Diff for /imach/src/imach.c between versions 1.23 and 1.152

version 1.23, 2002/02/22 18:08:30 version 1.152, 2014/06/18 17:54:09
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolate Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.152  2014/06/18 17:54:09  brouard
      Summary: open browser, use gnuplot on same dir than imach if not found in the path
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.151  2014/06/18 16:43:30  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.150  2014/06/18 16:42:35  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   (if any) in individual health status.  Health expectancies are    Author: brouard
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.149  2014/06/18 15:51:14  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: Some fixes in parameter files errors
   simplest model is the multinomial logistic model where pij is the    Author: Nicolas Brouard
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.148  2014/06/17 17:38:48  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: Nothing new
   'age' is age and 'sex' is a covariate. If you want to have a more    Author: Brouard
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Just a new packaging for OS/X version 0.98nS
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.146  2014/06/16 10:20:28  brouard
   identical for each individual. Also, if a individual missed an    Summary: Merge
   intermediate interview, the information is lost, but taken into    Author: Brouard
   account using an interpolation or extrapolation.    
     Merge, before building revised version.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.145  2014/06/10 21:23:15  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Summary: Debugging with valgrind
   states. This elementary transition (by month or quarter trimester,    Author: Nicolas Brouard
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Lot of changes in order to output the results with some covariates
   and the contribution of each individual to the likelihood is simply    After the Edimburgh REVES conference 2014, it seems mandatory to
   hPijx.    improve the code.
     No more memory valgrind error but a lot has to be done in order to
   Also this programme outputs the covariance matrix of the parameters but also    continue the work of splitting the code into subroutines.
   of the life expectancies. It also computes the prevalence limits.    Also, decodemodel has been improved. Tricode is still not
      optimal. nbcode should be improved. Documentation has been added in
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    the source code.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.143  2014/01/26 09:45:38  brouard
   from the European Union.    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   **********************************************************************/  
      Revision 1.142  2014/01/26 03:57:36  brouard
 #include <math.h>    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #include <stdio.h>  
 #include <stdlib.h>    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <unistd.h>  
     Revision 1.141  2014/01/26 02:42:01  brouard
 #define MAXLINE 256    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"  
 #define FILENAMELENGTH 80    Revision 1.140  2011/09/02 10:37:54  brouard
 /*#define DEBUG*/    Summary: times.h is ok with mingw32 now.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.139  2010/06/14 07:50:17  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.137  2010/04/29 18:11:38  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Checking covariates for more complex models
 #define NCOVMAX 8 /* Maximum number of covariates */    than V1+V2. A lot of change to be done. Unstable.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.136  2010/04/26 20:30:53  brouard
 #define AGESUP 130    (Module): merging some libgsl code. Fixing computation
 #define AGEBASE 40    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 int erreur; /* Error number */  
 int nvar;    Revision 1.135  2009/10/29 15:33:14  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.134  2009/10/29 13:18:53  brouard
 int ndeath=1; /* Number of dead states */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.132  2009/07/06 08:22:05  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Many tings
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.131  2009/06/20 16:22:47  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Some dimensions resccaled
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.130  2009/05/26 06:44:34  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Max Covariate is now set to 20 instead of 8. A
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    lot of cleaning with variables initialized to 0. Trying to make
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.129  2007/08/31 13:49:27  lievre
  FILE  *ficresvij;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.128  2006/06/30 13:02:05  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): Clarifications on computing e.j
   
 #define NR_END 1    Revision 1.127  2006/04/28 18:11:50  brouard
 #define FREE_ARG char*    (Module): Yes the sum of survivors was wrong since
 #define FTOL 1.0e-10    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 #define NRANSI    (Module): In order to speed up (in case of numerous covariates) we
 #define ITMAX 200    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
 #define TOL 2.0e-4    deviation (needs data from the Hessian matrices) which slows the
     computation.
 #define CGOLD 0.3819660    In the future we should be able to stop the program is only health
 #define ZEPS 1.0e-10    expectancies and graph are needed without standard deviations.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.126  2006/04/28 17:23:28  brouard
 #define GOLD 1.618034    (Module): Yes the sum of survivors was wrong since
 #define GLIMIT 100.0    imach-114 because nhstepm was no more computed in the age
 #define TINY 1.0e-20    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.125  2006/04/04 15:20:31  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Errors in calculation of health expectancies. Age was not initialized.
      Forecasting file added.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 static double sqrarg;    The log-likelihood is printed in the log file
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 int imx;    name. <head> headers where missing.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 int m,nb;    otherwise the weight is truncated).
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Modification of warning when the covariates values are not 0 or
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    1.
 double **pmmij, ***probs, ***mobaverage;    Version 0.98g
 double dateintmean=0;  
     Revision 1.122  2006/03/20 09:45:41  brouard
 double *weight;    (Module): Weights can have a decimal point as for
 int **s; /* Status */    English (a comma might work with a correct LC_NUMERIC environment,
 double *agedc, **covar, idx;    otherwise the weight is truncated).
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Modification of warning when the covariates values are not 0 or
     1.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Version 0.98g
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.121  2006/03/16 17:45:01  lievre
 /**************** split *************************/    * imach.c (Module): Comments concerning covariates added
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    * imach.c (Module): refinements in the computation of lli if
    char *s;                             /* pointer */    status=-2 in order to have more reliable computation if stepm is
    int  l1, l2;                         /* length counters */    not 1 month. Version 0.98f
   
    l1 = strlen( path );                 /* length of path */    Revision 1.120  2006/03/16 15:10:38  lievre
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): refinements in the computation of lli if
 #ifdef windows    status=-2 in order to have more reliable computation if stepm is
    s = strrchr( path, '\\' );           /* find last / */    not 1 month. Version 0.98f
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.119  2006/03/15 17:42:26  brouard
 #endif    (Module): Bug if status = -2, the loglikelihood was
    if ( s == NULL ) {                   /* no directory, so use current */    computed as likelihood omitting the logarithm. Version O.98e
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
       if ( getwd( dirc ) == NULL ) {    table of variances if popbased=1 .
 #else    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       extern char       *getcwd( );    (Module): Function pstamp added
     (Module): Version 0.98d
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.117  2006/03/14 17:16:22  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): varevsij Comments added explaining the second
       }    table of variances if popbased=1 .
       strcpy( name, path );             /* we've got it */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    } else {                             /* strip direcotry from path */    (Module): Function pstamp added
       s++;                              /* after this, the filename */    (Module): Version 0.98d
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.116  2006/03/06 10:29:27  brouard
       strcpy( name, s );                /* save file name */    (Module): Variance-covariance wrong links and
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    varian-covariance of ej. is needed (Saito).
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.115  2006/02/27 12:17:45  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): One freematrix added in mlikeli! 0.98c
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.114  2006/02/26 12:57:58  brouard
 #else    (Module): Some improvements in processing parameter
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    filename with strsep.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.113  2006/02/24 14:20:24  brouard
    s++;    (Module): Memory leaks checks with valgrind and:
    strcpy(ext,s);                       /* save extension */    datafile was not closed, some imatrix were not freed and on matrix
    l1= strlen( name);    allocation too.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.112  2006/01/30 09:55:26  brouard
    finame[l1-l2]= 0;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    return( 0 );                         /* we're done */  
 }    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 /******************************************/    can be a simple dot '.'.
   
 void replace(char *s, char*t)    Revision 1.110  2006/01/25 00:51:50  brouard
 {    (Module): Lots of cleaning and bugs added (Gompertz)
   int i;  
   int lg=20;    Revision 1.109  2006/01/24 19:37:15  brouard
   i=0;    (Module): Comments (lines starting with a #) are allowed in data.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.108  2006/01/19 18:05:42  lievre
     (s[i] = t[i]);    Gnuplot problem appeared...
     if (t[i]== '\\') s[i]='/';    To be fixed
   }  
 }    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 int nbocc(char *s, char occ)  
 {    Revision 1.106  2006/01/19 13:24:36  brouard
   int i,j=0;    Some cleaning and links added in html output
   int lg=20;  
   i=0;    Revision 1.105  2006/01/05 20:23:19  lievre
   lg=strlen(s);    *** empty log message ***
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.104  2005/09/30 16:11:43  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
   return j;    (Module): If the status is missing at the last wave but we know
 }    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 void cutv(char *u,char *v, char*t, char occ)    contributions to the likelihood is 1 - Prob of dying from last
 {    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   int i,lg,j,p=0;    the healthy state at last known wave). Version is 0.98
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.103  2005/09/30 15:54:49  lievre
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): sump fixed, loop imx fixed, and simplifications.
   }  
     Revision 1.102  2004/09/15 17:31:30  brouard
   lg=strlen(t);    Add the possibility to read data file including tab characters.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.101  2004/09/15 10:38:38  brouard
   }    Fix on curr_time
      u[p]='\0';  
     Revision 1.100  2004/07/12 18:29:06  brouard
    for(j=0; j<= lg; j++) {    Add version for Mac OS X. Just define UNIX in Makefile
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.99  2004/06/05 08:57:40  brouard
 }    *** empty log message ***
   
 /********************** nrerror ********************/    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 void nrerror(char error_text[])    directly from the data i.e. without the need of knowing the health
 {    state at each age, but using a Gompertz model: log u =a + b*age .
   fprintf(stderr,"ERREUR ...\n");    This is the basic analysis of mortality and should be done before any
   fprintf(stderr,"%s\n",error_text);    other analysis, in order to test if the mortality estimated from the
   exit(1);    cross-longitudinal survey is different from the mortality estimated
 }    from other sources like vital statistic data.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    The same imach parameter file can be used but the option for mle should be -3.
 {  
   double *v;    Agnès, who wrote this part of the code, tried to keep most of the
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    former routines in order to include the new code within the former code.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    The output is very simple: only an estimate of the intercept and of
 }    the slope with 95% confident intervals.
   
 /************************ free vector ******************/    Current limitations:
 void free_vector(double*v, int nl, int nh)    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   free((FREE_ARG)(v+nl-NR_END));    B) There is no computation of Life Expectancy nor Life Table.
 }  
     Revision 1.97  2004/02/20 13:25:42  lievre
 /************************ivector *******************************/    Version 0.96d. Population forecasting command line is (temporarily)
 int *ivector(long nl,long nh)    suppressed.
 {  
   int *v;    Revision 1.96  2003/07/15 15:38:55  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   if (!v) nrerror("allocation failure in ivector");    rewritten within the same printf. Workaround: many printfs.
   return v-nl+NR_END;  
 }    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 /******************free ivector **************************/    (Repository): Using imachwizard code to output a more meaningful covariance
 void free_ivector(int *v, long nl, long nh)    matrix (cov(a12,c31) instead of numbers.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.94  2003/06/27 13:00:02  brouard
 }    Just cleaning
   
 /******************* imatrix *******************************/    Revision 1.93  2003/06/25 16:33:55  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): On windows (cygwin) function asctime_r doesn't
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    exist so I changed back to asctime which exists.
 {    (Module): Version 0.96b
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.92  2003/06/25 16:30:45  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   /* allocate pointers to rows */    exist so I changed back to asctime which exists.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.91  2003/06/25 15:30:29  brouard
   m += NR_END;    * imach.c (Repository): Duplicated warning errors corrected.
   m -= nrl;    (Repository): Elapsed time after each iteration is now output. It
      helps to forecast when convergence will be reached. Elapsed time
      is stamped in powell.  We created a new html file for the graphs
   /* allocate rows and set pointers to them */    concerning matrix of covariance. It has extension -cov.htm.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.90  2003/06/24 12:34:15  brouard
   m[nrl] += NR_END;    (Module): Some bugs corrected for windows. Also, when
   m[nrl] -= ncl;    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.89  2003/06/24 12:30:52  brouard
   /* return pointer to array of pointers to rows */    (Module): Some bugs corrected for windows. Also, when
   return m;    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 /****************** free_imatrix *************************/    Revision 1.88  2003/06/23 17:54:56  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.87  2003/06/18 12:26:01  brouard
      /* free an int matrix allocated by imatrix() */    Version 0.96
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.86  2003/06/17 20:04:08  brouard
   free((FREE_ARG) (m+nrl-NR_END));    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
   
 /******************* matrix *******************************/    Revision 1.85  2003/06/17 13:12:43  brouard
 double **matrix(long nrl, long nrh, long ncl, long nch)    * imach.c (Repository): Check when date of death was earlier that
 {    current date of interview. It may happen when the death was just
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    prior to the death. In this case, dh was negative and likelihood
   double **m;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    interview.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Repository): Because some people have very long ID (first column)
   m += NR_END;    we changed int to long in num[] and we added a new lvector for
   m -= nrl;    memory allocation. But we also truncated to 8 characters (left
     truncation)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Repository): No more line truncation errors.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.84  2003/06/13 21:44:43  brouard
   m[nrl] -= ncl;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    many times. Probs is memory consuming and must be used with
   return m;    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /*************************free matrix ************************/    Revision 1.83  2003/06/10 13:39:11  lievre
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    *** empty log message ***
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.82  2003/06/05 15:57:20  brouard
   free((FREE_ARG)(m+nrl-NR_END));    Add log in  imach.c and  fullversion number is now printed.
 }  
   */
 /******************* ma3x *******************************/  /*
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)     Interpolated Markov Chain
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Short summary of the programme:
   double ***m;    
     This program computes Healthy Life Expectancies from
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   if (!m) nrerror("allocation failure 1 in matrix()");    first survey ("cross") where individuals from different ages are
   m += NR_END;    interviewed on their health status or degree of disability (in the
   m -= nrl;    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (if any) in individual health status.  Health expectancies are
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    computed from the time spent in each health state according to a
   m[nrl] += NR_END;    model. More health states you consider, more time is necessary to reach the
   m[nrl] -= ncl;    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    'age' is age and 'sex' is a covariate. If you want to have a more
   m[nrl][ncl] += NR_END;    complex model than "constant and age", you should modify the program
   m[nrl][ncl] -= nll;    where the markup *Covariates have to be included here again* invites
   for (j=ncl+1; j<=nch; j++)    you to do it.  More covariates you add, slower the
     m[nrl][j]=m[nrl][j-1]+nlay;    convergence.
    
   for (i=nrl+1; i<=nrh; i++) {    The advantage of this computer programme, compared to a simple
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    multinomial logistic model, is clear when the delay between waves is not
     for (j=ncl+1; j<=nch; j++)    identical for each individual. Also, if a individual missed an
       m[i][j]=m[i][j-1]+nlay;    intermediate interview, the information is lost, but taken into
   }    account using an interpolation or extrapolation.  
   return m;  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /*************************free ma3x ************************/    split into an exact number (nh*stepm) of unobserved intermediate
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    states. This elementary transition (by month, quarter,
 {    semester or year) is modelled as a multinomial logistic.  The hPx
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    matrix is simply the matrix product of nh*stepm elementary matrices
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    and the contribution of each individual to the likelihood is simply
   free((FREE_ARG)(m+nrl-NR_END));    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /***************** f1dim *************************/    of the life expectancies. It also computes the period (stable) prevalence. 
 extern int ncom;    
 extern double *pcom,*xicom;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 extern double (*nrfunc)(double []);             Institut national d'études démographiques, Paris.
      This software have been partly granted by Euro-REVES, a concerted action
 double f1dim(double x)    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   int j;    software can be distributed freely for non commercial use. Latest version
   double f;    can be accessed at http://euroreves.ined.fr/imach .
   double *xt;  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   xt=vector(1,ncom);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);    **********************************************************************/
   free_vector(xt,1,ncom);  /*
   return f;    main
 }    read parameterfile
     read datafile
 /*****************brent *************************/    concatwav
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    freqsummary
 {    if (mle >= 1)
   int iter;      mlikeli
   double a,b,d,etemp;    print results files
   double fu,fv,fw,fx;    if mle==1 
   double ftemp;       computes hessian
   double p,q,r,tol1,tol2,u,v,w,x,xm;    read end of parameter file: agemin, agemax, bage, fage, estepm
   double e=0.0;        begin-prev-date,...
      open gnuplot file
   a=(ax < cx ? ax : cx);    open html file
   b=(ax > cx ? ax : cx);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   x=w=v=bx;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   fw=fv=fx=(*f)(x);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   for (iter=1;iter<=ITMAX;iter++) {      freexexit2 possible for memory heap.
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    h Pij x                         | pij_nom  ficrestpij
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     printf(".");fflush(stdout);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 #ifdef DEBUG         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 #endif         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       *xmin=x;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       return fx;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     }  
     ftemp=fu;    forecasting if prevfcast==1 prevforecast call prevalence()
     if (fabs(e) > tol1) {    health expectancies
       r=(x-w)*(fx-fv);    Variance-covariance of DFLE
       q=(x-v)*(fx-fw);    prevalence()
       p=(x-v)*q-(x-w)*r;     movingaverage()
       q=2.0*(q-r);    varevsij() 
       if (q > 0.0) p = -p;    if popbased==1 varevsij(,popbased)
       q=fabs(q);    total life expectancies
       etemp=e;    Variance of period (stable) prevalence
       e=d;   end
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  
         d=p/q;  
         u=x+d;   
         if (u-a < tol2 || b-u < tol2)  #include <math.h>
           d=SIGN(tol1,xm-x);  #include <stdio.h>
       }  #include <stdlib.h>
     } else {  #include <string.h>
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <unistd.h>
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #include <limits.h>
     fu=(*f)(u);  #include <sys/types.h>
     if (fu <= fx) {  #include <sys/stat.h>
       if (u >= x) a=x; else b=x;  #include <errno.h>
       SHFT(v,w,x,u)  extern int errno;
         SHFT(fv,fw,fx,fu)  
         } else {  #ifdef LINUX
           if (u < x) a=u; else b=u;  #include <time.h>
           if (fu <= fw || w == x) {  #include "timeval.h"
             v=w;  #else
             w=u;  #include <sys/time.h>
             fv=fw;  #endif
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  #ifdef GSL
             v=u;  #include <gsl/gsl_errno.h>
             fv=fu;  #include <gsl/gsl_multimin.h>
           }  #endif
         }  
   }  /* #include <libintl.h> */
   nrerror("Too many iterations in brent");  /* #define _(String) gettext (String) */
   *xmin=x;  
   return fx;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /****************** mnbrak ***********************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double ulim,u,r,q, dum;  
   double fu;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
    #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  #define NINTERVMAX 8
   if (*fb > *fa) {  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     SHFT(dum,*ax,*bx,dum)  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       SHFT(dum,*fb,*fa,dum)  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       }  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   *cx=(*bx)+GOLD*(*bx-*ax);  #define MAXN 20000
   *fc=(*func)(*cx);  #define YEARM 12. /**< Number of months per year */
   while (*fb > *fc) {  #define AGESUP 130
     r=(*bx-*ax)*(*fb-*fc);  #define AGEBASE 40
     q=(*bx-*cx)*(*fb-*fa);  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #ifdef UNIX
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define DIRSEPARATOR '/'
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define CHARSEPARATOR "/"
     if ((*bx-u)*(u-*cx) > 0.0) {  #define ODIRSEPARATOR '\\'
       fu=(*func)(u);  #else
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define DIRSEPARATOR '\\'
       fu=(*func)(u);  #define CHARSEPARATOR "\\"
       if (fu < *fc) {  #define ODIRSEPARATOR '/'
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #endif
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /* $Id$ */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /* $State$ */
       u=ulim;  
       fu=(*func)(u);  char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     } else {  char fullversion[]="$Revision$ $Date$"; 
       u=(*cx)+GOLD*(*cx-*bx);  char strstart[80];
       fu=(*func)(u);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     SHFT(*ax,*bx,*cx,u)  int nvar=0, nforce=0; /* Number of variables, number of forces */
       SHFT(*fa,*fb,*fc,fu)  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 }  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 /*************** linmin ************************/  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
 int ncom;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 double *pcom,*xicom;  int cptcov=0; /* Working variable */
 double (*nrfunc)(double []);  int npar=NPARMAX;
    int nlstate=2; /* Number of live states */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int ndeath=1; /* Number of dead states */
 {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double brent(double ax, double bx, double cx,  int popbased=0;
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  int *wav; /* Number of waves for this individuual 0 is possible */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int maxwav=0; /* Maxim number of waves */
               double *fc, double (*func)(double));  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int j;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   double xx,xmin,bx,ax;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double fx,fb,fa;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle=1, weightopt=0;
   ncom=n;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   pcom=vector(1,n);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   xicom=vector(1,n);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   nrfunc=func;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for (j=1;j<=n;j++) {  double jmean=1; /* Mean space between 2 waves */
     pcom[j]=p[j];  double **matprod2(); /* test */
     xicom[j]=xi[j];  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   ax=0.0;  /*FILE *fic ; */ /* Used in readdata only */
   xx=1.0;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  FILE *ficlog, *ficrespow;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int globpr=0; /* Global variable for printing or not */
 #ifdef DEBUG  double fretone; /* Only one call to likelihood */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  long ipmx=0; /* Number of contributions */
 #endif  double sw; /* Sum of weights */
   for (j=1;j<=n;j++) {  char filerespow[FILENAMELENGTH];
     xi[j] *= xmin;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     p[j] += xi[j];  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   free_vector(xicom,1,n);  FILE *ficresprobmorprev;
   free_vector(pcom,1,n);  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /*************** powell ************************/  FILE *ficresstdeij;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  char fileresstde[FILENAMELENGTH];
             double (*func)(double []))  FILE *ficrescveij;
 {  char filerescve[FILENAMELENGTH];
   void linmin(double p[], double xi[], int n, double *fret,  FILE  *ficresvij;
               double (*func)(double []));  char fileresv[FILENAMELENGTH];
   int i,ibig,j;  FILE  *ficresvpl;
   double del,t,*pt,*ptt,*xit;  char fileresvpl[FILENAMELENGTH];
   double fp,fptt;  char title[MAXLINE];
   double *xits;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   pt=vector(1,n);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   ptt=vector(1,n);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   xit=vector(1,n);  char command[FILENAMELENGTH];
   xits=vector(1,n);  int  outcmd=0;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  char filelog[FILENAMELENGTH]; /* Log file */
     ibig=0;  char filerest[FILENAMELENGTH];
     del=0.0;  char fileregp[FILENAMELENGTH];
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char popfile[FILENAMELENGTH];
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     printf("\n");  
     for (i=1;i<=n;i++) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  struct timezone tzp;
       fptt=(*fret);  extern int gettimeofday();
 #ifdef DEBUG  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       printf("fret=%lf \n",*fret);  long time_value;
 #endif  extern long time();
       printf("%d",i);fflush(stdout);  char strcurr[80], strfor[80];
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  char *endptr;
         del=fabs(fptt-(*fret));  long lval;
         ibig=i;  double dval;
       }  
 #ifdef DEBUG  #define NR_END 1
       printf("%d %.12e",i,(*fret));  #define FREE_ARG char*
       for (j=1;j<=n;j++) {  #define FTOL 1.0e-10
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  #define NRANSI 
       }  #define ITMAX 200 
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  #define TOL 2.0e-4 
       printf("\n");  
 #endif  #define CGOLD 0.3819660 
     }  #define ZEPS 1.0e-10 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #ifdef DEBUG  
       int k[2],l;  #define GOLD 1.618034 
       k[0]=1;  #define GLIMIT 100.0 
       k[1]=-1;  #define TINY 1.0e-20 
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  static double maxarg1,maxarg2;
         printf(" %.12e",p[j]);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       printf("\n");  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define rint(a) floor(a+0.5)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  static double sqrarg;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #endif  int agegomp= AGEGOMP;
   
   int imx; 
       free_vector(xit,1,n);  int stepm=1;
       free_vector(xits,1,n);  /* Stepm, step in month: minimum step interpolation*/
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  int estepm;
       return;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int m,nb;
     for (j=1;j<=n;j++) {  long *num;
       ptt[j]=2.0*p[j]-pt[j];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       xit[j]=p[j]-pt[j];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       pt[j]=p[j];  double **pmmij, ***probs;
     }  double *ageexmed,*agecens;
     fptt=(*func)(ptt);  double dateintmean=0;
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double *weight;
       if (t < 0.0) {  int **s; /* Status */
         linmin(p,xit,n,fret,func);  double *agedc;
         for (j=1;j<=n;j++) {  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
           xi[j][ibig]=xi[j][n];                    * covar=matrix(0,NCOVMAX,1,n); 
           xi[j][n]=xit[j];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
         }  double  idx; 
 #ifdef DEBUG  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int *Ndum; /** Freq of modality (tricode */
         for(j=1;j<=n;j++)  int **codtab; /**< codtab=imatrix(1,100,1,10); */
           printf(" %.12e",xit[j]);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         printf("\n");  double *lsurv, *lpop, *tpop;
 #endif  
       }  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     }  double ftolhess; /**< Tolerance for computing hessian */
   }  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /**** Prevalence limit ****************/  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    char  *ss;                            /* pointer */
      matrix by transitions matrix until convergence is reached */    int   l1, l2;                         /* length counters */
   
   int i, ii,j,k;    l1 = strlen(path );                   /* length of path */
   double min, max, maxmin, maxmax,sumnew=0.;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double **matprod2();    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double **out, cov[NCOVMAX], **pmij();    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double **newm;      strcpy( name, path );               /* we got the fullname name because no directory */
   double agefin, delaymax=50 ; /* Max number of years to converge */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for (ii=1;ii<=nlstate+ndeath;ii++)      /* get current working directory */
     for (j=1;j<=nlstate+ndeath;j++){      /*    extern  char* getcwd ( char *buf , int len);*/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     }        return( GLOCK_ERROR_GETCWD );
       }
    cov[1]=1.;      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } else {                              /* strip direcotry from path */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      ss++;                               /* after this, the filename */
     newm=savm;      l2 = strlen( ss );                  /* length of filename */
     /* Covariates have to be included here again */      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
      cov[2]=agefin;      strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
       for (k=1; k<=cptcovn;k++) {      dirc[l1-l2] = 0;                    /* add zero */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      printf(" DIRC2 = %s \n",dirc);
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    }
       }    /* We add a separator at the end of dirc if not exists */
       for (k=1; k<=cptcovage;k++)    l1 = strlen( dirc );                  /* length of directory */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if( dirc[l1-1] != DIRSEPARATOR ){
       for (k=1; k<=cptcovprod;k++)      dirc[l1] =  DIRSEPARATOR;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      ss++;
       strcpy(ext,ss);                     /* save extension */
     savm=oldm;      l1= strlen( name);
     oldm=newm;      l2= strlen(ss)+1;
     maxmax=0.;      strncpy( finame, name, l1-l2);
     for(j=1;j<=nlstate;j++){      finame[l1-l2]= 0;
       min=1.;    }
       max=0.;  
       for(i=1; i<=nlstate; i++) {    return( 0 );                          /* we're done */
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /******************************************/
         min=FMIN(min,prlim[i][j]);  
       }  void replace_back_to_slash(char *s, char*t)
       maxmin=max-min;  {
       maxmax=FMAX(maxmax,maxmin);    int i;
     }    int lg=0;
     if(maxmax < ftolpl){    i=0;
       return prlim;    lg=strlen(t);
     }    for(i=0; i<= lg; i++) {
   }      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /*************** transition probabilities ***************/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  char *trimbb(char *out, char *in)
 {  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   double s1, s2;    char *s;
   /*double t34;*/    s=out;
   int i,j,j1, nc, ii, jj;    while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     for(i=1; i<= nlstate; i++){        in++;
     for(j=1; j<i;j++){      }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      *out++ = *in++;
         /*s2 += param[i][j][nc]*cov[nc];*/    }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    *out='\0';
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return s;
       }  }
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char *cutl(char *blocc, char *alocc, char *in, char occ)
     }  {
     for(j=i+1; j<=nlstate+ndeath;j++){    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       gives blocc="abcdef2ghi" and alocc="j".
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       }    */
       ps[i][j]=s2;    char *s, *t, *bl;
     }    t=in;s=in;
   }    while ((*in != occ) && (*in != '\0')){
     /*ps[3][2]=1;*/      *alocc++ = *in++;
     }
   for(i=1; i<= nlstate; i++){    if( *in == occ){
      s1=0;      *(alocc)='\0';
     for(j=1; j<i; j++)      s=++in;
       s1+=exp(ps[i][j]);    }
     for(j=i+1; j<=nlstate+ndeath; j++)   
       s1+=exp(ps[i][j]);    if (s == t) {/* occ not found */
     ps[i][i]=1./(s1+1.);      *(alocc-(in-s))='\0';
     for(j=1; j<i; j++)      in=s;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    }
     for(j=i+1; j<=nlstate+ndeath; j++)    while ( *in != '\0'){
       ps[i][j]= exp(ps[i][j])*ps[i][i];      *blocc++ = *in++;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    }
   } /* end i */  
     *blocc='\0';
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    return t;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
       ps[ii][jj]=0;  char *cutv(char *blocc, char *alocc, char *in, char occ)
       ps[ii][ii]=1;  {
     }    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns alocc
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    */
     for(jj=1; jj<= nlstate+ndeath; jj++){    char *s, *t;
      printf("%lf ",ps[ii][jj]);    t=in;s=in;
    }    while (*in != '\0'){
     printf("\n ");      while( *in == occ){
     }        *blocc++ = *in++;
     printf("\n ");printf("%lf ",cov[2]);*/        s=in;
 /*      }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      *blocc++ = *in++;
   goto end;*/    }
     return ps;    if (s == t) /* occ not found */
 }      *(blocc-(in-s))='\0';
     else
 /**************** Product of 2 matrices ******************/      *(blocc-(in-s)-1)='\0';
     in=s;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    while ( *in != '\0'){
 {      *alocc++ = *in++;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized    *alocc='\0';
      before: only the contents of out is modified. The function returns    return s;
      a pointer to pointers identical to out */  }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  int nbocc(char *s, char occ)
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    int i,j=0;
         out[i][k] +=in[i][j]*b[j][k];    int lg=20;
     i=0;
   return out;    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
     }
 /************* Higher Matrix Product ***************/    return j;
   }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /* void cutv(char *u,char *v, char*t, char occ) */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /* { */
      duration (i.e. until  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*      gives u="abcdef2ghi" and v="j" *\/ */
      (typically every 2 years instead of every month which is too big).  /*   int i,lg,j,p=0; */
      Model is determined by parameters x and covariates have to be  /*   i=0; */
      included manually here.  /*   lg=strlen(t); */
   /*   for(j=0; j<=lg-1; j++) { */
      */  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /*   for(j=0; j<p; j++) { */
   double **newm;  /*     (u[j] = t[j]); */
   /*   } */
   /* Hstepm could be zero and should return the unit matrix */  /*      u[p]='\0'; */
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*    for(j=0; j<= lg; j++) { */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*   } */
     }  /* } */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /********************** nrerror ********************/
     for(d=1; d <=hstepm; d++){  
       newm=savm;  void nrerror(char error_text[])
       /* Covariates have to be included here again */  {
       cov[1]=1.;    fprintf(stderr,"ERREUR ...\n");
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    fprintf(stderr,"%s\n",error_text);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    exit(EXIT_FAILURE);
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*********************** vector *******************/
       for (k=1; k<=cptcovprod;k++)  double *vector(int nl, int nh)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    if (!v) nrerror("allocation failure in vector");
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    return v-nl+NR_END;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /************************ free vector ******************/
       oldm=newm;  void free_vector(double*v, int nl, int nh)
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    free((FREE_ARG)(v+nl-NR_END));
       for(j=1;j<=nlstate+ndeath;j++) {  }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /************************ivector *******************************/
          */  int *ivector(long nl,long nh)
       }  {
   } /* end h */    int *v;
   return po;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   }
 /*************** log-likelihood *************/  
 double func( double *x)  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   int i, ii, j, k, mi, d, kk;  {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    free((FREE_ARG)(v+nl-NR_END));
   double **out;  }
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /************************lvector *******************************/
   long ipmx;  long *lvector(long nl,long nh)
   /*extern weight */  {
   /* We are differentiating ll according to initial status */    long *v;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   /*for(i=1;i<imx;i++)    if (!v) nrerror("allocation failure in ivector");
     printf(" %d\n",s[4][i]);    return v-nl+NR_END;
   */  }
   cov[1]=1.;  
   /******************free lvector **************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  void free_lvector(long *v, long nl, long nh)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    free((FREE_ARG)(v+nl-NR_END));
     for(mi=1; mi<= wav[i]-1; mi++){  }
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /******************* imatrix *******************************/
       for(d=0; d<dh[mi][i]; d++){  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         newm=savm;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  { 
         for (kk=1; kk<=cptcovage;kk++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    int **m; 
         }    
            /* allocate pointers to rows */ 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    if (!m) nrerror("allocation failure 1 in matrix()"); 
         savm=oldm;    m += NR_END; 
         oldm=newm;    m -= nrl; 
            
            
       } /* end mult */    /* allocate rows and set pointers to them */ 
          m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    m[nrl] += NR_END; 
       ipmx +=1;    m[nrl] -= ncl; 
       sw += weight[i];    
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     } /* end of wave */    
   } /* end of individual */    /* return pointer to array of pointers to rows */ 
     return m; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /****************** free_imatrix *************************/
   return -l;  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 /*********** Maximum Likelihood Estimation ***************/  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   int i,j, iter;  
   double **xi,*delti;  /******************* matrix *******************************/
   double fret;  double **matrix(long nrl, long nrh, long ncl, long nch)
   xi=matrix(1,npar,1,npar);  {
   for (i=1;i<=npar;i++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for (j=1;j<=npar;j++)    double **m;
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   powell(p,xi,npar,ftol,&iter,&fret,func);    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    m -= nrl;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /**** Computes Hessian and covariance matrix ***/    m[nrl] -= ncl;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double  **a,**y,*x,pd;    return m;
   double **hess;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   int i, j,jk;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   int *indx;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
      */
   double hessii(double p[], double delta, int theta, double delti[]);  }
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*************************free matrix ************************/
   void ludcmp(double **a, int npar, int *indx, double *d) ;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   hess=matrix(1,npar,1,npar);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   printf("\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /******************* ma3x *******************************/
     hess[i][i]=hessii(p,ftolhess,i,delti);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     /*printf(" %f ",p[i]);*/  {
     /*printf(" %lf ",hess[i][i]);*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   }    double ***m;
    
   for (i=1;i<=npar;i++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=npar;j++)  {    if (!m) nrerror("allocation failure 1 in matrix()");
       if (j>i) {    m += NR_END;
         printf(".%d%d",i,j);fflush(stdout);    m -= nrl;
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];        m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         /*printf(" %lf ",hess[i][j]);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
   printf("\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   a=matrix(1,npar,1,npar);    m[nrl][ncl] += NR_END;
   y=matrix(1,npar,1,npar);    m[nrl][ncl] -= nll;
   x=vector(1,npar);    for (j=ncl+1; j<=nch; j++) 
   indx=ivector(1,npar);      m[nrl][j]=m[nrl][j-1]+nlay;
   for (i=1;i<=npar;i++)    
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    for (i=nrl+1; i<=nrh; i++) {
   ludcmp(a,npar,indx,&pd);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
   for (j=1;j<=npar;j++) {        m[i][j]=m[i][j-1]+nlay;
     for (i=1;i<=npar;i++) x[i]=0;    }
     x[j]=1;    return m; 
     lubksb(a,npar,indx,x);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for (i=1;i<=npar;i++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       matcov[i][j]=x[i];    */
     }  }
   }  
   /*************************free ma3x ************************/
   printf("\n#Hessian matrix#\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       printf("%.3e ",hess[i][j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     printf("\n");  }
   }  
   /*************** function subdirf ***********/
   /* Recompute Inverse */  char *subdirf(char fileres[])
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* Caution optionfilefiname is hidden */
   ludcmp(a,npar,indx,&pd);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   /*  printf("\n#Hessian matrix recomputed#\n");    strcat(tmpout,fileres);
     return tmpout;
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** function subdirf2 ***********/
     lubksb(a,npar,indx,x);  char *subdirf2(char fileres[], char *preop)
     for (i=1;i<=npar;i++){  {
       y[i][j]=x[i];    
       printf("%.3e ",y[i][j]);    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     printf("\n");    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
   */    strcat(tmpout,fileres);
     return tmpout;
   free_matrix(a,1,npar,1,npar);  }
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  /*************** function subdirf3 ***********/
   free_ivector(indx,1,npar);  char *subdirf3(char fileres[], char *preop, char *preop2)
   free_matrix(hess,1,npar,1,npar);  {
     
     /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /*************** hessian matrix ****************/    strcat(tmpout,preop);
 double hessii( double x[], double delta, int theta, double delti[])    strcat(tmpout,preop2);
 {    strcat(tmpout,fileres);
   int i;    return tmpout;
   int l=1, lmax=20;  }
   double k1,k2;  
   double p2[NPARMAX+1];  /***************** f1dim *************************/
   double res;  extern int ncom; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  extern double *pcom,*xicom;
   double fx;  extern double (*nrfunc)(double []); 
   int k=0,kmax=10;   
   double l1;  double f1dim(double x) 
   { 
   fx=func(x);    int j; 
   for (i=1;i<=npar;i++) p2[i]=x[i];    double f;
   for(l=0 ; l <=lmax; l++){    double *xt; 
     l1=pow(10,l);   
     delts=delt;    xt=vector(1,ncom); 
     for(k=1 ; k <kmax; k=k+1){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       delt = delta*(l1*k);    f=(*nrfunc)(xt); 
       p2[theta]=x[theta] +delt;    free_vector(xt,1,ncom); 
       k1=func(p2)-fx;    return f; 
       p2[theta]=x[theta]-delt;  } 
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*****************brent *************************/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
        { 
 #ifdef DEBUG    int iter; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double a,b,d,etemp;
 #endif    double fu,fv,fw,fx;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double ftemp;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         k=kmax;    double e=0.0; 
       }   
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    a=(ax < cx ? ax : cx); 
         k=kmax; l=lmax*10.;    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    fw=fv=fx=(*f)(x); 
         delts=delt;    for (iter=1;iter<=ITMAX;iter++) { 
       }      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   delti[theta]=delts;      printf(".");fflush(stdout);
   return res;      fprintf(ficlog,".");fflush(ficlog);
    #ifdef DEBUG
 }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double hessij( double x[], double delti[], int thetai,int thetaj)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 {  #endif
   int i;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   int l=1, l1, lmax=20;        *xmin=x; 
   double k1,k2,k3,k4,res,fx;        return fx; 
   double p2[NPARMAX+1];      } 
   int k;      ftemp=fu;
       if (fabs(e) > tol1) { 
   fx=func(x);        r=(x-w)*(fx-fv); 
   for (k=1; k<=2; k++) {        q=(x-v)*(fx-fw); 
     for (i=1;i<=npar;i++) p2[i]=x[i];        p=(x-v)*q-(x-w)*r; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        q=2.0*(q-r); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        if (q > 0.0) p = -p; 
     k1=func(p2)-fx;        q=fabs(q); 
          etemp=e; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        e=d; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     k2=func(p2)-fx;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          else { 
     p2[thetai]=x[thetai]-delti[thetai]/k;          d=p/q; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          u=x+d; 
     k3=func(p2)-fx;          if (u-a < tol2 || b-u < tol2) 
              d=SIGN(tol1,xm-x); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } else { 
     k4=func(p2)-fx;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      } 
 #ifdef DEBUG      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      fu=(*f)(u); 
 #endif      if (fu <= fx) { 
   }        if (u >= x) a=x; else b=x; 
   return res;        SHFT(v,w,x,u) 
 }          SHFT(fv,fw,fx,fu) 
           } else { 
 /************** Inverse of matrix **************/            if (u < x) a=u; else b=u; 
 void ludcmp(double **a, int n, int *indx, double *d)            if (fu <= fw || w == x) { 
 {              v=w; 
   int i,imax,j,k;              w=u; 
   double big,dum,sum,temp;              fv=fw; 
   double *vv;              fw=fu; 
              } else if (fu <= fv || v == x || v == w) { 
   vv=vector(1,n);              v=u; 
   *d=1.0;              fv=fu; 
   for (i=1;i<=n;i++) {            } 
     big=0.0;          } 
     for (j=1;j<=n;j++)    } 
       if ((temp=fabs(a[i][j])) > big) big=temp;    nrerror("Too many iterations in brent"); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    *xmin=x; 
     vv[i]=1.0/big;    return fx; 
   }  } 
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /****************** mnbrak ***********************/
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       a[i][j]=sum;              double (*func)(double)) 
     }  { 
     big=0.0;    double ulim,u,r,q, dum;
     for (i=j;i<=n;i++) {    double fu; 
       sum=a[i][j];   
       for (k=1;k<j;k++)    *fa=(*func)(*ax); 
         sum -= a[i][k]*a[k][j];    *fb=(*func)(*bx); 
       a[i][j]=sum;    if (*fb > *fa) { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {      SHFT(dum,*ax,*bx,dum) 
         big=dum;        SHFT(dum,*fb,*fa,dum) 
         imax=i;        } 
       }    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
     if (j != imax) {    while (*fb > *fc) { 
       for (k=1;k<=n;k++) {      r=(*bx-*ax)*(*fb-*fc); 
         dum=a[imax][k];      q=(*bx-*cx)*(*fb-*fa); 
         a[imax][k]=a[j][k];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         a[j][k]=dum;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       *d = -(*d);      if ((*bx-u)*(u-*cx) > 0.0) { 
       vv[imax]=vv[j];        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     indx[j]=imax;        fu=(*func)(u); 
     if (a[j][j] == 0.0) a[j][j]=TINY;        if (fu < *fc) { 
     if (j != n) {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       dum=1.0/(a[j][j]);            SHFT(*fb,*fc,fu,(*func)(u)) 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   }        u=ulim; 
   free_vector(vv,1,n);  /* Doesn't work */        fu=(*func)(u); 
 ;      } else { 
 }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 void lubksb(double **a, int n, int *indx, double b[])      } 
 {      SHFT(*ax,*bx,*cx,u) 
   int i,ii=0,ip,j;        SHFT(*fa,*fb,*fc,fu) 
   double sum;        } 
    } 
   for (i=1;i<=n;i++) {  
     ip=indx[i];  /*************** linmin ************************/
     sum=b[ip];  
     b[ip]=b[i];  int ncom; 
     if (ii)  double *pcom,*xicom;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  double (*nrfunc)(double []); 
     else if (sum) ii=i;   
     b[i]=sum;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   }  { 
   for (i=n;i>=1;i--) {    double brent(double ax, double bx, double cx, 
     sum=b[i];                 double (*f)(double), double tol, double *xmin); 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    double f1dim(double x); 
     b[i]=sum/a[i][i];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   }                double *fc, double (*func)(double)); 
 }    int j; 
     double xx,xmin,bx,ax; 
 /************ Frequencies ********************/    double fx,fb,fa;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)   
 {  /* Some frequencies */    ncom=n; 
      pcom=vector(1,n); 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    xicom=vector(1,n); 
   double ***freq; /* Frequencies */    nrfunc=func; 
   double *pp;    for (j=1;j<=n;j++) { 
   double pos, k2, dateintsum=0,k2cpt=0;      pcom[j]=p[j]; 
   FILE *ficresp;      xicom[j]=xi[j]; 
   char fileresp[FILENAMELENGTH];    } 
     ax=0.0; 
   pp=vector(1,nlstate);    xx=1.0; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   strcpy(fileresp,"p");    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   strcat(fileresp,fileres);  #ifdef DEBUG
   if((ficresp=fopen(fileresp,"w"))==NULL) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     exit(0);  #endif
   }    for (j=1;j<=n;j++) { 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      xi[j] *= xmin; 
   j1=0;      p[j] += xi[j]; 
     } 
   j=cptcoveff;    free_vector(xicom,1,n); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    free_vector(pcom,1,n); 
   } 
   for(k1=1; k1<=j;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){  char *asc_diff_time(long time_sec, char ascdiff[])
        j1++;  {
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    long sec_left, days, hours, minutes;
          scanf("%d", i);*/    days = (time_sec) / (60*60*24);
         for (i=-1; i<=nlstate+ndeath; i++)      sec_left = (time_sec) % (60*60*24);
          for (jk=-1; jk<=nlstate+ndeath; jk++)      hours = (sec_left) / (60*60) ;
            for(m=agemin; m <= agemax+3; m++)    sec_left = (sec_left) %(60*60);
              freq[i][jk][m]=0;    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
         dateintsum=0;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         k2cpt=0;    return ascdiff;
        for (i=1; i<=imx; i++) {  }
          bool=1;  
          if  (cptcovn>0) {  /*************** powell ************************/
            for (z1=1; z1<=cptcoveff; z1++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              double (*func)(double [])) 
                bool=0;  { 
          }    void linmin(double p[], double xi[], int n, double *fret, 
          if (bool==1) {                double (*func)(double [])); 
            for(m=firstpass; m<=lastpass; m++){    int i,ibig,j; 
              k2=anint[m][i]+(mint[m][i]/12.);    double del,t,*pt,*ptt,*xit;
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    double fp,fptt;
                if(agev[m][i]==0) agev[m][i]=agemax+1;    double *xits;
                if(agev[m][i]==1) agev[m][i]=agemax+2;    int niterf, itmp;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    pt=vector(1,n); 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    ptt=vector(1,n); 
                  dateintsum=dateintsum+k2;    xit=vector(1,n); 
                  k2cpt++;    xits=vector(1,n); 
                }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
              }    for (*iter=1;;++(*iter)) { 
            }      fp=(*fret); 
          }      ibig=0; 
        }      del=0.0; 
         if  (cptcovn>0) {      last_time=curr_time;
          fprintf(ficresp, "\n#********** Variable ");      (void) gettimeofday(&curr_time,&tzp);
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
        fprintf(ficresp, "**********\n#");      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
        for(i=1; i<=nlstate;i++)     for (i=1;i<=n;i++) {
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        printf(" %d %.12f",i, p[i]);
        fprintf(ficresp, "\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
                fprintf(ficrespow," %.12lf", p[i]);
   for(i=(int)agemin; i <= (int)agemax+3; i++){      }
     if(i==(int)agemax+3)      printf("\n");
       printf("Total");      fprintf(ficlog,"\n");
     else      fprintf(ficrespow,"\n");fflush(ficrespow);
       printf("Age %d", i);      if(*iter <=3){
     for(jk=1; jk <=nlstate ; jk++){        tm = *localtime(&curr_time.tv_sec);
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        strcpy(strcurr,asctime(&tm));
         pp[jk] += freq[jk][m][i];  /*       asctime_r(&tm,strcurr); */
     }        forecast_time=curr_time; 
     for(jk=1; jk <=nlstate ; jk++){        itmp = strlen(strcurr);
       for(m=-1, pos=0; m <=0 ; m++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         pos += freq[jk][m][i];          strcurr[itmp-1]='\0';
       if(pp[jk]>=1.e-10)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       else        for(niterf=10;niterf<=30;niterf+=10){
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
      for(jk=1; jk <=nlstate ; jk++){          strcpy(strfor,asctime(&tmf));
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          itmp = strlen(strfor);
         pp[jk] += freq[jk][m][i];          if(strfor[itmp-1]=='\n')
      }          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for(jk=1,pos=0; jk <=nlstate ; jk++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       pos += pp[jk];        }
     for(jk=1; jk <=nlstate ; jk++){      }
       if(pos>=1.e-5)      for (i=1;i<=n;i++) { 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       else        fptt=(*fret); 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  #ifdef DEBUG
       if( i <= (int) agemax){        printf("fret=%lf \n",*fret);
         if(pos>=1.e-5){        fprintf(ficlog,"fret=%lf \n",*fret);
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  #endif
           probs[i][jk][j1]= pp[jk]/pos;        printf("%d",i);fflush(stdout);
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
         }        linmin(p,xit,n,fret,func); 
       else        if (fabs(fptt-(*fret)) > del) { 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          del=fabs(fptt-(*fret)); 
       }          ibig=i; 
     }        } 
     for(jk=-1; jk <=nlstate+ndeath; jk++)  #ifdef DEBUG
       for(m=-1; m <=nlstate+ndeath; m++)        printf("%d %.12e",i,(*fret));
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        fprintf(ficlog,"%d %.12e",i,(*fret));
     if(i <= (int) agemax)        for (j=1;j<=n;j++) {
       fprintf(ficresp,"\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     printf("\n");          printf(" x(%d)=%.12e",j,xit[j]);
     }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
  }        for(j=1;j<=n;j++) {
   dateintmean=dateintsum/k2cpt;          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
   fclose(ficresp);        }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        printf("\n");
   free_vector(pp,1,nlstate);        fprintf(ficlog,"\n");
   #endif
   /* End of Freq */      } 
 }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 /************ Prevalence ********************/        int k[2],l;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        k[0]=1;
 {  /* Some frequencies */        k[1]=-1;
          printf("Max: %.12e",(*func)(p));
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double ***freq; /* Frequencies */        for (j=1;j<=n;j++) {
   double *pp;          printf(" %.12e",p[j]);
   double pos, k2;          fprintf(ficlog," %.12e",p[j]);
         }
   pp=vector(1,nlstate);        printf("\n");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog,"\n");
          for(l=0;l<=1;l++) {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for (j=1;j<=n;j++) {
   j1=0;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   j=cptcoveff;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }
            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  for(k1=1; k1<=j;k1++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(i1=1; i1<=ncodemax[k1];i1++){        }
       j1++;  #endif
    
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)          free_vector(xit,1,n); 
           for(m=agemin; m <= agemax+3; m++)        free_vector(xits,1,n); 
             freq[i][jk][m]=0;        free_vector(ptt,1,n); 
              free_vector(pt,1,n); 
       for (i=1; i<=imx; i++) {        return; 
         bool=1;      } 
         if  (cptcovn>0) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           for (z1=1; z1<=cptcoveff; z1++)      for (j=1;j<=n;j++) { 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        ptt[j]=2.0*p[j]-pt[j]; 
               bool=0;        xit[j]=p[j]-pt[j]; 
         }        pt[j]=p[j]; 
         if (bool==1) {      } 
           for(m=firstpass; m<=lastpass; m++){      fptt=(*func)(ptt); 
             k2=anint[m][i]+(mint[m][i]/12.);      if (fptt < fp) { 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        if (t < 0.0) { 
               if(agev[m][i]==1) agev[m][i]=agemax+2;          linmin(p,xit,n,fret,func); 
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          for (j=1;j<=n;j++) { 
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];              xi[j][ibig]=xi[j][n]; 
             }            xi[j][n]=xit[j]; 
           }          }
         }  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(i=(int)agemin; i <= (int)agemax+3; i++){          for(j=1;j<=n;j++){
           for(jk=1; jk <=nlstate ; jk++){            printf(" %.12e",xit[j]);
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            fprintf(ficlog," %.12e",xit[j]);
               pp[jk] += freq[jk][m][i];          }
           }          printf("\n");
           for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"\n");
             for(m=-1, pos=0; m <=0 ; m++)  #endif
             pos += freq[jk][m][i];        }
         }      } 
            } 
          for(jk=1; jk <=nlstate ; jk++){  } 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];  /**** Prevalence limit (stable or period prevalence)  ****************/
          }  
            double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
          for(jk=1; jk <=nlstate ; jk++){                 matrix by transitions matrix until convergence is reached */
            if( i <= (int) agemax){  
              if(pos>=1.e-5){    int i, ii,j,k;
                probs[i][jk][j1]= pp[jk]/pos;    double min, max, maxmin, maxmax,sumnew=0.;
              }    /* double **matprod2(); */ /* test */
            }    double **out, cov[NCOVMAX+1], **pmij();
          }    double **newm;
              double agefin, delaymax=50 ; /* Max number of years to converge */
         }  
     }    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);     cov[1]=1.;
     
 }  /* End of Freq */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 /************* Waves Concatenation ***************/      newm=savm;
       /* Covariates have to be included here again */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      cov[2]=agefin;
 {      
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for (k=1; k<=cptcovn;k++) {
      Death is a valid wave (if date is known).        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      }
      and mw[mi+1][i]. dh depends on stepm.      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
      */      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   int i, mi, m;      
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      double sum=0., jmean=0.;*/      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   int j, k=0,jk, ju, jl;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   double sum=0.;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   jmin=1e+5;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   jmax=-1;      
   jmean=0.;      savm=oldm;
   for(i=1; i<=imx; i++){      oldm=newm;
     mi=0;      maxmax=0.;
     m=firstpass;      for(j=1;j<=nlstate;j++){
     while(s[m][i] <= nlstate){        min=1.;
       if(s[m][i]>=1)        max=0.;
         mw[++mi][i]=m;        for(i=1; i<=nlstate; i++) {
       if(m >=lastpass)          sumnew=0;
         break;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       else          prlim[i][j]= newm[i][j]/(1-sumnew);
         m++;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     }/* end while */          max=FMAX(max,prlim[i][j]);
     if (s[m][i] > nlstate){          min=FMIN(min,prlim[i][j]);
       mi++;     /* Death is another wave */        }
       /* if(mi==0)  never been interviewed correctly before death */        maxmin=max-min;
          /* Only death is a correct wave */        maxmax=FMAX(maxmax,maxmin);
       mw[mi][i]=m;      }
     }      if(maxmax < ftolpl){
         return prlim;
     wav[i]=mi;      }
     if(mi==0)    }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  }
   }  
   /*************** transition probabilities ***************/ 
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       if (stepm <=0)  {
         dh[mi][i]=1;    /* According to parameters values stored in x and the covariate's values stored in cov,
       else{       computes the probability to be observed in state j being in state i by appying the
         if (s[mw[mi+1][i]][i] > nlstate) {       model to the ncovmodel covariates (including constant and age).
           if (agedc[i] < 2*AGESUP) {       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           if(j==0) j=1;  /* Survives at least one month after exam */       ncth covariate in the global vector x is given by the formula:
           k=k+1;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
           if (j >= jmax) jmax=j;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           if (j <= jmin) jmin=j;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           sum=sum+j;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
           /* if (j<10) printf("j=%d num=%d ",j,i); */       Outputs ps[i][j] the probability to be observed in j being in j according to
           }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         }    */
         else{    double s1, lnpijopii;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /*double t34;*/
           k=k+1;    int i,j,j1, nc, ii, jj;
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;      for(i=1; i<= nlstate; i++){
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for(j=1; j<i;j++){
           sum=sum+j;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         jk= j/stepm;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         jl= j -jk*stepm;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         ju= j -(jk+1)*stepm;          }
         if(jl <= -ju)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           dh[mi][i]=jk;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         else        }
           dh[mi][i]=jk+1;        for(j=i+1; j<=nlstate+ndeath;j++){
         if(dh[mi][i]==0)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           dh[mi][i]=1; /* At least one step */            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
       }            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     }  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   }          }
   jmean=sum/k;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        }
  }      }
 /*********** Tricode ****************************/      
 void tricode(int *Tvar, int **nbcode, int imx)      for(i=1; i<= nlstate; i++){
 {        s1=0;
   int Ndum[20],ij=1, k, j, i;        for(j=1; j<i; j++){
   int cptcode=0;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   cptcoveff=0;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
          }
   for (k=0; k<19; k++) Ndum[k]=0;        for(j=i+1; j<=nlstate+ndeath; j++){
   for (k=1; k<=7; k++) ncodemax[k]=0;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        }
     for (i=1; i<=imx; i++) {        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       ij=(int)(covar[Tvar[j]][i]);        ps[i][i]=1./(s1+1.);
       Ndum[ij]++;        /* Computing other pijs */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for(j=1; j<i; j++)
       if (ij > cptcode) cptcode=ij;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (i=0; i<=cptcode; i++) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end i */
     }      
     ij=1;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
     for (i=1; i<=ncodemax[j]; i++) {          ps[ii][ii]=1;
       for (k=0; k<=19; k++) {        }
         if (Ndum[k] != 0) {      }
           nbcode[Tvar[j]][ij]=k;      
           ij++;      
         }      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         if (ij > ncodemax[j]) break;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       }        /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     }      /*   } */
   }        /*   printf("\n "); */
       /* } */
  for (k=0; k<19; k++) Ndum[k]=0;      /* printf("\n ");printf("%lf ",cov[2]);*/
       /*
  for (i=1; i<=ncovmodel-2; i++) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       ij=Tvar[i];        goto end;*/
       Ndum[ij]++;      return ps;
     }  }
   
  ij=1;  /**************** Product of 2 matrices ******************/
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncov)){  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
      Tvaraff[ij]=i;  {
      ij++;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
    }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  }    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
     cptcoveff=ij-1;       a pointer to pointers identical to out */
 }    int i, j, k;
     for(i=nrl; i<= nrh; i++)
 /*********** Health Expectancies ****************/      for(k=ncolol; k<=ncoloh; k++){
         out[i][k]=0.;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        for(j=ncl; j<=nch; j++)
 {          out[i][k] +=in[i][j]*b[j][k];
   /* Health expectancies */      }
   int i, j, nhstepm, hstepm, h;    return out;
   double age, agelim,hf;  }
   double ***p3mat;  
    
   fprintf(ficreseij,"# Health expectancies\n");  /************* Higher Matrix Product ***************/
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficreseij," %1d-%1d",i,j);    /* Computes the transition matrix starting at age 'age' over 
   fprintf(ficreseij,"\n");       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   hstepm=1*YEARM; /*  Every j years of age (in month) */       nhstepm*hstepm matrices. 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
   agelim=AGESUP;       for the memory).
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       Model is determined by parameters x and covariates have to be 
     /* nhstepm age range expressed in number of stepm */       included manually here. 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years = 20*12/6=40 stepm */       */
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    int i, j, d, h, k;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **out, cov[NCOVMAX+1];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double **newm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
     for(i=1; i<=nlstate;i++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      }
           eij[i][j][(int)age] +=p3mat[i][j][h];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
          for(d=1; d <=hstepm; d++){
     hf=1;        newm=savm;
     if (stepm >= YEARM) hf=stepm/YEARM;        /* Covariates have to be included here again */
     fprintf(ficreseij,"%.0f",age );        cov[1]=1.;
     for(i=1; i<=nlstate;i++)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for(j=1; j<=nlstate;j++){        for (k=1; k<=cptcovn;k++) 
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }        for (k=1; k<=cptcovage;k++)
     fprintf(ficreseij,"\n");          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  
   
 /************ Variance ******************/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   /* Variance of health expectancies */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        savm=oldm;
   double **newm;        oldm=newm;
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm, h;      for(i=1; i<=nlstate+ndeath; i++)
   int k, cptcode;        for(j=1;j<=nlstate+ndeath;j++) {
   double *xp;          po[i][j][h]=newm[i][j];
   double **gp, **gm;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   double ***gradg, ***trgradg;        }
   double ***p3mat;      /*printf("h=%d ",h);*/
   double age,agelim;    } /* end h */
   int theta;  /*     printf("\n H=%d \n",h); */
     return po;
    fprintf(ficresvij,"# Covariances of life expectancies\n");  }
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  /*************** log-likelihood *************/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  double func( double *x)
   fprintf(ficresvij,"\n");  {
     int i, ii, j, k, mi, d, kk;
   xp=vector(1,npar);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   dnewm=matrix(1,nlstate,1,npar);    double **out;
   doldm=matrix(1,nlstate,1,nlstate);    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
   hstepm=1*YEARM; /* Every year of age */    int s1, s2;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double bbh, survp;
   agelim = AGESUP;    long ipmx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /*extern weight */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* We are differentiating ll according to initial status */
     if (stepm >= YEARM) hstepm=1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /*for(i=1;i<imx;i++) 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf(" %d\n",s[4][i]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    */
     gp=matrix(0,nhstepm,1,nlstate);    cov[1]=1.;
     gm=matrix(0,nhstepm,1,nlstate);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    if(mle==1){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        /* Computes the values of the ncovmodel covariates of the model
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);             depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
       if (popbased==1) {         */
         for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
           prlim[i][i]=probs[(int)age][i][ij];          cov[2+k]=covar[Tvar[k]][i];
       }        }
              /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       for(j=1; j<= nlstate; j++){           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         for(h=0; h<=nhstepm; h++){           has been calculated etc */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++) /* Computes gradient */            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(d=0; d<dh[mi][i]; d++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              newm=savm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
       if (popbased==1) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
         for(i=1; i<=nlstate;i++)            }
           prlim[i][i]=probs[(int)age][i][ij];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
       for(j=1; j<= nlstate; j++){            oldm=newm;
         for(h=0; h<=nhstepm; h++){          } /* end mult */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
       }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(j=1; j<= nlstate; j++)           * the nearest (and in case of equal distance, to the lowest) interval but now
         for(h=0; h<=nhstepm; h++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
     } /* End theta */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
     for(h=0; h<=nhstepm; h++)           */
       for(j=1; j<=nlstate;j++)          s1=s[mw[mi][i]][i];
         for(theta=1; theta <=npar; theta++)          s2=s[mw[mi+1][i]][i];
           trgradg[h][j][theta]=gradg[h][theta][j];          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
     for(i=1;i<=nlstate;i++)           * is higher than the multiple of stepm and negative otherwise.
       for(j=1;j<=nlstate;j++)           */
         vareij[i][j][(int)age] =0.;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for(h=0;h<=nhstepm;h++){          if( s2 > nlstate){ 
       for(k=0;k<=nhstepm;k++){            /* i.e. if s2 is a death state and if the date of death is known 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);               then the contribution to the likelihood is the probability to 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);               die between last step unit time and current  step unit time, 
         for(i=1;i<=nlstate;i++)               which is also equal to probability to die before dh 
           for(j=1;j<=nlstate;j++)               minus probability to die before dh-stepm . 
             vareij[i][j][(int)age] += doldm[i][j];               In version up to 0.92 likelihood was computed
       }          as if date of death was unknown. Death was treated as any other
     }          health state: the date of the interview describes the actual state
     h=1;          and not the date of a change in health state. The former idea was
     if (stepm >= YEARM) h=stepm/YEARM;          to consider that at each interview the state was recorded
     fprintf(ficresvij,"%.0f ",age );          (healthy, disable or death) and IMaCh was corrected; but when we
     for(i=1; i<=nlstate;i++)          introduced the exact date of death then we should have modified
       for(j=1; j<=nlstate;j++){          the contribution of an exact death to the likelihood. This new
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     fprintf(ficresvij,"\n");          and month of death but the probability to survive from last
     free_matrix(gp,0,nhstepm,1,nlstate);          interview up to one month before death multiplied by the
     free_matrix(gm,0,nhstepm,1,nlstate);          probability to die within a month. Thanks to Chris
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          Jackson for correcting this bug.  Former versions increased
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          mortality artificially. The bad side is that we add another loop
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          which slows down the processing. The difference can be up to 10%
   } /* End age */          lower mortality.
              */
   free_vector(xp,1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  
           } else if  (s2==-2) {
 }            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /************ Variance of prevlim ******************/            /*survp += out[s1][j]; */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            lli= log(survp);
 {          }
   /* Variance of prevalence limit */          
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          else if  (s2==-4) { 
   double **newm;            for (j=3,survp=0. ; j<=nlstate; j++)  
   double **dnewm,**doldm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int i, j, nhstepm, hstepm;            lli= log(survp); 
   int k, cptcode;          } 
   double *xp;  
   double *gp, *gm;          else if  (s2==-5) { 
   double **gradg, **trgradg;            for (j=1,survp=0. ; j<=2; j++)  
   double age,agelim;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int theta;            lli= log(survp); 
              } 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          
   fprintf(ficresvpl,"# Age");          else{
   for(i=1; i<=nlstate;i++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       fprintf(ficresvpl," %1d-%1d",i,i);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   fprintf(ficresvpl,"\n");          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   xp=vector(1,npar);          /*if(lli ==000.0)*/
   dnewm=matrix(1,nlstate,1,npar);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   doldm=matrix(1,nlstate,1,nlstate);          ipmx +=1;
            sw += weight[i];
   hstepm=1*YEARM; /* Every year of age */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        } /* end of wave */
   agelim = AGESUP;      } /* end of individual */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }  else if(mle==2){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (stepm >= YEARM) hstepm=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(mi=1; mi<= wav[i]-1; mi++){
     gradg=matrix(1,npar,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
     gp=vector(1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     gm=vector(1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){ /* Computes gradient */          for(d=0; d<=dh[mi][i]; d++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (kk=1; kk<=cptcovage;kk++) {
       for(i=1;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         gp[i] = prlim[i][i];            }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++) /* Computes gradient */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            oldm=newm;
       for(i=1;i<=nlstate;i++)          } /* end mult */
         gm[i] = prlim[i][i];        
           s1=s[mw[mi][i]][i];
       for(i=1;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          bbh=(double)bh[mi][i]/(double)stepm; 
     } /* End theta */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
     trgradg =matrix(1,nlstate,1,npar);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1; j<=nlstate;j++)        } /* end of wave */
       for(theta=1; theta <=npar; theta++)      } /* end of individual */
         trgradg[j][theta]=gradg[theta][j];    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       varpl[i][(int)age] =0.;        for(mi=1; mi<= wav[i]-1; mi++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          for (ii=1;ii<=nlstate+ndeath;ii++)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            for (j=1;j<=nlstate+ndeath;j++){
     for(i=1;i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     fprintf(ficresvpl,"%.0f ",age );          for(d=0; d<dh[mi][i]; d++){
     for(i=1; i<=nlstate;i++)            newm=savm;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficresvpl,"\n");            for (kk=1; kk<=cptcovage;kk++) {
     free_vector(gp,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_vector(gm,1,nlstate);            }
     free_matrix(gradg,1,npar,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_matrix(trgradg,1,nlstate,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   } /* End age */            savm=oldm;
             oldm=newm;
   free_vector(xp,1,npar);          } /* end mult */
   free_matrix(doldm,1,nlstate,1,npar);        
   free_matrix(dnewm,1,nlstate,1,nlstate);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /************ Variance of one-step probabilities  ******************/          ipmx +=1;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, j;        } /* end of wave */
   int k=0, cptcode;      } /* end of individual */
   double **dnewm,**doldm;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double *xp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *gp, *gm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **gradg, **trgradg;        for(mi=1; mi<= wav[i]-1; mi++){
   double age,agelim, cov[NCOVMAX];          for (ii=1;ii<=nlstate+ndeath;ii++)
   int theta;            for (j=1;j<=nlstate+ndeath;j++){
   char fileresprob[FILENAMELENGTH];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(fileresprob,"prob");            }
   strcat(fileresprob,fileres);          for(d=0; d<dh[mi][i]; d++){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            newm=savm;
     printf("Problem with resultfile: %s\n", fileresprob);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
           
   xp=vector(1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            savm=oldm;
              oldm=newm;
   cov[1]=1;          } /* end mult */
   for (age=bage; age<=fage; age ++){        
     cov[2]=age;          s1=s[mw[mi][i]][i];
     gradg=matrix(1,npar,1,9);          s2=s[mw[mi+1][i]][i];
     trgradg=matrix(1,9,1,npar);          if( s2 > nlstate){ 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            lli=log(out[s1][s2] - savm[s1][s2]);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          }else{
                lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(theta=1; theta <=npar; theta++){          }
       for(i=1; i<=npar; i++)          ipmx +=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            } /* end of wave */
       k=0;      } /* end of individual */
       for(i=1; i<= (nlstate+ndeath); i++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for(j=1; j<=(nlstate+ndeath);j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            k=k+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           gp[k]=pmmij[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
              for(d=0; d<dh[mi][i]; d++){
             newm=savm;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       k=0;            for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=(nlstate+ndeath); i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(j=1; j<=(nlstate+ndeath);j++){            }
           k=k+1;          
           gm[k]=pmmij[i][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
                  oldm=newm;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          } /* end mult */
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          
     }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(theta=1; theta <=npar; theta++)          ipmx +=1;
       trgradg[j][theta]=gradg[theta][j];          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        } /* end of wave */
       } /* end of individual */
      pmij(pmmij,cov,ncovmodel,x,nlstate);    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      k=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      for(i=1; i<=(nlstate+ndeath); i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        for(j=1; j<=(nlstate+ndeath);j++){    return -l;
          k=k+1;  }
          gm[k]=pmmij[i][j];  
         }  /*************** log-likelihood *************/
      }  double funcone( double *x)
        {
      /*printf("\n%d ",(int)age);    /* Same as likeli but slower because of a lot of printf and if */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    int i, ii, j, k, mi, d, kk;
            double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double lli; /* Individual log likelihood */
      }*/    double llt;
     int s1, s2;
   fprintf(ficresprob,"\n%d ",(int)age);    double bbh, survp;
     /*extern weight */
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    /* We are differentiating ll according to initial status */
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
     */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    cov[1]=1.;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  free_vector(xp,1,npar);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 fclose(ficresprob);      for(mi=1; mi<= wav[i]-1; mi++){
  exit(0);        for (ii=1;ii<=nlstate+ndeath;ii++)
 }          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /***********************************************/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /**************** Main Program *****************/          }
 /***********************************************/        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 int main(int argc, char *argv[])          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          }
   double agedeb, agefin,hf;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   double agemin=1.e20, agemax=-1.e20;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double fret;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   double **xi,tmp,delta;          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
   double dum; /* Dummy variable */          oldm=newm;
   double ***p3mat;        } /* end mult */
   int *indx;        
   char line[MAXLINE], linepar[MAXLINE];        s1=s[mw[mi][i]][i];
   char title[MAXLINE];        s2=s[mw[mi+1][i]][i];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];        bbh=(double)bh[mi][i]/(double)stepm; 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   char filerest[FILENAMELENGTH];          lli=log(out[s1][s2] - savm[s1][s2]);
   char fileregp[FILENAMELENGTH];        } else if  (s2==-2) {
   char popfile[FILENAMELENGTH];          for (j=1,survp=0. ; j<=nlstate; j++) 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int firstobs=1, lastobs=10;          lli= log(survp);
   int sdeb, sfin; /* Status at beginning and end */        }else if (mle==1){
   int c,  h , cpt,l;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int ju,jl, mi;        } else if(mle==2){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        } else if(mle==3){  /* exponential inter-extrapolation */
   int mobilav=0,popforecast=0;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int hstepm, nhstepm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int *popage;/*boolprev=0 if date and zero if wave*/          lli=log(out[s1][s2]); /* Original formula */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;        } else{  /* mle=0 back to 1 */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double bage, fage, age, agelim, agebase;          /*lli=log(out[s1][s2]); */ /* Original formula */
   double ftolpl=FTOL;        } /* End of if */
   double **prlim;        ipmx +=1;
   double *severity;        sw += weight[i];
   double ***param; /* Matrix of parameters */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double  *p;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **matcov; /* Matrix of covariance */        if(globpr){
   double ***delti3; /* Scale */          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   double *delti; /* Scale */   %11.6f %11.6f %11.6f ", \
   double ***eij, ***vareij;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double **varpl; /* Variances of prevalence limits by age */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double *epj, vepp;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double kk1, kk2;            llt +=ll[k]*gipmx/gsw;
   double *popeffectif,*popcount;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;          }
   double yp,yp1,yp2;          fprintf(ficresilk," %10.6f\n", -llt);
         }
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";      } /* end of wave */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   char z[1]="c", occ;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 #include <sys/time.h>    if(globpr==0){ /* First time we count the contributions and weights */
 #include <time.h>      gipmx=ipmx;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      gsw=sw;
      }
   /* long total_usecs;    return -l;
   struct timeval start_time, end_time;  }
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   printf("\n%s",version);  {
   if(argc <=1){    /* This routine should help understanding what is done with 
     printf("\nEnter the parameter file name: ");       the selection of individuals/waves and
     scanf("%s",pathtot);       to check the exact contribution to the likelihood.
   }       Plotting could be done.
   else{     */
     strcpy(pathtot,argv[1]);    int k;
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    if(*globpri !=0){ /* Just counts and sums, no printings */
   /*cygwin_split_path(pathtot,path,optionfile);      strcpy(fileresilk,"ilk"); 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      strcat(fileresilk,fileres);
   /* cutv(path,optionfile,pathtot,'\\');*/      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      }
   chdir(path);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   replace(pathc,path);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 /*-------- arguments in the command line --------*/      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   strcpy(fileres,"r");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   strcat(fileres, optionfilefiname);    }
   strcat(fileres,".txt");    /* Other files have txt extension */  
     *fretone=(*funcone)(p);
   /*---------arguments file --------*/    if(*globpri !=0){
       fclose(ficresilk);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     printf("Problem with optionfile %s\n",optionfile);      fflush(fichtm); 
     goto end;    } 
   }    return;
   }
   strcpy(filereso,"o");  
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  /*********** Maximum Likelihood Estimation ***************/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
   /* Reads comments: lines beginning with '#' */    int i,j, iter;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **xi;
     ungetc(c,ficpar);    double fret;
     fgets(line, MAXLINE, ficpar);    double fretone; /* Only one call to likelihood */
     puts(line);    /*  char filerespow[FILENAMELENGTH];*/
     fputs(line,ficparo);    xi=matrix(1,npar,1,npar);
   }    for (i=1;i<=npar;i++)
   ungetc(c,ficpar);      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    strcpy(filerespow,"pow"); 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    strcat(filerespow,fileres);
 while((c=getc(ficpar))=='#' && c!= EOF){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", filerespow);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     puts(line);    }
     fputs(line,ficparo);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   }    for (i=1;i<=nlstate;i++)
   ungetc(c,ficpar);      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
        fprintf(ficrespow,"\n");
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;    powell(p,xi,npar,ftol,&iter,&fret,func);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     free_matrix(xi,1,npar,1,npar);
   ncovmodel=2+cptcovn;    fclose(ficrespow);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /* Read guess parameters */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /**** Computes Hessian and covariance matrix ***/
     puts(line);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     fputs(line,ficparo);  {
   }    double  **a,**y,*x,pd;
   ungetc(c,ficpar);    double **hess;
      int i, j,jk;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int *indx;
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       printf("%1d%1d",i,j);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(k=1; k<=ncovmodel;k++){    double gompertz(double p[]);
         fscanf(ficpar," %lf",&param[i][j][k]);    hess=matrix(1,npar,1,npar);
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       fscanf(ficpar,"\n");    for (i=1;i<=npar;i++){
       printf("\n");      printf("%d",i);fflush(stdout);
       fprintf(ficparo,"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
     }     
         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      
       /*  printf(" %f ",p[i]);
   p=param[1][1];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      }
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=npar;i++) {
     ungetc(c,ficpar);      for (j=1;j<=npar;j++)  {
     fgets(line, MAXLINE, ficpar);        if (j>i) { 
     puts(line);          printf(".%d%d",i,j);fflush(stdout);
     fputs(line,ficparo);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,delti,i,j,func,npar);
   ungetc(c,ficpar);          
           hess[j][i]=hess[i][j];    
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          /*printf(" %lf ",hess[i][j]);*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }
   for(i=1; i <=nlstate; i++){      }
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    printf("\n");
       printf("%1d%1d",i,j);    fprintf(ficlog,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         printf(" %le",delti3[i][j][k]);    
         fprintf(ficparo," %le",delti3[i][j][k]);    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
       fscanf(ficpar,"\n");    x=vector(1,npar);
       printf("\n");    indx=ivector(1,npar);
       fprintf(ficparo,"\n");    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   }    ludcmp(a,npar,indx,&pd);
   delti=delti3[1][1];  
      for (j=1;j<=npar;j++) {
   /* Reads comments: lines beginning with '#' */      for (i=1;i<=npar;i++) x[i]=0;
   while((c=getc(ficpar))=='#' && c!= EOF){      x[j]=1;
     ungetc(c,ficpar);      lubksb(a,npar,indx,x);
     fgets(line, MAXLINE, ficpar);      for (i=1;i<=npar;i++){ 
     puts(line);        matcov[i][j]=x[i];
     fputs(line,ficparo);      }
   }    }
   ungetc(c,ficpar);  
      printf("\n#Hessian matrix#\n");
   matcov=matrix(1,npar,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   for(i=1; i <=npar; i++){    for (i=1;i<=npar;i++) { 
     fscanf(ficpar,"%s",&str);      for (j=1;j<=npar;j++) { 
     printf("%s",str);        printf("%.3e ",hess[i][j]);
     fprintf(ficparo,"%s",str);        fprintf(ficlog,"%.3e ",hess[i][j]);
     for(j=1; j <=i; j++){      }
       fscanf(ficpar," %le",&matcov[i][j]);      printf("\n");
       printf(" %.5le",matcov[i][j]);      fprintf(ficlog,"\n");
       fprintf(ficparo," %.5le",matcov[i][j]);    }
     }  
     fscanf(ficpar,"\n");    /* Recompute Inverse */
     printf("\n");    for (i=1;i<=npar;i++)
     fprintf(ficparo,"\n");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   }    ludcmp(a,npar,indx,&pd);
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)    /*  printf("\n#Hessian matrix recomputed#\n");
       matcov[i][j]=matcov[j][i];  
        for (j=1;j<=npar;j++) {
   printf("\n");      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       lubksb(a,npar,indx,x);
     /*-------- data file ----------*/      for (i=1;i<=npar;i++){ 
     if((ficres =fopen(fileres,"w"))==NULL) {        y[i][j]=x[i];
       printf("Problem with resultfile: %s\n", fileres);goto end;        printf("%.3e ",y[i][j]);
     }        fprintf(ficlog,"%.3e ",y[i][j]);
     fprintf(ficres,"#%s\n",version);      }
          printf("\n");
     if((fic=fopen(datafile,"r"))==NULL)    {      fprintf(ficlog,"\n");
       printf("Problem with datafile: %s\n", datafile);goto end;    }
     }    */
   
     n= lastobs;    free_matrix(a,1,npar,1,npar);
     severity = vector(1,maxwav);    free_matrix(y,1,npar,1,npar);
     outcome=imatrix(1,maxwav+1,1,n);    free_vector(x,1,npar);
     num=ivector(1,n);    free_ivector(indx,1,npar);
     moisnais=vector(1,n);    free_matrix(hess,1,npar,1,npar);
     annais=vector(1,n);  
     moisdc=vector(1,n);  
     andc=vector(1,n);  }
     agedc=vector(1,n);  
     cod=ivector(1,n);  /*************** hessian matrix ****************/
     weight=vector(1,n);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  {
     mint=matrix(1,maxwav,1,n);    int i;
     anint=matrix(1,maxwav,1,n);    int l=1, lmax=20;
     s=imatrix(1,maxwav+1,1,n);    double k1,k2;
     adl=imatrix(1,maxwav+1,1,n);        double p2[MAXPARM+1]; /* identical to x */
     tab=ivector(1,NCOVMAX);    double res;
     ncodemax=ivector(1,8);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     i=1;    int k=0,kmax=10;
     while (fgets(line, MAXLINE, fic) != NULL)    {    double l1;
       if ((i >= firstobs) && (i <=lastobs)) {  
            fx=func(x);
         for (j=maxwav;j>=1;j--){    for (i=1;i<=npar;i++) p2[i]=x[i];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
           strcpy(line,stra);      l1=pow(10,l);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      delts=delt;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(k=1 ; k <kmax; k=k+1){
         }        delt = delta*(l1*k);
                p2[theta]=x[theta] +delt;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  #ifdef DEBUGHESS
         for (j=ncov;j>=1;j--){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }  #endif
         num[i]=atol(stra);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          k=kmax;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         i=i+1;          k=kmax; l=lmax*10.;
       }        }
     }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     /* printf("ii=%d", ij);          delts=delt;
        scanf("%d",i);*/        }
   imx=i-1; /* Number of individuals */      }
     }
   /* for (i=1; i<=imx; i++){    delti[theta]=delts;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    return res; 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  }
     }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     for (i=1; i<=imx; i++)  {
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    int i;
     int l=1, l1, lmax=20;
   /* Calculation of the number of parameter from char model*/    double k1,k2,k3,k4,res,fx;
   Tvar=ivector(1,15);    double p2[MAXPARM+1];
   Tprod=ivector(1,15);    int k;
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);    fx=func(x);
   Tage=ivector(1,15);          for (k=1; k<=2; k++) {
          for (i=1;i<=npar;i++) p2[i]=x[i];
   if (strlen(model) >1){      p2[thetai]=x[thetai]+delti[thetai]/k;
     j=0, j1=0, k1=1, k2=1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     j=nbocc(model,'+');      k1=func(p2)-fx;
     j1=nbocc(model,'*');    
     cptcovn=j+1;      p2[thetai]=x[thetai]+delti[thetai]/k;
     cptcovprod=j1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          k2=func(p2)-fx;
        
     strcpy(modelsav,model);      p2[thetai]=x[thetai]-delti[thetai]/k;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       printf("Error. Non available option model=%s ",model);      k3=func(p2)-fx;
       goto end;    
     }      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(i=(j+1); i>=1;i--){      k4=func(p2)-fx;
       cutv(stra,strb,modelsav,'+');      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  #ifdef DEBUG
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       /*scanf("%d",i);*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       if (strchr(strb,'*')) {  #endif
         cutv(strd,strc,strb,'*');    }
         if (strcmp(strc,"age")==0) {    return res;
           cptcovprod--;  }
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);  /************** Inverse of matrix **************/
           cptcovage++;  void ludcmp(double **a, int n, int *indx, double *d) 
             Tage[cptcovage]=i;  { 
             /*printf("stre=%s ", stre);*/    int i,imax,j,k; 
         }    double big,dum,sum,temp; 
         else if (strcmp(strd,"age")==0) {    double *vv; 
           cptcovprod--;   
           cutv(strb,stre,strc,'V');    vv=vector(1,n); 
           Tvar[i]=atoi(stre);    *d=1.0; 
           cptcovage++;    for (i=1;i<=n;i++) { 
           Tage[cptcovage]=i;      big=0.0; 
         }      for (j=1;j<=n;j++) 
         else {        if ((temp=fabs(a[i][j])) > big) big=temp; 
           cutv(strb,stre,strc,'V');      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           Tvar[i]=ncov+k1;      vv[i]=1.0/big; 
           cutv(strb,strc,strd,'V');    } 
           Tprod[k1]=i;    for (j=1;j<=n;j++) { 
           Tvard[k1][1]=atoi(strc);      for (i=1;i<j;i++) { 
           Tvard[k1][2]=atoi(stre);        sum=a[i][j]; 
           Tvar[cptcovn+k2]=Tvard[k1][1];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        a[i][j]=sum; 
           for (k=1; k<=lastobs;k++)      } 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      big=0.0; 
           k1++;      for (i=j;i<=n;i++) { 
           k2=k2+2;        sum=a[i][j]; 
         }        for (k=1;k<j;k++) 
       }          sum -= a[i][k]*a[k][j]; 
       else {        a[i][j]=sum; 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        if ( (dum=vv[i]*fabs(sum)) >= big) { 
        /*  scanf("%d",i);*/          big=dum; 
       cutv(strd,strc,strb,'V');          imax=i; 
       Tvar[i]=atoi(strc);        } 
       }      } 
       strcpy(modelsav,stra);        if (j != imax) { 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for (k=1;k<=n;k++) { 
         scanf("%d",i);*/          dum=a[imax][k]; 
     }          a[imax][k]=a[j][k]; 
 }          a[j][k]=dum; 
          } 
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        *d = -(*d); 
   printf("cptcovprod=%d ", cptcovprod);        vv[imax]=vv[j]; 
   scanf("%d ",i);*/      } 
     fclose(fic);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
     /*  if(mle==1){*/      if (j != n) { 
     if (weightopt != 1) { /* Maximisation without weights*/        dum=1.0/(a[j][j]); 
       for(i=1;i<=n;i++) weight[i]=1.0;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     }      } 
     /*-calculation of age at interview from date of interview and age at death -*/    } 
     agev=matrix(1,maxwav,1,imx);    free_vector(vv,1,n);  /* Doesn't work */
   ;
    for (i=1; i<=imx; i++)  } 
      for(m=2; (m<= maxwav); m++)  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  void lubksb(double **a, int n, int *indx, double b[]) 
          anint[m][i]=9999;  { 
          s[m][i]=-1;    int i,ii=0,ip,j; 
        }    double sum; 
       
     for (i=1; i<=imx; i++)  {    for (i=1;i<=n;i++) { 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      ip=indx[i]; 
       for(m=1; (m<= maxwav); m++){      sum=b[ip]; 
         if(s[m][i] >0){      b[ip]=b[i]; 
           if (s[m][i] == nlstate+1) {      if (ii) 
             if(agedc[i]>0)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
               if(moisdc[i]!=99 && andc[i]!=9999)      else if (sum) ii=i; 
               agev[m][i]=agedc[i];      b[i]=sum; 
             else {    } 
               if (andc[i]!=9999){    for (i=n;i>=1;i--) { 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      sum=b[i]; 
               agev[m][i]=-1;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
               }      b[i]=sum/a[i][i]; 
             }    } 
           }  } 
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  void pstamp(FILE *fichier)
             if(mint[m][i]==99 || anint[m][i]==9999)  {
               agev[m][i]=1;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             else if(agev[m][i] <agemin){  }
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  /************ Frequencies ********************/
             }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             else if(agev[m][i] >agemax){  {  /* Some frequencies */
               agemax=agev[m][i];    
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    int i, m, jk, k1,i1, j1, bool, z1,j;
             }    int first;
             /*agev[m][i]=anint[m][i]-annais[i];*/    double ***freq; /* Frequencies */
             /*   agev[m][i] = age[i]+2*m;*/    double *pp, **prop;
           }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           else { /* =9 */    char fileresp[FILENAMELENGTH];
             agev[m][i]=1;    
             s[m][i]=-1;    pp=vector(1,nlstate);
           }    prop=matrix(1,nlstate,iagemin,iagemax+3);
         }    strcpy(fileresp,"p");
         else /*= 0 Unknown */    strcat(fileresp,fileres);
           agev[m][i]=1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }      printf("Problem with prevalence resultfile: %s\n", fileresp);
          fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     }      exit(0);
     for (i=1; i<=imx; i++)  {    }
       for(m=1; (m<= maxwav); m++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         if (s[m][i] > (nlstate+ndeath)) {    j1=0;
           printf("Error: Wrong value in nlstate or ndeath\n");      
           goto end;    j=cptcoveff;
         }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       }  
     }    first=1;
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
     /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
     free_vector(severity,1,maxwav);    /*    j1++;
     free_imatrix(outcome,1,maxwav+1,1,n);  */
     free_vector(moisnais,1,n);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     free_vector(annais,1,n);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     /* free_matrix(mint,1,maxwav,1,n);          scanf("%d", i);*/
        free_matrix(anint,1,maxwav,1,n);*/        for (i=-5; i<=nlstate+ndeath; i++)  
     free_vector(moisdc,1,n);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     free_vector(andc,1,n);            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
            
     wav=ivector(1,imx);        for (i=1; i<=nlstate; i++)  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          for(m=iagemin; m <= iagemax+3; m++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            prop[i][m]=0;
            
     /* Concatenates waves */        dateintsum=0;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        k2cpt=0;
         for (i=1; i<=imx; i++) {
           bool=1;
       Tcode=ivector(1,100);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            for (z1=1; z1<=cptcoveff; z1++)       
       ncodemax[1]=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
                      bool=0;
    codtab=imatrix(1,100,1,10);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
    h=0;                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
    m=pow(2,cptcoveff);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                  /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
    for(k=1;k<=cptcoveff; k++){              } 
      for(i=1; i <=(m/pow(2,k));i++){          }
        for(j=1; j <= ncodemax[k]; j++){   
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          if (bool==1){
            h++;            for(m=firstpass; m<=lastpass; m++){
            if (h>m) h=1;codtab[h][k]=j;              k2=anint[m][i]+(mint[m][i]/12.);
          }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
        }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
    /*for(i=1; i <=m ;i++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      for(k=1; k <=cptcovn; k++){                }
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);                
      }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
      printf("\n");                  dateintsum=dateintsum+k2;
    }                  k2cpt++;
    scanf("%d",i);*/                }
                    /*}*/
    /* Calculates basic frequencies. Computes observed prevalence at single age            }
        and prints on file fileres'p'. */          }
         } /* end i */
             
            /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        pstamp(ficresp);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if  (cptcovn>0) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresp, "\n#********** Variable "); 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficresp, "**********\n#");
                fprintf(ficlog, "\n#********** Variable "); 
     /* For Powell, parameters are in a vector p[] starting at p[1]          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          fprintf(ficlog, "**********\n#");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        }
         for(i=1; i<=nlstate;i++) 
     if(mle==1){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        fprintf(ficresp, "\n");
     }        
            for(i=iagemin; i <= iagemax+3; i++){
     /*--------- results files --------------*/          if(i==iagemax+3){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);            fprintf(ficlog,"Total");
            }else{
             if(first==1){
    jk=1;              first=0;
    fprintf(ficres,"# Parameters\n");              printf("See log file for details...\n");
    printf("# Parameters\n");            }
    for(i=1,jk=1; i <=nlstate; i++){            fprintf(ficlog,"Age %d", i);
      for(k=1; k <=(nlstate+ndeath); k++){          }
        if (k != i)          for(jk=1; jk <=nlstate ; jk++){
          {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
            printf("%d%d ",i,k);              pp[jk] += freq[jk][m][i]; 
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){          for(jk=1; jk <=nlstate ; jk++){
              printf("%f ",p[jk]);            for(m=-1, pos=0; m <=0 ; m++)
              fprintf(ficres,"%f ",p[jk]);              pos += freq[jk][m][i];
              jk++;            if(pp[jk]>=1.e-10){
            }              if(first==1){
            printf("\n");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
            fprintf(ficres,"\n");              }
          }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      }            }else{
    }              if(first==1)
  if(mle==1){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     /* Computing hessian and covariance matrix */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     ftolhess=ftol; /* Usually correct */            }
     hesscov(matcov, p, npar, delti, ftolhess, func);          }
  }  
     fprintf(ficres,"# Scales\n");          for(jk=1; jk <=nlstate ; jk++){
     printf("# Scales\n");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
      for(i=1,jk=1; i <=nlstate; i++){              pp[jk] += freq[jk][m][i];
       for(j=1; j <=nlstate+ndeath; j++){          }       
         if (j!=i) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           fprintf(ficres,"%1d%1d",i,j);            pos += pp[jk];
           printf("%1d%1d",i,j);            posprop += prop[jk][i];
           for(k=1; k<=ncovmodel;k++){          }
             printf(" %.5e",delti[jk]);          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficres," %.5e",delti[jk]);            if(pos>=1.e-5){
             jk++;              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           printf("\n");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           fprintf(ficres,"\n");            }else{
         }              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                }
     k=1;            if( i <= iagemax){
     fprintf(ficres,"# Covariance\n");              if(pos>=1.e-5){
     printf("# Covariance\n");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for(i=1;i<=npar;i++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
       /*  if (k>nlstate) k=1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       i1=(i-1)/(ncovmodel*nlstate)+1;              }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              else
       printf("%s%d%d",alph[k],i1,tab[i]);*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       fprintf(ficres,"%3d",i);            }
       printf("%3d",i);          }
       for(j=1; j<=i;j++){          
         fprintf(ficres," %.5e",matcov[i][j]);          for(jk=-1; jk <=nlstate+ndeath; jk++)
         printf(" %.5e",matcov[i][j]);            for(m=-1; m <=nlstate+ndeath; m++)
       }              if(freq[jk][m][i] !=0 ) {
       fprintf(ficres,"\n");              if(first==1)
       printf("\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       k++;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     }              }
              if(i <= iagemax)
     while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficresp,"\n");
       ungetc(c,ficpar);          if(first==1)
       fgets(line, MAXLINE, ficpar);            printf("Others in log...\n");
       puts(line);          fprintf(ficlog,"\n");
       fputs(line,ficparo);        }
     }        /*}*/
     ungetc(c,ficpar);    }
      dateintmean=dateintsum/k2cpt; 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);   
        fclose(ficresp);
     if (fage <= 2) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       bage = agemin;    free_vector(pp,1,nlstate);
       fage = agemax;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     }    /* End of Freq */
      }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  /************ Prevalence ********************/
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
     while((c=getc(ficpar))=='#' && c!= EOF){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     ungetc(c,ficpar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     fgets(line, MAXLINE, ficpar);       We still use firstpass and lastpass as another selection.
     puts(line);    */
     fputs(line,ficparo);   
   }    int i, m, jk, k1, i1, j1, bool, z1,j;
   ungetc(c,ficpar);    double ***freq; /* Frequencies */
      double *pp, **prop;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    double pos,posprop; 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    double  y2; /* in fractional years */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    int iagemin, iagemax;
          int first; /** to stop verbosity which is redirected to log file */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    iagemin= (int) agemin;
     fgets(line, MAXLINE, ficpar);    iagemax= (int) agemax;
     puts(line);    /*pp=vector(1,nlstate);*/
     fputs(line,ficparo);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   ungetc(c,ficpar);    j1=0;
      
     /*j=cptcoveff;*/
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    
     first=1;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
    fprintf(ficparo,"pop_based=%d\n",popbased);        /*for(i1=1; i1<=ncodemax[k1];i1++){
    fprintf(ficres,"pop_based=%d\n",popbased);          j1++;*/
         
   while((c=getc(ficpar))=='#' && c!= EOF){        for (i=1; i<=nlstate; i++)  
     ungetc(c,ficpar);          for(m=iagemin; m <= iagemax+3; m++)
     fgets(line, MAXLINE, ficpar);            prop[i][m]=0.0;
     puts(line);       
     fputs(line,ficparo);        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
   ungetc(c,ficpar);          if  (cptcovn>0) {
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);            for (z1=1; z1<=cptcoveff; z1++) 
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);                bool=0;
           } 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                  y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     /*------------ gnuplot -------------*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     /*chdir(pathcd);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     strcpy(optionfilegnuplot,optionfilefiname);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     strcat(optionfilegnuplot,".plt");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       printf("Problem with file %s",optionfilegnuplot);goto end;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #ifdef windows                  prop[s[m][i]][iagemax+3] += weight[i]; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);                } 
 #endif              }
 m=pow(2,cptcoveff);            } /* end selection of waves */
            }
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for(i=iagemin; i <= iagemax+3; i++){  
    for (k1=1; k1<= m ; k1 ++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
 #ifdef windows          } 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          
 #endif          for(jk=1; jk <=nlstate ; jk++){     
 #ifdef unix            if( i <=  iagemax){ 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);              if(posprop>=1.e-5){ 
 #endif                probs[i][jk][j1]= prop[jk][i]/posprop;
               } else{
 for (i=1; i<= nlstate ; i ++) {                if(first==1){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  first=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 }                }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              }
     for (i=1; i<= nlstate ; i ++) {            } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }/* end jk */ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }/* end i */ 
 }      /*} *//* end i1 */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    } /* end j1 */
      for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*free_vector(pp,1,nlstate);*/
 }      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  }  /* End of prevalence */
 #ifdef unix  
 fprintf(ficgp,"\nset ter gif small size 400,300");  /************* Waves Concatenation ***************/
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    }  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   /*2 eme*/       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   for (k1=1; k1<= m ; k1 ++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);       and mw[mi+1][i]. dh depends on stepm.
           */
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;    int i, mi, m;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for (j=1; j<= nlstate+1 ; j ++) {       double sum=0., jmean=0.;*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int first;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int j, k=0,jk, ju, jl;
 }      double sum=0.;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    first=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    jmin=1e+5;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    jmax=-1;
       for (j=1; j<= nlstate+1 ; j ++) {    jmean=0.;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=imx; i++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");      mi=0;
 }        m=firstpass;
       fprintf(ficgp,"\" t\"\" w l 0,");      while(s[m][i] <= nlstate){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       for (j=1; j<= nlstate+1 ; j ++) {          mw[++mi][i]=m;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if(m >=lastpass)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          break;
 }          else
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          m++;
       else fprintf(ficgp,"\" t\"\" w l 0,");      }/* end while */
     }      if (s[m][i] > nlstate){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        mi++;     /* Death is another wave */
   }        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
   /*3eme*/        mw[mi][i]=m;
       }
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {      wav[i]=mi;
       k=2+nlstate*(cpt-1);      if(mi==0){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        nbwarn++;
       for (i=1; i< nlstate ; i ++) {        if(first==0){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       }          first=1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
     }        if(first==1){
   }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
          }
   /* CV preval stat */      } /* end mi==0 */
   for (k1=1; k1<= m ; k1 ++) {    } /* End individuals */
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;    for(i=1; i<=imx; i++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);      for(mi=1; mi<wav[i];mi++){
       for (i=1; i< nlstate ; i ++)        if (stepm <=0)
         fprintf(ficgp,"+$%d",k+i+1);          dh[mi][i]=1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        else{
                if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       l=3+(nlstate+ndeath)*cpt;            if (agedc[i] < 2*AGESUP) {
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for (i=1; i< nlstate ; i ++) {              if(j==0) j=1;  /* Survives at least one month after exam */
         l=3+(nlstate+ndeath)*cpt;              else if(j<0){
         fprintf(ficgp,"+$%d",l+i+1);                nberr++;
       }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  j=1; /* Temporary Dangerous patch */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
   /* proba elementaires */              k=k+1;
    for(i=1,jk=1; i <=nlstate; i++){              if (j >= jmax){
     for(k=1; k <=(nlstate+ndeath); k++){                jmax=j;
       if (k != i) {                ijmax=i;
         for(j=1; j <=ncovmodel; j++){              }
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/              if (j <= jmin){
           /*fprintf(ficgp,"%s",alph[1]);*/                jmin=j;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                ijmin=i;
           jk++;              }
           fprintf(ficgp,"\n");              sum=sum+j;
         }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            }
     }          }
           else{
   for(jk=1; jk <=m; jk++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    i=1;  
    for(k2=1; k2<=nlstate; k2++) {            k=k+1;
      k3=i;            if (j >= jmax) {
      for(k=1; k<=(nlstate+ndeath); k++) {              jmax=j;
        if (k != k2){              ijmax=i;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            }
 ij=1;            else if (j <= jmin){
         for(j=3; j <=ncovmodel; j++) {              jmin=j;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              ijmin=i;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
             ij++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           else            if(j<0){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              nberr++;
         }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,")/(1");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    }
         for(k1=1; k1 <=nlstate; k1++){              sum=sum+j;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          }
 ij=1;          jk= j/stepm;
           for(j=3; j <=ncovmodel; j++){          jl= j -jk*stepm;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          ju= j -(jk+1)*stepm;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             ij++;            if(jl==0){
           }              dh[mi][i]=jk;
           else              bh[mi][i]=0;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }else{ /* We want a negative bias in order to only have interpolation ie
           }                    * to avoid the price of an extra matrix product in likelihood */
           fprintf(ficgp,")");              dh[mi][i]=jk+1;
         }              bh[mi][i]=ju;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }else{
         i=i+ncovmodel;            if(jl <= -ju){
        }              dh[mi][i]=jk;
      }              bh[mi][i]=jl;       /* bias is positive if real duration
    }                                   * is higher than the multiple of stepm and negative otherwise.
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                                   */
   }            }
                else{
   fclose(ficgp);              dh[mi][i]=jk+1;
   /* end gnuplot */              bh[mi][i]=ju;
                }
 chdir(path);            if(dh[mi][i]==0){
                  dh[mi][i]=1; /* At least one step */
     free_ivector(wav,1,imx);              bh[mi][i]=ju; /* At least one step */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              }
     free_ivector(num,1,n);          } /* end if mle */
     free_vector(agedc,1,n);        }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      } /* end wave */
     fclose(ficparo);    }
     fclose(ficres);    jmean=sum/k;
     /*  }*/    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    /*________fin mle=1_________*/   }
      
   /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     /* No more information from the sample is required now */  {
   /* Reads comments: lines beginning with '#' */    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   while((c=getc(ficpar))=='#' && c!= EOF){    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     ungetc(c,ficpar);    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
     fgets(line, MAXLINE, ficpar);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     puts(line);    /* nbcode[Tvar[j]][1]= 
     fputs(line,ficparo);    */
   }  
   ungetc(c,ficpar);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
      int modmaxcovj=0; /* Modality max of covariates j */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    int cptcode=0; /* Modality max of covariates j */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    int modmincovj=0; /* Modality min of covariates j */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*--------- index.htm --------*/  
     cptcoveff=0; 
   strcpy(optionfilehtm,optionfile);   
   strcat(optionfilehtm,".htm");    for (k=-1; k < maxncov; k++) Ndum[k]=0;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     printf("Problem with %s \n",optionfilehtm);goto end;  
   }    /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>                                 modality of this covariate Vj*/ 
 Total number of observations=%d <br>        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>                                      * If product of Vn*Vm, still boolean *:
 <hr  size=\"2\" color=\"#EC5E5E\">                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 <li>Outputs files<br><br>\n                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>                                        modality of the nth covariate of individual i. */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        if (ij > modmaxcovj)
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          modmaxcovj=ij; 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        else if (ij < modmincovj) 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          modmincovj=ij; 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        if ((ij < -1) && (ij > NCOVMAX)){
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>          exit(1);
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>        }else
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
  fprintf(fichtm," <li>Graphs</li><p>");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
  m=cptcoveff;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}           female is 1, then modmaxcovj=1.*/
       }
  j1=0;      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
  for(k1=1; k1<=m;k1++){      cptcode=modmaxcovj;
    for(i1=1; i1<=ncodemax[k1];i1++){      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
        j1++;     /*for (i=0; i<=cptcode; i++) {*/
        if (cptcovn > 0) {      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
          for (cpt=1; cpt<=cptcoveff;cpt++)        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        }
        }        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          } /* Ndum[-1] number of undefined modalities */
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
        }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     for(cpt=1; cpt<=nlstate;cpt++) {         modmincovj=3; modmaxcovj = 7;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 interval) in state (%d): v%s%d%d.gif <br>         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);           variables V1_1 and V1_2.
      }         nbcode[Tvar[j]][ij]=k;
      for(cpt=1; cpt<=nlstate;cpt++) {         nbcode[Tvar[j]][1]=0;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>         nbcode[Tvar[j]][2]=1;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);         nbcode[Tvar[j]][3]=2;
      }      */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      ij=1; /* ij is similar to i but can jumps over null modalities */
 health expectancies in states (1) and (2): e%s%d.gif<br>      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
 fprintf(fichtm,"\n</body>");          /*recode from 0 */
    }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
  }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 fclose(fichtm);                                       k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /*--------------- Prevalence limit --------------*/            ij++;
            }
   strcpy(filerespl,"pl");          if (ij > ncodemax[j]) break; 
   strcat(filerespl,fileres);        }  /* end of loop on */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      } /* end of loop on modality */ 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   }    
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   fprintf(ficrespl,"#Prevalence limit\n");    
   fprintf(ficrespl,"#Age ");    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   fprintf(ficrespl,"\n");     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       Ndum[ij]++; 
   prlim=matrix(1,nlstate,1,nlstate);   } 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   ij=1;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     if((Ndum[i]!=0) && (i<=ncovcol)){
   k=0;       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   agebase=agemin;       Tvaraff[ij]=i; /*For printing (unclear) */
   agelim=agemax;       ij++;
   ftolpl=1.e-10;     }else
   i1=cptcoveff;         Tvaraff[ij]=0;
   if (cptcovn < 1){i1=1;}   }
    ij--;
   for(cptcov=1;cptcov<=i1;cptcov++){   cptcoveff=ij; /*Number of total covariates*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;  }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)  /*********** Health Expectancies ****************/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
          
         for (age=agebase; age<=agelim; age++){  {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* Health expectancies, no variances */
           fprintf(ficrespl,"%.0f",age );    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           for(i=1; i<=nlstate;i++)    int nhstepma, nstepma; /* Decreasing with age */
           fprintf(ficrespl," %.5f", prlim[i][i]);    double age, agelim, hf;
           fprintf(ficrespl,"\n");    double ***p3mat;
         }    double eip;
       }  
     }    pstamp(ficreseij);
   fclose(ficrespl);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   /*------------- h Pij x at various ages ------------*/    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        fprintf(ficreseij," e%1d%1d ",i,j);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      fprintf(ficreseij," e%1d. ",i);
   }    }
   printf("Computing pij: result on file '%s' \n", filerespij);    fprintf(ficreseij,"\n");
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    
   /*if (stepm<=24) stepsize=2;*/    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   agelim=AGESUP;    }
   hstepm=stepsize*YEARM; /* Every year of age */    else  hstepm=estepm;   
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   k=0;     * if stepm=24 months pijx are given only every 2 years and by summing them
   for(cptcov=1;cptcov<=i1;cptcov++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * progression in between and thus overestimating or underestimating according
       k=k+1;     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficrespij,"\n#****** ");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         for(j=1;j<=cptcoveff;j++)     * to compare the new estimate of Life expectancy with the same linear 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * hypothesis. A more precise result, taking into account a more precise
         fprintf(ficrespij,"******\n");     * curvature will be obtained if estepm is as small as stepm. */
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /* For example we decided to compute the life expectancy with the smallest unit */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       nhstepm is the number of hstepm from age to agelim 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       nstepm is the number of stepm from age to agelin. 
           oldm=oldms;savm=savms;       Look at hpijx to understand the reason of that which relies in memory size
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         and note for a fixed period like estepm months */
           fprintf(ficrespij,"# Age");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for(i=1; i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
             for(j=1; j<=nlstate+ndeath;j++)       means that if the survival funtion is printed only each two years of age and if
               fprintf(ficrespij," %1d-%1d",i,j);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficrespij,"\n");       results. So we changed our mind and took the option of the best precision.
           for (h=0; h<=nhstepm; h++){    */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)    agelim=AGESUP;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* If stepm=6 months */
             fprintf(ficrespij,"\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           fprintf(ficrespij,"\n");  /* nhstepm age range expressed in number of stepm */
         }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   fclose(ficrespij);    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   if(stepm == 1) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /*---------- Forecasting ------------------*/      /* if (stepm >= YEARM) hstepm=1;*/
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
   /*printf("calage= %f", calagedate);*/      /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepma matrices, stored
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   strcpy(fileresf,"f");      
   strcat(fileresf,fileres);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficresf=fopen(fileresf,"w"))==NULL) {      
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      printf("%d|",(int)age);fflush(stdout);
   }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      
       /* Computing expectancies */
   free_matrix(mint,1,maxwav,1,n);      for(i=1; i<=nlstate;i++)
   free_matrix(anint,1,maxwav,1,n);        for(j=1; j<=nlstate;j++)
   free_matrix(agev,1,maxwav,1,imx);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* Mobile average */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   if (mobilav==1) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      fprintf(ficreseij,"%3.0f",age );
       for (i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        eip=0;
           mobaverage[(int)agedeb][i][cptcod]=0.;        for(j=1; j<=nlstate;j++){
              eip +=eij[i][j][(int)age];
     for (agedeb=bage+4; agedeb<=fage; agedeb++){          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       for (i=1; i<=nlstate;i++){        }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficreseij,"%9.4f", eip );
           for (cpt=0;cpt<=4;cpt++){      }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      fprintf(ficreseij,"\n");
           }      
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    }
         }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    printf("\n");
     }      fprintf(ficlog,"\n");
   }    
   }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   agelim=AGESUP;  {
   /*hstepm=stepsize*YEARM; *//* Every year of age */    /* Covariances of health expectancies eij and of total life expectancies according
   hstepm=1;     to initial status i, ei. .
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    */
   yp1=modf(dateintmean,&yp);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   anprojmean=yp;    int nhstepma, nstepma; /* Decreasing with age */
   yp2=modf((yp1*12),&yp);    double age, agelim, hf;
   mprojmean=yp;    double ***p3matp, ***p3matm, ***varhe;
   yp1=modf((yp2*30.5),&yp);    double **dnewm,**doldm;
   jprojmean=yp;    double *xp, *xm;
   if(jprojmean==0) jprojmean=1;    double **gp, **gm;
   if(mprojmean==0) jprojmean=1;    double ***gradg, ***trgradg;
     int theta;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
     double eip, vip;
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL)    {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       printf("Problem with population file : %s\n",popfile);goto end;    xp=vector(1,npar);
     }    xm=vector(1,npar);
     popage=ivector(0,AGESUP);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     popeffectif=vector(0,AGESUP);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     popcount=vector(0,AGESUP);    
     pstamp(ficresstdeij);
     i=1;      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    fprintf(ficresstdeij,"# Age");
       {    for(i=1; i<=nlstate;i++){
         i=i+1;      for(j=1; j<=nlstate;j++)
       }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     imx=i;      fprintf(ficresstdeij," e%1d. ",i);
        }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    fprintf(ficresstdeij,"\n");
   }  
     pstamp(ficrescveij);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficrescveij,"# Age");
       k=k+1;    for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"\n#******");      for(j=1; j<=nlstate;j++){
       for(j=1;j<=cptcoveff;j++) {        cptj= (j-1)*nlstate+i;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i2=1; i2<=nlstate;i2++)
       }          for(j2=1; j2<=nlstate;j2++){
       fprintf(ficresf,"******\n");            cptj2= (j2-1)*nlstate+i2;
       fprintf(ficresf,"# StartingAge FinalAge");            if(cptj2 <= cptj)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       if (popforecast==1)  fprintf(ficresf," [Population]");          }
          }
       for (cpt=0; cpt<4;cpt++) {    fprintf(ficrescveij,"\n");
         fprintf(ficresf,"\n");    
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */    }
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    else  hstepm=estepm;   
         nhstepm = nhstepm/hstepm;    /* We compute the life expectancy from trapezoids spaced every estepm months
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
         oldm=oldms;savm=savms;     * progression in between and thus overestimating or underestimating according
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * to the curvature of the survival function. If, for the same date, we 
             * estimate the model with stepm=1 month, we can keep estepm to 24 months
         for (h=0; h<=nhstepm; h++){     * to compare the new estimate of Life expectancy with the same linear 
           if (h==(int) (calagedate+YEARM*cpt)) {     * hypothesis. A more precise result, taking into account a more precise
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);     * curvature will be obtained if estepm is as small as stepm. */
           }  
           for(j=1; j<=nlstate+ndeath;j++) {    /* For example we decided to compute the life expectancy with the smallest unit */
             kk1=0.;kk2=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             for(i=1; i<=nlstate;i++) {               nhstepm is the number of hstepm from age to agelim 
               if (mobilav==1)       nstepm is the number of stepm from age to agelin. 
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       Look at hpijx to understand the reason of that which relies in memory size
               else {       and note for a fixed period like estepm months */
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/       survival function given by stepm (the optimization length). Unfortunately it
               }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];       results. So we changed our mind and took the option of the best precision.
             }    */
              hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             if (h==(int)(calagedate+12*cpt)){  
               fprintf(ficresf," %.3f", kk1);    /* If stepm=6 months */
                  /* nhstepm age range expressed in number of stepm */
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    agelim=AGESUP;
             }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }    /* if (stepm >= YEARM) hstepm=1;*/
         /*      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }    
       }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /*  if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   if (popforecast==1) {    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     free_ivector(popage,0,AGESUP);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);    for (age=bage; age<=fage; age ++){ 
   }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   free_imatrix(s,1,maxwav+1,1,n);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   free_vector(weight,1,n);*/      /* if (stepm >= YEARM) hstepm=1;*/
   fclose(ficresf);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   }/* End forecasting */  
   else{      /* If stepm=6 months */
     erreur=108;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   }      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /*---------- Health expectancies and variances ------------*/  
       /* Computing  Variances of health expectancies */
   strcpy(filerest,"t");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   strcat(filerest,fileres);         decrease memory allocation */
   if((ficrest=fopen(filerest,"w"))==NULL) {      for(theta=1; theta <=npar; theta++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for(i=1; i<=npar; i++){ 
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   strcpy(filerese,"e");        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          for(i=1; i<=nlstate; i++){
   }            for(h=0; h<=nhstepm-1; h++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
  strcpy(fileresv,"v");            }
   strcat(fileresv,fileres);          }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);       
   }        for(ij=1; ij<= nlstate*nlstate; ij++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   k=0;          }
   for(cptcov=1;cptcov<=i1;cptcov++){      }/* End theta */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      
       k=k+1;      
       fprintf(ficrest,"\n#****** ");      for(h=0; h<=nhstepm-1; h++)
       for(j=1;j<=cptcoveff;j++)        for(j=1; j<=nlstate*nlstate;j++)
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(theta=1; theta <=npar; theta++)
       fprintf(ficrest,"******\n");            trgradg[h][j][theta]=gradg[h][theta][j];
       
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)       for(ij=1;ij<=nlstate*nlstate;ij++)
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        for(ji=1;ji<=nlstate*nlstate;ji++)
       fprintf(ficreseij,"******\n");          varhe[ij][ji][(int)age] =0.;
   
       fprintf(ficresvij,"\n#****** ");       printf("%d|",(int)age);fflush(stdout);
       for(j=1;j<=cptcoveff;j++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficresvij,"******\n");        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       oldm=oldms;savm=savms;          for(ij=1;ij<=nlstate*nlstate;ij++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);              for(ji=1;ji<=nlstate*nlstate;ji++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       oldm=oldms;savm=savms;        }
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      /* Computing expectancies */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       fprintf(ficrest,"\n");      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
       hf=1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       if (stepm >= YEARM) hf=stepm/YEARM;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       epj=vector(1,nlstate+1);            
       for(age=bage; age <=fage ;age++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {          }
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];      fprintf(ficresstdeij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++){
                eip=0.;
         fprintf(ficrest," %.0f",age);        vip=0.;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(j=1; j<=nlstate;j++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          eip += eij[i][j][(int)age];
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           epj[nlstate+1] +=epj[j];          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }        }
         for(i=1, vepp=0.;i <=nlstate;i++)        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
           for(j=1;j <=nlstate;j++)      }
             vepp += vareij[i][j][(int)age];      fprintf(ficresstdeij,"\n");
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){      fprintf(ficrescveij,"%3.0f",age );
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
         fprintf(ficrest,"\n");          cptj= (j-1)*nlstate+i;
       }          for(i2=1; i2<=nlstate;i2++)
     }            for(j2=1; j2<=nlstate;j2++){
   }              cptj2= (j2-1)*nlstate+i2;
                      if(cptj2 <= cptj)
                        fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
  fclose(ficreseij);      fprintf(ficrescveij,"\n");
  fclose(ficresvij);     
   fclose(ficrest);    }
   fclose(ficpar);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   free_vector(epj,1,nlstate+1);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /*  scanf("%d ",i); */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /*------- Variance limit prevalence------*/      free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 strcpy(fileresvpl,"vpl");    printf("\n");
   strcat(fileresvpl,fileres);    fprintf(ficlog,"\n");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    free_vector(xm,1,npar);
     exit(0);    free_vector(xp,1,npar);
   }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  k=0;  }
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /************ Variance ******************/
      k=k+1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
      fprintf(ficresvpl,"\n#****** ");  {
      for(j=1;j<=cptcoveff;j++)    /* Variance of health expectancies */
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      fprintf(ficresvpl,"******\n");    /* double **newm;*/
          double **dnewm,**doldm;
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    double **dnewmp,**doldmp;
      oldm=oldms;savm=savms;    int i, j, nhstepm, hstepm, h, nstepm ;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    int k, cptcode;
    }    double *xp;
  }    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   fclose(ficresvpl);    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   /*---------- End : free ----------------*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    double ***p3mat;
      double age,agelim, hf;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double ***mobaverage;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int theta;
      char digit[4];
      char digitp[25];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    char fileresprobmorprev[FILENAMELENGTH];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    if(popbased==1){
        if(mobilav!=0)
   free_matrix(matcov,1,npar,1,npar);        strcpy(digitp,"-populbased-mobilav-");
   free_vector(delti,1,npar);      else strcpy(digitp,"-populbased-nomobil-");
      }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    else 
       strcpy(digitp,"-stablbased-");
   if(erreur >0)  
     printf("End of Imach with error %d\n",erreur);    if (mobilav!=0) {
   else   printf("End of Imach\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      }
   /*------ End -----------*/    }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
  end:    sprintf(digit,"%-d",ij);
 #ifdef windows    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   /* chdir(pathcd);*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 #endif    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  /*system("wgnuplot graph.plt");*/    strcat(fileresprobmorprev,fileres);
  /*system("../gp37mgw/wgnuplot graph.plt");*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
  /*system("cd ../gp37mgw");*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  strcat(plotcmd,optionfilegnuplot);   
  system(plotcmd);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
 #ifdef windows    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   while (z[0] != 'q') {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     chdir(path);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      fprintf(ficresprobmorprev," p.%-d SE",j);
     scanf("%s",z);      for(i=1; i<=nlstate;i++)
     if (z[0] == 'c') system("./imach");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     else if (z[0] == 'e') {    }  
       chdir(path);    fprintf(ficresprobmorprev,"\n");
       system(optionfilehtm);    fprintf(ficgp,"\n# Routine varevsij");
     }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     else if (z[0] == 'q') exit(0);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 #endif  /*   } */
 }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot command %s\n", plotcmd);
       printf("\n Trying on same directory\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s\n", plotcmd);
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef OSX
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elsedef
         sprintf(pplotcmd, "%s", optionfilehtm);
   #enddef
         printf("Starting browser with: %s",plotcmd);fflush(stdout);
         system(plotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.23  
changed lines
  Added in v.1.152


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>