Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.151

version 1.41.2.2, 2003/06/13 07:45:28 version 1.151, 2014/06/18 16:43:30
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.151  2014/06/18 16:43:30  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.150  2014/06/18 16:42:35  brouard
   first survey ("cross") where individuals from different ages are    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   interviewed on their health status or degree of disability (in the    Author: brouard
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.149  2014/06/18 15:51:14  brouard
   (if any) in individual health status.  Health expectancies are    Summary: Some fixes in parameter files errors
   computed from the time spent in each health state according to a    Author: Nicolas Brouard
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.148  2014/06/17 17:38:48  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: Nothing new
   probability to be observed in state j at the second wave    Author: Brouard
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Just a new packaging for OS/X version 0.98nS
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.147  2014/06/16 10:33:11  brouard
   where the markup *Covariates have to be included here again* invites    *** empty log message ***
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
   The advantage of this computer programme, compared to a simple    Author: Brouard
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Merge, before building revised version.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
   hPijx is the probability to be observed in state i at age x+h    Author: Nicolas Brouard
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Lot of changes in order to output the results with some covariates
   states. This elementary transition (by month or quarter trimester,    After the Edimburgh REVES conference 2014, it seems mandatory to
   semester or year) is model as a multinomial logistic.  The hPx    improve the code.
   matrix is simply the matrix product of nh*stepm elementary matrices    No more memory valgrind error but a lot has to be done in order to
   and the contribution of each individual to the likelihood is simply    continue the work of splitting the code into subroutines.
   hPijx.    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
   Also this programme outputs the covariance matrix of the parameters but also    the source code.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.143  2014/01/26 09:45:38  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   from the European Union.    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.142  2014/01/26 03:57:36  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   **********************************************************************/  
      * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <math.h>  
 #include <stdio.h>    Revision 1.141  2014/01/26 02:42:01  brouard
 #include <stdlib.h>    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <unistd.h>  
     Revision 1.140  2011/09/02 10:37:54  brouard
 #define MAXLINE 256    Summary: times.h is ok with mingw32 now.
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.139  2010/06/14 07:50:17  brouard
 #define FILENAMELENGTH 80    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 /*#define DEBUG*/    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
 /*#define windows*/    Revision 1.138  2010/04/30 18:19:40  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    *** empty log message ***
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.137  2010/04/29 18:11:38  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Checking covariates for more complex models
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    than V1+V2. A lot of change to be done. Unstable.
   
 #define NINTERVMAX 8    Revision 1.136  2010/04/26 20:30:53  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): merging some libgsl code. Fixing computation
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    of likelione (using inter/intrapolation if mle = 0) in order to
 #define NCOVMAX 8 /* Maximum number of covariates */    get same likelihood as if mle=1.
 #define MAXN 20000    Some cleaning of code and comments added.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.135  2009/10/29 15:33:14  brouard
 #define AGEBASE 40    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
 int erreur; /* Error number */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.133  2009/07/06 10:21:25  brouard
 int npar=NPARMAX;    just nforces
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.132  2009/07/06 08:22:05  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Many tings
 int popbased=0;  
     Revision 1.131  2009/06/20 16:22:47  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Some dimensions resccaled
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.130  2009/05/26 06:44:34  brouard
 int mle, weightopt;    (Module): Max Covariate is now set to 20 instead of 8. A
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    lot of cleaning with variables initialized to 0. Trying to make
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.129  2007/08/31 13:49:27  lievre
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.128  2006/06/30 13:02:05  brouard
 FILE *ficreseij;    (Module): Clarifications on computing e.j
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.127  2006/04/28 18:11:50  brouard
   char fileresv[FILENAMELENGTH];    (Module): Yes the sum of survivors was wrong since
  FILE  *ficresvpl;    imach-114 because nhstepm was no more computed in the age
   char fileresvpl[FILENAMELENGTH];    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 #define NR_END 1    compute health expectancies (without variances) in a first step
 #define FREE_ARG char*    and then all the health expectancies with variances or standard
 #define FTOL 1.0e-10    deviation (needs data from the Hessian matrices) which slows the
     computation.
 #define NRANSI    In the future we should be able to stop the program is only health
 #define ITMAX 200    expectancies and graph are needed without standard deviations.
   
 #define TOL 2.0e-4    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
 #define CGOLD 0.3819660    imach-114 because nhstepm was no more computed in the age
 #define ZEPS 1.0e-10    loop. Now we define nhstepma in the age loop.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Version 0.98h
   
 #define GOLD 1.618034    Revision 1.125  2006/04/04 15:20:31  lievre
 #define GLIMIT 100.0    Errors in calculation of health expectancies. Age was not initialized.
 #define TINY 1.0e-20    Forecasting file added.
   
 static double maxarg1,maxarg2;    Revision 1.124  2006/03/22 17:13:53  lievre
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    The log-likelihood is printed in the log file
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.123  2006/03/20 10:52:43  brouard
 #define rint(a) floor(a+0.5)    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    * imach.c (Module): Weights can have a decimal point as for
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 int imx;    Modification of warning when the covariates values are not 0 or
 int stepm;    1.
 /* Stepm, step in month: minimum step interpolation*/    Version 0.98g
   
 int estepm;    Revision 1.122  2006/03/20 09:45:41  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 int m,nb;    otherwise the weight is truncated).
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Modification of warning when the covariates values are not 0 or
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    1.
 double **pmmij, ***probs, ***mobaverage;    Version 0.98g
 double dateintmean=0;  
     Revision 1.121  2006/03/16 17:45:01  lievre
 double *weight;    * imach.c (Module): Comments concerning covariates added
 int **s; /* Status */  
 double *agedc, **covar, idx;    * imach.c (Module): refinements in the computation of lli if
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 /**************** split *************************/    status=-2 in order to have more reliable computation if stepm is
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    not 1 month. Version 0.98f
 {  
    char *s;                             /* pointer */    Revision 1.119  2006/03/15 17:42:26  brouard
    int  l1, l2;                         /* length counters */    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.118  2006/03/14 18:20:07  brouard
 #ifdef windows    (Module): varevsij Comments added explaining the second
    s = strrchr( path, '\\' );           /* find last / */    table of variances if popbased=1 .
 #else    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    s = strrchr( path, '/' );            /* find last / */    (Module): Function pstamp added
 #endif    (Module): Version 0.98d
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.117  2006/03/14 17:16:22  brouard
       extern char       *getwd( );    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
       if ( getwd( dirc ) == NULL ) {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #else    (Module): Function pstamp added
       extern char       *getcwd( );    (Module): Version 0.98d
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.116  2006/03/06 10:29:27  brouard
 #endif    (Module): Variance-covariance wrong links and
          return( GLOCK_ERROR_GETCWD );    varian-covariance of ej. is needed (Saito).
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.115  2006/02/27 12:17:45  brouard
    } else {                             /* strip direcotry from path */    (Module): One freematrix added in mlikeli! 0.98c
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.114  2006/02/26 12:57:58  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Some improvements in processing parameter
       strcpy( name, s );                /* save file name */    filename with strsep.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.113  2006/02/24 14:20:24  brouard
    }    (Module): Memory leaks checks with valgrind and:
    l1 = strlen( dirc );                 /* length of directory */    datafile was not closed, some imatrix were not freed and on matrix
 #ifdef windows    allocation too.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.112  2006/01/30 09:55:26  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.111  2006/01/25 20:38:18  brouard
    s++;    (Module): Lots of cleaning and bugs added (Gompertz)
    strcpy(ext,s);                       /* save extension */    (Module): Comments can be added in data file. Missing date values
    l1= strlen( name);    can be a simple dot '.'.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.110  2006/01/25 00:51:50  brouard
    finame[l1-l2]= 0;    (Module): Lots of cleaning and bugs added (Gompertz)
    return( 0 );                         /* we're done */  
 }    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
   
 /******************************************/    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 void replace(char *s, char*t)    To be fixed
 {  
   int i;    Revision 1.107  2006/01/19 16:20:37  brouard
   int lg=20;    Test existence of gnuplot in imach path
   i=0;  
   lg=strlen(t);    Revision 1.106  2006/01/19 13:24:36  brouard
   for(i=0; i<= lg; i++) {    Some cleaning and links added in html output
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.105  2006/01/05 20:23:19  lievre
   }    *** empty log message ***
 }  
     Revision 1.104  2005/09/30 16:11:43  lievre
 int nbocc(char *s, char occ)    (Module): sump fixed, loop imx fixed, and simplifications.
 {    (Module): If the status is missing at the last wave but we know
   int i,j=0;    that the person is alive, then we can code his/her status as -2
   int lg=20;    (instead of missing=-1 in earlier versions) and his/her
   i=0;    contributions to the likelihood is 1 - Prob of dying from last
   lg=strlen(s);    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   for(i=0; i<= lg; i++) {    the healthy state at last known wave). Version is 0.98
   if  (s[i] == occ ) j++;  
   }    Revision 1.103  2005/09/30 15:54:49  lievre
   return j;    (Module): sump fixed, loop imx fixed, and simplifications.
 }  
     Revision 1.102  2004/09/15 17:31:30  brouard
 void cutv(char *u,char *v, char*t, char occ)    Add the possibility to read data file including tab characters.
 {  
   int i,lg,j,p=0;    Revision 1.101  2004/09/15 10:38:38  brouard
   i=0;    Fix on curr_time
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.100  2004/07/12 18:29:06  brouard
   }    Add version for Mac OS X. Just define UNIX in Makefile
   
   lg=strlen(t);    Revision 1.99  2004/06/05 08:57:40  brouard
   for(j=0; j<p; j++) {    *** empty log message ***
     (u[j] = t[j]);  
   }    Revision 1.98  2004/05/16 15:05:56  brouard
      u[p]='\0';    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
    for(j=0; j<= lg; j++) {    state at each age, but using a Gompertz model: log u =a + b*age .
     if (j>=(p+1))(v[j-p-1] = t[j]);    This is the basic analysis of mortality and should be done before any
   }    other analysis, in order to test if the mortality estimated from the
 }    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 /********************** nrerror ********************/  
     The same imach parameter file can be used but the option for mle should be -3.
 void nrerror(char error_text[])  
 {    Agnès, who wrote this part of the code, tried to keep most of the
   fprintf(stderr,"ERREUR ...\n");    former routines in order to include the new code within the former code.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    The output is very simple: only an estimate of the intercept and of
 }    the slope with 95% confident intervals.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Current limitations:
 {    A) Even if you enter covariates, i.e. with the
   double *v;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    B) There is no computation of Life Expectancy nor Life Table.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.97  2004/02/20 13:25:42  lievre
 }    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.96  2003/07/15 15:38:55  brouard
 {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   free((FREE_ARG)(v+nl-NR_END));    rewritten within the same printf. Workaround: many printfs.
 }  
     Revision 1.95  2003/07/08 07:54:34  brouard
 /************************ivector *******************************/    * imach.c (Repository):
 int *ivector(long nl,long nh)    (Repository): Using imachwizard code to output a more meaningful covariance
 {    matrix (cov(a12,c31) instead of numbers.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.94  2003/06/27 13:00:02  brouard
   if (!v) nrerror("allocation failure in ivector");    Just cleaning
   return v-nl+NR_END;  
 }    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /******************free ivector **************************/    exist so I changed back to asctime which exists.
 void free_ivector(int *v, long nl, long nh)    (Module): Version 0.96b
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.91  2003/06/25 15:30:29  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    * imach.c (Repository): Duplicated warning errors corrected.
 {    (Repository): Elapsed time after each iteration is now output. It
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    helps to forecast when convergence will be reached. Elapsed time
   int **m;    is stamped in powell.  We created a new html file for the graphs
      concerning matrix of covariance. It has extension -cov.htm.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.90  2003/06/24 12:34:15  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Some bugs corrected for windows. Also, when
   m += NR_END;    mle=-1 a template is output in file "or"mypar.txt with the design
   m -= nrl;    of the covariance matrix to be input.
    
      Revision 1.89  2003/06/24 12:30:52  brouard
   /* allocate rows and set pointers to them */    (Module): Some bugs corrected for windows. Also, when
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    of the covariance matrix to be input.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.88  2003/06/23 17:54:56  brouard
      * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.87  2003/06/18 12:26:01  brouard
   /* return pointer to array of pointers to rows */    Version 0.96
   return m;  
 }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 /****************** free_imatrix *************************/    routine fileappend.
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;    Revision 1.85  2003/06/17 13:12:43  brouard
       long nch,ncl,nrh,nrl;    * imach.c (Repository): Check when date of death was earlier that
      /* free an int matrix allocated by imatrix() */    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    was wrong (infinity). We still send an "Error" but patch by
   free((FREE_ARG) (m+nrl-NR_END));    assuming that the date of death was just one stepm after the
 }    interview.
     (Repository): Because some people have very long ID (first column)
 /******************* matrix *******************************/    we changed int to long in num[] and we added a new lvector for
 double **matrix(long nrl, long nrh, long ncl, long nch)    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Repository): No more line truncation errors.
   double **m;  
     Revision 1.84  2003/06/13 21:44:43  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    * imach.c (Repository): Replace "freqsummary" at a correct
   if (!m) nrerror("allocation failure 1 in matrix()");    place. It differs from routine "prevalence" which may be called
   m += NR_END;    many times. Probs is memory consuming and must be used with
   m -= nrl;    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.83  2003/06/10 13:39:11  lievre
   m[nrl] += NR_END;    *** empty log message ***
   m[nrl] -= ncl;  
     Revision 1.82  2003/06/05 15:57:20  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Add log in  imach.c and  fullversion number is now printed.
   return m;  
 }  */
   /*
 /*************************free matrix ************************/     Interpolated Markov Chain
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Short summary of the programme:
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    
   free((FREE_ARG)(m+nrl-NR_END));    This program computes Healthy Life Expectancies from
 }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 /******************* ma3x *******************************/    interviewed on their health status or degree of disability (in the
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    (if any) in individual health status.  Health expectancies are
   double ***m;    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Maximum Likelihood of the parameters involved in the model.  The
   if (!m) nrerror("allocation failure 1 in matrix()");    simplest model is the multinomial logistic model where pij is the
   m += NR_END;    probability to be observed in state j at the second wave
   m -= nrl;    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    'age' is age and 'sex' is a covariate. If you want to have a more
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    complex model than "constant and age", you should modify the program
   m[nrl] += NR_END;    where the markup *Covariates have to be included here again* invites
   m[nrl] -= ncl;    you to do it.  More covariates you add, slower the
     convergence.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     The advantage of this computer programme, compared to a simple
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    multinomial logistic model, is clear when the delay between waves is not
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    identical for each individual. Also, if a individual missed an
   m[nrl][ncl] += NR_END;    intermediate interview, the information is lost, but taken into
   m[nrl][ncl] -= nll;    account using an interpolation or extrapolation.  
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   for (i=nrl+1; i<=nrh; i++) {    split into an exact number (nh*stepm) of unobserved intermediate
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    states. This elementary transition (by month, quarter,
     for (j=ncl+1; j<=nch; j++)    semester or year) is modelled as a multinomial logistic.  The hPx
       m[i][j]=m[i][j-1]+nlay;    matrix is simply the matrix product of nh*stepm elementary matrices
   }    and the contribution of each individual to the likelihood is simply
   return m;    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /*************************free ma3x ************************/    of the life expectancies. It also computes the period (stable) prevalence. 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));             Institut national d'études démographiques, Paris.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    This software have been partly granted by Euro-REVES, a concerted action
   free((FREE_ARG)(m+nrl-NR_END));    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /***************** f1dim *************************/    can be accessed at http://euroreves.ined.fr/imach .
 extern int ncom;  
 extern double *pcom,*xicom;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 extern double (*nrfunc)(double []);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
 double f1dim(double x)    **********************************************************************/
 {  /*
   int j;    main
   double f;    read parameterfile
   double *xt;    read datafile
      concatwav
   xt=vector(1,ncom);    freqsummary
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if (mle >= 1)
   f=(*nrfunc)(xt);      mlikeli
   free_vector(xt,1,ncom);    print results files
   return f;    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /*****************brent *************************/        begin-prev-date,...
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    open gnuplot file
 {    open html file
   int iter;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   double a,b,d,etemp;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   double fu,fv,fw,fx;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   double ftemp;      freexexit2 possible for memory heap.
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    h Pij x                         | pij_nom  ficrestpij
       # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   a=(ax < cx ? ax : cx);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   b=(ax > cx ? ax : cx);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   for (iter=1;iter<=ITMAX;iter++) {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     xm=0.5*(a+b);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     printf(".");fflush(stdout);  
 #ifdef DEBUG    forecasting if prevfcast==1 prevforecast call prevalence()
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    health expectancies
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Variance-covariance of DFLE
 #endif    prevalence()
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     movingaverage()
       *xmin=x;    varevsij() 
       return fx;    if popbased==1 varevsij(,popbased)
     }    total life expectancies
     ftemp=fu;    Variance of period (stable) prevalence
     if (fabs(e) > tol1) {   end
       r=(x-w)*(fx-fv);  */
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;   
       q=fabs(q);  #include <math.h>
       etemp=e;  #include <stdio.h>
       e=d;  #include <stdlib.h>
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #include <string.h>
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <unistd.h>
       else {  
         d=p/q;  #include <limits.h>
         u=x+d;  #include <sys/types.h>
         if (u-a < tol2 || b-u < tol2)  #include <sys/stat.h>
           d=SIGN(tol1,xm-x);  #include <errno.h>
       }  extern int errno;
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #ifdef LINUX
     }  #include <time.h>
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #include "timeval.h"
     fu=(*f)(u);  #else
     if (fu <= fx) {  #include <sys/time.h>
       if (u >= x) a=x; else b=x;  #endif
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  #ifdef GSL
         } else {  #include <gsl/gsl_errno.h>
           if (u < x) a=u; else b=u;  #include <gsl/gsl_multimin.h>
           if (fu <= fw || w == x) {  #endif
             v=w;  
             w=u;  /* #include <libintl.h> */
             fv=fw;  /* #define _(String) gettext (String) */
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
             v=u;  
             fv=fu;  #define GNUPLOTPROGRAM "gnuplot"
           }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
         }  #define FILENAMELENGTH 132
   }  
   nrerror("Too many iterations in brent");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   *xmin=x;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   return fx;  
 }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 /****************** mnbrak ***********************/  
   #define NINTERVMAX 8
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
             double (*func)(double))  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   double ulim,u,r,q, dum;  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   double fu;  #define MAXN 20000
    #define YEARM 12. /**< Number of months per year */
   *fa=(*func)(*ax);  #define AGESUP 130
   *fb=(*func)(*bx);  #define AGEBASE 40
   if (*fb > *fa) {  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
     SHFT(dum,*ax,*bx,dum)  #ifdef UNIX
       SHFT(dum,*fb,*fa,dum)  #define DIRSEPARATOR '/'
       }  #define CHARSEPARATOR "/"
   *cx=(*bx)+GOLD*(*bx-*ax);  #define ODIRSEPARATOR '\\'
   *fc=(*func)(*cx);  #else
   while (*fb > *fc) {  #define DIRSEPARATOR '\\'
     r=(*bx-*ax)*(*fb-*fc);  #define CHARSEPARATOR "\\"
     q=(*bx-*cx)*(*fb-*fa);  #define ODIRSEPARATOR '/'
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #endif
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /* $Id$ */
     if ((*bx-u)*(u-*cx) > 0.0) {  /* $State$ */
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
       fu=(*func)(u);  char fullversion[]="$Revision$ $Date$"; 
       if (fu < *fc) {  char strstart[80];
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
           SHFT(*fb,*fc,fu,(*func)(u))  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
           }  int nvar=0, nforce=0; /* Number of variables, number of forces */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       u=ulim;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       fu=(*func)(u);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     } else {  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       u=(*cx)+GOLD*(*cx-*bx);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       fu=(*func)(u);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     SHFT(*ax,*bx,*cx,u)  int cptcov=0; /* Working variable */
       SHFT(*fa,*fb,*fc,fu)  int npar=NPARMAX;
       }  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /*************** linmin ************************/  int popbased=0;
   
 int ncom;  int *wav; /* Number of waves for this individuual 0 is possible */
 double *pcom,*xicom;  int maxwav=0; /* Maxim number of waves */
 double (*nrfunc)(double []);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
    int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   double brent(double ax, double bx, double cx,  int mle=1, weightopt=0;
                double (*f)(double), double tol, double *xmin);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double f1dim(double x);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               double *fc, double (*func)(double));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int j;  double jmean=1; /* Mean space between 2 waves */
   double xx,xmin,bx,ax;  double **matprod2(); /* test */
   double fx,fb,fa;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   ncom=n;  /*FILE *fic ; */ /* Used in readdata only */
   pcom=vector(1,n);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   xicom=vector(1,n);  FILE *ficlog, *ficrespow;
   nrfunc=func;  int globpr=0; /* Global variable for printing or not */
   for (j=1;j<=n;j++) {  double fretone; /* Only one call to likelihood */
     pcom[j]=p[j];  long ipmx=0; /* Number of contributions */
     xicom[j]=xi[j];  double sw; /* Sum of weights */
   }  char filerespow[FILENAMELENGTH];
   ax=0.0;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   xx=1.0;  FILE *ficresilk;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  FILE *ficresprobmorprev;
 #ifdef DEBUG  FILE *fichtm, *fichtmcov; /* Html File */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  FILE *ficreseij;
 #endif  char filerese[FILENAMELENGTH];
   for (j=1;j<=n;j++) {  FILE *ficresstdeij;
     xi[j] *= xmin;  char fileresstde[FILENAMELENGTH];
     p[j] += xi[j];  FILE *ficrescveij;
   }  char filerescve[FILENAMELENGTH];
   free_vector(xicom,1,n);  FILE  *ficresvij;
   free_vector(pcom,1,n);  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /*************** powell ************************/  char title[MAXLINE];
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
             double (*func)(double []))  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   void linmin(double p[], double xi[], int n, double *fret,  char command[FILENAMELENGTH];
               double (*func)(double []));  int  outcmd=0;
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double fp,fptt;  
   double *xits;  char filelog[FILENAMELENGTH]; /* Log file */
   pt=vector(1,n);  char filerest[FILENAMELENGTH];
   ptt=vector(1,n);  char fileregp[FILENAMELENGTH];
   xit=vector(1,n);  char popfile[FILENAMELENGTH];
   xits=vector(1,n);  
   *fret=(*func)(p);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     fp=(*fret);  struct timezone tzp;
     ibig=0;  extern int gettimeofday();
     del=0.0;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  long time_value;
     for (i=1;i<=n;i++)  extern long time();
       printf(" %d %.12f",i, p[i]);  char strcurr[80], strfor[80];
     printf("\n");  
     for (i=1;i<=n;i++) {  char *endptr;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  long lval;
       fptt=(*fret);  double dval;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  #define NR_END 1
 #endif  #define FREE_ARG char*
       printf("%d",i);fflush(stdout);  #define FTOL 1.0e-10
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  #define NRANSI 
         del=fabs(fptt-(*fret));  #define ITMAX 200 
         ibig=i;  
       }  #define TOL 2.0e-4 
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  #define CGOLD 0.3819660 
       for (j=1;j<=n;j++) {  #define ZEPS 1.0e-10 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  #define GOLD 1.618034 
       for(j=1;j<=n;j++)  #define GLIMIT 100.0 
         printf(" p=%.12e",p[j]);  #define TINY 1.0e-20 
       printf("\n");  
 #endif  static double maxarg1,maxarg2;
     }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 #ifdef DEBUG    
       int k[2],l;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       k[0]=1;  #define rint(a) floor(a+0.5)
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  static double sqrarg;
       for (j=1;j<=n;j++)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         printf(" %.12e",p[j]);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       printf("\n");  int agegomp= AGEGOMP;
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  int imx; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int stepm=1;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /* Stepm, step in month: minimum step interpolation*/
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int estepm;
       }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 #endif  
   int m,nb;
   long *num;
       free_vector(xit,1,n);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       free_vector(xits,1,n);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       free_vector(ptt,1,n);  double **pmmij, ***probs;
       free_vector(pt,1,n);  double *ageexmed,*agecens;
       return;  double dateintmean=0;
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  double *weight;
     for (j=1;j<=n;j++) {  int **s; /* Status */
       ptt[j]=2.0*p[j]-pt[j];  double *agedc;
       xit[j]=p[j]-pt[j];  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       pt[j]=p[j];                    * covar=matrix(0,NCOVMAX,1,n); 
     }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     fptt=(*func)(ptt);  double  idx; 
     if (fptt < fp) {  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int *Ndum; /** Freq of modality (tricode */
       if (t < 0.0) {  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         linmin(p,xit,n,fret,func);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         for (j=1;j<=n;j++) {  double *lsurv, *lpop, *tpop;
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         }  double ftolhess; /**< Tolerance for computing hessian */
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /**************** split *************************/
         for(j=1;j<=n;j++)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
           printf(" %.12e",xit[j]);  {
         printf("\n");    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 #endif       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       }    */ 
     }    char  *ss;                            /* pointer */
   }    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /**** Prevalence limit ****************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 {      strcpy( name, path );               /* we got the fullname name because no directory */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
      matrix by transitions matrix until convergence is reached */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   int i, ii,j,k;      /*    extern  char* getcwd ( char *buf , int len);*/
   double min, max, maxmin, maxmax,sumnew=0.;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double **matprod2();        return( GLOCK_ERROR_GETCWD );
   double **out, cov[NCOVMAX], **pmij();      }
   double **newm;      /* got dirc from getcwd*/
   double agefin, delaymax=50 ; /* Max number of years to converge */      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
   for (ii=1;ii<=nlstate+ndeath;ii++)      ss++;                               /* after this, the filename */
     for (j=1;j<=nlstate+ndeath;j++){      l2 = strlen( ss );                  /* length of filename */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
    cov[1]=1.;      dirc[l1-l2] = 0;                    /* add zero */
        printf(" DIRC2 = %s \n",dirc);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    /* We add a separator at the end of dirc if not exists */
     newm=savm;    l1 = strlen( dirc );                  /* length of directory */
     /* Covariates have to be included here again */    if( dirc[l1-1] != DIRSEPARATOR ){
      cov[2]=agefin;      dirc[l1] =  DIRSEPARATOR;
        dirc[l1+1] = 0; 
       for (k=1; k<=cptcovn;k++) {      printf(" DIRC3 = %s \n",dirc);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    ss = strrchr( name, '.' );            /* find last / */
       }    if (ss >0){
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      ss++;
       for (k=1; k<=cptcovprod;k++)      strcpy(ext,ss);                     /* save extension */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      l1= strlen( name);
       l2= strlen(ss)+1;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      strncpy( finame, name, l1-l2);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      finame[l1-l2]= 0;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
     return( 0 );                          /* we're done */
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /******************************************/
       min=1.;  
       max=0.;  void replace_back_to_slash(char *s, char*t)
       for(i=1; i<=nlstate; i++) {  {
         sumnew=0;    int i;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    int lg=0;
         prlim[i][j]= newm[i][j]/(1-sumnew);    i=0;
         max=FMAX(max,prlim[i][j]);    lg=strlen(t);
         min=FMIN(min,prlim[i][j]);    for(i=0; i<= lg; i++) {
       }      (s[i] = t[i]);
       maxmin=max-min;      if (t[i]== '\\') s[i]='/';
       maxmax=FMAX(maxmax,maxmin);    }
     }  }
     if(maxmax < ftolpl){  
       return prlim;  char *trimbb(char *out, char *in)
     }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   }    char *s;
 }    s=out;
     while (*in != '\0'){
 /*************** transition probabilities ***************/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      }
 {      *out++ = *in++;
   double s1, s2;    }
   /*double t34;*/    *out='\0';
   int i,j,j1, nc, ii, jj;    return s;
   }
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  char *cutl(char *blocc, char *alocc, char *in, char occ)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/       gives blocc="abcdef2ghi" and alocc="j".
       }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       ps[i][j]=s2;    */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    char *s, *t, *bl;
     }    t=in;s=in;
     for(j=i+1; j<=nlstate+ndeath;j++){    while ((*in != occ) && (*in != '\0')){
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      *alocc++ = *in++;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    if( *in == occ){
       }      *(alocc)='\0';
       ps[i][j]=s2;      s=++in;
     }    }
   }   
     /*ps[3][2]=1;*/    if (s == t) {/* occ not found */
       *(alocc-(in-s))='\0';
   for(i=1; i<= nlstate; i++){      in=s;
      s1=0;    }
     for(j=1; j<i; j++)    while ( *in != '\0'){
       s1+=exp(ps[i][j]);      *blocc++ = *in++;
     for(j=i+1; j<=nlstate+ndeath; j++)    }
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);    *blocc='\0';
     for(j=1; j<i; j++)    return t;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     for(j=i+1; j<=nlstate+ndeath; j++)  char *cutv(char *blocc, char *alocc, char *in, char occ)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   } /* end i */       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     for(jj=1; jj<= nlstate+ndeath; jj++){    */
       ps[ii][jj]=0;    char *s, *t;
       ps[ii][ii]=1;    t=in;s=in;
     }    while (*in != '\0'){
   }      while( *in == occ){
         *blocc++ = *in++;
         s=in;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      }
     for(jj=1; jj<= nlstate+ndeath; jj++){      *blocc++ = *in++;
      printf("%lf ",ps[ii][jj]);    }
    }    if (s == t) /* occ not found */
     printf("\n ");      *(blocc-(in-s))='\0';
     }    else
     printf("\n ");printf("%lf ",cov[2]);*/      *(blocc-(in-s)-1)='\0';
 /*    in=s;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    while ( *in != '\0'){
   goto end;*/      *alocc++ = *in++;
     return ps;    }
 }  
     *alocc='\0';
 /**************** Product of 2 matrices ******************/    return s;
   }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  int nbocc(char *s, char occ)
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    int i,j=0;
   /* in, b, out are matrice of pointers which should have been initialized    int lg=20;
      before: only the contents of out is modified. The function returns    i=0;
      a pointer to pointers identical to out */    lg=strlen(s);
   long i, j, k;    for(i=0; i<= lg; i++) {
   for(i=nrl; i<= nrh; i++)    if  (s[i] == occ ) j++;
     for(k=ncolol; k<=ncoloh; k++)    }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    return j;
         out[i][k] +=in[i][j]*b[j][k];  }
   
   return out;  /* void cutv(char *u,char *v, char*t, char occ) */
 }  /* { */
   /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 /************* Higher Matrix Product ***************/  /*      gives u="abcdef2ghi" and v="j" *\/ */
   /*   int i,lg,j,p=0; */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*   i=0; */
 {  /*   lg=strlen(t); */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*   for(j=0; j<=lg-1; j++) { */
      duration (i.e. until  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*   } */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /*   for(j=0; j<p; j++) { */
      Model is determined by parameters x and covariates have to be  /*     (u[j] = t[j]); */
      included manually here.  /*   } */
   /*      u[p]='\0'; */
      */  
   /*    for(j=0; j<= lg; j++) { */
   int i, j, d, h, k;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   double **out, cov[NCOVMAX];  /*   } */
   double **newm;  /* } */
   
   /* Hstepm could be zero and should return the unit matrix */  /********************** nrerror ********************/
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  void nrerror(char error_text[])
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    exit(EXIT_FAILURE);
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  /*********************** vector *******************/
       newm=savm;  double *vector(int nl, int nh)
       /* Covariates have to be included here again */  {
       cov[1]=1.;    double *v;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    if (!v) nrerror("allocation failure in vector");
       for (k=1; k<=cptcovage;k++)    return v-nl+NR_END;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    free((FREE_ARG)(v+nl-NR_END));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /************************ivector *******************************/
       savm=oldm;  int *ivector(long nl,long nh)
       oldm=newm;  {
     }    int *v;
     for(i=1; i<=nlstate+ndeath; i++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       for(j=1;j<=nlstate+ndeath;j++) {    if (!v) nrerror("allocation failure in ivector");
         po[i][j][h]=newm[i][j];    return v-nl+NR_END;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  }
          */  
       }  /******************free ivector **************************/
   } /* end h */  void free_ivector(int *v, long nl, long nh)
   return po;  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
   
 /*************** log-likelihood *************/  /************************lvector *******************************/
 double func( double *x)  long *lvector(long nl,long nh)
 {  {
   int i, ii, j, k, mi, d, kk;    long *v;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double **out;    if (!v) nrerror("allocation failure in ivector");
   double sw; /* Sum of weights */    return v-nl+NR_END;
   double lli; /* Individual log likelihood */  }
   int s1, s2;  
   long ipmx;  /******************free lvector **************************/
   /*extern weight */  void free_lvector(long *v, long nl, long nh)
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    free((FREE_ARG)(v+nl-NR_END));
   /*for(i=1;i<imx;i++)  }
     printf(" %d\n",s[4][i]);  
   */  /******************* imatrix *******************************/
   cov[1]=1.;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    int **m; 
     for(mi=1; mi<= wav[i]-1; mi++){    
       for (ii=1;ii<=nlstate+ndeath;ii++)    /* allocate pointers to rows */ 
         for (j=1;j<=nlstate+ndeath;j++){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if (!m) nrerror("allocation failure 1 in matrix()"); 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    m += NR_END; 
         }    m -= nrl; 
       for(d=0; d<dh[mi][i]; d++){    
         newm=savm;    
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* allocate rows and set pointers to them */ 
         for (kk=1; kk<=cptcovage;kk++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         }    m[nrl] += NR_END; 
            m[nrl] -= ncl; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         savm=oldm;    
         oldm=newm;    /* return pointer to array of pointers to rows */ 
            return m; 
          } 
       } /* end mult */  
        /****************** free_imatrix *************************/
       s1=s[mw[mi][i]][i];  void free_imatrix(m,nrl,nrh,ncl,nch)
       s2=s[mw[mi+1][i]][i];        int **m;
       if( s2 > nlstate){        long nch,ncl,nrh,nrl; 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution       /* free an int matrix allocated by imatrix() */ 
            to the likelihood is the probability to die between last step unit time and current  { 
            step unit time, which is also the differences between probability to die before dh    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
            and probability to die before dh-stepm .    free((FREE_ARG) (m+nrl-NR_END)); 
            In version up to 0.92 likelihood was computed  } 
            as if date of death was unknown. Death was treated as any other  
            health state: the date of the interview describes the actual state  /******************* matrix *******************************/
            and not the date of a change in health state. The former idea was  double **matrix(long nrl, long nrh, long ncl, long nch)
            to consider that at each interview the state was recorded  {
            (healthy, disable or death) and IMaCh was corrected; but when we    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
            introduced the exact date of death then we should have modified    double **m;
            the contribution of an exact death to the likelihood. This new  
            contribution is smaller and very dependent of the step unit    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
            stepm. It is no more the probability to die between last interview    if (!m) nrerror("allocation failure 1 in matrix()");
            and month of death but the probability to survive from last    m += NR_END;
            interview up to one month before death multiplied by the    m -= nrl;
            probability to die within a month. Thanks to Chris  
            Jackson for correcting this bug.  Former versions increased    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
            mortality artificially. The bad side is that we add another loop    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
            which slows down the processing. The difference can be up to 10%    m[nrl] += NR_END;
            lower mortality.    m[nrl] -= ncl;
         */  
         lli=log(out[s1][s2] - savm[s1][s2]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }else{    return m;
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       ipmx +=1;     */
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  /*************************free matrix ************************/
     } /* end of wave */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   } /* end of individual */  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    free((FREE_ARG)(m+nrl-NR_END));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   /*exit(0);*/  /******************* ma3x *******************************/
   return -l;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 /*********** Maximum Likelihood Estimation ***************/  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    if (!m) nrerror("allocation failure 1 in matrix()");
 {    m += NR_END;
   int i,j, iter;    m -= nrl;
   double **xi,*delti;  
   double fret;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   xi=matrix(1,npar,1,npar);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (i=1;i<=npar;i++)    m[nrl] += NR_END;
     for (j=1;j<=npar;j++)    m[nrl] -= ncl;
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   powell(p,xi,npar,ftol,&iter,&fret,func);  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
 }    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
 /**** Computes Hessian and covariance matrix ***/    
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double  **a,**y,*x,pd;      for (j=ncl+1; j<=nch; j++) 
   double **hess;        m[i][j]=m[i][j-1]+nlay;
   int i, j,jk;    }
   int *indx;    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double hessii(double p[], double delta, int theta, double delti[]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double hessij(double p[], double delti[], int i, int j);    */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /*************************free ma3x ************************/
   hess=matrix(1,npar,1,npar);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for (i=1;i<=npar;i++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     printf("%d",i);fflush(stdout);    free((FREE_ARG)(m+nrl-NR_END));
     hess[i][i]=hessii(p,ftolhess,i,delti);  }
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  /*************** function subdirf ***********/
   }  char *subdirf(char fileres[])
    {
   for (i=1;i<=npar;i++) {    /* Caution optionfilefiname is hidden */
     for (j=1;j<=npar;j++)  {    strcpy(tmpout,optionfilefiname);
       if (j>i) {    strcat(tmpout,"/"); /* Add to the right */
         printf(".%d%d",i,j);fflush(stdout);    strcat(tmpout,fileres);
         hess[i][j]=hessij(p,delti,i,j);    return tmpout;
         hess[j][i]=hess[i][j];      }
         /*printf(" %lf ",hess[i][j]);*/  
       }  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
   }  {
   printf("\n");    
     /* Caution optionfilefiname is hidden */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
   a=matrix(1,npar,1,npar);    strcat(tmpout,preop);
   y=matrix(1,npar,1,npar);    strcat(tmpout,fileres);
   x=vector(1,npar);    return tmpout;
   indx=ivector(1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*************** function subdirf3 ***********/
   ludcmp(a,npar,indx,&pd);  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
   for (j=1;j<=npar;j++) {    
     for (i=1;i<=npar;i++) x[i]=0;    /* Caution optionfilefiname is hidden */
     x[j]=1;    strcpy(tmpout,optionfilefiname);
     lubksb(a,npar,indx,x);    strcat(tmpout,"/");
     for (i=1;i<=npar;i++){    strcat(tmpout,preop);
       matcov[i][j]=x[i];    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
   }    return tmpout;
   }
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  /***************** f1dim *************************/
     for (j=1;j<=npar;j++) {  extern int ncom; 
       printf("%.3e ",hess[i][j]);  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
     printf("\n");   
   }  double f1dim(double x) 
   { 
   /* Recompute Inverse */    int j; 
   for (i=1;i<=npar;i++)    double f;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double *xt; 
   ludcmp(a,npar,indx,&pd);   
     xt=vector(1,ncom); 
   /*  printf("\n#Hessian matrix recomputed#\n");    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
   for (j=1;j<=npar;j++) {    free_vector(xt,1,ncom); 
     for (i=1;i<=npar;i++) x[i]=0;    return f; 
     x[j]=1;  } 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /*****************brent *************************/
       y[i][j]=x[i];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       printf("%.3e ",y[i][j]);  { 
     }    int iter; 
     printf("\n");    double a,b,d,etemp;
   }    double fu,fv,fw,fx;
   */    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   free_matrix(a,1,npar,1,npar);    double e=0.0; 
   free_matrix(y,1,npar,1,npar);   
   free_vector(x,1,npar);    a=(ax < cx ? ax : cx); 
   free_ivector(indx,1,npar);    b=(ax > cx ? ax : cx); 
   free_matrix(hess,1,npar,1,npar);    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
 }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 /*************** hessian matrix ****************/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 double hessii( double x[], double delta, int theta, double delti[])      printf(".");fflush(stdout);
 {      fprintf(ficlog,".");fflush(ficlog);
   int i;  #ifdef DEBUG
   int l=1, lmax=20;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double k1,k2;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double p2[NPARMAX+1];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double res;  #endif
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double fx;        *xmin=x; 
   int k=0,kmax=10;        return fx; 
   double l1;      } 
       ftemp=fu;
   fx=func(x);      if (fabs(e) > tol1) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];        r=(x-w)*(fx-fv); 
   for(l=0 ; l <=lmax; l++){        q=(x-v)*(fx-fw); 
     l1=pow(10,l);        p=(x-v)*q-(x-w)*r; 
     delts=delt;        q=2.0*(q-r); 
     for(k=1 ; k <kmax; k=k+1){        if (q > 0.0) p = -p; 
       delt = delta*(l1*k);        q=fabs(q); 
       p2[theta]=x[theta] +delt;        etemp=e; 
       k1=func(p2)-fx;        e=d; 
       p2[theta]=x[theta]-delt;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       k2=func(p2)-fx;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        else { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          d=p/q; 
                u=x+d; 
 #ifdef DEBUG          if (u-a < tol2 || b-u < tol2) 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            d=SIGN(tol1,xm-x); 
 #endif        } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      } else { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         k=kmax;      } 
       }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      fu=(*f)(u); 
         k=kmax; l=lmax*10.;      if (fu <= fx) { 
       }        if (u >= x) a=x; else b=x; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        SHFT(v,w,x,u) 
         delts=delt;          SHFT(fv,fw,fx,fu) 
       }          } else { 
     }            if (u < x) a=u; else b=u; 
   }            if (fu <= fw || w == x) { 
   delti[theta]=delts;              v=w; 
   return res;              w=u; 
                fv=fw; 
 }              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 double hessij( double x[], double delti[], int thetai,int thetaj)              v=u; 
 {              fv=fu; 
   int i;            } 
   int l=1, l1, lmax=20;          } 
   double k1,k2,k3,k4,res,fx;    } 
   double p2[NPARMAX+1];    nrerror("Too many iterations in brent"); 
   int k;    *xmin=x; 
     return fx; 
   fx=func(x);  } 
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /****************** mnbrak ***********************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     k1=func(p2)-fx;              double (*func)(double)) 
    { 
     p2[thetai]=x[thetai]+delti[thetai]/k;    double ulim,u,r,q, dum;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double fu; 
     k2=func(p2)-fx;   
      *fa=(*func)(*ax); 
     p2[thetai]=x[thetai]-delti[thetai]/k;    *fb=(*func)(*bx); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    if (*fb > *fa) { 
     k3=func(p2)-fx;      SHFT(dum,*ax,*bx,dum) 
          SHFT(dum,*fb,*fa,dum) 
     p2[thetai]=x[thetai]-delti[thetai]/k;        } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    *cx=(*bx)+GOLD*(*bx-*ax); 
     k4=func(p2)-fx;    *fc=(*func)(*cx); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    while (*fb > *fc) { 
 #ifdef DEBUG      r=(*bx-*ax)*(*fb-*fc); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      q=(*bx-*cx)*(*fb-*fa); 
 #endif      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   return res;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 }      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
 /************** Inverse of matrix **************/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 void ludcmp(double **a, int n, int *indx, double *d)        fu=(*func)(u); 
 {        if (fu < *fc) { 
   int i,imax,j,k;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double big,dum,sum,temp;            SHFT(*fb,*fc,fu,(*func)(u)) 
   double *vv;            } 
        } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   vv=vector(1,n);        u=ulim; 
   *d=1.0;        fu=(*func)(u); 
   for (i=1;i<=n;i++) {      } else { 
     big=0.0;        u=(*cx)+GOLD*(*cx-*bx); 
     for (j=1;j<=n;j++)        fu=(*func)(u); 
       if ((temp=fabs(a[i][j])) > big) big=temp;      } 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      SHFT(*ax,*bx,*cx,u) 
     vv[i]=1.0/big;        SHFT(*fa,*fb,*fc,fu) 
   }        } 
   for (j=1;j<=n;j++) {  } 
     for (i=1;i<j;i++) {  
       sum=a[i][j];  /*************** linmin ************************/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  int ncom; 
     }  double *pcom,*xicom;
     big=0.0;  double (*nrfunc)(double []); 
     for (i=j;i<=n;i++) {   
       sum=a[i][j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for (k=1;k<j;k++)  { 
         sum -= a[i][k]*a[k][j];    double brent(double ax, double bx, double cx, 
       a[i][j]=sum;                 double (*f)(double), double tol, double *xmin); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double f1dim(double x); 
         big=dum;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         imax=i;                double *fc, double (*func)(double)); 
       }    int j; 
     }    double xx,xmin,bx,ax; 
     if (j != imax) {    double fx,fb,fa;
       for (k=1;k<=n;k++) {   
         dum=a[imax][k];    ncom=n; 
         a[imax][k]=a[j][k];    pcom=vector(1,n); 
         a[j][k]=dum;    xicom=vector(1,n); 
       }    nrfunc=func; 
       *d = -(*d);    for (j=1;j<=n;j++) { 
       vv[imax]=vv[j];      pcom[j]=p[j]; 
     }      xicom[j]=xi[j]; 
     indx[j]=imax;    } 
     if (a[j][j] == 0.0) a[j][j]=TINY;    ax=0.0; 
     if (j != n) {    xx=1.0; 
       dum=1.0/(a[j][j]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
   }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   free_vector(vv,1,n);  /* Doesn't work */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 ;  #endif
 }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 void lubksb(double **a, int n, int *indx, double b[])      p[j] += xi[j]; 
 {    } 
   int i,ii=0,ip,j;    free_vector(xicom,1,n); 
   double sum;    free_vector(pcom,1,n); 
    } 
   for (i=1;i<=n;i++) {  
     ip=indx[i];  char *asc_diff_time(long time_sec, char ascdiff[])
     sum=b[ip];  {
     b[ip]=b[i];    long sec_left, days, hours, minutes;
     if (ii)    days = (time_sec) / (60*60*24);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    sec_left = (time_sec) % (60*60*24);
     else if (sum) ii=i;    hours = (sec_left) / (60*60) ;
     b[i]=sum;    sec_left = (sec_left) %(60*60);
   }    minutes = (sec_left) /60;
   for (i=n;i>=1;i--) {    sec_left = (sec_left) % (60);
     sum=b[i];    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    return ascdiff;
     b[i]=sum/a[i][i];  }
   }  
 }  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 /************ Frequencies ********************/              double (*func)(double [])) 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  { 
 {  /* Some frequencies */    void linmin(double p[], double xi[], int n, double *fret, 
                  double (*func)(double [])); 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int i,ibig,j; 
   double ***freq; /* Frequencies */    double del,t,*pt,*ptt,*xit;
   double *pp;    double fp,fptt;
   double pos, k2, dateintsum=0,k2cpt=0;    double *xits;
   FILE *ficresp;    int niterf, itmp;
   char fileresp[FILENAMELENGTH];  
      pt=vector(1,n); 
   pp=vector(1,nlstate);    ptt=vector(1,n); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    xit=vector(1,n); 
   strcpy(fileresp,"p");    xits=vector(1,n); 
   strcat(fileresp,fileres);    *fret=(*func)(p); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    for (*iter=1;;++(*iter)) { 
     exit(0);      fp=(*fret); 
   }      ibig=0; 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      del=0.0; 
   j1=0;      last_time=curr_time;
        (void) gettimeofday(&curr_time,&tzp);
   j=cptcoveff;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
    /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   for(k1=1; k1<=j;k1++){     for (i=1;i<=n;i++) {
     for(i1=1; i1<=ncodemax[k1];i1++){        printf(" %d %.12f",i, p[i]);
       j1++;        fprintf(ficlog," %d %.12lf",i, p[i]);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        fprintf(ficrespow," %.12lf", p[i]);
         scanf("%d", i);*/      }
       for (i=-1; i<=nlstate+ndeath; i++)        printf("\n");
         for (jk=-1; jk<=nlstate+ndeath; jk++)        fprintf(ficlog,"\n");
           for(m=agemin; m <= agemax+3; m++)      fprintf(ficrespow,"\n");fflush(ficrespow);
             freq[i][jk][m]=0;      if(*iter <=3){
              tm = *localtime(&curr_time.tv_sec);
       dateintsum=0;        strcpy(strcurr,asctime(&tm));
       k2cpt=0;  /*       asctime_r(&tm,strcurr); */
       for (i=1; i<=imx; i++) {        forecast_time=curr_time; 
         bool=1;        itmp = strlen(strcurr);
         if  (cptcovn>0) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           for (z1=1; z1<=cptcoveff; z1++)          strcurr[itmp-1]='\0';
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
               bool=0;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         }        for(niterf=10;niterf<=30;niterf+=10){
         if (bool==1) {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           for(m=firstpass; m<=lastpass; m++){          tmf = *localtime(&forecast_time.tv_sec);
             k2=anint[m][i]+(mint[m][i]/12.);  /*      asctime_r(&tmf,strfor); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          strcpy(strfor,asctime(&tmf));
               if(agev[m][i]==0) agev[m][i]=agemax+1;          itmp = strlen(strfor);
               if(agev[m][i]==1) agev[m][i]=agemax+2;          if(strfor[itmp-1]=='\n')
               if (m<lastpass) {          strfor[itmp-1]='\0';
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
               }        }
                    }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      for (i=1;i<=n;i++) { 
                 dateintsum=dateintsum+k2;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                 k2cpt++;        fptt=(*fret); 
               }  #ifdef DEBUG
             }        printf("fret=%lf \n",*fret);
           }        fprintf(ficlog,"fret=%lf \n",*fret);
         }  #endif
       }        printf("%d",i);fflush(stdout);
                fprintf(ficlog,"%d",i);fflush(ficlog);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
       if  (cptcovn>0) {          del=fabs(fptt-(*fret)); 
         fprintf(ficresp, "\n#********** Variable ");          ibig=i; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        } 
         fprintf(ficresp, "**********\n#");  #ifdef DEBUG
       }        printf("%d %.12e",i,(*fret));
       for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%d %.12e",i,(*fret));
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (j=1;j<=n;j++) {
       fprintf(ficresp, "\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                printf(" x(%d)=%.12e",j,xit[j]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         if(i==(int)agemax+3)        }
           printf("Total");        for(j=1;j<=n;j++) {
         else          printf(" p=%.12e",p[j]);
           printf("Age %d", i);          fprintf(ficlog," p=%.12e",p[j]);
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        printf("\n");
             pp[jk] += freq[jk][m][i];        fprintf(ficlog,"\n");
         }  #endif
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=-1, pos=0; m <=0 ; m++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
             pos += freq[jk][m][i];  #ifdef DEBUG
           if(pp[jk]>=1.e-10)        int k[2],l;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        k[0]=1;
           else        k[1]=-1;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        printf("Max: %.12e",(*func)(p));
         }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
         for(jk=1; jk <=nlstate ; jk++){          printf(" %.12e",p[j]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          fprintf(ficlog," %.12e",p[j]);
             pp[jk] += freq[jk][m][i];        }
         }        printf("\n");
         fprintf(ficlog,"\n");
         for(jk=1,pos=0; jk <=nlstate ; jk++)        for(l=0;l<=1;l++) {
           pos += pp[jk];          for (j=1;j<=n;j++) {
         for(jk=1; jk <=nlstate ; jk++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           if(pos>=1.e-5)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           else          }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           if( i <= (int) agemax){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             if(pos>=1.e-5){        }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  #endif
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }        free_vector(xit,1,n); 
             else        free_vector(xits,1,n); 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        free_vector(ptt,1,n); 
           }        free_vector(pt,1,n); 
         }        return; 
              } 
         for(jk=-1; jk <=nlstate+ndeath; jk++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           for(m=-1; m <=nlstate+ndeath; m++)      for (j=1;j<=n;j++) { 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        ptt[j]=2.0*p[j]-pt[j]; 
         if(i <= (int) agemax)        xit[j]=p[j]-pt[j]; 
           fprintf(ficresp,"\n");        pt[j]=p[j]; 
         printf("\n");      } 
       }      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   dateintmean=dateintsum/k2cpt;        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
   fclose(ficresp);          for (j=1;j<=n;j++) { 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            xi[j][ibig]=xi[j][n]; 
   free_vector(pp,1,nlstate);            xi[j][n]=xit[j]; 
            }
   /* End of Freq */  #ifdef DEBUG
 }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /************ Prevalence ********************/          for(j=1;j<=n;j++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            printf(" %.12e",xit[j]);
 {  /* Some frequencies */            fprintf(ficlog," %.12e",xit[j]);
            }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          printf("\n");
   double ***freq; /* Frequencies */          fprintf(ficlog,"\n");
   double *pp;  #endif
   double pos, k2;        }
       } 
   pp=vector(1,nlstate);    } 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  } 
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /**** Prevalence limit (stable or period prevalence)  ****************/
   j1=0;  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         matrix by transitions matrix until convergence is reached */
  for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    int i, ii,j,k;
       j1++;    double min, max, maxmin, maxmax,sumnew=0.;
      /* double **matprod2(); */ /* test */
       for (i=-1; i<=nlstate+ndeath; i++)      double **out, cov[NCOVMAX+1], **pmij();
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double **newm;
           for(m=agemin; m <= agemax+3; m++)    double agefin, delaymax=50 ; /* Max number of years to converge */
             freq[i][jk][m]=0;  
          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i<=imx; i++) {      for (j=1;j<=nlstate+ndeath;j++){
         bool=1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     cov[1]=1.;
               bool=0;   
         }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         if (bool==1) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           for(m=firstpass; m<=lastpass; m++){      newm=savm;
             k2=anint[m][i]+(mint[m][i]/12.);      /* Covariates have to be included here again */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      cov[2]=agefin;
               if(agev[m][i]==0) agev[m][i]=agemax+1;      
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (k=1; k<=cptcovn;k++) {
               if (m<lastpass)        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
               else      }
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
             }      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
           }      
         }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         for(i=(int)agemin; i <= (int)agemax+3; i++){      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           for(jk=1; jk <=nlstate ; jk++){      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
               pp[jk] += freq[jk][m][i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
           }      
           for(jk=1; jk <=nlstate ; jk++){      savm=oldm;
             for(m=-1, pos=0; m <=0 ; m++)      oldm=newm;
             pos += freq[jk][m][i];      maxmax=0.;
         }      for(j=1;j<=nlstate;j++){
                min=1.;
          for(jk=1; jk <=nlstate ; jk++){        max=0.;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(i=1; i<=nlstate; i++) {
              pp[jk] += freq[jk][m][i];          sumnew=0;
          }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                    prlim[i][j]= newm[i][j]/(1-sumnew);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           max=FMAX(max,prlim[i][j]);
          for(jk=1; jk <=nlstate ; jk++){                    min=FMIN(min,prlim[i][j]);
            if( i <= (int) agemax){        }
              if(pos>=1.e-5){        maxmin=max-min;
                probs[i][jk][j1]= pp[jk]/pos;        maxmax=FMAX(maxmax,maxmin);
              }      }
            }      if(maxmax < ftolpl){
          }        return prlim;
                }
         }    }
     }  }
   }  
   /*************** transition probabilities ***************/ 
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   free_vector(pp,1,nlstate);  {
      /* According to parameters values stored in x and the covariate's values stored in cov,
 }  /* End of Freq */       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
 /************* Waves Concatenation ***************/       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)       ncth covariate in the global vector x is given by the formula:
 {       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      Death is a valid wave (if date is known).       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]       Outputs ps[i][j] the probability to be observed in j being in j according to
      and mw[mi+1][i]. dh depends on stepm.       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
      */    */
     double s1, lnpijopii;
   int i, mi, m;    /*double t34;*/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    int i,j,j1, nc, ii, jj;
      double sum=0., jmean=0.;*/  
       for(i=1; i<= nlstate; i++){
   int j, k=0,jk, ju, jl;        for(j=1; j<i;j++){
   double sum=0.;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   jmin=1e+5;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   jmax=-1;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   jmean=0.;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   for(i=1; i<=imx; i++){          }
     mi=0;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     m=firstpass;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     while(s[m][i] <= nlstate){        }
       if(s[m][i]>=1)        for(j=i+1; j<=nlstate+ndeath;j++){
         mw[++mi][i]=m;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       if(m >=lastpass)            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         break;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       else  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         m++;          }
     }/* end while */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     if (s[m][i] > nlstate){        }
       mi++;     /* Death is another wave */      }
       /* if(mi==0)  never been interviewed correctly before death */      
          /* Only death is a correct wave */      for(i=1; i<= nlstate; i++){
       mw[mi][i]=m;        s1=0;
     }        for(j=1; j<i; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     wav[i]=mi;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     if(mi==0)        }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        for(j=i+1; j<=nlstate+ndeath; j++){
   }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   for(i=1; i<=imx; i++){        }
     for(mi=1; mi<wav[i];mi++){        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       if (stepm <=0)        ps[i][i]=1./(s1+1.);
         dh[mi][i]=1;        /* Computing other pijs */
       else{        for(j=1; j<i; j++)
         if (s[mw[mi+1][i]][i] > nlstate) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
           if (agedc[i] < 2*AGESUP) {        for(j=i+1; j<=nlstate+ndeath; j++)
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ps[i][j]= exp(ps[i][j])*ps[i][i];
           if(j==0) j=1;  /* Survives at least one month after exam */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           k=k+1;      } /* end i */
           if (j >= jmax) jmax=j;      
           if (j <= jmin) jmin=j;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           sum=sum+j;        for(jj=1; jj<= nlstate+ndeath; jj++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          ps[ii][jj]=0;
           }          ps[ii][ii]=1;
         }        }
         else{      }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      
           k=k+1;      
           if (j >= jmax) jmax=j;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
           else if (j <= jmin)jmin=j;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
           sum=sum+j;      /*   } */
         }      /*   printf("\n "); */
         jk= j/stepm;      /* } */
         jl= j -jk*stepm;      /* printf("\n ");printf("%lf ",cov[2]);*/
         ju= j -(jk+1)*stepm;      /*
         if(jl <= -ju)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           dh[mi][i]=jk;        goto end;*/
         else      return ps;
           dh[mi][i]=jk+1;  }
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */  /**************** Product of 2 matrices ******************/
       }  
     }  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   }  {
   jmean=sum/k;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  }    /* in, b, out are matrice of pointers which should have been initialized 
 /*********** Tricode ****************************/       before: only the contents of out is modified. The function returns
 void tricode(int *Tvar, int **nbcode, int imx)       a pointer to pointers identical to out */
 {    int i, j, k;
   int Ndum[20],ij=1, k, j, i;    for(i=nrl; i<= nrh; i++)
   int cptcode=0;      for(k=ncolol; k<=ncoloh; k++){
   cptcoveff=0;        out[i][k]=0.;
          for(j=ncl; j<=nch; j++)
   for (k=0; k<19; k++) Ndum[k]=0;          out[i][k] +=in[i][j]*b[j][k];
   for (k=1; k<=7; k++) ncodemax[k]=0;      }
     return out;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  }
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;  /************* Higher Matrix Product ***************/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
     /* Computes the transition matrix starting at age 'age' over 
     for (i=0; i<=cptcode; i++) {       'nhstepm*hstepm*stepm' months (i.e. until
       if(Ndum[i]!=0) ncodemax[j]++;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
     ij=1;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
        for the memory).
     for (i=1; i<=ncodemax[j]; i++) {       Model is determined by parameters x and covariates have to be 
       for (k=0; k<=19; k++) {       included manually here. 
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;       */
            
           ij++;    int i, j, d, h, k;
         }    double **out, cov[NCOVMAX+1];
         if (ij > ncodemax[j]) break;    double **newm;
       }    
     }    /* Hstepm could be zero and should return the unit matrix */
   }      for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
  for (k=0; k<19; k++) Ndum[k]=0;        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
  for (i=1; i<=ncovmodel-2; i++) {      }
       ij=Tvar[i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       Ndum[ij]++;    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
         newm=savm;
  ij=1;        /* Covariates have to be included here again */
  for (i=1; i<=10; i++) {        cov[1]=1.;
    if((Ndum[i]!=0) && (i<=ncovcol)){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
      Tvaraff[ij]=i;        for (k=1; k<=cptcovn;k++) 
      ij++;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
    }        for (k=1; k<=cptcovage;k++)
  }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
     cptcoveff=ij-1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  
   
 /*********** Health Expectancies ****************/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
 {        savm=oldm;
   /* Health expectancies */        oldm=newm;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      }
   double age, agelim, hf;      for(i=1; i<=nlstate+ndeath; i++)
   double ***p3mat,***varhe;        for(j=1;j<=nlstate+ndeath;j++) {
   double **dnewm,**doldm;          po[i][j][h]=newm[i][j];
   double *xp;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   double **gp, **gm;        }
   double ***gradg, ***trgradg;      /*printf("h=%d ",h);*/
   int theta;    } /* end h */
   /*     printf("\n H=%d \n",h); */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    return po;
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);  
    /*************** log-likelihood *************/
   fprintf(ficreseij,"# Health expectancies\n");  double func( double *x)
   fprintf(ficreseij,"# Age");  {
   for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
     for(j=1; j<=nlstate;j++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    double **out;
   fprintf(ficreseij,"\n");    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   if(estepm < stepm){    int s1, s2;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double bbh, survp;
   }    long ipmx;
   else  hstepm=estepm;      /*extern weight */
   /* We compute the life expectancy from trapezoids spaced every estepm months    /* We are differentiating ll according to initial status */
    * This is mainly to measure the difference between two models: for example    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
    * if stepm=24 months pijx are given only every 2 years and by summing them    /*for(i=1;i<imx;i++) 
    * we are calculating an estimate of the Life Expectancy assuming a linear      printf(" %d\n",s[4][i]);
    * progression inbetween and thus overestimating or underestimating according    */
    * to the curvature of the survival function. If, for the same date, we    cov[1]=1.;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear    for(k=1; k<=nlstate; k++) ll[k]=0.;
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* For example we decided to compute the life expectancy with the smallest unit */        /* Computes the values of the ncovmodel covariates of the model
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
      nhstepm is the number of hstepm from age to agelim           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
      nstepm is the number of stepm from age to agelin.           to be observed in j being in i according to the model.
      Look at hpijx to understand the reason of that which relies in memory size         */
      and note for a fixed period like estepm months */        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          cov[2+k]=covar[Tvar[k]][i];
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
      results. So we changed our mind and took the option of the best precision.           has been calculated etc */
   */        for(mi=1; mi<= wav[i]-1; mi++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   agelim=AGESUP;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* nhstepm age range expressed in number of stepm */            }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          for(d=0; d<dh[mi][i]; d++){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            newm=savm;
     /* if (stepm >= YEARM) hstepm=1;*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for (kk=1; kk<=cptcovage;kk++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            }
     gp=matrix(0,nhstepm,1,nlstate*2);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gm=matrix(0,nhstepm,1,nlstate*2);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            oldm=newm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          } /* end mult */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
     /* Computing Variances of health expectancies */           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
      for(theta=1; theta <=npar; theta++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       for(i=1; i<=npar; i++){           * probability in order to take into account the bias as a fraction of the way
         xp[i] = x[i] + (i==theta ?delti[theta]:0);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       }           * -stepm/2 to stepm/2 .
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);             * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
       cptj=0;           */
       for(j=1; j<= nlstate; j++){          s1=s[mw[mi][i]][i];
         for(i=1; i<=nlstate; i++){          s2=s[mw[mi+1][i]][i];
           cptj=cptj+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          /* bias bh is positive if real duration
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;           * is higher than the multiple of stepm and negative otherwise.
           }           */
         }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          if( s2 > nlstate){ 
                  /* i.e. if s2 is a death state and if the date of death is known 
                     then the contribution to the likelihood is the probability to 
       for(i=1; i<=npar; i++)               die between last step unit time and current  step unit time, 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);               which is also equal to probability to die before dh 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                 minus probability to die before dh-stepm . 
                     In version up to 0.92 likelihood was computed
       cptj=0;          as if date of death was unknown. Death was treated as any other
       for(j=1; j<= nlstate; j++){          health state: the date of the interview describes the actual state
         for(i=1;i<=nlstate;i++){          and not the date of a change in health state. The former idea was
           cptj=cptj+1;          to consider that at each interview the state was recorded
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          (healthy, disable or death) and IMaCh was corrected; but when we
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          introduced the exact date of death then we should have modified
           }          the contribution of an exact death to the likelihood. This new
         }          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
                and month of death but the probability to survive from last
              interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
       for(j=1; j<= nlstate*2; j++)          Jackson for correcting this bug.  Former versions increased
         for(h=0; h<=nhstepm-1; h++){          mortality artificially. The bad side is that we add another loop
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
             */
      }            lli=log(out[s1][s2] - savm[s1][s2]);
      
 /* End theta */  
           } else if  (s2==-2) {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      for(h=0; h<=nhstepm-1; h++)            /*survp += out[s1][j]; */
       for(j=1; j<=nlstate*2;j++)            lli= log(survp);
         for(theta=1; theta <=npar; theta++)          }
         trgradg[h][j][theta]=gradg[h][theta][j];          
           else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
      for(i=1;i<=nlstate*2;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1;j<=nlstate*2;j++)            lli= log(survp); 
         varhe[i][j][(int)age] =0.;          } 
   
     for(h=0;h<=nhstepm-1;h++){          else if  (s2==-5) { 
       for(k=0;k<=nhstepm-1;k++){            for (j=1,survp=0. ; j<=2; j++)  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);            lli= log(survp); 
         for(i=1;i<=nlstate*2;i++)          } 
           for(j=1;j<=nlstate*2;j++)          
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          else{
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
                /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     /* Computing expectancies */          /*if(lli ==000.0)*/
     for(i=1; i<=nlstate;i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(j=1; j<=nlstate;j++)          ipmx +=1;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          sw += weight[i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  } /* end of wave */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      } /* end of individual */
     }  else if(mle==2){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficreseij,"%3.0f",age );        for(mi=1; mi<= wav[i]-1; mi++){
     cptj=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         cptj++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            }
       }          for(d=0; d<=dh[mi][i]; d++){
     fprintf(ficreseij,"\n");            newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_matrix(gm,0,nhstepm,1,nlstate*2);            for (kk=1; kk<=cptcovage;kk++) {
     free_matrix(gp,0,nhstepm,1,nlstate*2);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   free_vector(xp,1,npar);            oldm=newm;
   free_matrix(dnewm,1,nlstate*2,1,npar);          } /* end mult */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************ Variance ******************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          ipmx +=1;
 {          sw += weight[i];
   /* Variance of health expectancies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } /* end of wave */
   double **newm;      } /* end of individual */
   double **dnewm,**doldm;    }  else if(mle==3){  /* exponential inter-extrapolation */
   int i, j, nhstepm, hstepm, h, nstepm ;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int k, cptcode;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *xp;        for(mi=1; mi<= wav[i]-1; mi++){
   double **gp, **gm;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***gradg, ***trgradg;            for (j=1;j<=nlstate+ndeath;j++){
   double ***p3mat;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age,agelim, hf;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;            }
           for(d=0; d<dh[mi][i]; d++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");            newm=savm;
   fprintf(ficresvij,"# Age");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
     for(j=1; j<=nlstate;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            }
   fprintf(ficresvij,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   xp=vector(1,npar);            savm=oldm;
   dnewm=matrix(1,nlstate,1,npar);            oldm=newm;
   doldm=matrix(1,nlstate,1,nlstate);          } /* end mult */
          
   if(estepm < stepm){          s1=s[mw[mi][i]][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   else  hstepm=estepm;            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /* For example we decided to compute the life expectancy with the smallest unit */          ipmx +=1;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          sw += weight[i];
      nhstepm is the number of hstepm from age to agelim          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      nstepm is the number of stepm from age to agelin.        } /* end of wave */
      Look at hpijx to understand the reason of that which relies in memory size      } /* end of individual */
      and note for a fixed period like k years */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      survival function given by stepm (the optimization length). Unfortunately it        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      means that if the survival funtion is printed only each two years of age and if        for(mi=1; mi<= wav[i]-1; mi++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for (ii=1;ii<=nlstate+ndeath;ii++)
      results. So we changed our mind and took the option of the best precision.            for (j=1;j<=nlstate+ndeath;j++){
   */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim = AGESUP;            }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(d=0; d<dh[mi][i]; d++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            newm=savm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     gp=matrix(0,nhstepm,1,nlstate);            }
     gm=matrix(0,nhstepm,1,nlstate);          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(theta=1; theta <=npar; theta++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++){ /* Computes gradient */            savm=oldm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            oldm=newm;
       }          } /* end mult */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
       if (popbased==1) {          if( s2 > nlstate){ 
         for(i=1; i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
           prlim[i][i]=probs[(int)age][i][ij];          }else{
       }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }
       for(j=1; j<= nlstate; j++){          ipmx +=1;
         for(h=0; h<=nhstepm; h++){          sw += weight[i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
       }      } /* end of individual */
        }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(mi=1; mi<= wav[i]-1; mi++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
       if (popbased==1) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           prlim[i][i]=probs[(int)age][i][ij];            }
       }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
       for(j=1; j<= nlstate; j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(h=0; h<=nhstepm; h++){            for (kk=1; kk<=cptcovage;kk++) {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<= nlstate; j++)            savm=oldm;
         for(h=0; h<=nhstepm; h++){            oldm=newm;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          } /* end mult */
         }        
     } /* End theta */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
     for(h=0; h<=nhstepm; h++)          sw += weight[i];
       for(j=1; j<=nlstate;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(theta=1; theta <=npar; theta++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           trgradg[h][j][theta]=gradg[h][theta][j];        } /* end of wave */
       } /* end of individual */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    } /* End of if */
     for(i=1;i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1;j<=nlstate;j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         vareij[i][j][(int)age] =0.;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
     for(h=0;h<=nhstepm;h++){  }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  /*************** log-likelihood *************/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  double funcone( double *x)
         for(i=1;i<=nlstate;i++)  {
           for(j=1;j<=nlstate;j++)    /* Same as likeli but slower because of a lot of printf and if */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     }    double **out;
     double lli; /* Individual log likelihood */
     fprintf(ficresvij,"%.0f ",age );    double llt;
     for(i=1; i<=nlstate;i++)    int s1, s2;
       for(j=1; j<=nlstate;j++){    double bbh, survp;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     fprintf(ficresvij,"\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     free_matrix(gp,0,nhstepm,1,nlstate);    /*for(i=1;i<imx;i++) 
     free_matrix(gm,0,nhstepm,1,nlstate);      printf(" %d\n",s[4][i]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    cov[1]=1.;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   free_vector(xp,1,npar);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_matrix(doldm,1,nlstate,1,npar);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_matrix(dnewm,1,nlstate,1,nlstate);      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
 }          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance of prevlim ******************/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          }
 {        for(d=0; d<dh[mi][i]; d++){
   /* Variance of prevalence limit */          newm=savm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **newm;          for (kk=1; kk<=cptcovage;kk++) {
   double **dnewm,**doldm;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j, nhstepm, hstepm;          }
   int k, cptcode;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   double *xp;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *gp, *gm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **gradg, **trgradg;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   double age,agelim;          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   int theta;          savm=oldm;
              oldm=newm;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        } /* end mult */
   fprintf(ficresvpl,"# Age");        
   for(i=1; i<=nlstate;i++)        s1=s[mw[mi][i]][i];
       fprintf(ficresvpl," %1d-%1d",i,i);        s2=s[mw[mi+1][i]][i];
   fprintf(ficresvpl,"\n");        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   xp=vector(1,npar);         * is higher than the multiple of stepm and negative otherwise.
   dnewm=matrix(1,nlstate,1,npar);         */
   doldm=matrix(1,nlstate,1,nlstate);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
            lli=log(out[s1][s2] - savm[s1][s2]);
   hstepm=1*YEARM; /* Every year of age */        } else if  (s2==-2) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for (j=1,survp=0. ; j<=nlstate; j++) 
   agelim = AGESUP;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli= log(survp);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }else if (mle==1){
     if (stepm >= YEARM) hstepm=1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        } else if(mle==2){
     gradg=matrix(1,npar,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     gp=vector(1,nlstate);        } else if(mle==3){  /* exponential inter-extrapolation */
     gm=vector(1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for(theta=1; theta <=npar; theta++){          lli=log(out[s1][s2]); /* Original formula */
       for(i=1; i<=npar; i++){ /* Computes gradient */        } else{  /* mle=0 back to 1 */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }          /*lli=log(out[s1][s2]); */ /* Original formula */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } /* End of if */
       for(i=1;i<=nlstate;i++)        ipmx +=1;
         gp[i] = prlim[i][i];        sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=npar; i++) /* Computes gradient */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if(globpr){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(i=1;i<=nlstate;i++)   %11.6f %11.6f %11.6f ", \
         gm[i] = prlim[i][i];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(i=1;i<=nlstate;i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            llt +=ll[k]*gipmx/gsw;
     } /* End theta */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     trgradg =matrix(1,nlstate,1,npar);          fprintf(ficresilk," %10.6f\n", -llt);
         }
     for(j=1; j<=nlstate;j++)      } /* end of wave */
       for(theta=1; theta <=npar; theta++)    } /* end of individual */
         trgradg[j][theta]=gradg[theta][j];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(i=1;i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       varpl[i][(int)age] =0.;    if(globpr==0){ /* First time we count the contributions and weights */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      gipmx=ipmx;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      gsw=sw;
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    return -l;
   }
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /*************** function likelione ***********/
     fprintf(ficresvpl,"\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     free_vector(gp,1,nlstate);  {
     free_vector(gm,1,nlstate);    /* This routine should help understanding what is done with 
     free_matrix(gradg,1,npar,1,nlstate);       the selection of individuals/waves and
     free_matrix(trgradg,1,nlstate,1,npar);       to check the exact contribution to the likelihood.
   } /* End age */       Plotting could be done.
      */
   free_vector(xp,1,npar);    int k;
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
 }      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 /************ Variance of one-step probabilities  ******************/        printf("Problem with resultfile: %s\n", fileresilk);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 {      }
   int i, j, i1, k1, j1, z1;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int k=0, cptcode;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double **dnewm,**doldm;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double *xp;      for(k=1; k<=nlstate; k++) 
   double *gp, *gm;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double **gradg, **trgradg;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double age,agelim, cov[NCOVMAX];    }
   int theta;  
   char fileresprob[FILENAMELENGTH];    *fretone=(*funcone)(p);
     if(*globpri !=0){
   strcpy(fileresprob,"prob");      fclose(ficresilk);
   strcat(fileresprob,fileres);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      fflush(fichtm); 
     printf("Problem with resultfile: %s\n", fileresprob);    } 
   }    return;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  }
    
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  
   fprintf(ficresprob,"# Age");  /*********** Maximum Likelihood Estimation ***************/
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  {
     int i,j, iter;
     double **xi;
   fprintf(ficresprob,"\n");    double fret;
     double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
   xp=vector(1,npar);    xi=matrix(1,npar,1,npar);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (i=1;i<=npar;i++)
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      for (j=1;j<=npar;j++)
          xi[i][j]=(i==j ? 1.0 : 0.0);
   cov[1]=1;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   j=cptcoveff;    strcpy(filerespow,"pow"); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    strcat(filerespow,fileres);
   j1=0;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for(k1=1; k1<=1;k1++){      printf("Problem with resultfile: %s\n", filerespow);
     for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     j1++;    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     if  (cptcovn>0) {    for (i=1;i<=nlstate;i++)
       fprintf(ficresprob, "\n#********** Variable ");      for(j=1;j<=nlstate+ndeath;j++)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       fprintf(ficresprob, "**********\n#");    fprintf(ficrespow,"\n");
     }  
        powell(p,xi,npar,ftol,&iter,&fret,func);
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;    free_matrix(xi,1,npar,1,npar);
         for (k=1; k<=cptcovn;k++) {    fclose(ficrespow);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
              fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)  }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
          /**** Computes Hessian and covariance matrix ***/
         gradg=matrix(1,npar,1,9);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         trgradg=matrix(1,9,1,npar);  {
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double  **a,**y,*x,pd;
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double **hess;
        int i, j,jk;
         for(theta=1; theta <=npar; theta++){    int *indx;
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
              double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    void lubksb(double **a, int npar, int *indx, double b[]) ;
              void ludcmp(double **a, int npar, int *indx, double *d) ;
           k=0;    double gompertz(double p[]);
           for(i=1; i<= (nlstate+ndeath); i++){    hess=matrix(1,npar,1,npar);
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    printf("\nCalculation of the hessian matrix. Wait...\n");
               gp[k]=pmmij[i][j];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
             }    for (i=1;i<=npar;i++){
           }      printf("%d",i);fflush(stdout);
                fprintf(ficlog,"%d",i);fflush(ficlog);
           for(i=1; i<=npar; i++)     
             xp[i] = x[i] - (i==theta ?delti[theta]:0);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
          
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      /*  printf(" %f ",p[i]);
           k=0;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           for(i=1; i<=(nlstate+ndeath); i++){    }
             for(j=1; j<=(nlstate+ndeath);j++){    
               k=k+1;    for (i=1;i<=npar;i++) {
               gm[k]=pmmij[i][j];      for (j=1;j<=npar;j++)  {
             }        if (j>i) { 
           }          printf(".%d%d",i,j);fflush(stdout);
                fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            
         }          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        }
           for(theta=1; theta <=npar; theta++)      }
             trgradg[j][theta]=gradg[theta][j];    }
            printf("\n");
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    fprintf(ficlog,"\n");
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
            printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         pmij(pmmij,cov,ncovmodel,x,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
            
         k=0;    a=matrix(1,npar,1,npar);
         for(i=1; i<=(nlstate+ndeath); i++){    y=matrix(1,npar,1,npar);
           for(j=1; j<=(nlstate+ndeath);j++){    x=vector(1,npar);
             k=k+1;    indx=ivector(1,npar);
             gm[k]=pmmij[i][j];    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         }    ludcmp(a,npar,indx,&pd);
        
      /*printf("\n%d ",(int)age);    for (j=1;j<=npar;j++) {
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for (i=1;i<=npar;i++) x[i]=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      x[j]=1;
      }*/      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         fprintf(ficresprob,"\n%d ",(int)age);        matcov[i][j]=x[i];
       }
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    }
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));  
      printf("\n#Hessian matrix#\n");
       }    fprintf(ficlog,"\n#Hessian matrix#\n");
     }    for (i=1;i<=npar;i++) { 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (j=1;j<=npar;j++) { 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        printf("%.3e ",hess[i][j]);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
   }      printf("\n");
   free_vector(xp,1,npar);      fprintf(ficlog,"\n");
   fclose(ficresprob);    }
    
 }    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
 /******************* Printing html file ***********/      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    ludcmp(a,npar,indx,&pd);
  int lastpass, int stepm, int weightopt, char model[],\  
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    /*  printf("\n#Hessian matrix recomputed#\n");
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast, int estepm ){    for (j=1;j<=npar;j++) {
   int jj1, k1, i1, cpt;      for (i=1;i<=npar;i++) x[i]=0;
   FILE *fichtm;      x[j]=1;
   /*char optionfilehtm[FILENAMELENGTH];*/      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   strcpy(optionfilehtm,optionfile);        y[i][j]=x[i];
   strcat(optionfilehtm,".htm");        printf("%.3e ",y[i][j]);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        fprintf(ficlog,"%.3e ",y[i][j]);
     printf("Problem with %s \n",optionfilehtm), exit(0);      }
   }      printf("\n");
       fprintf(ficlog,"\n");
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    */
 \n  
 Total number of observations=%d <br>\n    free_matrix(a,1,npar,1,npar);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    free_matrix(y,1,npar,1,npar);
 <hr  size=\"2\" color=\"#EC5E5E\">    free_vector(x,1,npar);
  <ul><li>Outputs files<br>\n    free_ivector(indx,1,npar);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    free_matrix(hess,1,npar,1,npar);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  }
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
  fprintf(fichtm,"\n  {
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    int i;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    int l=1, lmax=20;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    double k1,k2;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    double p2[MAXPARM+1]; /* identical to x */
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
  if(popforecast==1) fprintf(fichtm,"\n    double fx;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    int k=0,kmax=10;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    double l1;
         <br>",fileres,fileres,fileres,fileres);  
  else    fx=func(x);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    for (i=1;i<=npar;i++) p2[i]=x[i];
 fprintf(fichtm," <li>Graphs</li><p>");    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       l1=pow(10,l);
  m=cptcoveff;      delts=delt;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
  jj1=0;        p2[theta]=x[theta] +delt;
  for(k1=1; k1<=m;k1++){        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
    for(i1=1; i1<=ncodemax[k1];i1++){        p2[theta]=x[theta]-delt;
        jj1++;        k2=func(p2)-fx;
        if (cptcovn > 0) {        /*res= (k1-2.0*fx+k2)/delt/delt; */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          for (cpt=1; cpt<=cptcoveff;cpt++)        
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  #ifdef DEBUGHESS
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  #endif
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
        for(cpt=1; cpt<nlstate;cpt++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          k=kmax;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }
        }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for(cpt=1; cpt<=nlstate;cpt++) {          k=kmax; l=lmax*10.;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        }
 interval) in state (%d): v%s%d%d.gif <br>        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            delts=delt;
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {      }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    delti[theta]=delts;
      }    return res; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    
 health expectancies in states (1) and (2): e%s%d.gif<br>  }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
 fprintf(fichtm,"\n</body>");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
    }  {
    }    int i;
 fclose(fichtm);    int l=1, l1, lmax=20;
 }    double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
 /******************* Gnuplot file **************/    int k;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
     fx=func(x);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   strcpy(optionfilegnuplot,optionfilefiname);      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcat(optionfilegnuplot,".gp.txt");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      k1=func(p2)-fx;
     printf("Problem with file %s",optionfilegnuplot);    
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 #ifdef windows      k2=func(p2)-fx;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    
 #endif      p2[thetai]=x[thetai]-delti[thetai]/k;
 m=pow(2,cptcoveff);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k3=func(p2)-fx;
  /* 1eme*/    
   for (cpt=1; cpt<= nlstate ; cpt ++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
    for (k1=1; k1<= m ; k1 ++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
 for (i=1; i<= nlstate ; i ++) {      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  #endif
 }    }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    return res;
     for (i=1; i<= nlstate ; i ++) {  }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /************** Inverse of matrix **************/
 }  void ludcmp(double **a, int n, int *indx, double *d) 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  { 
      for (i=1; i<= nlstate ; i ++) {    int i,imax,j,k; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double big,dum,sum,temp; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *vv; 
 }     
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    vv=vector(1,n); 
     *d=1.0; 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for (i=1;i<=n;i++) { 
    }      big=0.0; 
   }      for (j=1;j<=n;j++) 
   /*2 eme*/        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   for (k1=1; k1<= m ; k1 ++) {      vv[i]=1.0/big; 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    } 
        for (j=1;j<=n;j++) { 
     for (i=1; i<= nlstate+1 ; i ++) {      for (i=1;i<j;i++) { 
       k=2*i;        sum=a[i][j]; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       for (j=1; j<= nlstate+1 ; j ++) {        a[i][j]=sum; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      big=0.0; 
 }        for (i=j;i<=n;i++) { 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        sum=a[i][j]; 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for (k=1;k<j;k++) 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          sum -= a[i][k]*a[k][j]; 
       for (j=1; j<= nlstate+1 ; j ++) {        a[i][j]=sum; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         else fprintf(ficgp," \%%*lf (\%%*lf)");          big=dum; 
 }            imax=i; 
       fprintf(ficgp,"\" t\"\" w l 0,");        } 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      } 
       for (j=1; j<= nlstate+1 ; j ++) {      if (j != imax) { 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for (k=1;k<=n;k++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          dum=a[imax][k]; 
 }            a[imax][k]=a[j][k]; 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          a[j][k]=dum; 
       else fprintf(ficgp,"\" t\"\" w l 0,");        } 
     }        *d = -(*d); 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        vv[imax]=vv[j]; 
   }      } 
        indx[j]=imax; 
   /*3eme*/      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
   for (k1=1; k1<= m ; k1 ++) {        dum=1.0/(a[j][j]); 
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       k=2+nlstate*(2*cpt-2);      } 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    } 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    free_vector(vv,1,n);  /* Doesn't work */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  ;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  } 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  void lubksb(double **a, int n, int *indx, double b[]) 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  { 
     int i,ii=0,ip,j; 
 */    double sum; 
       for (i=1; i< nlstate ; i ++) {   
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
       }      sum=b[ip]; 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      b[ip]=b[i]; 
     }      if (ii) 
     }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        else if (sum) ii=i; 
   /* CV preval stat */      b[i]=sum; 
     for (k1=1; k1<= m ; k1 ++) {    } 
     for (cpt=1; cpt<nlstate ; cpt ++) {    for (i=n;i>=1;i--) { 
       k=3;      sum=b[i]; 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
       for (i=1; i< nlstate ; i ++)    } 
         fprintf(ficgp,"+$%d",k+i+1);  } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
        void pstamp(FILE *fichier)
       l=3+(nlstate+ndeath)*cpt;  {
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       for (i=1; i< nlstate ; i ++) {  }
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);  /************ Frequencies ********************/
       }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    {  /* Some frequencies */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
     }    int i, m, jk, k1,i1, j1, bool, z1,j;
   }      int first;
      double ***freq; /* Frequencies */
   /* proba elementaires */    double *pp, **prop;
    for(i=1,jk=1; i <=nlstate; i++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for(k=1; k <=(nlstate+ndeath); k++){    char fileresp[FILENAMELENGTH];
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){    pp=vector(1,nlstate);
            prop=matrix(1,nlstate,iagemin,iagemax+3);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    strcpy(fileresp,"p");
           jk++;    strcat(fileresp,fileres);
           fprintf(ficgp,"\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
         }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     }      exit(0);
     }    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for(jk=1; jk <=m; jk++) {    j1=0;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    
    i=1;    j=cptcoveff;
    for(k2=1; k2<=nlstate; k2++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {    first=1;
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
 ij=1;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
         for(j=3; j <=ncovmodel; j++) {    /*    j1++;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
             ij++;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           }          scanf("%d", i);*/
           else        for (i=-5; i<=nlstate+ndeath; i++)  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
           fprintf(ficgp,")/(1");              freq[i][jk][m]=0;
                
         for(k1=1; k1 <=nlstate; k1++){          for (i=1; i<=nlstate; i++)  
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for(m=iagemin; m <= iagemax+3; m++)
 ij=1;            prop[i][m]=0;
           for(j=3; j <=ncovmodel; j++){        
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        dateintsum=0;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        k2cpt=0;
             ij++;        for (i=1; i<=imx; i++) {
           }          bool=1;
           else          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for (z1=1; z1<=cptcoveff; z1++)       
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           fprintf(ficgp,")");                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
         }                bool=0;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         i=i+ncovmodel;                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
        }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
      }              } 
    }          }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);   
    }          if (bool==1){
                for(m=firstpass; m<=lastpass; m++){
   fclose(ficgp);              k2=anint[m][i]+(mint[m][i]/12.);
 }  /* end gnuplot */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /*************** Moving average **************/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   int i, cpt, cptcod;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                }
       for (i=1; i<=nlstate;i++)                
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           mobaverage[(int)agedeb][i][cptcod]=0.;                  dateintsum=dateintsum+k2;
                      k2cpt++;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                }
       for (i=1; i<=nlstate;i++){                /*}*/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            }
           for (cpt=0;cpt<=4;cpt++){          }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        } /* end i */
           }         
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         }        pstamp(ficresp);
       }        if  (cptcovn>0) {
     }          fprintf(ficresp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficresp, "**********\n#");
           fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /************** Forecasting ******************/          fprintf(ficlog, "**********\n#");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }
          for(i=1; i<=nlstate;i++) 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   int *popage;        fprintf(ficresp, "\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        
   double *popeffectif,*popcount;        for(i=iagemin; i <= iagemax+3; i++){
   double ***p3mat;          if(i==iagemax+3){
   char fileresf[FILENAMELENGTH];            fprintf(ficlog,"Total");
           }else{
  agelim=AGESUP;            if(first==1){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              first=0;
               printf("See log file for details...\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            }
              fprintf(ficlog,"Age %d", i);
            }
   strcpy(fileresf,"f");          for(jk=1; jk <=nlstate ; jk++){
   strcat(fileresf,fileres);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {              pp[jk] += freq[jk][m][i]; 
     printf("Problem with forecast resultfile: %s\n", fileresf);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            if(pp[jk]>=1.e-10){
               if(first==1){
   if (mobilav==1) {                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
     movingaverage(agedeb, fage, ageminpar, mobaverage);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }            }else{
               if(first==1)
   stepsize=(int) (stepm+YEARM-1)/YEARM;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if (stepm<=12) stepsize=1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
   agelim=AGESUP;          }
    
   hstepm=1;          for(jk=1; jk <=nlstate ; jk++){
   hstepm=hstepm/stepm;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   yp1=modf(dateintmean,&yp);              pp[jk] += freq[jk][m][i];
   anprojmean=yp;          }       
   yp2=modf((yp1*12),&yp);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   mprojmean=yp;            pos += pp[jk];
   yp1=modf((yp2*30.5),&yp);            posprop += prop[jk][i];
   jprojmean=yp;          }
   if(jprojmean==0) jprojmean=1;          for(jk=1; jk <=nlstate ; jk++){
   if(mprojmean==0) jprojmean=1;            if(pos>=1.e-5){
                if(first==1)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for(cptcov=1;cptcov<=i2;cptcov++){            }else{
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              if(first==1)
       k=k+1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresf,"\n#******");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1;j<=cptcoveff;j++) {            }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if( i <= iagemax){
       }              if(pos>=1.e-5){
       fprintf(ficresf,"******\n");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       fprintf(ficresf,"# StartingAge FinalAge");                /*probs[i][jk][j1]= pp[jk]/pos;*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                    }
                    else
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         fprintf(ficresf,"\n");            }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            }
           
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(jk=-1; jk <=nlstate+ndeath; jk++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(m=-1; m <=nlstate+ndeath; m++)
           nhstepm = nhstepm/hstepm;              if(freq[jk][m][i] !=0 ) {
                        if(first==1)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           oldm=oldms;savm=savms;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                }
                  if(i <= iagemax)
           for (h=0; h<=nhstepm; h++){            fprintf(ficresp,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {          if(first==1)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            printf("Others in log...\n");
             }          fprintf(ficlog,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;        /*}*/
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    dateintmean=dateintsum/k2cpt; 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   
                 else {    fclose(ficresp);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                 }    free_vector(pp,1,nlstate);
                    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
               }    /* End of Freq */
               if (h==(int)(calagedate+12*cpt)){  }
                 fprintf(ficresf," %.3f", kk1);  
                          /************ Prevalence ********************/
               }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             }  {  
           }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
       }    */
     }   
   }    int i, m, jk, k1, i1, j1, bool, z1,j;
            double ***freq; /* Frequencies */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *pp, **prop;
     double pos,posprop; 
   fclose(ficresf);    double  y2; /* in fractional years */
 }    int iagemin, iagemax;
 /************** Forecasting ******************/    int first; /** to stop verbosity which is redirected to log file */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
      iagemin= (int) agemin;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    iagemax= (int) agemax;
   int *popage;    /*pp=vector(1,nlstate);*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double *popeffectif,*popcount;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double ***p3mat,***tabpop,***tabpopprev;    j1=0;
   char filerespop[FILENAMELENGTH];    
     /*j=cptcoveff;*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   agelim=AGESUP;    first=1;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
        /*for(i1=1; i1<=ncodemax[k1];i1++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        j1++;*/
          
          for (i=1; i<=nlstate; i++)  
   strcpy(filerespop,"pop");          for(m=iagemin; m <= iagemax+3; m++)
   strcat(filerespop,fileres);            prop[i][m]=0.0;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       
     printf("Problem with forecast resultfile: %s\n", filerespop);        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
   printf("Computing forecasting: result on file '%s' \n", filerespop);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   if (mobilav==1) {          } 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (bool==1) { 
     movingaverage(agedeb, fage, ageminpar, mobaverage);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   stepsize=(int) (stepm+YEARM-1)/YEARM;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if (stepm<=12) stepsize=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   agelim=AGESUP;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   hstepm=1;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   hstepm=hstepm/stepm;                  prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
   if (popforecast==1) {              }
     if((ficpop=fopen(popfile,"r"))==NULL) {            } /* end selection of waves */
       printf("Problem with population file : %s\n",popfile);exit(0);          }
     }        }
     popage=ivector(0,AGESUP);        for(i=iagemin; i <= iagemax+3; i++){  
     popeffectif=vector(0,AGESUP);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     popcount=vector(0,AGESUP);            posprop += prop[jk][i]; 
              } 
     i=1;            
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
     imx=i;              if(posprop>=1.e-5){ 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                probs[i][jk][j1]= prop[jk][i]/posprop;
   }              } else{
                 if(first==1){
   for(cptcov=1;cptcov<=i2;cptcov++){                  first=0;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
       k=k+1;                }
       fprintf(ficrespop,"\n#******");              }
       for(j=1;j<=cptcoveff;j++) {            } 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }/* end jk */ 
       }        }/* end i */ 
       fprintf(ficrespop,"******\n");      /*} *//* end i1 */
       fprintf(ficrespop,"# Age");    } /* end j1 */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
          /*free_vector(pp,1,nlstate);*/
       for (cpt=0; cpt<=0;cpt++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    }  /* End of prevalence */
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /************* Waves Concatenation ***************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
            {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           oldm=oldms;savm=savms;       Death is a valid wave (if date is known).
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           for (h=0; h<=nhstepm; h++){       and mw[mi+1][i]. dh depends on stepm.
             if (h==(int) (calagedate+YEARM*cpt)) {       */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    int i, mi, m;
             for(j=1; j<=nlstate+ndeath;j++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               kk1=0.;kk2=0;       double sum=0., jmean=0.;*/
               for(i=1; i<=nlstate;i++) {                  int first;
                 if (mobilav==1)    int j, k=0,jk, ju, jl;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double sum=0.;
                 else {    first=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    jmin=1e+5;
                 }    jmax=-1;
               }    jmean=0.;
               if (h==(int)(calagedate+12*cpt)){    for(i=1; i<=imx; i++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      mi=0;
                   /*fprintf(ficrespop," %.3f", kk1);      m=firstpass;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      while(s[m][i] <= nlstate){
               }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             }          mw[++mi][i]=m;
             for(i=1; i<=nlstate;i++){        if(m >=lastpass)
               kk1=0.;          break;
                 for(j=1; j<=nlstate;j++){        else
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          m++;
                 }      }/* end while */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      if (s[m][i] > nlstate){
             }        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)           /* Only death is a correct wave */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        mw[mi][i]=m;
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      wav[i]=mi;
       }      if(mi==0){
          nbwarn++;
   /******/        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          first=1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if(first==1){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           nhstepm = nhstepm/hstepm;        }
                } /* end mi==0 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* End individuals */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for(i=1; i<=imx; i++){
           for (h=0; h<=nhstepm; h++){      for(mi=1; mi<wav[i];mi++){
             if (h==(int) (calagedate+YEARM*cpt)) {        if (stepm <=0)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          dh[mi][i]=1;
             }        else{
             for(j=1; j<=nlstate+ndeath;j++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
               kk1=0.;kk2=0;            if (agedc[i] < 2*AGESUP) {
               for(i=1; i<=nlstate;i++) {                            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  if(j==0) j=1;  /* Survives at least one month after exam */
               }              else if(j<0){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                nberr++;
             }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                j=1; /* Temporary Dangerous patch */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    }              }
   }              k=k+1;
                if (j >= jmax){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                jmax=j;
                 ijmax=i;
   if (popforecast==1) {              }
     free_ivector(popage,0,AGESUP);              if (j <= jmin){
     free_vector(popeffectif,0,AGESUP);                jmin=j;
     free_vector(popcount,0,AGESUP);                ijmin=i;
   }              }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              sum=sum+j;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   fclose(ficrespop);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }            }
           }
 /***********************************************/          else{
 /**************** Main Program *****************/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 /***********************************************/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
 int main(int argc, char *argv[])            k=k+1;
 {            if (j >= jmax) {
               jmax=j;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              ijmax=i;
   double agedeb, agefin,hf;            }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            else if (j <= jmin){
               jmin=j;
   double fret;              ijmin=i;
   double **xi,tmp,delta;            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double dum; /* Dummy variable */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double ***p3mat;            if(j<0){
   int *indx;              nberr++;
   char line[MAXLINE], linepar[MAXLINE];              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char title[MAXLINE];              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            }
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            sum=sum+j;
            }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          jk= j/stepm;
           jl= j -jk*stepm;
   char filerest[FILENAMELENGTH];          ju= j -(jk+1)*stepm;
   char fileregp[FILENAMELENGTH];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   char popfile[FILENAMELENGTH];            if(jl==0){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              dh[mi][i]=jk;
   int firstobs=1, lastobs=10;              bh[mi][i]=0;
   int sdeb, sfin; /* Status at beginning and end */            }else{ /* We want a negative bias in order to only have interpolation ie
   int c,  h , cpt,l;                    * to avoid the price of an extra matrix product in likelihood */
   int ju,jl, mi;              dh[mi][i]=jk+1;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              bh[mi][i]=ju;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            }
   int mobilav=0,popforecast=0;          }else{
   int hstepm, nhstepm;            if(jl <= -ju){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   double bage, fage, age, agelim, agebase;                                   * is higher than the multiple of stepm and negative otherwise.
   double ftolpl=FTOL;                                   */
   double **prlim;            }
   double *severity;            else{
   double ***param; /* Matrix of parameters */              dh[mi][i]=jk+1;
   double  *p;              bh[mi][i]=ju;
   double **matcov; /* Matrix of covariance */            }
   double ***delti3; /* Scale */            if(dh[mi][i]==0){
   double *delti; /* Scale */              dh[mi][i]=1; /* At least one step */
   double ***eij, ***vareij;              bh[mi][i]=ju; /* At least one step */
   double **varpl; /* Variances of prevalence limits by age */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   double *epj, vepp;            }
   double kk1, kk2;          } /* end if mle */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        }
        } /* end wave */
     }
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";    jmean=sum/k;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   char z[1]="c", occ;  
 #include <sys/time.h>  /*********** Tricode ****************************/
 #include <time.h>  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  {
      /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   /* long total_usecs;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   struct timeval start_time, end_time;    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
       * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* nbcode[Tvar[j]][1]= 
   getcwd(pathcd, size);    */
   
   printf("\n%s",version);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   if(argc <=1){    int modmaxcovj=0; /* Modality max of covariates j */
     printf("\nEnter the parameter file name: ");    int cptcode=0; /* Modality max of covariates j */
     scanf("%s",pathtot);    int modmincovj=0; /* Modality min of covariates j */
   }  
   else{  
     strcpy(pathtot,argv[1]);    cptcoveff=0; 
   }   
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    for (k=-1; k < maxncov; k++) Ndum[k]=0;
   /*cygwin_split_path(pathtot,path,optionfile);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                                 modality of this covariate Vj*/ 
   chdir(path);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   replace(pathc,path);                                      * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 /*-------- arguments in the command line --------*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   strcpy(fileres,"r");                                        modality of the nth covariate of individual i. */
   strcat(fileres, optionfilefiname);        if (ij > modmaxcovj)
   strcat(fileres,".txt");    /* Other files have txt extension */          modmaxcovj=ij; 
         else if (ij < modmincovj) 
   /*---------arguments file --------*/          modmincovj=ij; 
         if ((ij < -1) && (ij > NCOVMAX)){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     printf("Problem with optionfile %s\n",optionfile);          exit(1);
     goto end;        }else
   }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   strcpy(filereso,"o");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   strcat(filereso,fileres);        /* getting the maximum value of the modality of the covariate
   if((ficparo=fopen(filereso,"w"))==NULL) {           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     printf("Problem with Output resultfile: %s\n", filereso);goto end;           female is 1, then modmaxcovj=1.*/
   }      }
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   /* Reads comments: lines beginning with '#' */      cptcode=modmaxcovj;
   while((c=getc(ficpar))=='#' && c!= EOF){      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     ungetc(c,ficpar);     /*for (i=0; i<=cptcode; i++) {*/
     fgets(line, MAXLINE, ficpar);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     puts(line);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     fputs(line,ficparo);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   }          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   ungetc(c,ficpar);        }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      } /* Ndum[-1] number of undefined modalities */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     ungetc(c,ficpar);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     fgets(line, MAXLINE, ficpar);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     puts(line);         modmincovj=3; modmaxcovj = 7;
     fputs(line,ficparo);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
   }         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   ungetc(c,ficpar);         variables V1_1 and V1_2.
           nbcode[Tvar[j]][ij]=k;
             nbcode[Tvar[j]][1]=0;
   covar=matrix(0,NCOVMAX,1,n);         nbcode[Tvar[j]][2]=1;
   cptcovn=0;         nbcode[Tvar[j]][3]=2;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      */
       ij=1; /* ij is similar to i but can jumps over null modalities */
   ncovmodel=2+cptcovn;      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
            /*recode from 0 */
   /* Read guess parameters */          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   /* Reads comments: lines beginning with '#' */            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   while((c=getc(ficpar))=='#' && c!= EOF){                                       k is a modality. If we have model=V1+V1*sex 
     ungetc(c,ficpar);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     fgets(line, MAXLINE, ficpar);            ij++;
     puts(line);          }
     fputs(line,ficparo);          if (ij > ncodemax[j]) break; 
   }        }  /* end of loop on */
   ungetc(c,ficpar);      } /* end of loop on modality */ 
      } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
     for(i=1; i <=nlstate; i++)   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     for(j=1; j <=nlstate+ndeath-1; j++){    
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       fprintf(ficparo,"%1d%1d",i1,j1);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       printf("%1d%1d",i,j);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       for(k=1; k<=ncovmodel;k++){     Ndum[ij]++; 
         fscanf(ficpar," %lf",&param[i][j][k]);   } 
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);   ij=1;
       }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       fscanf(ficpar,"\n");     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       printf("\n");     if((Ndum[i]!=0) && (i<=ncovcol)){
       fprintf(ficparo,"\n");       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     }       Tvaraff[ij]=i; /*For printing (unclear) */
         ij++;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;     }else
          Tvaraff[ij]=0;
   p=param[1][1];   }
     ij--;
   /* Reads comments: lines beginning with '#' */   cptcoveff=ij; /*Number of total covariates*/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);  /*********** Health Expectancies ****************/
   }  
   ungetc(c,ficpar);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    /* Health expectancies, no variances */
   for(i=1; i <=nlstate; i++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     for(j=1; j <=nlstate+ndeath-1; j++){    int nhstepma, nstepma; /* Decreasing with age */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double age, agelim, hf;
       printf("%1d%1d",i,j);    double ***p3mat;
       fprintf(ficparo,"%1d%1d",i1,j1);    double eip;
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);    pstamp(ficreseij);
         printf(" %le",delti3[i][j][k]);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficreseij,"# Age");
       }    for(i=1; i<=nlstate;i++){
       fscanf(ficpar,"\n");      for(j=1; j<=nlstate;j++){
       printf("\n");        fprintf(ficreseij," e%1d%1d ",i,j);
       fprintf(ficparo,"\n");      }
     }      fprintf(ficreseij," e%1d. ",i);
   }    }
   delti=delti3[1][1];    fprintf(ficreseij,"\n");
    
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    if(estepm < stepm){
     ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    else  hstepm=estepm;   
     fputs(line,ficparo);    /* We compute the life expectancy from trapezoids spaced every estepm months
   }     * This is mainly to measure the difference between two models: for example
   ungetc(c,ficpar);     * if stepm=24 months pijx are given only every 2 years and by summing them
       * we are calculating an estimate of the Life Expectancy assuming a linear 
   matcov=matrix(1,npar,1,npar);     * progression in between and thus overestimating or underestimating according
   for(i=1; i <=npar; i++){     * to the curvature of the survival function. If, for the same date, we 
     fscanf(ficpar,"%s",&str);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     printf("%s",str);     * to compare the new estimate of Life expectancy with the same linear 
     fprintf(ficparo,"%s",str);     * hypothesis. A more precise result, taking into account a more precise
     for(j=1; j <=i; j++){     * curvature will be obtained if estepm is as small as stepm. */
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficparo," %.5le",matcov[i][j]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
     fscanf(ficpar,"\n");       nstepm is the number of stepm from age to agelin. 
     printf("\n");       Look at hpijx to understand the reason of that which relies in memory size
     fprintf(ficparo,"\n");       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for(i=1; i <=npar; i++)       survival function given by stepm (the optimization length). Unfortunately it
     for(j=i+1;j<=npar;j++)       means that if the survival funtion is printed only each two years of age and if
       matcov[i][j]=matcov[j][i];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
   printf("\n");    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /*-------- Rewriting paramater file ----------*/    agelim=AGESUP;
      strcpy(rfileres,"r");    /* "Rparameterfile */    /* If stepm=6 months */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
      strcat(rfileres,".");    /* */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      
     if((ficres =fopen(rfileres,"w"))==NULL) {  /* nhstepm age range expressed in number of stepm */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficres,"#%s\n",version);    /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     /*-------- data file ----------*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;    for (age=bage; age<=fage; age ++){ 
     }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     n= lastobs;      /* if (stepm >= YEARM) hstepm=1;*/
     severity = vector(1,maxwav);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);      /* If stepm=6 months */
     moisnais=vector(1,n);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     annais=vector(1,n);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     moisdc=vector(1,n);      
     andc=vector(1,n);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     agedc=vector(1,n);      
     cod=ivector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     weight=vector(1,n);      
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      printf("%d|",(int)age);fflush(stdout);
     mint=matrix(1,maxwav,1,n);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     anint=matrix(1,maxwav,1,n);      
     s=imatrix(1,maxwav+1,1,n);      /* Computing expectancies */
     adl=imatrix(1,maxwav+1,1,n);          for(i=1; i<=nlstate;i++)
     tab=ivector(1,NCOVMAX);        for(j=1; j<=nlstate;j++)
     ncodemax=ivector(1,8);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     i=1;            
     while (fgets(line, MAXLINE, fic) != NULL)    {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       if ((i >= firstobs) && (i <=lastobs)) {  
                  }
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      fprintf(ficreseij,"%3.0f",age );
           strcpy(line,stra);      for(i=1; i<=nlstate;i++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        eip=0;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate;j++){
         }          eip +=eij[i][j][(int)age];
                  fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficreseij,"%9.4f", eip );
       }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficreseij,"\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      
     }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (j=ncovcol;j>=1;j--){    printf("\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n");
         }    
         num[i]=atol(stra);  }
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
   {
         i=i+1;    /* Covariances of health expectancies eij and of total life expectancies according
       }     to initial status i, ei. .
     }    */
     /* printf("ii=%d", ij);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
        scanf("%d",i);*/    int nhstepma, nstepma; /* Decreasing with age */
   imx=i-1; /* Number of individuals */    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
   /* for (i=1; i<=imx; i++){    double **dnewm,**doldm;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    double *xp, *xm;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    double **gp, **gm;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    double ***gradg, ***trgradg;
     }*/    int theta;
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;    double eip, vip;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      xp=vector(1,npar);
   /* Calculation of the number of parameter from char model*/    xm=vector(1,npar);
   Tvar=ivector(1,15);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   Tprod=ivector(1,15);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   Tvaraff=ivector(1,15);    
   Tvard=imatrix(1,15,1,2);    pstamp(ficresstdeij);
   Tage=ivector(1,15);          fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
        fprintf(ficresstdeij,"# Age");
   if (strlen(model) >1){    for(i=1; i<=nlstate;i++){
     j=0, j1=0, k1=1, k2=1;      for(j=1; j<=nlstate;j++)
     j=nbocc(model,'+');        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     j1=nbocc(model,'*');      fprintf(ficresstdeij," e%1d. ",i);
     cptcovn=j+1;    }
     cptcovprod=j1;    fprintf(ficresstdeij,"\n");
      
     strcpy(modelsav,model);    pstamp(ficrescveij);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       printf("Error. Non available option model=%s ",model);    fprintf(ficrescveij,"# Age");
       goto end;    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
     for(i=(j+1); i>=1;i--){        for(i2=1; i2<=nlstate;i2++)
       cutv(stra,strb,modelsav,'+');          for(j2=1; j2<=nlstate;j2++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            cptj2= (j2-1)*nlstate+i2;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            if(cptj2 <= cptj)
       /*scanf("%d",i);*/              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       if (strchr(strb,'*')) {          }
         cutv(strd,strc,strb,'*');      }
         if (strcmp(strc,"age")==0) {    fprintf(ficrescveij,"\n");
           cptcovprod--;    
           cutv(strb,stre,strd,'V');    if(estepm < stepm){
           Tvar[i]=atoi(stre);      printf ("Problem %d lower than %d\n",estepm, stepm);
           cptcovage++;    }
             Tage[cptcovage]=i;    else  hstepm=estepm;   
             /*printf("stre=%s ", stre);*/    /* We compute the life expectancy from trapezoids spaced every estepm months
         }     * This is mainly to measure the difference between two models: for example
         else if (strcmp(strd,"age")==0) {     * if stepm=24 months pijx are given only every 2 years and by summing them
           cptcovprod--;     * we are calculating an estimate of the Life Expectancy assuming a linear 
           cutv(strb,stre,strc,'V');     * progression in between and thus overestimating or underestimating according
           Tvar[i]=atoi(stre);     * to the curvature of the survival function. If, for the same date, we 
           cptcovage++;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           Tage[cptcovage]=i;     * to compare the new estimate of Life expectancy with the same linear 
         }     * hypothesis. A more precise result, taking into account a more precise
         else {     * curvature will be obtained if estepm is as small as stepm. */
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;    /* For example we decided to compute the life expectancy with the smallest unit */
           cutv(strb,strc,strd,'V');    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           Tprod[k1]=i;       nhstepm is the number of hstepm from age to agelim 
           Tvard[k1][1]=atoi(strc);       nstepm is the number of stepm from age to agelin. 
           Tvard[k1][2]=atoi(stre);       Look at hpijx to understand the reason of that which relies in memory size
           Tvar[cptcovn+k2]=Tvard[k1][1];       and note for a fixed period like estepm months */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for (k=1; k<=lastobs;k++)       survival function given by stepm (the optimization length). Unfortunately it
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       means that if the survival funtion is printed only each two years of age and if
           k1++;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           k2=k2+2;       results. So we changed our mind and took the option of the best precision.
         }    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /* If stepm=6 months */
        /*  scanf("%d",i);*/    /* nhstepm age range expressed in number of stepm */
       cutv(strd,strc,strb,'V');    agelim=AGESUP;
       Tvar[i]=atoi(strc);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       strcpy(modelsav,stra);      /* if (stepm >= YEARM) hstepm=1;*/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         scanf("%d",i);*/    
     }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   printf("cptcovprod=%d ", cptcovprod);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   scanf("%d ",i);*/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fclose(fic);  
     for (age=bage; age<=fage; age ++){ 
     /*  if(mle==1){*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     if (weightopt != 1) { /* Maximisation without weights*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(i=1;i<=n;i++) weight[i]=1.0;      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
     for (i=1; i<=imx; i++) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       for(m=2; (m<= maxwav); m++) {      
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          anint[m][i]=9999;  
          s[m][i]=-1;      /* Computing  Variances of health expectancies */
        }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;         decrease memory allocation */
       }      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (i=1; i<=imx; i++)  {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        }
       for(m=1; (m<= maxwav); m++){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         if(s[m][i] >0){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           if (s[m][i] >= nlstate+1) {    
             if(agedc[i]>0)        for(j=1; j<= nlstate; j++){
               if(moisdc[i]!=99 && andc[i]!=9999)          for(i=1; i<=nlstate; i++){
                 agev[m][i]=agedc[i];            for(h=0; h<=nhstepm-1; h++){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
            else {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
               if (andc[i]!=9999){            }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          }
               agev[m][i]=-1;        }
               }       
             }        for(ij=1; ij<= nlstate*nlstate; ij++)
           }          for(h=0; h<=nhstepm-1; h++){
           else if(s[m][i] !=9){ /* Should no more exist */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          }
             if(mint[m][i]==99 || anint[m][i]==9999)      }/* End theta */
               agev[m][i]=1;      
             else if(agev[m][i] <agemin){      
               agemin=agev[m][i];      for(h=0; h<=nhstepm-1; h++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        for(j=1; j<=nlstate*nlstate;j++)
             }          for(theta=1; theta <=npar; theta++)
             else if(agev[m][i] >agemax){            trgradg[h][j][theta]=gradg[h][theta][j];
               agemax=agev[m][i];      
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }       for(ij=1;ij<=nlstate*nlstate;ij++)
             /*agev[m][i]=anint[m][i]-annais[i];*/        for(ji=1;ji<=nlstate*nlstate;ji++)
             /*   agev[m][i] = age[i]+2*m;*/          varhe[ij][ji][(int)age] =0.;
           }  
           else { /* =9 */       printf("%d|",(int)age);fflush(stdout);
             agev[m][i]=1;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             s[m][i]=-1;       for(h=0;h<=nhstepm-1;h++){
           }        for(k=0;k<=nhstepm-1;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         else /*= 0 Unknown */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           agev[m][i]=1;          for(ij=1;ij<=nlstate*nlstate;ij++)
       }            for(ji=1;ji<=nlstate*nlstate;ji++)
                  varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     }        }
     for (i=1; i<=imx; i++)  {      }
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {      /* Computing expectancies */
           printf("Error: Wrong value in nlstate or ndeath\n");        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           goto end;      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++)
       }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
     free_vector(severity,1,maxwav);          }
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);      fprintf(ficresstdeij,"%3.0f",age );
     free_vector(annais,1,n);      for(i=1; i<=nlstate;i++){
     /* free_matrix(mint,1,maxwav,1,n);        eip=0.;
        free_matrix(anint,1,maxwav,1,n);*/        vip=0.;
     free_vector(moisdc,1,n);        for(j=1; j<=nlstate;j++){
     free_vector(andc,1,n);          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     wav=ivector(1,imx);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
          }
     /* Concatenates waves */      fprintf(ficresstdeij,"\n");
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
       Tcode=ivector(1,100);        for(j=1; j<=nlstate;j++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          cptj= (j-1)*nlstate+i;
       ncodemax[1]=1;          for(i2=1; i2<=nlstate;i2++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            for(j2=1; j2<=nlstate;j2++){
                    cptj2= (j2-1)*nlstate+i2;
    codtab=imatrix(1,100,1,10);              if(cptj2 <= cptj)
    h=0;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
    m=pow(2,cptcoveff);            }
          }
    for(k=1;k<=cptcoveff; k++){      fprintf(ficrescveij,"\n");
      for(i=1; i <=(m/pow(2,k));i++){     
        for(j=1; j <= ncodemax[k]; j++){    }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
            h++;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
          }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    printf("\n");
    }    fprintf(ficlog,"\n");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */    free_vector(xm,1,npar);
    /* for(i=1; i <=m ;i++){    free_vector(xp,1,npar);
       for(k=1; k <=cptcovn; k++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       printf("\n");  }
       }  
       scanf("%d",i);*/  /************ Variance ******************/
      void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    /* Calculates basic frequencies. Computes observed prevalence at single age  {
        and prints on file fileres'p'. */    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
        /* double **newm;*/
        double **dnewm,**doldm;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **dnewmp,**doldmp;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, j, nhstepm, hstepm, h, nstepm ;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int k, cptcode;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *xp;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double **gp, **gm;  /* for var eij */
          double ***gradg, ***trgradg; /*for var eij */
     /* For Powell, parameters are in a vector p[] starting at p[1]    double **gradgp, **trgradgp; /* for var p point j */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double *gpp, *gmp; /* for var p point j */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     if(mle==1){    double age,agelim, hf;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double ***mobaverage;
     }    int theta;
        char digit[4];
     /*--------- results files --------------*/    char digitp[25];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      char fileresprobmorprev[FILENAMELENGTH];
   
    jk=1;    if(popbased==1){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      if(mobilav!=0)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        strcpy(digitp,"-populbased-mobilav-");
    for(i=1,jk=1; i <=nlstate; i++){      else strcpy(digitp,"-populbased-nomobil-");
      for(k=1; k <=(nlstate+ndeath); k++){    }
        if (k != i)    else 
          {      strcpy(digitp,"-stablbased-");
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);    if (mobilav!=0) {
            for(j=1; j <=ncovmodel; j++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
              printf("%f ",p[jk]);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
              fprintf(ficres,"%f ",p[jk]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
              jk++;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
            }      }
            printf("\n");    }
            fprintf(ficres,"\n");  
          }    strcpy(fileresprobmorprev,"prmorprev"); 
      }    sprintf(digit,"%-d",ij);
    }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
  if(mle==1){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     /* Computing hessian and covariance matrix */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     ftolhess=ftol; /* Usually correct */    strcat(fileresprobmorprev,fileres);
     hesscov(matcov, p, npar, delti, ftolhess, func);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
  }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     printf("# Scales (for hessian or gradient estimation)\n");    }
      for(i=1,jk=1; i <=nlstate; i++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(j=1; j <=nlstate+ndeath; j++){   
         if (j!=i) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           fprintf(ficres,"%1d%1d",i,j);    pstamp(ficresprobmorprev);
           printf("%1d%1d",i,j);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           for(k=1; k<=ncovmodel;k++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             printf(" %.5e",delti[jk]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             fprintf(ficres," %.5e",delti[jk]);      fprintf(ficresprobmorprev," p.%-d SE",j);
             jk++;      for(i=1; i<=nlstate;i++)
           }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           printf("\n");    }  
           fprintf(ficres,"\n");    fprintf(ficresprobmorprev,"\n");
         }    fprintf(ficgp,"\n# Routine varevsij");
       }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
        fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     k=1;  /*   } */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    pstamp(ficresvij);
     for(i=1;i<=npar;i++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       /*  if (k>nlstate) k=1;    if(popbased==1)
       i1=(i-1)/(ncovmodel*nlstate)+1;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    else
       printf("%s%d%d",alph[k],i1,tab[i]);*/      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       fprintf(ficres,"%3d",i);    fprintf(ficresvij,"# Age");
       printf("%3d",i);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=i;j++){      for(j=1; j<=nlstate;j++)
         fprintf(ficres," %.5e",matcov[i][j]);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         printf(" %.5e",matcov[i][j]);    fprintf(ficresvij,"\n");
       }  
       fprintf(ficres,"\n");    xp=vector(1,npar);
       printf("\n");    dnewm=matrix(1,nlstate,1,npar);
       k++;    doldm=matrix(1,nlstate,1,nlstate);
     }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
        doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fgets(line, MAXLINE, ficpar);    gpp=vector(nlstate+1,nlstate+ndeath);
       puts(line);    gmp=vector(nlstate+1,nlstate+ndeath);
       fputs(line,ficparo);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     }    
     ungetc(c,ficpar);    if(estepm < stepm){
     estepm=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    }
     if (estepm==0 || estepm < stepm) estepm=stepm;    else  hstepm=estepm;   
     if (fage <= 2) {    /* For example we decided to compute the life expectancy with the smallest unit */
       bage = ageminpar;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fage = agemaxpar;       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
           Look at function hpijx to understand why (it is linked to memory size questions) */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     while((c=getc(ficpar))=='#' && c!= EOF){       results. So we changed our mind and took the option of the best precision.
     ungetc(c,ficpar);    */
     fgets(line, MAXLINE, ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     puts(line);    agelim = AGESUP;
     fputs(line,ficparo);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   ungetc(c,ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      gp=matrix(0,nhstepm,1,nlstate);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      gm=matrix(0,nhstepm,1,nlstate);
        
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(theta=1; theta <=npar; theta++){
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     puts(line);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          if(mobilav ==0){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   fscanf(ficpar,"pop_based=%d\n",&popbased);          }else{ /* mobilav */ 
   fprintf(ficparo,"pop_based=%d\n",popbased);              for(i=1; i<=nlstate;i++)
   fprintf(ficres,"pop_based=%d\n",popbased);                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate; j++){
     puts(line);          for(h=0; h<=nhstepm; h++){
     fputs(line,ficparo);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   ungetc(c,ficpar);          }
         }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        /* This for computing probability of death (h=1 means
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);           computed over hstepm matrices product = hstepm*stepm months) 
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);           as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
 while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     ungetc(c,ficpar);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fgets(line, MAXLINE, ficpar);        }    
     puts(line);        /* end probability of death */
     fputs(line,ficparo);  
   }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        if (popbased==1) {
           if(mobilav ==0){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
 /*------------ gnuplot -------------*/          }else{ /* mobilav */ 
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
 /*------------ free_vector  -------------*/          }
  chdir(path);        }
    
  free_ivector(wav,1,imx);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for(h=0; h<=nhstepm; h++){
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
  free_ivector(num,1,n);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
  free_vector(agedc,1,n);          }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        }
  fclose(ficparo);        /* This for computing probability of death (h=1 means
  fclose(ficres);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
 /*--------- index.htm --------*/        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   /*--------------- Prevalence limit --------------*/        /* end probability of death */
    
   strcpy(filerespl,"pl");        for(j=1; j<= nlstate; j++) /* vareij */
   strcat(filerespl,fileres);          for(h=0; h<=nhstepm; h++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          }
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   fprintf(ficrespl,"#Prevalence limit\n");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   fprintf(ficrespl,"#Age ");        }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");      } /* End theta */
    
   prlim=matrix(1,nlstate,1,nlstate);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(h=0; h<=nhstepm; h++) /* veij */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate;j++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(theta=1; theta <=npar; theta++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            trgradg[h][j][theta]=gradg[h][theta][j];
   k=0;  
   agebase=ageminpar;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   agelim=agemaxpar;        for(theta=1; theta <=npar; theta++)
   ftolpl=1.e-10;          trgradgp[j][theta]=gradgp[theta][j];
   i1=cptcoveff;    
   if (cptcovn < 1){i1=1;}  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1;i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1;j<=nlstate;j++)
         k=k+1;          vareij[i][j][(int)age] =0.;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");      for(h=0;h<=nhstepm;h++){
         for(j=1;j<=cptcoveff;j++)        for(k=0;k<=nhstepm;k++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficrespl,"******\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                  for(i=1;i<=nlstate;i++)
         for (age=agebase; age<=agelim; age++){            for(j=1;j<=nlstate;j++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficrespl,"%.0f",age );        }
           for(i=1; i<=nlstate;i++)      }
           fprintf(ficrespl," %.5f", prlim[i][i]);    
           fprintf(ficrespl,"\n");      /* pptj */
         }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fclose(ficrespl);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   /*------------- h Pij x at various ages ------------*/      /* end ppptj */
        /*  x centered again */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   
   }      if (popbased==1) {
   printf("Computing pij: result on file '%s' \n", filerespij);        if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            prlim[i][i]=probs[(int)age][i][ij];
   /*if (stepm<=24) stepsize=2;*/        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   agelim=AGESUP;            prlim[i][i]=mobaverage[(int)age][i][ij];
   hstepm=stepsize*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      }
                 
   k=0;      /* This for computing probability of death (h=1 means
   for(cptcov=1;cptcov<=i1;cptcov++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         as a weighted average of prlim.
       k=k+1;      */
         fprintf(ficrespij,"\n#****** ");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(j=1;j<=cptcoveff;j++)        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         fprintf(ficrespij,"******\n");      }    
              /* end probability of death */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           oldm=oldms;savm=savms;        for(i=1; i<=nlstate;i++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           fprintf(ficrespij,"# Age");        }
           for(i=1; i<=nlstate;i++)      } 
             for(j=1; j<=nlstate+ndeath;j++)      fprintf(ficresprobmorprev,"\n");
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");      fprintf(ficresvij,"%.0f ",age );
            for (h=0; h<=nhstepm; h++){      for(i=1; i<=nlstate;i++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for(j=1; j<=nlstate;j++){
             for(i=1; i<=nlstate;i++)          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
               for(j=1; j<=nlstate+ndeath;j++)        }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      fprintf(ficresvij,"\n");
             fprintf(ficrespij,"\n");      free_matrix(gp,0,nhstepm,1,nlstate);
              }      free_matrix(gm,0,nhstepm,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           fprintf(ficrespij,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fclose(ficrespij);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*---------- Forecasting ------------------*/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   if((stepm == 1) && (strcmp(model,".")==0)){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   else{    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     erreur=108;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /*---------- Health expectancies and variances ------------*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   strcpy(filerest,"t");    free_vector(xp,1,npar);
   strcat(filerest,fileres);    free_matrix(doldm,1,nlstate,1,nlstate);
   if((ficrest=fopen(filerest,"w"))==NULL) {    free_matrix(dnewm,1,nlstate,1,npar);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
   strcpy(filerese,"e");    fflush(ficgp);
   strcat(filerese,fileres);    fflush(fichtm); 
   if((ficreseij=fopen(filerese,"w"))==NULL) {  }  /* end varevsij */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }  /************ Variance of prevlim ******************/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
  strcpy(fileresv,"v");    /* Variance of prevalence limit */
   strcat(fileresv,fileres);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double **newm;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int k, cptcode;
   calagedate=-1;    double *xp;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double *gp, *gm;
     double **gradg, **trgradg;
   k=0;    double age,agelim;
   for(cptcov=1;cptcov<=i1;cptcov++){    int theta;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    pstamp(ficresvpl);
       fprintf(ficrest,"\n#****** ");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresvpl,"# Age");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++)
       fprintf(ficrest,"******\n");        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    xp=vector(1,npar);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficreseij,"******\n");    doldm=matrix(1,nlstate,1,nlstate);
     
       fprintf(ficresvij,"\n#****** ");    hstepm=1*YEARM; /* Every year of age */
       for(j=1;j<=cptcoveff;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim = AGESUP;
       fprintf(ficresvij,"******\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      if (stepm >= YEARM) hstepm=1;
       oldm=oldms;savm=savms;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        gradg=matrix(1,npar,1,nlstate);
        gp=vector(1,nlstate);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      gm=vector(1,nlstate);
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);      for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        for(i=1;i<=nlstate;i++)
       fprintf(ficrest,"\n");          gp[i] = prlim[i][i];
       
       epj=vector(1,nlstate+1);        for(i=1; i<=npar; i++) /* Computes gradient */
       for(age=bage; age <=fage ;age++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         if (popbased==1) {        for(i=1;i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)          gm[i] = prlim[i][i];
             prlim[i][i]=probs[(int)age][i][k];  
         }        for(i=1;i<=nlstate;i++)
                  gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         fprintf(ficrest," %4.0f",age);      } /* End theta */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      trgradg =matrix(1,nlstate,1,npar);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      for(j=1; j<=nlstate;j++)
           }        for(theta=1; theta <=npar; theta++)
           epj[nlstate+1] +=epj[j];          trgradg[j][theta]=gradg[theta][j];
         }  
       for(i=1;i<=nlstate;i++)
         for(i=1, vepp=0.;i <=nlstate;i++)        varpl[i][(int)age] =0.;
           for(j=1;j <=nlstate;j++)      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
             vepp += vareij[i][j][(int)age];      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      for(i=1;i<=nlstate;i++)
         for(j=1;j <=nlstate;j++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }      fprintf(ficresvpl,"%.0f ",age );
         fprintf(ficrest,"\n");      for(i=1; i<=nlstate;i++)
       }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     }      fprintf(ficresvpl,"\n");
   }      free_vector(gp,1,nlstate);
 free_matrix(mint,1,maxwav,1,n);      free_vector(gm,1,nlstate);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      free_matrix(gradg,1,npar,1,nlstate);
     free_vector(weight,1,n);      free_matrix(trgradg,1,nlstate,1,npar);
   fclose(ficreseij);    } /* End age */
   fclose(ficresvij);  
   fclose(ficrest);    free_vector(xp,1,npar);
   fclose(ficpar);    free_matrix(doldm,1,nlstate,1,npar);
   free_vector(epj,1,nlstate+1);    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   /*------- Variance limit prevalence------*/    }
   
   strcpy(fileresvpl,"vpl");  /************ Variance of one-step probabilities  ******************/
   strcat(fileresvpl,fileres);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    int i, j=0,  i1, k1, l1, t, tj;
     exit(0);    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   k=0;    double **dnewm,**doldm;
   for(cptcov=1;cptcov<=i1;cptcov++){    double *xp;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double *gp, *gm;
       k=k+1;    double **gradg, **trgradg;
       fprintf(ficresvpl,"\n#****** ");    double **mu;
       for(j=1;j<=cptcoveff;j++)    double age,agelim, cov[NCOVMAX+1];
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       fprintf(ficresvpl,"******\n");    int theta;
          char fileresprob[FILENAMELENGTH];
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    char fileresprobcov[FILENAMELENGTH];
       oldm=oldms;savm=savms;    char fileresprobcor[FILENAMELENGTH];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double ***varpij;
     }  
  }    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   fclose(ficresvpl);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
   /*---------- End : free ----------------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    }
      strcpy(fileresprobcov,"probcov"); 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    strcat(fileresprobcov,fileres);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    strcpy(fileresprobcor,"probcor"); 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    strcat(fileresprobcor,fileres);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
   free_matrix(matcov,1,npar,1,npar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   free_vector(delti,1,npar);    }
   free_matrix(agev,1,maxwav,1,imx);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   if(erreur >0)    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("End of Imach with error or warning %d\n",erreur);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   else   printf("End of Imach\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    pstamp(ficresprob);
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(ficresprob,"# Age");
   /*printf("Total time was %d uSec.\n", total_usecs);*/    pstamp(ficresprobcov);
   /*------ End -----------*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
  end:    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   /* chdir(pathcd);*/    fprintf(ficresprobcor,"# Age");
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/    for(i=1; i<=nlstate;i++)
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      for(j=1; j<=(nlstate+ndeath);j++){
  strcpy(plotcmd,GNUPLOTPROGRAM);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  strcat(plotcmd," ");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
  strcat(plotcmd,optionfilegnuplot);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
  system(plotcmd);      }  
    /* fprintf(ficresprob,"\n");
  /*#ifdef windows*/    fprintf(ficresprobcov,"\n");
   while (z[0] != 'q') {    fprintf(ficresprobcor,"\n");
     /* chdir(path); */   */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    xp=vector(1,npar);
     scanf("%s",z);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     if (z[0] == 'c') system("./imach");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     else if (z[0] == 'e') system(optionfilehtm);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     else if (z[0] == 'g') system(plotcmd);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     else if (z[0] == 'q') exit(0);    first=1;
   }    fprintf(ficgp,"\n# Routine varprob");
   /*#endif */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 }    fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot command %s\n", plotcmd);
       printf("\n Trying on same directory\n");
       sprintf(plotcmd,"./gnuplot %s", optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s\n", plotcmd);
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.151


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>