Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.152

version 1.41.2.1, 2003/06/12 10:43:20 version 1.152, 2014/06/18 17:54:09
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.152  2014/06/18 17:54:09  brouard
      Summary: open browser, use gnuplot on same dir than imach if not found in the path
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.151  2014/06/18 16:43:30  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.150  2014/06/18 16:42:35  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   (if any) in individual health status.  Health expectancies are    Author: brouard
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.149  2014/06/18 15:51:14  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: Some fixes in parameter files errors
   simplest model is the multinomial logistic model where pij is the    Author: Nicolas Brouard
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.148  2014/06/17 17:38:48  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: Nothing new
   'age' is age and 'sex' is a covariate. If you want to have a more    Author: Brouard
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Just a new packaging for OS/X version 0.98nS
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.146  2014/06/16 10:20:28  brouard
   identical for each individual. Also, if a individual missed an    Summary: Merge
   intermediate interview, the information is lost, but taken into    Author: Brouard
   account using an interpolation or extrapolation.    
     Merge, before building revised version.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.145  2014/06/10 21:23:15  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Summary: Debugging with valgrind
   states. This elementary transition (by month or quarter trimester,    Author: Nicolas Brouard
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Lot of changes in order to output the results with some covariates
   and the contribution of each individual to the likelihood is simply    After the Edimburgh REVES conference 2014, it seems mandatory to
   hPijx.    improve the code.
     No more memory valgrind error but a lot has to be done in order to
   Also this programme outputs the covariance matrix of the parameters but also    continue the work of splitting the code into subroutines.
   of the life expectancies. It also computes the prevalence limits.    Also, decodemodel has been improved. Tricode is still not
      optimal. nbcode should be improved. Documentation has been added in
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    the source code.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.143  2014/01/26 09:45:38  brouard
   from the European Union.    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   **********************************************************************/  
      Revision 1.142  2014/01/26 03:57:36  brouard
 #include <math.h>    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #include <stdio.h>  
 #include <stdlib.h>    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <unistd.h>  
     Revision 1.141  2014/01/26 02:42:01  brouard
 #define MAXLINE 256    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.140  2011/09/02 10:37:54  brouard
 #define FILENAMELENGTH 80    Summary: times.h is ok with mingw32 now.
 /*#define DEBUG*/  
     Revision 1.139  2010/06/14 07:50:17  brouard
 /*#define windows*/    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.138  2010/04/30 18:19:40  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    *** empty log message ***
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.137  2010/04/29 18:11:38  brouard
 #define NINTERVMAX 8    (Module): Checking covariates for more complex models
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    than V1+V2. A lot of change to be done. Unstable.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.136  2010/04/26 20:30:53  brouard
 #define MAXN 20000    (Module): merging some libgsl code. Fixing computation
 #define YEARM 12. /* Number of months per year */    of likelione (using inter/intrapolation if mle = 0) in order to
 #define AGESUP 130    get same likelihood as if mle=1.
 #define AGEBASE 40    Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
 int erreur; /* Error number */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.134  2009/10/29 13:18:53  brouard
 int npar=NPARMAX;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.133  2009/07/06 10:21:25  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    just nforces
 int popbased=0;  
     Revision 1.132  2009/07/06 08:22:05  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Many tings
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.131  2009/06/20 16:22:47  brouard
 int mle, weightopt;    Some dimensions resccaled
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.130  2009/05/26 06:44:34  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Max Covariate is now set to 20 instead of 8. A
 double **oldm, **newm, **savm; /* Working pointers to matrices */    lot of cleaning with variables initialized to 0. Trying to make
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.129  2007/08/31 13:49:27  lievre
 FILE *ficreseij;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.128  2006/06/30 13:02:05  brouard
   char fileresv[FILENAMELENGTH];    (Module): Clarifications on computing e.j
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
 #define NR_END 1    imach-114 because nhstepm was no more computed in the age
 #define FREE_ARG char*    loop. Now we define nhstepma in the age loop.
 #define FTOL 1.0e-10    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
 #define NRANSI    and then all the health expectancies with variances or standard
 #define ITMAX 200    deviation (needs data from the Hessian matrices) which slows the
     computation.
 #define TOL 2.0e-4    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.126  2006/04/28 17:23:28  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define GOLD 1.618034    loop. Now we define nhstepma in the age loop.
 #define GLIMIT 100.0    Version 0.98h
 #define TINY 1.0e-20  
     Revision 1.125  2006/04/04 15:20:31  lievre
 static double maxarg1,maxarg2;    Errors in calculation of health expectancies. Age was not initialized.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Forecasting file added.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.124  2006/03/22 17:13:53  lievre
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define rint(a) floor(a+0.5)    The log-likelihood is printed in the log file
   
 static double sqrarg;    Revision 1.123  2006/03/20 10:52:43  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    * imach.c (Module): <title> changed, corresponds to .htm file
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    name. <head> headers where missing.
   
 int imx;    * imach.c (Module): Weights can have a decimal point as for
 int stepm;    English (a comma might work with a correct LC_NUMERIC environment,
 /* Stepm, step in month: minimum step interpolation*/    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 int estepm;    1.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Version 0.98g
   
 int m,nb;    Revision 1.122  2006/03/20 09:45:41  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Weights can have a decimal point as for
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    English (a comma might work with a correct LC_NUMERIC environment,
 double **pmmij, ***probs, ***mobaverage;    otherwise the weight is truncated).
 double dateintmean=0;    Modification of warning when the covariates values are not 0 or
     1.
 double *weight;    Version 0.98g
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.121  2006/03/16 17:45:01  lievre
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Module): Comments concerning covariates added
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    * imach.c (Module): refinements in the computation of lli if
 double ftolhess; /* Tolerance for computing hessian */    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.120  2006/03/16 15:10:38  lievre
 {    (Module): refinements in the computation of lli if
    char *s;                             /* pointer */    status=-2 in order to have more reliable computation if stepm is
    int  l1, l2;                         /* length counters */    not 1 month. Version 0.98f
   
    l1 = strlen( path );                 /* length of path */    Revision 1.119  2006/03/15 17:42:26  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Bug if status = -2, the loglikelihood was
 #ifdef windows    computed as likelihood omitting the logarithm. Version O.98e
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.118  2006/03/14 18:20:07  brouard
    s = strrchr( path, '/' );            /* find last / */    (Module): varevsij Comments added explaining the second
 #endif    table of variances if popbased=1 .
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #if     defined(__bsd__)                /* get current working directory */    (Module): Function pstamp added
       extern char       *getwd( );    (Module): Version 0.98d
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.117  2006/03/14 17:16:22  brouard
 #else    (Module): varevsij Comments added explaining the second
       extern char       *getcwd( );    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): Function pstamp added
 #endif    (Module): Version 0.98d
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.116  2006/03/06 10:29:27  brouard
       strcpy( name, path );             /* we've got it */    (Module): Variance-covariance wrong links and
    } else {                             /* strip direcotry from path */    varian-covariance of ej. is needed (Saito).
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.115  2006/02/27 12:17:45  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): One freematrix added in mlikeli! 0.98c
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.114  2006/02/26 12:57:58  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Some improvements in processing parameter
    }    filename with strsep.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.113  2006/02/24 14:20:24  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): Memory leaks checks with valgrind and:
 #else    datafile was not closed, some imatrix were not freed and on matrix
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    allocation too.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.112  2006/01/30 09:55:26  brouard
    s++;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.111  2006/01/25 20:38:18  brouard
    l2= strlen( s)+1;    (Module): Lots of cleaning and bugs added (Gompertz)
    strncpy( finame, name, l1-l2);    (Module): Comments can be added in data file. Missing date values
    finame[l1-l2]= 0;    can be a simple dot '.'.
    return( 0 );                         /* we're done */  
 }    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   
 /******************************************/    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 void replace(char *s, char*t)  
 {    Revision 1.108  2006/01/19 18:05:42  lievre
   int i;    Gnuplot problem appeared...
   int lg=20;    To be fixed
   i=0;  
   lg=strlen(t);    Revision 1.107  2006/01/19 16:20:37  brouard
   for(i=0; i<= lg; i++) {    Test existence of gnuplot in imach path
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.106  2006/01/19 13:24:36  brouard
   }    Some cleaning and links added in html output
 }  
     Revision 1.105  2006/01/05 20:23:19  lievre
 int nbocc(char *s, char occ)    *** empty log message ***
 {  
   int i,j=0;    Revision 1.104  2005/09/30 16:11:43  lievre
   int lg=20;    (Module): sump fixed, loop imx fixed, and simplifications.
   i=0;    (Module): If the status is missing at the last wave but we know
   lg=strlen(s);    that the person is alive, then we can code his/her status as -2
   for(i=0; i<= lg; i++) {    (instead of missing=-1 in earlier versions) and his/her
   if  (s[i] == occ ) j++;    contributions to the likelihood is 1 - Prob of dying from last
   }    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   return j;    the healthy state at last known wave). Version is 0.98
 }  
     Revision 1.103  2005/09/30 15:54:49  lievre
 void cutv(char *u,char *v, char*t, char occ)    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
   int i,lg,j,p=0;    Revision 1.102  2004/09/15 17:31:30  brouard
   i=0;    Add the possibility to read data file including tab characters.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.101  2004/09/15 10:38:38  brouard
   }    Fix on curr_time
   
   lg=strlen(t);    Revision 1.100  2004/07/12 18:29:06  brouard
   for(j=0; j<p; j++) {    Add version for Mac OS X. Just define UNIX in Makefile
     (u[j] = t[j]);  
   }    Revision 1.99  2004/06/05 08:57:40  brouard
      u[p]='\0';    *** empty log message ***
   
    for(j=0; j<= lg; j++) {    Revision 1.98  2004/05/16 15:05:56  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    New version 0.97 . First attempt to estimate force of mortality
   }    directly from the data i.e. without the need of knowing the health
 }    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 /********************** nrerror ********************/    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 void nrerror(char error_text[])    from other sources like vital statistic data.
 {  
   fprintf(stderr,"ERREUR ...\n");    The same imach parameter file can be used but the option for mle should be -3.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Agnès, who wrote this part of the code, tried to keep most of the
 }    former routines in order to include the new code within the former code.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    The output is very simple: only an estimate of the intercept and of
 {    the slope with 95% confident intervals.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Current limitations:
   if (!v) nrerror("allocation failure in vector");    A) Even if you enter covariates, i.e. with the
   return v-nl+NR_END;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
 /************************ free vector ******************/    Revision 1.97  2004/02/20 13:25:42  lievre
 void free_vector(double*v, int nl, int nh)    Version 0.96d. Population forecasting command line is (temporarily)
 {    suppressed.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /************************ivector *******************************/    rewritten within the same printf. Workaround: many printfs.
 int *ivector(long nl,long nh)  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   int *v;    * imach.c (Repository):
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Repository): Using imachwizard code to output a more meaningful covariance
   if (!v) nrerror("allocation failure in ivector");    matrix (cov(a12,c31) instead of numbers.
   return v-nl+NR_END;  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   free((FREE_ARG)(v+nl-NR_END));    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
 /******************* imatrix *******************************/    Revision 1.92  2003/06/25 16:30:45  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): On windows (cygwin) function asctime_r doesn't
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    exist so I changed back to asctime which exists.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.91  2003/06/25 15:30:29  brouard
   int **m;    * imach.c (Repository): Duplicated warning errors corrected.
      (Repository): Elapsed time after each iteration is now output. It
   /* allocate pointers to rows */    helps to forecast when convergence will be reached. Elapsed time
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    is stamped in powell.  We created a new html file for the graphs
   if (!m) nrerror("allocation failure 1 in matrix()");    concerning matrix of covariance. It has extension -cov.htm.
   m += NR_END;  
   m -= nrl;    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
   /* allocate rows and set pointers to them */    of the covariance matrix to be input.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.89  2003/06/24 12:30:52  brouard
   m[nrl] += NR_END;    (Module): Some bugs corrected for windows. Also, when
   m[nrl] -= ncl;    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.88  2003/06/23 17:54:56  brouard
   /* return pointer to array of pointers to rows */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   return m;  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.86  2003/06/17 20:04:08  brouard
       int **m;    (Module): Change position of html and gnuplot routines and added
       long nch,ncl,nrh,nrl;    routine fileappend.
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    * imach.c (Repository): Check when date of death was earlier that
   free((FREE_ARG) (m+nrl-NR_END));    current date of interview. It may happen when the death was just
 }    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /******************* matrix *******************************/    assuming that the date of death was just one stepm after the
 double **matrix(long nrl, long nrh, long ncl, long nch)    interview.
 {    (Repository): Because some people have very long ID (first column)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    we changed int to long in num[] and we added a new lvector for
   double **m;    memory allocation. But we also truncated to 8 characters (left
     truncation)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Repository): No more line truncation errors.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.84  2003/06/13 21:44:43  brouard
   m -= nrl;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    many times. Probs is memory consuming and must be used with
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    parcimony.
   m[nrl] += NR_END;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   m[nrl] -= ncl;  
     Revision 1.83  2003/06/10 13:39:11  lievre
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    *** empty log message ***
   return m;  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  */
 {  /*
   free((FREE_ARG)(m[nrl]+ncl-NR_END));     Interpolated Markov Chain
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Short summary of the programme:
     
 /******************* ma3x *******************************/    This program computes Healthy Life Expectancies from
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    interviewed on their health status or degree of disability (in the
   double ***m;    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (if any) in individual health status.  Health expectancies are
   if (!m) nrerror("allocation failure 1 in matrix()");    computed from the time spent in each health state according to a
   m += NR_END;    model. More health states you consider, more time is necessary to reach the
   m -= nrl;    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    probability to be observed in state j at the second wave
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    conditional to be observed in state i at the first wave. Therefore
   m[nrl] += NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m[nrl] -= ncl;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    convergence.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    The advantage of this computer programme, compared to a simple
   m[nrl][ncl] -= nll;    multinomial logistic model, is clear when the delay between waves is not
   for (j=ncl+1; j<=nch; j++)    identical for each individual. Also, if a individual missed an
     m[nrl][j]=m[nrl][j-1]+nlay;    intermediate interview, the information is lost, but taken into
      account using an interpolation or extrapolation.  
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    hPijx is the probability to be observed in state i at age x+h
     for (j=ncl+1; j<=nch; j++)    conditional to the observed state i at age x. The delay 'h' can be
       m[i][j]=m[i][j-1]+nlay;    split into an exact number (nh*stepm) of unobserved intermediate
   }    states. This elementary transition (by month, quarter,
   return m;    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /*************************free ma3x ************************/    hPijx.
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    of the life expectancies. It also computes the period (stable) prevalence. 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    
   free((FREE_ARG)(m+nrl-NR_END));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /***************** f1dim *************************/    from the European Union.
 extern int ncom;    It is copyrighted identically to a GNU software product, ie programme and
 extern double *pcom,*xicom;    software can be distributed freely for non commercial use. Latest version
 extern double (*nrfunc)(double []);    can be accessed at http://euroreves.ined.fr/imach .
    
 double f1dim(double x)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   int j;    
   double f;    **********************************************************************/
   double *xt;  /*
      main
   xt=vector(1,ncom);    read parameterfile
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    read datafile
   f=(*nrfunc)(xt);    concatwav
   free_vector(xt,1,ncom);    freqsummary
   return f;    if (mle >= 1)
 }      mlikeli
     print results files
 /*****************brent *************************/    if mle==1 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   int iter;        begin-prev-date,...
   double a,b,d,etemp;    open gnuplot file
   double fu,fv,fw,fx;    open html file
   double ftemp;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   double p,q,r,tol1,tol2,u,v,w,x,xm;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   double e=0.0;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
        freexexit2 possible for memory heap.
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    h Pij x                         | pij_nom  ficrestpij
   x=w=v=bx;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   fw=fv=fx=(*f)(x);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   for (iter=1;iter<=ITMAX;iter++) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     printf(".");fflush(stdout);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 #ifdef DEBUG     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    health expectancies
       *xmin=x;    Variance-covariance of DFLE
       return fx;    prevalence()
     }     movingaverage()
     ftemp=fu;    varevsij() 
     if (fabs(e) > tol1) {    if popbased==1 varevsij(,popbased)
       r=(x-w)*(fx-fv);    total life expectancies
       q=(x-v)*(fx-fw);    Variance of period (stable) prevalence
       p=(x-v)*q-(x-w)*r;   end
       q=2.0*(q-r);  */
       if (q > 0.0) p = -p;  
       q=fabs(q);  
       etemp=e;  
       e=d;   
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #include <math.h>
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <stdio.h>
       else {  #include <stdlib.h>
         d=p/q;  #include <string.h>
         u=x+d;  #include <unistd.h>
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  #include <limits.h>
       }  #include <sys/types.h>
     } else {  #include <sys/stat.h>
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <errno.h>
     }  extern int errno;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  #ifdef LINUX
     if (fu <= fx) {  #include <time.h>
       if (u >= x) a=x; else b=x;  #include "timeval.h"
       SHFT(v,w,x,u)  #else
         SHFT(fv,fw,fx,fu)  #include <sys/time.h>
         } else {  #endif
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  #ifdef GSL
             v=w;  #include <gsl/gsl_errno.h>
             w=u;  #include <gsl/gsl_multimin.h>
             fv=fw;  #endif
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /* #include <libintl.h> */
             v=u;  /* #define _(String) gettext (String) */
             fv=fu;  
           }  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
         }  
   }  #define GNUPLOTPROGRAM "gnuplot"
   nrerror("Too many iterations in brent");  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   *xmin=x;  #define FILENAMELENGTH 132
   return fx;  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /****************** mnbrak ***********************/  
   #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
             double (*func)(double))  
 {  #define NINTERVMAX 8
   double ulim,u,r,q, dum;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   double fu;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
    #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   *fa=(*func)(*ax);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   *fb=(*func)(*bx);  #define MAXN 20000
   if (*fb > *fa) {  #define YEARM 12. /**< Number of months per year */
     SHFT(dum,*ax,*bx,dum)  #define AGESUP 130
       SHFT(dum,*fb,*fa,dum)  #define AGEBASE 40
       }  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
   *cx=(*bx)+GOLD*(*bx-*ax);  #ifdef UNIX
   *fc=(*func)(*cx);  #define DIRSEPARATOR '/'
   while (*fb > *fc) {  #define CHARSEPARATOR "/"
     r=(*bx-*ax)*(*fb-*fc);  #define ODIRSEPARATOR '\\'
     q=(*bx-*cx)*(*fb-*fa);  #else
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define DIRSEPARATOR '\\'
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define CHARSEPARATOR "\\"
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define ODIRSEPARATOR '/'
     if ((*bx-u)*(u-*cx) > 0.0) {  #endif
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /* $Id$ */
       fu=(*func)(u);  /* $State$ */
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
           SHFT(*fb,*fc,fu,(*func)(u))  char fullversion[]="$Revision$ $Date$"; 
           }  char strstart[80];
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       u=ulim;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       fu=(*func)(u);  int nvar=0, nforce=0; /* Number of variables, number of forces */
     } else {  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       u=(*cx)+GOLD*(*cx-*bx);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       fu=(*func)(u);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     SHFT(*ax,*bx,*cx,u)  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       SHFT(*fa,*fb,*fc,fu)  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 }  int cptcov=0; /* Working variable */
   int npar=NPARMAX;
 /*************** linmin ************************/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 int ncom;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double *pcom,*xicom;  int popbased=0;
 double (*nrfunc)(double []);  
    int *wav; /* Number of waves for this individuual 0 is possible */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int maxwav=0; /* Maxim number of waves */
 {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   double brent(double ax, double bx, double cx,  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
                double (*f)(double), double tol, double *xmin);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double f1dim(double x);                     to the likelihood and the sum of weights (done by funcone)*/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int mle=1, weightopt=0;
               double *fc, double (*func)(double));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int j;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   double xx,xmin,bx,ax;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double fx,fb,fa;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    double jmean=1; /* Mean space between 2 waves */
   ncom=n;  double **matprod2(); /* test */
   pcom=vector(1,n);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   xicom=vector(1,n);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   nrfunc=func;  /*FILE *fic ; */ /* Used in readdata only */
   for (j=1;j<=n;j++) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     pcom[j]=p[j];  FILE *ficlog, *ficrespow;
     xicom[j]=xi[j];  int globpr=0; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
   ax=0.0;  long ipmx=0; /* Number of contributions */
   xx=1.0;  double sw; /* Sum of weights */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  char filerespow[FILENAMELENGTH];
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #ifdef DEBUG  FILE *ficresilk;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #endif  FILE *ficresprobmorprev;
   for (j=1;j<=n;j++) {  FILE *fichtm, *fichtmcov; /* Html File */
     xi[j] *= xmin;  FILE *ficreseij;
     p[j] += xi[j];  char filerese[FILENAMELENGTH];
   }  FILE *ficresstdeij;
   free_vector(xicom,1,n);  char fileresstde[FILENAMELENGTH];
   free_vector(pcom,1,n);  FILE *ficrescveij;
 }  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /*************** powell ************************/  char fileresv[FILENAMELENGTH];
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  FILE  *ficresvpl;
             double (*func)(double []))  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   void linmin(double p[], double xi[], int n, double *fret,  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
               double (*func)(double []));  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   int i,ibig,j;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double del,t,*pt,*ptt,*xit;  char command[FILENAMELENGTH];
   double fp,fptt;  int  outcmd=0;
   double *xits;  
   pt=vector(1,n);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   ptt=vector(1,n);  
   xit=vector(1,n);  char filelog[FILENAMELENGTH]; /* Log file */
   xits=vector(1,n);  char filerest[FILENAMELENGTH];
   *fret=(*func)(p);  char fileregp[FILENAMELENGTH];
   for (j=1;j<=n;j++) pt[j]=p[j];  char popfile[FILENAMELENGTH];
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     ibig=0;  
     del=0.0;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  struct timezone tzp;
     for (i=1;i<=n;i++)  extern int gettimeofday();
       printf(" %d %.12f",i, p[i]);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     printf("\n");  long time_value;
     for (i=1;i<=n;i++) {  extern long time();
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  char strcurr[80], strfor[80];
       fptt=(*fret);  
 #ifdef DEBUG  char *endptr;
       printf("fret=%lf \n",*fret);  long lval;
 #endif  double dval;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  #define NR_END 1
       if (fabs(fptt-(*fret)) > del) {  #define FREE_ARG char*
         del=fabs(fptt-(*fret));  #define FTOL 1.0e-10
         ibig=i;  
       }  #define NRANSI 
 #ifdef DEBUG  #define ITMAX 200 
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  #define TOL 2.0e-4 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  #define CGOLD 0.3819660 
       }  #define ZEPS 1.0e-10 
       for(j=1;j<=n;j++)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         printf(" p=%.12e",p[j]);  
       printf("\n");  #define GOLD 1.618034 
 #endif  #define GLIMIT 100.0 
     }  #define TINY 1.0e-20 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  static double maxarg1,maxarg2;
       int k[2],l;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       k[0]=1;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       for (j=1;j<=n;j++)  #define rint(a) floor(a+0.5)
         printf(" %.12e",p[j]);  
       printf("\n");  static double sqrarg;
       for(l=0;l<=1;l++) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         for (j=1;j<=n;j++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int agegomp= AGEGOMP;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  int imx; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int stepm=1;
       }  /* Stepm, step in month: minimum step interpolation*/
 #endif  
   int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  int m,nb;
       free_vector(ptt,1,n);  long *num;
       free_vector(pt,1,n);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       return;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     }  double **pmmij, ***probs;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  double *ageexmed,*agecens;
     for (j=1;j<=n;j++) {  double dateintmean=0;
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  double *weight;
       pt[j]=p[j];  int **s; /* Status */
     }  double *agedc;
     fptt=(*func)(ptt);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     if (fptt < fp) {                    * covar=matrix(0,NCOVMAX,1,n); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       if (t < 0.0) {  double  idx; 
         linmin(p,xit,n,fret,func);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         for (j=1;j<=n;j++) {  int *Ndum; /** Freq of modality (tricode */
           xi[j][ibig]=xi[j][n];  int **codtab; /**< codtab=imatrix(1,100,1,10); */
           xi[j][n]=xit[j];  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         }  double *lsurv, *lpop, *tpop;
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         for(j=1;j<=n;j++)  double ftolhess; /**< Tolerance for computing hessian */
           printf(" %.12e",xit[j]);  
         printf("\n");  /**************** split *************************/
 #endif  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       }  {
     }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /**** Prevalence limit ****************/    int   l1, l2;                         /* length counters */
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      matrix by transitions matrix until convergence is reached */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
   int i, ii,j,k;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double min, max, maxmin, maxmax,sumnew=0.;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double **matprod2();      /* get current working directory */
   double **out, cov[NCOVMAX], **pmij();      /*    extern  char* getcwd ( char *buf , int len);*/
   double **newm;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double agefin, delaymax=50 ; /* Max number of years to converge */        return( GLOCK_ERROR_GETCWD );
       }
   for (ii=1;ii<=nlstate+ndeath;ii++)      /* got dirc from getcwd*/
     for (j=1;j<=nlstate+ndeath;j++){      printf(" DIRC = %s \n",dirc);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    } else {                              /* strip direcotry from path */
     }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
    cov[1]=1.;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      dirc[l1-l2] = 0;                    /* add zero */
     newm=savm;      printf(" DIRC2 = %s \n",dirc);
     /* Covariates have to be included here again */    }
      cov[2]=agefin;    /* We add a separator at the end of dirc if not exists */
      l1 = strlen( dirc );                  /* length of directory */
       for (k=1; k<=cptcovn;k++) {    if( dirc[l1-1] != DIRSEPARATOR ){
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      dirc[l1] =  DIRSEPARATOR;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      dirc[l1+1] = 0; 
       }      printf(" DIRC3 = %s \n",dirc);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }
       for (k=1; k<=cptcovprod;k++)    ss = strrchr( name, '.' );            /* find last / */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if (ss >0){
       ss++;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      strcpy(ext,ss);                     /* save extension */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      l1= strlen( name);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      l2= strlen(ss)+1;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
     savm=oldm;    }
     oldm=newm;  
     maxmax=0.;    return( 0 );                          /* we're done */
     for(j=1;j<=nlstate;j++){  }
       min=1.;  
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /******************************************/
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  void replace_back_to_slash(char *s, char*t)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    int i;
         min=FMIN(min,prlim[i][j]);    int lg=0;
       }    i=0;
       maxmin=max-min;    lg=strlen(t);
       maxmax=FMAX(maxmax,maxmin);    for(i=0; i<= lg; i++) {
     }      (s[i] = t[i]);
     if(maxmax < ftolpl){      if (t[i]== '\\') s[i]='/';
       return prlim;    }
     }  }
   }  
 }  char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 /*************** transition probabilities ***************/    char *s;
     s=out;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    while (*in != '\0'){
 {      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   double s1, s2;        in++;
   /*double t34;*/      }
   int i,j,j1, nc, ii, jj;      *out++ = *in++;
     }
     for(i=1; i<= nlstate; i++){    *out='\0';
     for(j=1; j<i;j++){    return s;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char *cutl(char *blocc, char *alocc, char *in, char occ)
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  {
       }    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       ps[i][j]=s2;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/       gives blocc="abcdef2ghi" and alocc="j".
     }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     for(j=i+1; j<=nlstate+ndeath;j++){    */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    char *s, *t, *bl;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    t=in;s=in;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    while ((*in != occ) && (*in != '\0')){
       }      *alocc++ = *in++;
       ps[i][j]=s2;    }
     }    if( *in == occ){
   }      *(alocc)='\0';
     /*ps[3][2]=1;*/      s=++in;
     }
   for(i=1; i<= nlstate; i++){   
      s1=0;    if (s == t) {/* occ not found */
     for(j=1; j<i; j++)      *(alocc-(in-s))='\0';
       s1+=exp(ps[i][j]);      in=s;
     for(j=i+1; j<=nlstate+ndeath; j++)    }
       s1+=exp(ps[i][j]);    while ( *in != '\0'){
     ps[i][i]=1./(s1+1.);      *blocc++ = *in++;
     for(j=1; j<i; j++)    }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)    *blocc='\0';
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return t;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  char *cutv(char *blocc, char *alocc, char *in, char occ)
   {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     for(jj=1; jj<= nlstate+ndeath; jj++){       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       ps[ii][jj]=0;       gives blocc="abcdef2ghi" and alocc="j".
       ps[ii][ii]=1;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     }    */
   }    char *s, *t;
     t=in;s=in;
     while (*in != '\0'){
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      while( *in == occ){
     for(jj=1; jj<= nlstate+ndeath; jj++){        *blocc++ = *in++;
      printf("%lf ",ps[ii][jj]);        s=in;
    }      }
     printf("\n ");      *blocc++ = *in++;
     }    }
     printf("\n ");printf("%lf ",cov[2]);*/    if (s == t) /* occ not found */
 /*      *(blocc-(in-s))='\0';
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    else
   goto end;*/      *(blocc-(in-s)-1)='\0';
     return ps;    in=s;
 }    while ( *in != '\0'){
       *alocc++ = *in++;
 /**************** Product of 2 matrices ******************/    }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    *alocc='\0';
 {    return s;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  int nbocc(char *s, char occ)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    int i,j=0;
   long i, j, k;    int lg=20;
   for(i=nrl; i<= nrh; i++)    i=0;
     for(k=ncolol; k<=ncoloh; k++)    lg=strlen(s);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    for(i=0; i<= lg; i++) {
         out[i][k] +=in[i][j]*b[j][k];    if  (s[i] == occ ) j++;
     }
   return out;    return j;
 }  }
   
   /* void cutv(char *u,char *v, char*t, char occ) */
 /************* Higher Matrix Product ***************/  /* { */
   /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 {  /*      gives u="abcdef2ghi" and v="j" *\/ */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*   int i,lg,j,p=0; */
      duration (i.e. until  /*   i=0; */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*   lg=strlen(t); */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*   for(j=0; j<=lg-1; j++) { */
      (typically every 2 years instead of every month which is too big).  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
      Model is determined by parameters x and covariates have to be  /*   } */
      included manually here.  
   /*   for(j=0; j<p; j++) { */
      */  /*     (u[j] = t[j]); */
   /*   } */
   int i, j, d, h, k;  /*      u[p]='\0'; */
   double **out, cov[NCOVMAX];  
   double **newm;  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /* Hstepm could be zero and should return the unit matrix */  /*   } */
   for (i=1;i<=nlstate+ndeath;i++)  /* } */
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /********************** nrerror ********************/
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  void nrerror(char error_text[])
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(h=1; h <=nhstepm; h++){    fprintf(stderr,"ERREUR ...\n");
     for(d=1; d <=hstepm; d++){    fprintf(stderr,"%s\n",error_text);
       newm=savm;    exit(EXIT_FAILURE);
       /* Covariates have to be included here again */  }
       cov[1]=1.;  /*********************** vector *******************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double *vector(int nl, int nh)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
       for (k=1; k<=cptcovage;k++)    double *v;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovprod;k++)    if (!v) nrerror("allocation failure in vector");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return v-nl+NR_END;
   }
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /************************ free vector ******************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  void free_vector(double*v, int nl, int nh)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    free((FREE_ARG)(v+nl-NR_END));
       savm=oldm;  }
       oldm=newm;  
     }  /************************ivector *******************************/
     for(i=1; i<=nlstate+ndeath; i++)  int *ivector(long nl,long nh)
       for(j=1;j<=nlstate+ndeath;j++) {  {
         po[i][j][h]=newm[i][j];    int *v;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
          */    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
   } /* end h */  }
   return po;  
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   {
 /*************** log-likelihood *************/    free((FREE_ARG)(v+nl-NR_END));
 double func( double *x)  }
 {  
   int i, ii, j, k, mi, d, kk;  /************************lvector *******************************/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  long *lvector(long nl,long nh)
   double **out;  {
   double sw; /* Sum of weights */    long *v;
   double lli; /* Individual log likelihood */    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   long ipmx;    if (!v) nrerror("allocation failure in ivector");
   /*extern weight */    return v-nl+NR_END;
   /* We are differentiating ll according to initial status */  }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  /******************free lvector **************************/
     printf(" %d\n",s[4][i]);  void free_lvector(long *v, long nl, long nh)
   */  {
   cov[1]=1.;    free((FREE_ARG)(v+nl-NR_END));
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /******************* imatrix *******************************/
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for(mi=1; mi<= wav[i]-1; mi++){       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       for (ii=1;ii<=nlstate+ndeath;ii++)  { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for(d=0; d<dh[mi][i]; d++){    int **m; 
         newm=savm;    
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* allocate pointers to rows */ 
         for (kk=1; kk<=cptcovage;kk++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    if (!m) nrerror("allocation failure 1 in matrix()"); 
         }    m += NR_END; 
            m -= nrl; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    
         savm=oldm;    /* allocate rows and set pointers to them */ 
         oldm=newm;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
            if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
            m[nrl] += NR_END; 
       } /* end mult */    m[nrl] -= ncl; 
          
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    
       ipmx +=1;    /* return pointer to array of pointers to rows */ 
       sw += weight[i];    return m; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  } 
     } /* end of wave */  
   } /* end of individual */  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        int **m;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        long nch,ncl,nrh,nrl; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       /* free an int matrix allocated by imatrix() */ 
   return -l;  { 
 }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
   } 
 /*********** Maximum Likelihood Estimation ***************/  
   /******************* matrix *******************************/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
   int i,j, iter;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **xi,*delti;    double **m;
   double fret;  
   xi=matrix(1,npar,1,npar);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (i=1;i<=npar;i++)    if (!m) nrerror("allocation failure 1 in matrix()");
     for (j=1;j<=npar;j++)    m += NR_END;
       xi[i][j]=(i==j ? 1.0 : 0.0);    m -= nrl;
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    m[nrl] += NR_END;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    m[nrl] -= ncl;
   
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 /**** Computes Hessian and covariance matrix ***/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 {  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   double  **a,**y,*x,pd;     */
   double **hess;  }
   int i, j,jk;  
   int *indx;  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double hessii(double p[], double delta, int theta, double delti[]);  {
   double hessij(double p[], double delti[], int i, int j);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   void lubksb(double **a, int npar, int *indx, double b[]) ;    free((FREE_ARG)(m+nrl-NR_END));
   void ludcmp(double **a, int npar, int *indx, double *d) ;  }
   
   hess=matrix(1,npar,1,npar);  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   printf("\nCalculation of the hessian matrix. Wait...\n");  {
   for (i=1;i<=npar;i++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     printf("%d",i);fflush(stdout);    double ***m;
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     /*printf(" %lf ",hess[i][i]);*/    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
      m -= nrl;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (j>i) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf(".%d%d",i,j);fflush(stdout);    m[nrl] += NR_END;
         hess[i][j]=hessij(p,delti,i,j);    m[nrl] -= ncl;
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   printf("\n");    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
   a=matrix(1,npar,1,npar);    
   y=matrix(1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) {
   x=vector(1,npar);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   indx=ivector(1,npar);      for (j=ncl+1; j<=nch; j++) 
   for (i=1;i<=npar;i++)        m[i][j]=m[i][j-1]+nlay;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    }
   ludcmp(a,npar,indx,&pd);    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   for (j=1;j<=npar;j++) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for (i=1;i<=npar;i++) x[i]=0;    */
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /*************************free ma3x ************************/
       matcov[i][j]=x[i];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     }  {
   }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   printf("\n#Hessian matrix#\n");    free((FREE_ARG)(m+nrl-NR_END));
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
     printf("\n");  {
   }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   /* Recompute Inverse */    strcat(tmpout,"/"); /* Add to the right */
   for (i=1;i<=npar;i++)    strcat(tmpout,fileres);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    return tmpout;
   ludcmp(a,npar,indx,&pd);  }
   
   /*  printf("\n#Hessian matrix recomputed#\n");  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    
     x[j]=1;    /* Caution optionfilefiname is hidden */
     lubksb(a,npar,indx,x);    strcpy(tmpout,optionfilefiname);
     for (i=1;i<=npar;i++){    strcat(tmpout,"/");
       y[i][j]=x[i];    strcat(tmpout,preop);
       printf("%.3e ",y[i][j]);    strcat(tmpout,fileres);
     }    return tmpout;
     printf("\n");  }
   }  
   */  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   free_matrix(a,1,npar,1,npar);  {
   free_matrix(y,1,npar,1,npar);    
   free_vector(x,1,npar);    /* Caution optionfilefiname is hidden */
   free_ivector(indx,1,npar);    strcpy(tmpout,optionfilefiname);
   free_matrix(hess,1,npar,1,npar);    strcat(tmpout,"/");
     strcat(tmpout,preop);
     strcat(tmpout,preop2);
 }    strcat(tmpout,fileres);
     return tmpout;
 /*************** hessian matrix ****************/  }
 double hessii( double x[], double delta, int theta, double delti[])  
 {  /***************** f1dim *************************/
   int i;  extern int ncom; 
   int l=1, lmax=20;  extern double *pcom,*xicom;
   double k1,k2;  extern double (*nrfunc)(double []); 
   double p2[NPARMAX+1];   
   double res;  double f1dim(double x) 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  { 
   double fx;    int j; 
   int k=0,kmax=10;    double f;
   double l1;    double *xt; 
    
   fx=func(x);    xt=vector(1,ncom); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for(l=0 ; l <=lmax; l++){    f=(*nrfunc)(xt); 
     l1=pow(10,l);    free_vector(xt,1,ncom); 
     delts=delt;    return f; 
     for(k=1 ; k <kmax; k=k+1){  } 
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /*****************brent *************************/
       k1=func(p2)-fx;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       p2[theta]=x[theta]-delt;  { 
       k2=func(p2)-fx;    int iter; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double a,b,d,etemp;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double fu,fv,fw,fx;
          double ftemp;
 #ifdef DEBUG    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double e=0.0; 
 #endif   
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    a=(ax < cx ? ax : cx); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    b=(ax > cx ? ax : cx); 
         k=kmax;    x=w=v=bx; 
       }    fw=fv=fx=(*f)(x); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    for (iter=1;iter<=ITMAX;iter++) { 
         k=kmax; l=lmax*10.;      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         delts=delt;      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   delti[theta]=delts;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   return res;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 double hessij( double x[], double delti[], int thetai,int thetaj)        return fx; 
 {      } 
   int i;      ftemp=fu;
   int l=1, l1, lmax=20;      if (fabs(e) > tol1) { 
   double k1,k2,k3,k4,res,fx;        r=(x-w)*(fx-fv); 
   double p2[NPARMAX+1];        q=(x-v)*(fx-fw); 
   int k;        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   fx=func(x);        if (q > 0.0) p = -p; 
   for (k=1; k<=2; k++) {        q=fabs(q); 
     for (i=1;i<=npar;i++) p2[i]=x[i];        etemp=e; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        e=d; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     k1=func(p2)-fx;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          else { 
     p2[thetai]=x[thetai]+delti[thetai]/k;          d=p/q; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          u=x+d; 
     k2=func(p2)-fx;          if (u-a < tol2 || b-u < tol2) 
              d=SIGN(tol1,xm-x); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } else { 
     k3=func(p2)-fx;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
        } 
     p2[thetai]=x[thetai]-delti[thetai]/k;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      fu=(*f)(u); 
     k4=func(p2)-fx;      if (fu <= fx) { 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        if (u >= x) a=x; else b=x; 
 #ifdef DEBUG        SHFT(v,w,x,u) 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          SHFT(fv,fw,fx,fu) 
 #endif          } else { 
   }            if (u < x) a=u; else b=u; 
   return res;            if (fu <= fw || w == x) { 
 }              v=w; 
               w=u; 
 /************** Inverse of matrix **************/              fv=fw; 
 void ludcmp(double **a, int n, int *indx, double *d)              fw=fu; 
 {            } else if (fu <= fv || v == x || v == w) { 
   int i,imax,j,k;              v=u; 
   double big,dum,sum,temp;              fv=fu; 
   double *vv;            } 
            } 
   vv=vector(1,n);    } 
   *d=1.0;    nrerror("Too many iterations in brent"); 
   for (i=1;i<=n;i++) {    *xmin=x; 
     big=0.0;    return fx; 
     for (j=1;j<=n;j++)  } 
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /****************** mnbrak ***********************/
     vv[i]=1.0/big;  
   }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for (j=1;j<=n;j++) {              double (*func)(double)) 
     for (i=1;i<j;i++) {  { 
       sum=a[i][j];    double ulim,u,r,q, dum;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double fu; 
       a[i][j]=sum;   
     }    *fa=(*func)(*ax); 
     big=0.0;    *fb=(*func)(*bx); 
     for (i=j;i<=n;i++) {    if (*fb > *fa) { 
       sum=a[i][j];      SHFT(dum,*ax,*bx,dum) 
       for (k=1;k<j;k++)        SHFT(dum,*fb,*fa,dum) 
         sum -= a[i][k]*a[k][j];        } 
       a[i][j]=sum;    *cx=(*bx)+GOLD*(*bx-*ax); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    *fc=(*func)(*cx); 
         big=dum;    while (*fb > *fc) { 
         imax=i;      r=(*bx-*ax)*(*fb-*fc); 
       }      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     if (j != imax) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       for (k=1;k<=n;k++) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         dum=a[imax][k];      if ((*bx-u)*(u-*cx) > 0.0) { 
         a[imax][k]=a[j][k];        fu=(*func)(u); 
         a[j][k]=dum;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       }        fu=(*func)(u); 
       *d = -(*d);        if (fu < *fc) { 
       vv[imax]=vv[j];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
     indx[j]=imax;            } 
     if (a[j][j] == 0.0) a[j][j]=TINY;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     if (j != n) {        u=ulim; 
       dum=1.0/(a[j][j]);        fu=(*func)(u); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
   }        fu=(*func)(u); 
   free_vector(vv,1,n);  /* Doesn't work */      } 
 ;      SHFT(*ax,*bx,*cx,u) 
 }        SHFT(*fa,*fb,*fc,fu) 
         } 
 void lubksb(double **a, int n, int *indx, double b[])  } 
 {  
   int i,ii=0,ip,j;  /*************** linmin ************************/
   double sum;  
    int ncom; 
   for (i=1;i<=n;i++) {  double *pcom,*xicom;
     ip=indx[i];  double (*nrfunc)(double []); 
     sum=b[ip];   
     b[ip]=b[i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     if (ii)  { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double brent(double ax, double bx, double cx, 
     else if (sum) ii=i;                 double (*f)(double), double tol, double *xmin); 
     b[i]=sum;    double f1dim(double x); 
   }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (i=n;i>=1;i--) {                double *fc, double (*func)(double)); 
     sum=b[i];    int j; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    double xx,xmin,bx,ax; 
     b[i]=sum/a[i][i];    double fx,fb,fa;
   }   
 }    ncom=n; 
     pcom=vector(1,n); 
 /************ Frequencies ********************/    xicom=vector(1,n); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    nrfunc=func; 
 {  /* Some frequencies */    for (j=1;j<=n;j++) { 
        pcom[j]=p[j]; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      xicom[j]=xi[j]; 
   double ***freq; /* Frequencies */    } 
   double *pp;    ax=0.0; 
   double pos, k2, dateintsum=0,k2cpt=0;    xx=1.0; 
   FILE *ficresp;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   char fileresp[FILENAMELENGTH];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
    #ifdef DEBUG
   pp=vector(1,nlstate);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   strcpy(fileresp,"p");  #endif
   strcat(fileresp,fileres);    for (j=1;j<=n;j++) { 
   if((ficresp=fopen(fileresp,"w"))==NULL) {      xi[j] *= xmin; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);      p[j] += xi[j]; 
     exit(0);    } 
   }    free_vector(xicom,1,n); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    free_vector(pcom,1,n); 
   j1=0;  } 
    
   j=cptcoveff;  char *asc_diff_time(long time_sec, char ascdiff[])
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
      long sec_left, days, hours, minutes;
   for(k1=1; k1<=j;k1++){    days = (time_sec) / (60*60*24);
     for(i1=1; i1<=ncodemax[k1];i1++){    sec_left = (time_sec) % (60*60*24);
       j1++;    hours = (sec_left) / (60*60) ;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    sec_left = (sec_left) %(60*60);
         scanf("%d", i);*/    minutes = (sec_left) /60;
       for (i=-1; i<=nlstate+ndeath; i++)      sec_left = (sec_left) % (60);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
           for(m=agemin; m <= agemax+3; m++)    return ascdiff;
             freq[i][jk][m]=0;  }
        
       dateintsum=0;  /*************** powell ************************/
       k2cpt=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (i=1; i<=imx; i++) {              double (*func)(double [])) 
         bool=1;  { 
         if  (cptcovn>0) {    void linmin(double p[], double xi[], int n, double *fret, 
           for (z1=1; z1<=cptcoveff; z1++)                double (*func)(double [])); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    int i,ibig,j; 
               bool=0;    double del,t,*pt,*ptt,*xit;
         }    double fp,fptt;
         if (bool==1) {    double *xits;
           for(m=firstpass; m<=lastpass; m++){    int niterf, itmp;
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    pt=vector(1,n); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    ptt=vector(1,n); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    xit=vector(1,n); 
               if (m<lastpass) {    xits=vector(1,n); 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    *fret=(*func)(p); 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    for (j=1;j<=n;j++) pt[j]=p[j]; 
               }    for (*iter=1;;++(*iter)) { 
                    fp=(*fret); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      ibig=0; 
                 dateintsum=dateintsum+k2;      del=0.0; 
                 k2cpt++;      last_time=curr_time;
               }      (void) gettimeofday(&curr_time,&tzp);
             }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
           }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       }     for (i=1;i<=n;i++) {
                printf(" %d %.12f",i, p[i]);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
       if  (cptcovn>0) {      }
         fprintf(ficresp, "\n#********** Variable ");      printf("\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficlog,"\n");
         fprintf(ficresp, "**********\n#");      fprintf(ficrespow,"\n");fflush(ficrespow);
       }      if(*iter <=3){
       for(i=1; i<=nlstate;i++)        tm = *localtime(&curr_time.tv_sec);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        strcpy(strcurr,asctime(&tm));
       fprintf(ficresp, "\n");  /*       asctime_r(&tm,strcurr); */
              forecast_time=curr_time; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        itmp = strlen(strcurr);
         if(i==(int)agemax+3)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           printf("Total");          strcurr[itmp-1]='\0';
         else        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           printf("Age %d", i);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(jk=1; jk <=nlstate ; jk++){        for(niterf=10;niterf<=30;niterf+=10){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
             pp[jk] += freq[jk][m][i];          tmf = *localtime(&forecast_time.tv_sec);
         }  /*      asctime_r(&tmf,strfor); */
         for(jk=1; jk <=nlstate ; jk++){          strcpy(strfor,asctime(&tmf));
           for(m=-1, pos=0; m <=0 ; m++)          itmp = strlen(strfor);
             pos += freq[jk][m][i];          if(strfor[itmp-1]=='\n')
           if(pp[jk]>=1.e-10)          strfor[itmp-1]='\0';
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           else          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        }
         }      }
       for (i=1;i<=n;i++) { 
         for(jk=1; jk <=nlstate ; jk++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        fptt=(*fret); 
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
         for(jk=1,pos=0; jk <=nlstate ; jk++)  #endif
           pos += pp[jk];        printf("%d",i);fflush(stdout);
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"%d",i);fflush(ficlog);
           if(pos>=1.e-5)        linmin(p,xit,n,fret,func); 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        if (fabs(fptt-(*fret)) > del) { 
           else          del=fabs(fptt-(*fret)); 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ibig=i; 
           if( i <= (int) agemax){        } 
             if(pos>=1.e-5){  #ifdef DEBUG
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        printf("%d %.12e",i,(*fret));
               probs[i][jk][j1]= pp[jk]/pos;        fprintf(ficlog,"%d %.12e",i,(*fret));
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for (j=1;j<=n;j++) {
             }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
             else          printf(" x(%d)=%.12e",j,xit[j]);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           }        }
         }        for(j=1;j<=n;j++) {
                  printf(" p=%.12e",p[j]);
         for(jk=-1; jk <=nlstate+ndeath; jk++)          fprintf(ficlog," p=%.12e",p[j]);
           for(m=-1; m <=nlstate+ndeath; m++)        }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        printf("\n");
         if(i <= (int) agemax)        fprintf(ficlog,"\n");
           fprintf(ficresp,"\n");  #endif
         printf("\n");      } 
       }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     }  #ifdef DEBUG
   }        int k[2],l;
   dateintmean=dateintsum/k2cpt;        k[0]=1;
          k[1]=-1;
   fclose(ficresp);        printf("Max: %.12e",(*func)(p));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   free_vector(pp,1,nlstate);        for (j=1;j<=n;j++) {
            printf(" %.12e",p[j]);
   /* End of Freq */          fprintf(ficlog," %.12e",p[j]);
 }        }
         printf("\n");
 /************ Prevalence ********************/        fprintf(ficlog,"\n");
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        for(l=0;l<=1;l++) {
 {  /* Some frequencies */          for (j=1;j<=n;j++) {
              ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double ***freq; /* Frequencies */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double *pp;          }
   double pos, k2;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  #endif
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;        free_vector(xit,1,n); 
          free_vector(xits,1,n); 
   j=cptcoveff;        free_vector(ptt,1,n); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        free_vector(pt,1,n); 
          return; 
  for(k1=1; k1<=j;k1++){      } 
     for(i1=1; i1<=ncodemax[k1];i1++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       j1++;      for (j=1;j<=n;j++) { 
          ptt[j]=2.0*p[j]-pt[j]; 
       for (i=-1; i<=nlstate+ndeath; i++)          xit[j]=p[j]-pt[j]; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          pt[j]=p[j]; 
           for(m=agemin; m <= agemax+3; m++)      } 
             freq[i][jk][m]=0;      fptt=(*func)(ptt); 
            if (fptt < fp) { 
       for (i=1; i<=imx; i++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         bool=1;        if (t < 0.0) { 
         if  (cptcovn>0) {          linmin(p,xit,n,fret,func); 
           for (z1=1; z1<=cptcoveff; z1++)          for (j=1;j<=n;j++) { 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            xi[j][ibig]=xi[j][n]; 
               bool=0;            xi[j][n]=xit[j]; 
         }          }
         if (bool==1) {  #ifdef DEBUG
           for(m=firstpass; m<=lastpass; m++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             k2=anint[m][i]+(mint[m][i]/12.);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          for(j=1;j<=n;j++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;            printf(" %.12e",xit[j]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            fprintf(ficlog," %.12e",xit[j]);
               if (m<lastpass)          }
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          printf("\n");
               else          fprintf(ficlog,"\n");
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  #endif
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        }
             }      } 
           }    } 
         }  } 
       }  
         for(i=(int)agemin; i <= (int)agemax+3; i++){  /**** Prevalence limit (stable or period prevalence)  ****************/
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
               pp[jk] += freq[jk][m][i];  {
           }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           for(jk=1; jk <=nlstate ; jk++){       matrix by transitions matrix until convergence is reached */
             for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    int i, ii,j,k;
         }    double min, max, maxmin, maxmax,sumnew=0.;
            /* double **matprod2(); */ /* test */
          for(jk=1; jk <=nlstate ; jk++){    double **out, cov[NCOVMAX+1], **pmij();
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double **newm;
              pp[jk] += freq[jk][m][i];    double agefin, delaymax=50 ; /* Max number of years to converge */
          }  
              for (ii=1;ii<=nlstate+ndeath;ii++)
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          for(jk=1; jk <=nlstate ; jk++){                }
            if( i <= (int) agemax){  
              if(pos>=1.e-5){     cov[1]=1.;
                probs[i][jk][j1]= pp[jk]/pos;   
              }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
          }      newm=savm;
                /* Covariates have to be included here again */
         }      cov[2]=agefin;
     }      
   }      for (k=1; k<=cptcovn;k++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      }
   free_vector(pp,1,nlstate);      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
        /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 }  /* End of Freq */      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       
 /************* Waves Concatenation ***************/      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
      Death is a valid wave (if date is known).      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      savm=oldm;
      and mw[mi+1][i]. dh depends on stepm.      oldm=newm;
      */      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   int i, mi, m;        min=1.;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        max=0.;
      double sum=0., jmean=0.;*/        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   int j, k=0,jk, ju, jl;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double sum=0.;          prlim[i][j]= newm[i][j]/(1-sumnew);
   jmin=1e+5;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   jmax=-1;          max=FMAX(max,prlim[i][j]);
   jmean=0.;          min=FMIN(min,prlim[i][j]);
   for(i=1; i<=imx; i++){        }
     mi=0;        maxmin=max-min;
     m=firstpass;        maxmax=FMAX(maxmax,maxmin);
     while(s[m][i] <= nlstate){      }
       if(s[m][i]>=1)      if(maxmax < ftolpl){
         mw[++mi][i]=m;        return prlim;
       if(m >=lastpass)      }
         break;    }
       else  }
         m++;  
     }/* end while */  /*************** transition probabilities ***************/ 
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       /* if(mi==0)  never been interviewed correctly before death */  {
          /* Only death is a correct wave */    /* According to parameters values stored in x and the covariate's values stored in cov,
       mw[mi][i]=m;       computes the probability to be observed in state j being in state i by appying the
     }       model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     wav[i]=mi;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
     if(mi==0)       ncth covariate in the global vector x is given by the formula:
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   }       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   for(i=1; i<=imx; i++){       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     for(mi=1; mi<wav[i];mi++){       Outputs ps[i][j] the probability to be observed in j being in j according to
       if (stepm <=0)       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         dh[mi][i]=1;    */
       else{    double s1, lnpijopii;
         if (s[mw[mi+1][i]][i] > nlstate) {    /*double t34;*/
           if (agedc[i] < 2*AGESUP) {    int i,j,j1, nc, ii, jj;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */      for(i=1; i<= nlstate; i++){
           k=k+1;        for(j=1; j<i;j++){
           if (j >= jmax) jmax=j;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           if (j <= jmin) jmin=j;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
           sum=sum+j;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }          }
         }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         else{  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        }
           k=k+1;        for(j=i+1; j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           else if (j <= jmin)jmin=j;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           sum=sum+j;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }          }
         jk= j/stepm;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         jl= j -jk*stepm;        }
         ju= j -(jk+1)*stepm;      }
         if(jl <= -ju)      
           dh[mi][i]=jk;      for(i=1; i<= nlstate; i++){
         else        s1=0;
           dh[mi][i]=jk+1;        for(j=1; j<i; j++){
         if(dh[mi][i]==0)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           dh[mi][i]=1; /* At least one step */          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       }        }
     }        for(j=i+1; j<=nlstate+ndeath; j++){
   }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   jmean=sum/k;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        }
  }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 /*********** Tricode ****************************/        ps[i][i]=1./(s1+1.);
 void tricode(int *Tvar, int **nbcode, int imx)        /* Computing other pijs */
 {        for(j=1; j<i; j++)
   int Ndum[20],ij=1, k, j, i;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int cptcode=0;        for(j=i+1; j<=nlstate+ndeath; j++)
   cptcoveff=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
          /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for (k=0; k<19; k++) Ndum[k]=0;      } /* end i */
   for (k=1; k<=7; k++) ncodemax[k]=0;      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=1; i<=imx; i++) {          ps[ii][jj]=0;
       ij=(int)(covar[Tvar[j]][i]);          ps[ii][ii]=1;
       Ndum[ij]++;        }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      }
       if (ij > cptcode) cptcode=ij;      
     }      
       /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     for (i=0; i<=cptcode; i++) {      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       if(Ndum[i]!=0) ncodemax[j]++;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     }      /*   } */
     ij=1;      /*   printf("\n "); */
       /* } */
       /* printf("\n ");printf("%lf ",cov[2]);*/
     for (i=1; i<=ncodemax[j]; i++) {      /*
       for (k=0; k<=19; k++) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         if (Ndum[k] != 0) {        goto end;*/
           nbcode[Tvar[j]][ij]=k;      return ps;
            }
           ij++;  
         }  /**************** Product of 2 matrices ******************/
         if (ij > ncodemax[j]) break;  
       }    double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     }  {
   }      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  for (k=0; k<19; k++) Ndum[k]=0;    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
  for (i=1; i<=ncovmodel-2; i++) {       a pointer to pointers identical to out */
       ij=Tvar[i];    int i, j, k;
       Ndum[ij]++;    for(i=nrl; i<= nrh; i++)
     }      for(k=ncolol; k<=ncoloh; k++){
         out[i][k]=0.;
  ij=1;        for(j=ncl; j<=nch; j++)
  for (i=1; i<=10; i++) {          out[i][k] +=in[i][j]*b[j][k];
    if((Ndum[i]!=0) && (i<=ncovcol)){      }
      Tvaraff[ij]=i;    return out;
      ij++;  }
    }  
  }  
    /************* Higher Matrix Product ***************/
     cptcoveff=ij-1;  
 }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
 /*********** Health Expectancies ****************/    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
 {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   /* Health expectancies */       (typically every 2 years instead of every month which is too big 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;       for the memory).
   double age, agelim, hf;       Model is determined by parameters x and covariates have to be 
   double ***p3mat,***varhe;       included manually here. 
   double **dnewm,**doldm;  
   double *xp;       */
   double **gp, **gm;  
   double ***gradg, ***trgradg;    int i, j, d, h, k;
   int theta;    double **out, cov[NCOVMAX+1];
     double **newm;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);    /* Hstepm could be zero and should return the unit matrix */
   dnewm=matrix(1,nlstate*2,1,npar);    for (i=1;i<=nlstate+ndeath;i++)
   doldm=matrix(1,nlstate*2,1,nlstate*2);      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Health expectancies\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Age");      }
   for(i=1; i<=nlstate;i++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(j=1; j<=nlstate;j++)    for(h=1; h <=nhstepm; h++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      for(d=1; d <=hstepm; d++){
   fprintf(ficreseij,"\n");        newm=savm;
         /* Covariates have to be included here again */
   if(estepm < stepm){        cov[1]=1.;
     printf ("Problem %d lower than %d\n",estepm, stepm);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) 
   else  hstepm=estepm;            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* We compute the life expectancy from trapezoids spaced every estepm months        for (k=1; k<=cptcovage;k++)
    * This is mainly to measure the difference between two models: for example          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    * if stepm=24 months pijx are given only every 2 years and by summing them        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
    * we are calculating an estimate of the Life Expectancy assuming a linear          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we  
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
    * to compare the new estimate of Life expectancy with the same linear        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
    * hypothesis. A more precise result, taking into account a more precise        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
    * curvature will be obtained if estepm is as small as stepm. */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
   /* For example we decided to compute the life expectancy with the smallest unit */        oldm=newm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      }
      nhstepm is the number of hstepm from age to agelim      for(i=1; i<=nlstate+ndeath; i++)
      nstepm is the number of stepm from age to agelin.        for(j=1;j<=nlstate+ndeath;j++) {
      Look at hpijx to understand the reason of that which relies in memory size          po[i][j][h]=newm[i][j];
      and note for a fixed period like estepm months */          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        }
      survival function given by stepm (the optimization length). Unfortunately it      /*printf("h=%d ",h);*/
      means that if the survival funtion is printed only each two years of age and if    } /* end h */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  /*     printf("\n H=%d \n",h); */
      results. So we changed our mind and took the option of the best precision.    return po;
   */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   
   agelim=AGESUP;  /*************** log-likelihood *************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  double func( double *x)
     /* nhstepm age range expressed in number of stepm */  {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int i, ii, j, k, mi, d, kk;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     /* if (stepm >= YEARM) hstepm=1;*/    double **out;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double sw; /* Sum of weights */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double lli; /* Individual log likelihood */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    int s1, s2;
     gp=matrix(0,nhstepm,1,nlstate*2);    double bbh, survp;
     gm=matrix(0,nhstepm,1,nlstate*2);    long ipmx;
     /*extern weight */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* We are differentiating ll according to initial status */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
     */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    cov[1]=1.;
   
     /* Computing Variances of health expectancies */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
      for(theta=1; theta <=npar; theta++){    if(mle==1){
       for(i=1; i<=npar; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /* Computes the values of the ncovmodel covariates of the model
       }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);             Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
             to be observed in j being in i according to the model.
       cptj=0;         */
       for(j=1; j<= nlstate; j++){        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
         for(i=1; i<=nlstate; i++){          cov[2+k]=covar[Tvar[k]][i];
           cptj=cptj+1;        }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
           }           has been calculated etc */
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
       cptj=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1; j<= nlstate; j++){            for (kk=1; kk<=cptcovage;kk++) {
         for(i=1;i<=nlstate;i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
           cptj=cptj+1;            }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
       }          } /* end mult */
              
              /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
       for(j=1; j<= nlstate*2; j++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for(h=0; h<=nhstepm-1; h++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      }           * probability in order to take into account the bias as a fraction of the way
               * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 /* End theta */           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);           * For stepm > 1 the results are less biased than in previous versions. 
            */
      for(h=0; h<=nhstepm-1; h++)          s1=s[mw[mi][i]][i];
       for(j=1; j<=nlstate*2;j++)          s2=s[mw[mi+1][i]][i];
         for(theta=1; theta <=npar; theta++)          bbh=(double)bh[mi][i]/(double)stepm; 
         trgradg[h][j][theta]=gradg[h][theta][j];          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
            */
      for(i=1;i<=nlstate*2;i++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(j=1;j<=nlstate*2;j++)          if( s2 > nlstate){ 
         varhe[i][j][(int)age] =0.;            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
     for(h=0;h<=nhstepm-1;h++){               die between last step unit time and current  step unit time, 
       for(k=0;k<=nhstepm-1;k++){               which is also equal to probability to die before dh 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);               minus probability to die before dh-stepm . 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);               In version up to 0.92 likelihood was computed
         for(i=1;i<=nlstate*2;i++)          as if date of death was unknown. Death was treated as any other
           for(j=1;j<=nlstate*2;j++)          health state: the date of the interview describes the actual state
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          and not the date of a change in health state. The former idea was
       }          to consider that at each interview the state was recorded
     }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
                the contribution of an exact death to the likelihood. This new
     /* Computing expectancies */          contribution is smaller and very dependent of the step unit
     for(i=1; i<=nlstate;i++)          stepm. It is no more the probability to die between last interview
       for(j=1; j<=nlstate;j++)          and month of death but the probability to survive from last
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          interview up to one month before death multiplied by the
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          probability to die within a month. Thanks to Chris
                    Jackson for correcting this bug.  Former versions increased
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
         }          lower mortality.
             */
     fprintf(ficreseij,"%3.0f",age );            lli=log(out[s1][s2] - savm[s1][s2]);
     cptj=0;  
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){          } else if  (s2==-2) {
         cptj++;            for (j=1,survp=0. ; j<=nlstate; j++) 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }            /*survp += out[s1][j]; */
     fprintf(ficreseij,"\n");            lli= log(survp);
              }
     free_matrix(gm,0,nhstepm,1,nlstate*2);          
     free_matrix(gp,0,nhstepm,1,nlstate*2);          else if  (s2==-4) { 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            for (j=3,survp=0. ; j<=nlstate; j++)  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli= log(survp); 
   }          } 
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);          else if  (s2==-5) { 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            for (j=1,survp=0. ; j<=2; j++)  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 }            lli= log(survp); 
           } 
 /************ Variance ******************/          
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          else{
 {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* Variance of health expectancies */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          } 
   double **newm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double **dnewm,**doldm;          /*if(lli ==000.0)*/
   int i, j, nhstepm, hstepm, h, nstepm ;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int k, cptcode;          ipmx +=1;
   double *xp;          sw += weight[i];
   double **gp, **gm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***gradg, ***trgradg;        } /* end of wave */
   double ***p3mat;      } /* end of individual */
   double age,agelim, hf;    }  else if(mle==2){
   int theta;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    fprintf(ficresvij,"# Covariances of life expectancies\n");        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresvij,"# Age");          for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
     for(j=1; j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvij,"\n");            }
           for(d=0; d<=dh[mi][i]; d++){
   xp=vector(1,npar);            newm=savm;
   dnewm=matrix(1,nlstate,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   doldm=matrix(1,nlstate,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if(estepm < stepm){            }
     printf ("Problem %d lower than %d\n",estepm, stepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else  hstepm=estepm;              savm=oldm;
   /* For example we decided to compute the life expectancy with the smallest unit */            oldm=newm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          } /* end mult */
      nhstepm is the number of hstepm from age to agelim        
      nstepm is the number of stepm from age to agelin.          s1=s[mw[mi][i]][i];
      Look at hpijx to understand the reason of that which relies in memory size          s2=s[mw[mi+1][i]][i];
      and note for a fixed period like k years */          bbh=(double)bh[mi][i]/(double)stepm; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      survival function given by stepm (the optimization length). Unfortunately it          ipmx +=1;
      means that if the survival funtion is printed only each two years of age and if          sw += weight[i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      results. So we changed our mind and took the option of the best precision.        } /* end of wave */
   */      } /* end of individual */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    }  else if(mle==3){  /* exponential inter-extrapolation */
   agelim = AGESUP;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(mi=1; mi<= wav[i]-1; mi++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          for (ii=1;ii<=nlstate+ndeath;ii++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (j=1;j<=nlstate+ndeath;j++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=matrix(0,nhstepm,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate);            }
           for(d=0; d<dh[mi][i]; d++){
     for(theta=1; theta <=npar; theta++){            newm=savm;
       for(i=1; i<=npar; i++){ /* Computes gradient */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (popbased==1) {            savm=oldm;
         for(i=1; i<=nlstate;i++)            oldm=newm;
           prlim[i][i]=probs[(int)age][i][ij];          } /* end mult */
       }        
            s1=s[mw[mi][i]][i];
       for(j=1; j<= nlstate; j++){          s2=s[mw[mi+1][i]][i];
         for(h=0; h<=nhstepm; h++){          bbh=(double)bh[mi][i]/(double)stepm; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          ipmx +=1;
         }          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
       for(i=1; i<=npar; i++) /* Computes gradient */      } /* end of individual */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
       if (popbased==1) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
           prlim[i][i]=probs[(int)age][i][ij];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
       for(j=1; j<= nlstate; j++){          for(d=0; d<dh[mi][i]; d++){
         for(h=0; h<=nhstepm; h++){            newm=savm;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
           
       for(j=1; j<= nlstate; j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm; h++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            savm=oldm;
         }            oldm=newm;
     } /* End theta */          } /* end mult */
         
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for(h=0; h<=nhstepm; h++)          if( s2 > nlstate){ 
       for(j=1; j<=nlstate;j++)            lli=log(out[s1][s2] - savm[s1][s2]);
         for(theta=1; theta <=npar; theta++)          }else{
           trgradg[h][j][theta]=gradg[h][theta][j];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          ipmx +=1;
     for(i=1;i<=nlstate;i++)          sw += weight[i];
       for(j=1;j<=nlstate;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         vareij[i][j][(int)age] =0.;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
     for(h=0;h<=nhstepm;h++){      } /* end of individual */
       for(k=0;k<=nhstepm;k++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(i=1;i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
           for(j=1;j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     fprintf(ficresvij,"%.0f ",age );          for(d=0; d<dh[mi][i]; d++){
     for(i=1; i<=nlstate;i++)            newm=savm;
       for(j=1; j<=nlstate;j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficresvij,"\n");            }
     free_matrix(gp,0,nhstepm,1,nlstate);          
     free_matrix(gm,0,nhstepm,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            savm=oldm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            oldm=newm;
   } /* End age */          } /* end mult */
          
   free_vector(xp,1,npar);          s1=s[mw[mi][i]][i];
   free_matrix(doldm,1,nlstate,1,npar);          s2=s[mw[mi+1][i]][i];
   free_matrix(dnewm,1,nlstate,1,nlstate);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /************ Variance of prevlim ******************/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        } /* end of wave */
 {      } /* end of individual */
   /* Variance of prevalence limit */    } /* End of if */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double **newm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double **dnewm,**doldm;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, j, nhstepm, hstepm;    return -l;
   int k, cptcode;  }
   double *xp;  
   double *gp, *gm;  /*************** log-likelihood *************/
   double **gradg, **trgradg;  double funcone( double *x)
   double age,agelim;  {
   int theta;    /* Same as likeli but slower because of a lot of printf and if */
        int i, ii, j, k, mi, d, kk;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   fprintf(ficresvpl,"# Age");    double **out;
   for(i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
       fprintf(ficresvpl," %1d-%1d",i,i);    double llt;
   fprintf(ficresvpl,"\n");    int s1, s2;
     double bbh, survp;
   xp=vector(1,npar);    /*extern weight */
   dnewm=matrix(1,nlstate,1,npar);    /* We are differentiating ll according to initial status */
   doldm=matrix(1,nlstate,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   hstepm=1*YEARM; /* Every year of age */      printf(" %d\n",s[4][i]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    */
   agelim = AGESUP;    cov[1]=1.;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gradg=matrix(1,npar,1,nlstate);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gp=vector(1,nlstate);      for(mi=1; mi<= wav[i]-1; mi++){
     gm=vector(1,nlstate);        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
     for(theta=1; theta <=npar; theta++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++){ /* Computes gradient */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
       }        for(d=0; d<dh[mi][i]; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          newm=savm;
       for(i=1;i<=nlstate;i++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         gp[i] = prlim[i][i];          for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1;i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         gm[i] = prlim[i][i];          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       for(i=1;i<=nlstate;i++)          savm=oldm;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          oldm=newm;
     } /* End theta */        } /* end mult */
         
     trgradg =matrix(1,nlstate,1,npar);        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
     for(j=1; j<=nlstate;j++)        bbh=(double)bh[mi][i]/(double)stepm; 
       for(theta=1; theta <=npar; theta++)        /* bias is positive if real duration
         trgradg[j][theta]=gradg[theta][j];         * is higher than the multiple of stepm and negative otherwise.
          */
     for(i=1;i<=nlstate;i++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       varpl[i][(int)age] =0.;          lli=log(out[s1][s2] - savm[s1][s2]);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        } else if  (s2==-2) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          for (j=1,survp=0. ; j<=nlstate; j++) 
     for(i=1;i<=nlstate;i++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          lli= log(survp);
         }else if (mle==1){
     fprintf(ficresvpl,"%.0f ",age );          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(i=1; i<=nlstate;i++)        } else if(mle==2){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     fprintf(ficresvpl,"\n");        } else if(mle==3){  /* exponential inter-extrapolation */
     free_vector(gp,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     free_vector(gm,1,nlstate);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     free_matrix(gradg,1,npar,1,nlstate);          lli=log(out[s1][s2]); /* Original formula */
     free_matrix(trgradg,1,nlstate,1,npar);        } else{  /* mle=0 back to 1 */
   } /* End age */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
   free_vector(xp,1,npar);        } /* End of if */
   free_matrix(doldm,1,nlstate,1,npar);        ipmx +=1;
   free_matrix(dnewm,1,nlstate,1,nlstate);        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 /************ Variance of one-step probabilities  ******************/          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)   %11.6f %11.6f %11.6f ", \
 {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   int i, j, i1, k1, j1, z1;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   int k=0, cptcode;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double **dnewm,**doldm;            llt +=ll[k]*gipmx/gsw;
   double *xp;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double *gp, *gm;          }
   double **gradg, **trgradg;          fprintf(ficresilk," %10.6f\n", -llt);
   double age,agelim, cov[NCOVMAX];        }
   int theta;      } /* end of wave */
   char fileresprob[FILENAMELENGTH];    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   strcpy(fileresprob,"prob");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   strcat(fileresprob,fileres);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    if(globpr==0){ /* First time we count the contributions and weights */
     printf("Problem with resultfile: %s\n", fileresprob);      gipmx=ipmx;
   }      gsw=sw;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    }
      return -l;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  }
   fprintf(ficresprob,"# Age");  
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++)  /*************** function likelione ***********/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     /* This routine should help understanding what is done with 
   fprintf(ficresprob,"\n");       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
        Plotting could be done.
   xp=vector(1,npar);     */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int k;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      if(*globpri !=0){ /* Just counts and sums, no printings */
   cov[1]=1;      strcpy(fileresilk,"ilk"); 
   j=cptcoveff;      strcat(fileresilk,fileres);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   j1=0;        printf("Problem with resultfile: %s\n", fileresilk);
   for(k1=1; k1<=1;k1++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(i1=1; i1<=ncodemax[k1];i1++){      }
     j1++;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     if  (cptcovn>0) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       fprintf(ficresprob, "\n#********** Variable ");      for(k=1; k<=nlstate; k++) 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresprob, "**********\n#");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }    }
      
       for (age=bage; age<=fage; age ++){    *fretone=(*funcone)(p);
         cov[2]=age;    if(*globpri !=0){
         for (k=1; k<=cptcovn;k++) {      fclose(ficresilk);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
                fflush(fichtm); 
         }    } 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return;
         for (k=1; k<=cptcovprod;k++)  }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
          
         gradg=matrix(1,npar,1,9);  /*********** Maximum Likelihood Estimation ***************/
         trgradg=matrix(1,9,1,npar);  
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  {
        int i,j, iter;
         for(theta=1; theta <=npar; theta++){    double **xi;
           for(i=1; i<=npar; i++)    double fret;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double fretone; /* Only one call to likelihood */
              /*  char filerespow[FILENAMELENGTH];*/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    xi=matrix(1,npar,1,npar);
              for (i=1;i<=npar;i++)
           k=0;      for (j=1;j<=npar;j++)
           for(i=1; i<= (nlstate+ndeath); i++){        xi[i][j]=(i==j ? 1.0 : 0.0);
             for(j=1; j<=(nlstate+ndeath);j++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
               k=k+1;    strcpy(filerespow,"pow"); 
               gp[k]=pmmij[i][j];    strcat(filerespow,fileres);
             }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", filerespow);
                fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           for(i=1; i<=npar; i++)    }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
        for (i=1;i<=nlstate;i++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
           k=0;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           for(i=1; i<=(nlstate+ndeath); i++){    fprintf(ficrespow,"\n");
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    powell(p,xi,npar,ftol,&iter,&fret,func);
               gm[k]=pmmij[i][j];  
             }    free_matrix(xi,1,npar,1,npar);
           }    fclose(ficrespow);
          printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         }  
   }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)  /**** Computes Hessian and covariance matrix ***/
             trgradg[j][theta]=gradg[theta][j];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
          {
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    double  **a,**y,*x,pd;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    double **hess;
            int i, j,jk;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    int *indx;
          
         k=0;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(i=1; i<=(nlstate+ndeath); i++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           for(j=1; j<=(nlstate+ndeath);j++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
             k=k+1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
             gm[k]=pmmij[i][j];    double gompertz(double p[]);
           }    hess=matrix(1,npar,1,npar);
         }  
          printf("\nCalculation of the hessian matrix. Wait...\n");
      /*printf("\n%d ",(int)age);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    for (i=1;i<=npar;i++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      printf("%d",i);fflush(stdout);
      }*/      fprintf(ficlog,"%d",i);fflush(ficlog);
      
         fprintf(ficresprob,"\n%d ",(int)age);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      /*  printf(" %f ",p[i]);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      }
       }    
     }    for (i=1;i<=npar;i++) {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (j=1;j<=npar;j++)  {
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        if (j>i) { 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          printf(".%d%d",i,j);fflush(stdout);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,delti,i,j,func,npar);
   free_vector(xp,1,npar);          
   fclose(ficresprob);          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
 }        }
       }
 /******************* Printing html file ***********/    }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    printf("\n");
  int lastpass, int stepm, int weightopt, char model[],\    fprintf(ficlog,"\n");
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  char version[], int popforecast, int estepm ){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   int jj1, k1, i1, cpt;    
   FILE *fichtm;    a=matrix(1,npar,1,npar);
   /*char optionfilehtm[FILENAMELENGTH];*/    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
   strcpy(optionfilehtm,optionfile);    indx=ivector(1,npar);
   strcat(optionfilehtm,".htm");    for (i=1;i<=npar;i++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     printf("Problem with %s \n",optionfilehtm), exit(0);    ludcmp(a,npar,indx,&pd);
   }  
     for (j=1;j<=npar;j++) {
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      for (i=1;i<=npar;i++) x[i]=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      x[j]=1;
 \n      lubksb(a,npar,indx,x);
 Total number of observations=%d <br>\n      for (i=1;i<=npar;i++){ 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        matcov[i][j]=x[i];
 <hr  size=\"2\" color=\"#EC5E5E\">      }
  <ul><li>Outputs files<br>\n    }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    printf("\n#Hessian matrix#\n");
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    fprintf(ficlog,"\n#Hessian matrix#\n");
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    for (i=1;i<=npar;i++) { 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      for (j=1;j<=npar;j++) { 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
  fprintf(fichtm,"\n      }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      printf("\n");
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      fprintf(ficlog,"\n");
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
  if(popforecast==1) fprintf(fichtm,"\n      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    ludcmp(a,npar,indx,&pd);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);    /*  printf("\n#Hessian matrix recomputed#\n");
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    for (j=1;j<=npar;j++) {
 fprintf(fichtm," <li>Graphs</li><p>");      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
  m=cptcoveff;      lubksb(a,npar,indx,x);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
  jj1=0;        printf("%.3e ",y[i][j]);
  for(k1=1; k1<=m;k1++){        fprintf(ficlog,"%.3e ",y[i][j]);
    for(i1=1; i1<=ncodemax[k1];i1++){      }
        jj1++;      printf("\n");
        if (cptcovn > 0) {      fprintf(ficlog,"\n");
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
          for (cpt=1; cpt<=cptcoveff;cpt++)    */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_matrix(a,1,npar,1,npar);
        }    free_matrix(y,1,npar,1,npar);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    free_vector(x,1,npar);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        free_ivector(indx,1,npar);
        for(cpt=1; cpt<nlstate;cpt++){    free_matrix(hess,1,npar,1,npar);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }  }
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  /*************** hessian matrix ****************/
 interval) in state (%d): v%s%d%d.gif <br>  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    {
      }    int i;
      for(cpt=1; cpt<=nlstate;cpt++) {    int l=1, lmax=20;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    double k1,k2;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double p2[MAXPARM+1]; /* identical to x */
      }    double res;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 health expectancies in states (1) and (2): e%s%d.gif<br>    double fx;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    int k=0,kmax=10;
 fprintf(fichtm,"\n</body>");    double l1;
    }  
    }    fx=func(x);
 fclose(fichtm);    for (i=1;i<=npar;i++) p2[i]=x[i];
 }    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       l1=pow(10,l);
 /******************* Gnuplot file **************/      delts=delt;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   strcpy(optionfilegnuplot,optionfilefiname);        p2[theta]=x[theta]-delt;
   strcat(optionfilegnuplot,".gp.txt");        k2=func(p2)-fx;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        /*res= (k1-2.0*fx+k2)/delt/delt; */
     printf("Problem with file %s",optionfilegnuplot);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   }        
   #ifdef DEBUGHESS
 #ifdef windows        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficgp,"cd \"%s\" \n",pathc);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #endif  #endif
 m=pow(2,cptcoveff);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
  /* 1eme*/          k=kmax;
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }
    for (k1=1; k1<= m ; k1 ++) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 for (i=1; i<= nlstate ; i ++) {          delts=delt;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }    }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    delti[theta]=delts;
     for (i=1; i<= nlstate ; i ++) {    return res; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int i;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int l=1, l1, lmax=20;
 }      double k1,k2,k3,k4,res,fx;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double p2[MAXPARM+1];
     int k;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }    fx=func(x);
   }    for (k=1; k<=2; k++) {
   /*2 eme*/      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   for (k1=1; k1<= m ; k1 ++) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      k1=func(p2)-fx;
        
     for (i=1; i<= nlstate+1 ; i ++) {      p2[thetai]=x[thetai]+delti[thetai]/k;
       k=2*i;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      k2=func(p2)-fx;
       for (j=1; j<= nlstate+1 ; j ++) {    
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetai]=x[thetai]-delti[thetai]/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 }        k3=func(p2)-fx;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for (j=1; j<= nlstate+1 ; j ++) {      k4=func(p2)-fx;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         else fprintf(ficgp," \%%*lf (\%%*lf)");  #ifdef DEBUG
 }        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  #endif
       for (j=1; j<= nlstate+1 ; j ++) {    }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    return res;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  /************** Inverse of matrix **************/
       else fprintf(ficgp,"\" t\"\" w l 0,");  void ludcmp(double **a, int n, int *indx, double *d) 
     }  { 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    int i,imax,j,k; 
   }    double big,dum,sum,temp; 
      double *vv; 
   /*3eme*/   
     vv=vector(1,n); 
   for (k1=1; k1<= m ; k1 ++) {    *d=1.0; 
     for (cpt=1; cpt<= nlstate ; cpt ++) {    for (i=1;i<=n;i++) { 
       k=2+nlstate*(2*cpt-2);      big=0.0; 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      for (j=1;j<=n;j++) 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        if ((temp=fabs(a[i][j])) > big) big=temp; 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      vv[i]=1.0/big; 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    } 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for (j=1;j<=n;j++) { 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
 */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       for (i=1; i< nlstate ; i ++) {        a[i][j]=sum; 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      } 
       big=0.0; 
       }      for (i=j;i<=n;i++) { 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        sum=a[i][j]; 
     }        for (k=1;k<j;k++) 
     }          sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   /* CV preval stat */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     for (k1=1; k1<= m ; k1 ++) {          big=dum; 
     for (cpt=1; cpt<nlstate ; cpt ++) {          imax=i; 
       k=3;        } 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      } 
       if (j != imax) { 
       for (i=1; i< nlstate ; i ++)        for (k=1;k<=n;k++) { 
         fprintf(ficgp,"+$%d",k+i+1);          dum=a[imax][k]; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          a[imax][k]=a[j][k]; 
                a[j][k]=dum; 
       l=3+(nlstate+ndeath)*cpt;        } 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        *d = -(*d); 
       for (i=1; i< nlstate ; i ++) {        vv[imax]=vv[j]; 
         l=3+(nlstate+ndeath)*cpt;      } 
         fprintf(ficgp,"+$%d",l+i+1);      indx[j]=imax; 
       }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        if (j != n) { 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        dum=1.0/(a[j][j]); 
     }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }        } 
      } 
   /* proba elementaires */    free_vector(vv,1,n);  /* Doesn't work */
    for(i=1,jk=1; i <=nlstate; i++){  ;
     for(k=1; k <=(nlstate+ndeath); k++){  } 
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){  void lubksb(double **a, int n, int *indx, double b[]) 
          { 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    int i,ii=0,ip,j; 
           jk++;    double sum; 
           fprintf(ficgp,"\n");   
         }    for (i=1;i<=n;i++) { 
       }      ip=indx[i]; 
     }      sum=b[ip]; 
     }      b[ip]=b[i]; 
       if (ii) 
     for(jk=1; jk <=m; jk++) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      else if (sum) ii=i; 
    i=1;      b[i]=sum; 
    for(k2=1; k2<=nlstate; k2++) {    } 
      k3=i;    for (i=n;i>=1;i--) { 
      for(k=1; k<=(nlstate+ndeath); k++) {      sum=b[i]; 
        if (k != k2){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      b[i]=sum/a[i][i]; 
 ij=1;    } 
         for(j=3; j <=ncovmodel; j++) {  } 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  void pstamp(FILE *fichier)
             ij++;  {
           }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           else  }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }  /************ Frequencies ********************/
           fprintf(ficgp,")/(1");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
          {  /* Some frequencies */
         for(k1=1; k1 <=nlstate; k1++){      
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    int i, m, jk, k1,i1, j1, bool, z1,j;
 ij=1;    int first;
           for(j=3; j <=ncovmodel; j++){    double ***freq; /* Frequencies */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double *pp, **prop;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             ij++;    char fileresp[FILENAMELENGTH];
           }    
           else    pp=vector(1,nlstate);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    prop=matrix(1,nlstate,iagemin,iagemax+3);
           }    strcpy(fileresp,"p");
           fprintf(ficgp,")");    strcat(fileresp,fileres);
         }    if((ficresp=fopen(fileresp,"w"))==NULL) {
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      printf("Problem with prevalence resultfile: %s\n", fileresp);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         i=i+ncovmodel;      exit(0);
        }    }
      }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
    }    j1=0;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    
    }    j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fclose(ficgp);  
 }  /* end gnuplot */    first=1;
   
     /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
 /*************** Moving average **************/    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    /*    j1++;
   */
   int i, cpt, cptcod;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for (i=1; i<=nlstate;i++)          scanf("%d", i);*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        for (i=-5; i<=nlstate+ndeath; i++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                for(m=iagemin; m <= iagemax+3; m++)
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              freq[i][jk][m]=0;
       for (i=1; i<=nlstate;i++){        
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for (i=1; i<=nlstate; i++)  
           for (cpt=0;cpt<=4;cpt++){          for(m=iagemin; m <= iagemax+3; m++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            prop[i][m]=0;
           }        
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        dateintsum=0;
         }        k2cpt=0;
       }        for (i=1; i<=imx; i++) {
     }          bool=1;
              if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 }            for (z1=1; z1<=cptcoveff; z1++)       
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                   /* Tests if the value of each of the covariates of i is equal to filter j1 */
 /************** Forecasting ******************/                bool=0;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                    bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
   int *popage;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              } 
   double *popeffectif,*popcount;          }
   double ***p3mat;   
   char fileresf[FILENAMELENGTH];          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
  agelim=AGESUP;              k2=anint[m][i]+(mint[m][i]/12.);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                  if (m<lastpass) {
   strcpy(fileresf,"f");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   strcat(fileresf,fileres);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   if((ficresf=fopen(fileresf,"w"))==NULL) {                }
     printf("Problem with forecast resultfile: %s\n", fileresf);                
   }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   printf("Computing forecasting: result on file '%s' \n", fileresf);                  dateintsum=dateintsum+k2;
                   k2cpt++;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                }
                 /*}*/
   if (mobilav==1) {            }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     movingaverage(agedeb, fage, ageminpar, mobaverage);        } /* end i */
   }         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;        pstamp(ficresp);
   if (stepm<=12) stepsize=1;        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
   agelim=AGESUP;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   hstepm=1;          fprintf(ficlog, "\n#********** Variable "); 
   hstepm=hstepm/stepm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   yp1=modf(dateintmean,&yp);          fprintf(ficlog, "**********\n#");
   anprojmean=yp;        }
   yp2=modf((yp1*12),&yp);        for(i=1; i<=nlstate;i++) 
   mprojmean=yp;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   yp1=modf((yp2*30.5),&yp);        fprintf(ficresp, "\n");
   jprojmean=yp;        
   if(jprojmean==0) jprojmean=1;        for(i=iagemin; i <= iagemax+3; i++){
   if(mprojmean==0) jprojmean=1;          if(i==iagemax+3){
              fprintf(ficlog,"Total");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          }else{
              if(first==1){
   for(cptcov=1;cptcov<=i2;cptcov++){              first=0;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              printf("See log file for details...\n");
       k=k+1;            }
       fprintf(ficresf,"\n#******");            fprintf(ficlog,"Age %d", i);
       for(j=1;j<=cptcoveff;j++) {          }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficresf,"******\n");              pp[jk] += freq[jk][m][i]; 
       fprintf(ficresf,"# StartingAge FinalAge");          }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          for(jk=1; jk <=nlstate ; jk++){
                  for(m=-1, pos=0; m <=0 ; m++)
                    pos += freq[jk][m][i];
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            if(pp[jk]>=1.e-10){
         fprintf(ficresf,"\n");              if(first==1){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }else{
           nhstepm = nhstepm/hstepm;              if(first==1)
                          printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
          
           for (h=0; h<=nhstepm; h++){          for(jk=1; jk <=nlstate ; jk++){
             if (h==(int) (calagedate+YEARM*cpt)) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              pp[jk] += freq[jk][m][i];
             }          }       
             for(j=1; j<=nlstate+ndeath;j++) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               kk1=0.;kk2=0;            pos += pp[jk];
               for(i=1; i<=nlstate;i++) {                          posprop += prop[jk][i];
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(jk=1; jk <=nlstate ; jk++){
                 else {            if(pos>=1.e-5){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              if(first==1)
                 }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               }            }else{
               if (h==(int)(calagedate+12*cpt)){              if(first==1)
                 fprintf(ficresf," %.3f", kk1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                                      fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               }            }
             }            if( i <= iagemax){
           }              if(pos>=1.e-5){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }                /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     }              }
   }              else
                        fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
           }
   fclose(ficresf);          
 }          for(jk=-1; jk <=nlstate+ndeath; jk++)
 /************** Forecasting ******************/            for(m=-1; m <=nlstate+ndeath; m++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              if(freq[jk][m][i] !=0 ) {
                if(first==1)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int *popage;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              }
   double *popeffectif,*popcount;          if(i <= iagemax)
   double ***p3mat,***tabpop,***tabpopprev;            fprintf(ficresp,"\n");
   char filerespop[FILENAMELENGTH];          if(first==1)
             printf("Others in log...\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog,"\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   agelim=AGESUP;        /*}*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    }
      dateintmean=dateintsum/k2cpt; 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   
      fclose(ficresp);
      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   strcpy(filerespop,"pop");    free_vector(pp,1,nlstate);
   strcat(filerespop,fileres);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    /* End of Freq */
     printf("Problem with forecast resultfile: %s\n", filerespop);  }
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   if (mobilav==1) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       We still use firstpass and lastpass as another selection.
     movingaverage(agedeb, fage, ageminpar, mobaverage);    */
   }   
     int i, m, jk, k1, i1, j1, bool, z1,j;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***freq; /* Frequencies */
   if (stepm<=12) stepsize=1;    double *pp, **prop;
      double pos,posprop; 
   agelim=AGESUP;    double  y2; /* in fractional years */
      int iagemin, iagemax;
   hstepm=1;    int first; /** to stop verbosity which is redirected to log file */
   hstepm=hstepm/stepm;  
      iagemin= (int) agemin;
   if (popforecast==1) {    iagemax= (int) agemax;
     if((ficpop=fopen(popfile,"r"))==NULL) {    /*pp=vector(1,nlstate);*/
       printf("Problem with population file : %s\n",popfile);exit(0);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     popage=ivector(0,AGESUP);    j1=0;
     popeffectif=vector(0,AGESUP);    
     popcount=vector(0,AGESUP);    /*j=cptcoveff;*/
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    first=1;
        for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     imx=i;      /*for(i1=1; i1<=ncodemax[k1];i1++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        j1++;*/
   }        
         for (i=1; i<=nlstate; i++)  
   for(cptcov=1;cptcov<=i2;cptcov++){          for(m=iagemin; m <= iagemax+3; m++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            prop[i][m]=0.0;
       k=k+1;       
       fprintf(ficrespop,"\n#******");        for (i=1; i<=imx; i++) { /* Each individual */
       for(j=1;j<=cptcoveff;j++) {          bool=1;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficrespop,"******\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fprintf(ficrespop,"# Age");                bool=0;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          } 
       if (popforecast==1)  fprintf(ficrespop," [Population]");          if (bool==1) { 
                  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for (cpt=0; cpt<=0;cpt++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           nhstepm = nhstepm/hstepm;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                            /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           oldm=oldms;savm=savms;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  } 
                      }
           for (h=0; h<=nhstepm; h++){            } /* end selection of waves */
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }        for(i=iagemin; i <= iagemax+3; i++){  
             for(j=1; j<=nlstate+ndeath;j++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
               kk1=0.;kk2=0;            posprop += prop[jk][i]; 
               for(i=1; i<=nlstate;i++) {                        } 
                 if (mobilav==1)          
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(jk=1; jk <=nlstate ; jk++){     
                 else {            if( i <=  iagemax){ 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              if(posprop>=1.e-5){ 
                 }                probs[i][jk][j1]= prop[jk][i]/posprop;
               }              } else{
               if (h==(int)(calagedate+12*cpt)){                if(first==1){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                  first=0;
                   /*fprintf(ficrespop," %.3f", kk1);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                }
               }              }
             }            } 
             for(i=1; i<=nlstate;i++){          }/* end jk */ 
               kk1=0.;        }/* end i */ 
                 for(j=1; j<=nlstate;j++){      /*} *//* end i1 */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    } /* end j1 */
                 }    
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             }    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  }  /* End of prevalence */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }  /************* Waves Concatenation ***************/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   /******/       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         and mw[mi+1][i]. dh depends on stepm.
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    int i, mi, m;
              /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       double sum=0., jmean=0.;*/
           oldm=oldms;savm=savms;    int first;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int j, k=0,jk, ju, jl;
           for (h=0; h<=nhstepm; h++){    double sum=0.;
             if (h==(int) (calagedate+YEARM*cpt)) {    first=0;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    jmin=1e+5;
             }    jmax=-1;
             for(j=1; j<=nlstate+ndeath;j++) {    jmean=0.;
               kk1=0.;kk2=0;    for(i=1; i<=imx; i++){
               for(i=1; i<=nlstate;i++) {                    mi=0;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          m=firstpass;
               }      while(s[m][i] <= nlstate){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             }          mw[++mi][i]=m;
           }        if(m >=lastpass)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          break;
         }        else
       }          m++;
    }      }/* end while */
   }      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   if (popforecast==1) {        mw[mi][i]=m;
     free_ivector(popage,0,AGESUP);      }
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);      wav[i]=mi;
   }      if(mi==0){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        nbwarn++;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(first==0){
   fclose(ficrespop);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 }          first=1;
         }
 /***********************************************/        if(first==1){
 /**************** Main Program *****************/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 /***********************************************/        }
       } /* end mi==0 */
 int main(int argc, char *argv[])    } /* End individuals */
 {  
     for(i=1; i<=imx; i++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      for(mi=1; mi<wav[i];mi++){
   double agedeb, agefin,hf;        if (stepm <=0)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          dh[mi][i]=1;
         else{
   double fret;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   double **xi,tmp,delta;            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   double dum; /* Dummy variable */              if(j==0) j=1;  /* Survives at least one month after exam */
   double ***p3mat;              else if(j<0){
   int *indx;                nberr++;
   char line[MAXLINE], linepar[MAXLINE];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char title[MAXLINE];                j=1; /* Temporary Dangerous patch */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];              }
               k=k+1;
   char filerest[FILENAMELENGTH];              if (j >= jmax){
   char fileregp[FILENAMELENGTH];                jmax=j;
   char popfile[FILENAMELENGTH];                ijmax=i;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              }
   int firstobs=1, lastobs=10;              if (j <= jmin){
   int sdeb, sfin; /* Status at beginning and end */                jmin=j;
   int c,  h , cpt,l;                ijmin=i;
   int ju,jl, mi;              }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              sum=sum+j;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   int mobilav=0,popforecast=0;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   int hstepm, nhstepm;            }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          }
           else{
   double bage, fage, age, agelim, agebase;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   double ftolpl=FTOL;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   double **prlim;  
   double *severity;            k=k+1;
   double ***param; /* Matrix of parameters */            if (j >= jmax) {
   double  *p;              jmax=j;
   double **matcov; /* Matrix of covariance */              ijmax=i;
   double ***delti3; /* Scale */            }
   double *delti; /* Scale */            else if (j <= jmin){
   double ***eij, ***vareij;              jmin=j;
   double **varpl; /* Variances of prevalence limits by age */              ijmin=i;
   double *epj, vepp;            }
   double kk1, kk2;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
               nberr++;
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char *alph[]={"a","a","b","c","d","e"}, str[4];              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
   char z[1]="c", occ;          }
 #include <sys/time.h>          jk= j/stepm;
 #include <time.h>          jl= j -jk*stepm;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   /* long total_usecs;            if(jl==0){
   struct timeval start_time, end_time;              dh[mi][i]=jk;
                bh[mi][i]=0;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            }else{ /* We want a negative bias in order to only have interpolation ie
   getcwd(pathcd, size);                    * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
   printf("\n%s",version);              bh[mi][i]=ju;
   if(argc <=1){            }
     printf("\nEnter the parameter file name: ");          }else{
     scanf("%s",pathtot);            if(jl <= -ju){
   }              dh[mi][i]=jk;
   else{              bh[mi][i]=jl;       /* bias is positive if real duration
     strcpy(pathtot,argv[1]);                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            }
   /*cygwin_split_path(pathtot,path,optionfile);            else{
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              dh[mi][i]=jk+1;
   /* cutv(path,optionfile,pathtot,'\\');*/              bh[mi][i]=ju;
             }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            if(dh[mi][i]==0){
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              dh[mi][i]=1; /* At least one step */
   chdir(path);              bh[mi][i]=ju; /* At least one step */
   replace(pathc,path);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
 /*-------- arguments in the command line --------*/          } /* end if mle */
         }
   strcpy(fileres,"r");      } /* end wave */
   strcat(fileres, optionfilefiname);    }
   strcat(fileres,".txt");    /* Other files have txt extension */    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   /*---------arguments file --------*/    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);  /*********** Tricode ****************************/
     goto end;  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   }  {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   strcpy(filereso,"o");    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   strcat(filereso,fileres);    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
   if((ficparo=fopen(filereso,"w"))==NULL) {     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /* nbcode[Tvar[j]][1]= 
   }    */
   
   /* Reads comments: lines beginning with '#' */    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   while((c=getc(ficpar))=='#' && c!= EOF){    int modmaxcovj=0; /* Modality max of covariates j */
     ungetc(c,ficpar);    int cptcode=0; /* Modality max of covariates j */
     fgets(line, MAXLINE, ficpar);    int modmincovj=0; /* Modality min of covariates j */
     puts(line);  
     fputs(line,ficparo);  
   }    cptcoveff=0; 
   ungetc(c,ficpar);   
     for (k=-1; k < maxncov; k++) Ndum[k]=0;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    /* Loop on covariates without age and products */
 while((c=getc(ficpar))=='#' && c!= EOF){    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     ungetc(c,ficpar);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
     fgets(line, MAXLINE, ficpar);                                 modality of this covariate Vj*/ 
     puts(line);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     fputs(line,ficparo);                                      * If product of Vn*Vm, still boolean *:
   }                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   ungetc(c,ficpar);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
          /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                            modality of the nth covariate of individual i. */
   covar=matrix(0,NCOVMAX,1,n);        if (ij > modmaxcovj)
   cptcovn=0;          modmaxcovj=ij; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        else if (ij < modmincovj) 
           modmincovj=ij; 
   ncovmodel=2+cptcovn;        if ((ij < -1) && (ij > NCOVMAX)){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
            exit(1);
   /* Read guess parameters */        }else
   /* Reads comments: lines beginning with '#' */        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   while((c=getc(ficpar))=='#' && c!= EOF){        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     ungetc(c,ficpar);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     fgets(line, MAXLINE, ficpar);        /* getting the maximum value of the modality of the covariate
     puts(line);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     fputs(line,ficparo);           female is 1, then modmaxcovj=1.*/
   }      }
   ungetc(c,ficpar);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
        cptcode=modmaxcovj;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     for(i=1; i <=nlstate; i++)     /*for (i=0; i<=cptcode; i++) {*/
     for(j=1; j <=nlstate+ndeath-1; j++){      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
       fscanf(ficpar,"%1d%1d",&i1,&j1);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
       fprintf(ficparo,"%1d%1d",i1,j1);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
       printf("%1d%1d",i,j);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar," %lf",&param[i][j][k]);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
         printf(" %lf",param[i][j][k]);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
         fprintf(ficparo," %lf",param[i][j][k]);      } /* Ndum[-1] number of undefined modalities */
       }  
       fscanf(ficpar,"\n");      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       printf("\n");      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
       fprintf(ficparo,"\n");      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     }         modmincovj=3; modmaxcovj = 7;
           There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
          variables V1_1 and V1_2.
   p=param[1][1];         nbcode[Tvar[j]][ij]=k;
           nbcode[Tvar[j]][1]=0;
   /* Reads comments: lines beginning with '#' */         nbcode[Tvar[j]][2]=1;
   while((c=getc(ficpar))=='#' && c!= EOF){         nbcode[Tvar[j]][3]=2;
     ungetc(c,ficpar);      */
     fgets(line, MAXLINE, ficpar);      ij=1; /* ij is similar to i but can jumps over null modalities */
     puts(line);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
     fputs(line,ficparo);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   }          /*recode from 0 */
   ungetc(c,ficpar);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                                       k is a modality. If we have model=V1+V1*sex 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   for(i=1; i <=nlstate; i++){            ij++;
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);          if (ij > ncodemax[j]) break; 
       printf("%1d%1d",i,j);        }  /* end of loop on */
       fprintf(ficparo,"%1d%1d",i1,j1);      } /* end of loop on modality */ 
       for(k=1; k<=ncovmodel;k++){    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         fscanf(ficpar,"%le",&delti3[i][j][k]);    
         printf(" %le",delti3[i][j][k]);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         fprintf(ficparo," %le",delti3[i][j][k]);    
       }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       fscanf(ficpar,"\n");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       printf("\n");     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       fprintf(ficparo,"\n");     Ndum[ij]++; 
     }   } 
   }  
   delti=delti3[1][1];   ij=1;
     for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   /* Reads comments: lines beginning with '#' */     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   while((c=getc(ficpar))=='#' && c!= EOF){     if((Ndum[i]!=0) && (i<=ncovcol)){
     ungetc(c,ficpar);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     fgets(line, MAXLINE, ficpar);       Tvaraff[ij]=i; /*For printing (unclear) */
     puts(line);       ij++;
     fputs(line,ficparo);     }else
   }         Tvaraff[ij]=0;
   ungetc(c,ficpar);   }
     ij--;
   matcov=matrix(1,npar,1,npar);   cptcoveff=ij; /*Number of total covariates*/
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);  }
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){  /*********** Health Expectancies ****************/
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }  {
     fscanf(ficpar,"\n");    /* Health expectancies, no variances */
     printf("\n");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     fprintf(ficparo,"\n");    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
   for(i=1; i <=npar; i++)    double ***p3mat;
     for(j=i+1;j<=npar;j++)    double eip;
       matcov[i][j]=matcov[j][i];  
        pstamp(ficreseij);
   printf("\n");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
     /*-------- Rewriting paramater file ----------*/      for(j=1; j<=nlstate;j++){
      strcpy(rfileres,"r");    /* "Rparameterfile */        fprintf(ficreseij," e%1d%1d ",i,j);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      }
      strcat(rfileres,".");    /* */      fprintf(ficreseij," e%1d. ",i);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    }
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficreseij,"\n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }    
     fprintf(ficres,"#%s\n",version);    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     /*-------- data file ----------*/    }
     if((fic=fopen(datafile,"r"))==NULL)    {    else  hstepm=estepm;   
       printf("Problem with datafile: %s\n", datafile);goto end;    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
     n= lastobs;     * we are calculating an estimate of the Life Expectancy assuming a linear 
     severity = vector(1,maxwav);     * progression in between and thus overestimating or underestimating according
     outcome=imatrix(1,maxwav+1,1,n);     * to the curvature of the survival function. If, for the same date, we 
     num=ivector(1,n);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     moisnais=vector(1,n);     * to compare the new estimate of Life expectancy with the same linear 
     annais=vector(1,n);     * hypothesis. A more precise result, taking into account a more precise
     moisdc=vector(1,n);     * curvature will be obtained if estepm is as small as stepm. */
     andc=vector(1,n);  
     agedc=vector(1,n);    /* For example we decided to compute the life expectancy with the smallest unit */
     cod=ivector(1,n);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     weight=vector(1,n);       nhstepm is the number of hstepm from age to agelim 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       nstepm is the number of stepm from age to agelin. 
     mint=matrix(1,maxwav,1,n);       Look at hpijx to understand the reason of that which relies in memory size
     anint=matrix(1,maxwav,1,n);       and note for a fixed period like estepm months */
     s=imatrix(1,maxwav+1,1,n);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     adl=imatrix(1,maxwav+1,1,n);           survival function given by stepm (the optimization length). Unfortunately it
     tab=ivector(1,NCOVMAX);       means that if the survival funtion is printed only each two years of age and if
     ncodemax=ivector(1,8);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     i=1;    */
     while (fgets(line, MAXLINE, fic) != NULL)    {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if ((i >= firstobs) && (i <=lastobs)) {  
            agelim=AGESUP;
         for (j=maxwav;j>=1;j--){    /* If stepm=6 months */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           strcpy(line,stra);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /* nhstepm age range expressed in number of stepm */
         }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
            /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    /* if (stepm >= YEARM) hstepm=1;*/
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         for (j=ncovcol;j>=1;j--){      /* if (stepm >= YEARM) hstepm=1;*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         }  
         num[i]=atol(stra);      /* If stepm=6 months */
              /* Computed by stepm unit matrices, product of hstepma matrices, stored
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         i=i+1;      
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }      
     /* printf("ii=%d", ij);      printf("%d|",(int)age);fflush(stdout);
        scanf("%d",i);*/      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   imx=i-1; /* Number of individuals */      
       /* Computing expectancies */
   /* for (i=1; i<=imx; i++){      for(i=1; i<=nlstate;i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(j=1; j<=nlstate;j++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     }*/            
    /*  for (i=1; i<=imx; i++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          }
    
        fprintf(ficreseij,"%3.0f",age );
   /* Calculation of the number of parameter from char model*/      for(i=1; i<=nlstate;i++){
   Tvar=ivector(1,15);        eip=0;
   Tprod=ivector(1,15);        for(j=1; j<=nlstate;j++){
   Tvaraff=ivector(1,15);          eip +=eij[i][j][(int)age];
   Tvard=imatrix(1,15,1,2);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   Tage=ivector(1,15);              }
            fprintf(ficreseij,"%9.4f", eip );
   if (strlen(model) >1){      }
     j=0, j1=0, k1=1, k2=1;      fprintf(ficreseij,"\n");
     j=nbocc(model,'+');      
     j1=nbocc(model,'*');    }
     cptcovn=j+1;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     cptcovprod=j1;    printf("\n");
        fprintf(ficlog,"\n");
     strcpy(modelsav,model);    
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  }
       printf("Error. Non available option model=%s ",model);  
       goto end;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     }  
      {
     for(i=(j+1); i>=1;i--){    /* Covariances of health expectancies eij and of total life expectancies according
       cutv(stra,strb,modelsav,'+');     to initial status i, ei. .
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       /*scanf("%d",i);*/    int nhstepma, nstepma; /* Decreasing with age */
       if (strchr(strb,'*')) {    double age, agelim, hf;
         cutv(strd,strc,strb,'*');    double ***p3matp, ***p3matm, ***varhe;
         if (strcmp(strc,"age")==0) {    double **dnewm,**doldm;
           cptcovprod--;    double *xp, *xm;
           cutv(strb,stre,strd,'V');    double **gp, **gm;
           Tvar[i]=atoi(stre);    double ***gradg, ***trgradg;
           cptcovage++;    int theta;
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    double eip, vip;
         }  
         else if (strcmp(strd,"age")==0) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           cptcovprod--;    xp=vector(1,npar);
           cutv(strb,stre,strc,'V');    xm=vector(1,npar);
           Tvar[i]=atoi(stre);    dnewm=matrix(1,nlstate*nlstate,1,npar);
           cptcovage++;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           Tage[cptcovage]=i;    
         }    pstamp(ficresstdeij);
         else {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
           cutv(strb,stre,strc,'V');    fprintf(ficresstdeij,"# Age");
           Tvar[i]=ncovcol+k1;    for(i=1; i<=nlstate;i++){
           cutv(strb,strc,strd,'V');      for(j=1; j<=nlstate;j++)
           Tprod[k1]=i;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           Tvard[k1][1]=atoi(strc);      fprintf(ficresstdeij," e%1d. ",i);
           Tvard[k1][2]=atoi(stre);    }
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(ficresstdeij,"\n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    pstamp(ficrescveij);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           k1++;    fprintf(ficrescveij,"# Age");
           k2=k2+2;    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=nlstate;j++){
       }        cptj= (j-1)*nlstate+i;
       else {        for(i2=1; i2<=nlstate;i2++)
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          for(j2=1; j2<=nlstate;j2++){
        /*  scanf("%d",i);*/            cptj2= (j2-1)*nlstate+i2;
       cutv(strd,strc,strb,'V');            if(cptj2 <= cptj)
       Tvar[i]=atoi(strc);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       }          }
       strcpy(modelsav,stra);        }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(ficrescveij,"\n");
         scanf("%d",i);*/    
     }    if(estepm < stepm){
 }      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    else  hstepm=estepm;   
   printf("cptcovprod=%d ", cptcovprod);    /* We compute the life expectancy from trapezoids spaced every estepm months
   scanf("%d ",i);*/     * This is mainly to measure the difference between two models: for example
     fclose(fic);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
     /*  if(mle==1){*/     * progression in between and thus overestimating or underestimating according
     if (weightopt != 1) { /* Maximisation without weights*/     * to the curvature of the survival function. If, for the same date, we 
       for(i=1;i<=n;i++) weight[i]=1.0;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
     /*-calculation of age at interview from date of interview and age at death -*/     * hypothesis. A more precise result, taking into account a more precise
     agev=matrix(1,maxwav,1,imx);     * curvature will be obtained if estepm is as small as stepm. */
   
     for (i=1; i<=imx; i++) {    /* For example we decided to compute the life expectancy with the smallest unit */
       for(m=2; (m<= maxwav); m++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       nhstepm is the number of hstepm from age to agelim 
          anint[m][i]=9999;       nstepm is the number of stepm from age to agelin. 
          s[m][i]=-1;       Look at hpijx to understand the reason of that which relies in memory size
        }       and note for a fixed period like estepm months */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (i=1; i<=imx; i++)  {       results. So we changed our mind and took the option of the best precision.
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    */
       for(m=1; (m<= maxwav); m++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {    /* If stepm=6 months */
             if(agedc[i]>0)    /* nhstepm age range expressed in number of stepm */
               if(moisdc[i]!=99 && andc[i]!=9999)    agelim=AGESUP;
                 agev[m][i]=agedc[i];    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            else {    /* if (stepm >= YEARM) hstepm=1;*/
               if (andc[i]!=9999){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    
               agev[m][i]=-1;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           else if(s[m][i] !=9){ /* Should no more exist */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;    for (age=bage; age<=fage; age ++){ 
             else if(agev[m][i] <agemin){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               agemin=agev[m][i];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      /* if (stepm >= YEARM) hstepm=1;*/
             }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];      /* If stepm=6 months */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
             /*agev[m][i]=anint[m][i]-annais[i];*/      
             /*   agev[m][i] = age[i]+2*m;*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           }  
           else { /* =9 */      /* Computing  Variances of health expectancies */
             agev[m][i]=1;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
             s[m][i]=-1;         decrease memory allocation */
           }      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ 
         else /*= 0 Unknown */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           agev[m][i]=1;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       }        }
            hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     for (i=1; i<=imx; i++)  {    
       for(m=1; (m<= maxwav); m++){        for(j=1; j<= nlstate; j++){
         if (s[m][i] > (nlstate+ndeath)) {          for(i=1; i<=nlstate; i++){
           printf("Error: Wrong value in nlstate or ndeath\n");              for(h=0; h<=nhstepm-1; h++){
           goto end;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       }            }
     }          }
         }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       
         for(ij=1; ij<= nlstate*nlstate; ij++)
     free_vector(severity,1,maxwav);          for(h=0; h<=nhstepm-1; h++){
     free_imatrix(outcome,1,maxwav+1,1,n);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     free_vector(moisnais,1,n);          }
     free_vector(annais,1,n);      }/* End theta */
     /* free_matrix(mint,1,maxwav,1,n);      
        free_matrix(anint,1,maxwav,1,n);*/      
     free_vector(moisdc,1,n);      for(h=0; h<=nhstepm-1; h++)
     free_vector(andc,1,n);        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
                trgradg[h][j][theta]=gradg[h][theta][j];
     wav=ivector(1,imx);      
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);       for(ij=1;ij<=nlstate*nlstate;ij++)
            for(ji=1;ji<=nlstate*nlstate;ji++)
     /* Concatenates waves */          varhe[ij][ji][(int)age] =0.;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       Tcode=ivector(1,100);       for(h=0;h<=nhstepm-1;h++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        for(k=0;k<=nhstepm-1;k++){
       ncodemax[1]=1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                for(ij=1;ij<=nlstate*nlstate;ij++)
    codtab=imatrix(1,100,1,10);            for(ji=1;ji<=nlstate*nlstate;ji++)
    h=0;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
    m=pow(2,cptcoveff);        }
        }
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){      /* Computing expectancies */
        for(j=1; j <= ncodemax[k]; j++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      for(i=1; i<=nlstate;i++)
            h++;        for(j=1; j<=nlstate;j++)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
          }            
        }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      }  
    }          }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */      fprintf(ficresstdeij,"%3.0f",age );
    /* for(i=1; i <=m ;i++){      for(i=1; i<=nlstate;i++){
       for(k=1; k <=cptcovn; k++){        eip=0.;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        vip=0.;
       }        for(j=1; j<=nlstate;j++){
       printf("\n");          eip += eij[i][j][(int)age];
       }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       scanf("%d",i);*/            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
              fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
    /* Calculates basic frequencies. Computes observed prevalence at single age        }
        and prints on file fileres'p'. */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
          fprintf(ficresstdeij,"\n");
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficrescveij,"%3.0f",age );
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1; i<=nlstate;i++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate;j++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          cptj= (j-1)*nlstate+i;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for(i2=1; i2<=nlstate;i2++)
                  for(j2=1; j2<=nlstate;j2++){
     /* For Powell, parameters are in a vector p[] starting at p[1]              cptj2= (j2-1)*nlstate+i2;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              if(cptj2 <= cptj)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
     if(mle==1){        }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      fprintf(ficrescveij,"\n");
     }     
        }
     /*--------- results files --------------*/    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
    jk=1;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    printf("\n");
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficlog,"\n");
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)    free_vector(xm,1,npar);
          {    free_vector(xp,1,npar);
            printf("%d%d ",i,k);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
            fprintf(ficres,"%1d%1d ",i,k);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
            for(j=1; j <=ncovmodel; j++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
              printf("%f ",p[jk]);  }
              fprintf(ficres,"%f ",p[jk]);  
              jk++;  /************ Variance ******************/
            }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
            printf("\n");  {
            fprintf(ficres,"\n");    /* Variance of health expectancies */
          }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      }    /* double **newm;*/
    }    double **dnewm,**doldm;
  if(mle==1){    double **dnewmp,**doldmp;
     /* Computing hessian and covariance matrix */    int i, j, nhstepm, hstepm, h, nstepm ;
     ftolhess=ftol; /* Usually correct */    int k, cptcode;
     hesscov(matcov, p, npar, delti, ftolhess, func);    double *xp;
  }    double **gp, **gm;  /* for var eij */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    double ***gradg, ***trgradg; /*for var eij */
     printf("# Scales (for hessian or gradient estimation)\n");    double **gradgp, **trgradgp; /* for var p point j */
      for(i=1,jk=1; i <=nlstate; i++){    double *gpp, *gmp; /* for var p point j */
       for(j=1; j <=nlstate+ndeath; j++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         if (j!=i) {    double ***p3mat;
           fprintf(ficres,"%1d%1d",i,j);    double age,agelim, hf;
           printf("%1d%1d",i,j);    double ***mobaverage;
           for(k=1; k<=ncovmodel;k++){    int theta;
             printf(" %.5e",delti[jk]);    char digit[4];
             fprintf(ficres," %.5e",delti[jk]);    char digitp[25];
             jk++;  
           }    char fileresprobmorprev[FILENAMELENGTH];
           printf("\n");  
           fprintf(ficres,"\n");    if(popbased==1){
         }      if(mobilav!=0)
       }        strcpy(digitp,"-populbased-mobilav-");
      }      else strcpy(digitp,"-populbased-nomobil-");
        }
     k=1;    else 
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      strcpy(digitp,"-stablbased-");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){    if (mobilav!=0) {
       /*  if (k>nlstate) k=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       i1=(i-1)/(ncovmodel*nlstate)+1;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficres,"%3d",i);      }
       printf("%3d",i);    }
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);    strcpy(fileresprobmorprev,"prmorprev"); 
         printf(" %.5e",matcov[i][j]);    sprintf(digit,"%-d",ij);
       }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fprintf(ficres,"\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       printf("\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       k++;    strcat(fileresprobmorprev,fileres);
     }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobmorprev);
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       ungetc(c,ficpar);    }
       fgets(line, MAXLINE, ficpar);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       puts(line);   
       fputs(line,ficparo);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     }    pstamp(ficresprobmorprev);
     ungetc(c,ficpar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     estepm=0;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     if (estepm==0 || estepm < stepm) estepm=stepm;      fprintf(ficresprobmorprev," p.%-d SE",j);
     if (fage <= 2) {      for(i=1; i<=nlstate;i++)
       bage = ageminpar;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       fage = agemaxpar;    }  
     }    fprintf(ficresprobmorprev,"\n");
        fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
     while((c=getc(ficpar))=='#' && c!= EOF){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    pstamp(ficresvij);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     puts(line);    if(popbased==1)
     fputs(line,ficparo);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   }    else
   ungetc(c,ficpar);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(j=1; j<=nlstate;j++)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
          fprintf(ficresvij,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    xp=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    dnewm=matrix(1,nlstate,1,npar);
     puts(line);    doldm=matrix(1,nlstate,1,nlstate);
     fputs(line,ficparo);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    gmp=vector(nlstate+1,nlstate+ndeath);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   fscanf(ficpar,"pop_based=%d\n",&popbased);    if(estepm < stepm){
   fprintf(ficparo,"pop_based=%d\n",popbased);        printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficres,"pop_based=%d\n",popbased);      }
      else  hstepm=estepm;   
   while((c=getc(ficpar))=='#' && c!= EOF){    /* For example we decided to compute the life expectancy with the smallest unit */
     ungetc(c,ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     fgets(line, MAXLINE, ficpar);       nhstepm is the number of hstepm from age to agelim 
     puts(line);       nstepm is the number of stepm from age to agelin. 
     fputs(line,ficparo);       Look at function hpijx to understand why (it is linked to memory size questions) */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   ungetc(c,ficpar);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       results. So we changed our mind and took the option of the best precision.
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
 while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     ungetc(c,ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fgets(line, MAXLINE, ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     puts(line);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      gm=matrix(0,nhstepm,1,nlstate);
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      for(theta=1; theta <=npar; theta++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /*------------ gnuplot -------------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  
          if (popbased==1) {
 /*------------ free_vector  -------------*/          if(mobilav ==0){
  chdir(path);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
  free_ivector(wav,1,imx);          }else{ /* mobilav */ 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            for(i=1; i<=nlstate;i++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                prlim[i][i]=mobaverage[(int)age][i][ij];
  free_ivector(num,1,n);          }
  free_vector(agedc,1,n);        }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    
  fclose(ficparo);        for(j=1; j<= nlstate; j++){
  fclose(ficres);          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 /*--------- index.htm --------*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);        }
         /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   /*--------------- Prevalence limit --------------*/           as a weighted average of prlim.
          */
   strcpy(filerespl,"pl");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   strcat(filerespl,fileres);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }    
   }        /* end probability of death */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   fprintf(ficrespl,"#Age ");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficrespl,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     
   prlim=matrix(1,nlstate,1,nlstate);        if (popbased==1) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(mobilav ==0){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(i=1; i<=nlstate;i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              prlim[i][i]=probs[(int)age][i][ij];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }else{ /* mobilav */ 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            for(i=1; i<=nlstate;i++)
   k=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
   agebase=ageminpar;          }
   agelim=agemaxpar;        }
   ftolpl=1.e-10;  
   i1=cptcoveff;        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   if (cptcovn < 1){i1=1;}          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
         k=k+1;        }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        /* This for computing probability of death (h=1 means
         fprintf(ficrespl,"\n#******");           computed over hstepm matrices product = hstepm*stepm months) 
         for(j=1;j<=cptcoveff;j++)           as a weighted average of prlim.
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        */
         fprintf(ficrespl,"******\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                  for(i=1,gmp[j]=0.; i<= nlstate; i++)
         for (age=agebase; age<=agelim; age++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }    
           fprintf(ficrespl,"%.0f",age );        /* end probability of death */
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);        for(j=1; j<= nlstate; j++) /* vareij */
           fprintf(ficrespl,"\n");          for(h=0; h<=nhstepm; h++){
         }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       }          }
     }  
   fclose(ficrespl);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   /*------------- h Pij x at various ages ------------*/        }
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      } /* End theta */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);      for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for(theta=1; theta <=npar; theta++)
   /*if (stepm<=24) stepsize=2;*/            trgradg[h][j][theta]=gradg[h][theta][j];
   
   agelim=AGESUP;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   hstepm=stepsize*YEARM; /* Every year of age */        for(theta=1; theta <=npar; theta++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          trgradgp[j][theta]=gradgp[theta][j];
      
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1;i<=nlstate;i++)
       k=k+1;        for(j=1;j<=nlstate;j++)
         fprintf(ficrespij,"\n#****** ");          vareij[i][j][(int)age] =0.;
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(h=0;h<=nhstepm;h++){
         fprintf(ficrespij,"******\n");        for(k=0;k<=nhstepm;k++){
                  matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(i=1;i<=nlstate;i++)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            for(j=1;j<=nlstate;j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
           fprintf(ficrespij,"# Age");    
           for(i=1; i<=nlstate;i++)      /* pptj */
             for(j=1; j<=nlstate+ndeath;j++)      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
               fprintf(ficrespij," %1d-%1d",i,j);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           fprintf(ficrespij,"\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
            for (h=0; h<=nhstepm; h++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          varppt[j][i]=doldmp[j][i];
             for(i=1; i<=nlstate;i++)      /* end ppptj */
               for(j=1; j<=nlstate+ndeath;j++)      /*  x centered again */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             fprintf(ficrespij,"\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
              }   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (popbased==1) {
           fprintf(ficrespij,"\n");        if(mobilav ==0){
         }          for(i=1; i<=nlstate;i++)
     }            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   fclose(ficrespij);      }
                
       /* This for computing probability of death (h=1 means
   /*---------- Forecasting ------------------*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   if((stepm == 1) && (strcmp(model,".")==0)){         as a weighted average of prlim.
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   else{          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     erreur=108;      }    
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      /* end probability of death */
   }  
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /*---------- Health expectancies and variances ------------*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   strcpy(filerest,"t");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   strcat(filerest,fileres);        }
   if((ficrest=fopen(filerest,"w"))==NULL) {      } 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      fprintf(ficresprobmorprev,"\n");
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   strcpy(filerese,"e");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   strcat(filerese,fileres);        }
   if((ficreseij=fopen(filerese,"w"))==NULL) {      fprintf(ficresvij,"\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      free_matrix(gp,0,nhstepm,1,nlstate);
   }      free_matrix(gm,0,nhstepm,1,nlstate);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
  strcpy(fileresv,"v");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresv,fileres);    } /* End age */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   calagedate=-1;    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   k=0;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       k=k+1;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
       fprintf(ficrest,"\n#****** ");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
       for(j=1;j<=cptcoveff;j++)    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       fprintf(ficrest,"******\n");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       fprintf(ficreseij,"\n#****** ");  */
       for(j=1;j<=cptcoveff;j++)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficreseij,"******\n");  
     free_vector(xp,1,npar);
       fprintf(ficresvij,"\n#****** ");    free_matrix(doldm,1,nlstate,1,nlstate);
       for(j=1;j<=cptcoveff;j++)    free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficresvij,"******\n");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       oldm=oldms;savm=savms;    fclose(ficresprobmorprev);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      fflush(ficgp);
      fflush(fichtm); 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  }  /* end varevsij */
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  /************ Variance of prevlim ******************/
      void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
      /* Variance of prevalence limit */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double **newm;
       fprintf(ficrest,"\n");    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
       epj=vector(1,nlstate+1);    int k, cptcode;
       for(age=bage; age <=fage ;age++){    double *xp;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double *gp, *gm;
         if (popbased==1) {    double **gradg, **trgradg;
           for(i=1; i<=nlstate;i++)    double age,agelim;
             prlim[i][i]=probs[(int)age][i][k];    int theta;
         }    
            pstamp(ficresvpl);
         fprintf(ficrest," %4.0f",age);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(ficresvpl,"# Age");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    for(i=1; i<=nlstate;i++)
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        fprintf(ficresvpl," %1d-%1d",i,i);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    fprintf(ficresvpl,"\n");
           }  
           epj[nlstate+1] +=epj[j];    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
         for(i=1, vepp=0.;i <=nlstate;i++)    
           for(j=1;j <=nlstate;j++)    hstepm=1*YEARM; /* Every year of age */
             vepp += vareij[i][j][(int)age];    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    agelim = AGESUP;
         for(j=1;j <=nlstate;j++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         }      if (stepm >= YEARM) hstepm=1;
         fprintf(ficrest,"\n");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       }      gradg=matrix(1,npar,1,nlstate);
     }      gp=vector(1,nlstate);
   }      gm=vector(1,nlstate);
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      for(theta=1; theta <=npar; theta++){
     free_vector(weight,1,n);        for(i=1; i<=npar; i++){ /* Computes gradient */
   fclose(ficreseij);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fclose(ficresvij);        }
   fclose(ficrest);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fclose(ficpar);        for(i=1;i<=nlstate;i++)
   free_vector(epj,1,nlstate+1);          gp[i] = prlim[i][i];
        
   /*------- Variance limit prevalence------*/          for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   strcpy(fileresvpl,"vpl");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcat(fileresvpl,fileres);        for(i=1;i<=nlstate;i++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          gm[i] = prlim[i][i];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);        for(i=1;i<=nlstate;i++)
   }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      } /* End theta */
   
   k=0;      trgradg =matrix(1,nlstate,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(j=1; j<=nlstate;j++)
       k=k+1;        for(theta=1; theta <=npar; theta++)
       fprintf(ficresvpl,"\n#****** ");          trgradg[j][theta]=gradg[theta][j];
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1;i<=nlstate;i++)
       fprintf(ficresvpl,"******\n");        varpl[i][(int)age] =0.;
            matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       oldm=oldms;savm=savms;      for(i=1;i<=nlstate;i++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     }  
  }      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   fclose(ficresvpl);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   /*---------- End : free ----------------*/      free_vector(gp,1,nlstate);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      free_vector(gm,1,nlstate);
        free_matrix(gradg,1,npar,1,nlstate);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      free_matrix(trgradg,1,nlstate,1,npar);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    } /* End age */
    
      free_vector(xp,1,npar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(doldm,1,nlstate,1,npar);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(dnewm,1,nlstate,1,nlstate);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  }
    
   free_matrix(matcov,1,npar,1,npar);  /************ Variance of one-step probabilities  ******************/
   free_vector(delti,1,npar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   free_matrix(agev,1,maxwav,1,imx);  {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
   if(erreur >0)    int k=0,l, cptcode;
     printf("End of Imach with error or warning %d\n",erreur);    int first=1, first1, first2;
   else   printf("End of Imach\n");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double **dnewm,**doldm;
      double *xp;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    double *gp, *gm;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    double **gradg, **trgradg;
   /*------ End -----------*/    double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  end:    int theta;
   /* chdir(pathcd);*/    char fileresprob[FILENAMELENGTH];
  /*system("wgnuplot graph.plt");*/    char fileresprobcov[FILENAMELENGTH];
  /*system("../gp37mgw/wgnuplot graph.plt");*/    char fileresprobcor[FILENAMELENGTH];
  /*system("cd ../gp37mgw");*/    double ***varpij;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    strcpy(fileresprob,"prob"); 
  strcat(plotcmd," ");    strcat(fileresprob,fileres);
  strcat(plotcmd,optionfilegnuplot);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
  system(plotcmd);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  /*#ifdef windows*/    }
   while (z[0] != 'q') {    strcpy(fileresprobcov,"probcov"); 
     /* chdir(path); */    strcat(fileresprobcov,fileres);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     scanf("%s",z);      printf("Problem with resultfile: %s\n", fileresprobcov);
     if (z[0] == 'c') system("./imach");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     else if (z[0] == 'e') system(optionfilehtm);    }
     else if (z[0] == 'g') system(plotcmd);    strcpy(fileresprobcor,"probcor"); 
     else if (z[0] == 'q') exit(0);    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   /*#endif */      printf("Problem with resultfile: %s\n", fileresprobcor);
 }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot command %s\n", plotcmd);
       printf("\n Trying on same directory\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s\n", plotcmd);
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef OSX
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elsedef
         sprintf(pplotcmd, "%s", optionfilehtm);
   #enddef
         printf("Starting browser with: %s",plotcmd);fflush(stdout);
         system(plotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.152


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>