilehtm);        fprintf(ficgp,"\" t\"\" w l 0,");
     }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
     else if (z[0] == 'q') exit(0);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 #endif          else fprintf(ficgp," \%%*lf (\%%*lf)");
 }        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i<= nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.14  
changed lines
  Added in v.1.81


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>