Diff for /imach/src/imach.c between versions 1.20 and 1.153

version 1.20, 2002/02/20 17:22:01 version 1.153, 2014/06/20 16:45:46
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.153  2014/06/20 16:45:46  brouard
   individuals from different ages are interviewed on their health status    Summary: If 3 live state, convergence to period prevalence on same graph
   or degree of  disability. At least a second wave of interviews    Author: Brouard
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.152  2014/06/18 17:54:09  brouard
   waves and are computed for each degree of severity of disability (number    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.151  2014/06/18 16:43:30  brouard
   The simplest model is the multinomial logistic model where pij is    *** empty log message ***
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.150  2014/06/18 16:42:35  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   is a covariate. If you want to have a more complex model than "constant and    Author: brouard
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    Revision 1.149  2014/06/18 15:51:14  brouard
   More covariates you add, less is the speed of the convergence.    Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.148  2014/06/17 17:38:48  brouard
   individual missed an interview, the information is not rounded or lost, but    Summary: Nothing new
   taken into account using an interpolation or extrapolation.    Author: Brouard
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    Just a new packaging for OS/X version 0.98nS
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.147  2014/06/16 10:33:11  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    *** empty log message ***
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
   Also this programme outputs the covariance matrix of the parameters but also    Author: Brouard
   of the life expectancies. It also computes the prevalence limits.  
      Merge, before building revised version.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.145  2014/06/10 21:23:15  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: Debugging with valgrind
   from the European Union.    Author: Nicolas Brouard
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Lot of changes in order to output the results with some covariates
   can be accessed at http://euroreves.ined.fr/imach .    After the Edimburgh REVES conference 2014, it seems mandatory to
   **********************************************************************/    improve the code.
      No more memory valgrind error but a lot has to be done in order to
 #include <math.h>    continue the work of splitting the code into subroutines.
 #include <stdio.h>    Also, decodemodel has been improved. Tricode is still not
 #include <stdlib.h>    optimal. nbcode should be improved. Documentation has been added in
 #include <unistd.h>    the source code.
   
 #define MAXLINE 256    Revision 1.143  2014/01/26 09:45:38  brouard
 #define FILENAMELENGTH 80    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 /*#define DEBUG*/  
 #define windows    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.142  2014/01/26 03:57:36  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.141  2014/01/26 02:42:01  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.140  2011/09/02 10:37:54  brouard
 #define YEARM 12. /* Number of months per year */    Summary: times.h is ok with mingw32 now.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.138  2010/04/30 18:19:40  brouard
 int npar=NPARMAX;    *** empty log message ***
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.137  2010/04/29 18:11:38  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Checking covariates for more complex models
 int popbased=0;    than V1+V2. A lot of change to be done. Unstable.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.136  2010/04/26 20:30:53  brouard
 int maxwav; /* Maxim number of waves */    (Module): merging some libgsl code. Fixing computation
 int jmin, jmax; /* min, max spacing between 2 waves */    of likelione (using inter/intrapolation if mle = 0) in order to
 int mle, weightopt;    get same likelihood as if mle=1.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Some cleaning of code and comments added.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.135  2009/10/29 15:33:14  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Revision 1.134  2009/10/29 13:18:53  brouard
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.133  2009/07/06 10:21:25  brouard
  FILE  *ficresvij;    just nforces
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.132  2009/07/06 08:22:05  brouard
   char fileresvpl[FILENAMELENGTH];    Many tings
   
 #define NR_END 1    Revision 1.131  2009/06/20 16:22:47  brouard
 #define FREE_ARG char*    Some dimensions resccaled
 #define FTOL 1.0e-10  
     Revision 1.130  2009/05/26 06:44:34  brouard
 #define NRANSI    (Module): Max Covariate is now set to 20 instead of 8. A
 #define ITMAX 200    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define TOL 2.0e-4  
     Revision 1.129  2007/08/31 13:49:27  lievre
 #define CGOLD 0.3819660    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.127  2006/04/28 18:11:50  brouard
 #define TINY 1.0e-20    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 static double maxarg1,maxarg2;    loop. Now we define nhstepma in the age loop.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): In order to speed up (in case of numerous covariates) we
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    compute health expectancies (without variances) in a first step
      and then all the health expectancies with variances or standard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    deviation (needs data from the Hessian matrices) which slows the
 #define rint(a) floor(a+0.5)    computation.
     In the future we should be able to stop the program is only health
 static double sqrarg;    expectancies and graph are needed without standard deviations.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
 int imx;    imach-114 because nhstepm was no more computed in the age
 int stepm;    loop. Now we define nhstepma in the age loop.
 /* Stepm, step in month: minimum step interpolation*/    Version 0.98h
   
 int m,nb;    Revision 1.125  2006/04/04 15:20:31  lievre
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Errors in calculation of health expectancies. Age was not initialized.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Forecasting file added.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 double *weight;    The log-likelihood is printed in the log file
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.123  2006/03/20 10:52:43  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 /**************** split *************************/    otherwise the weight is truncated).
 static  int split( char *path, char *dirc, char *name )    Modification of warning when the covariates values are not 0 or
 {    1.
    char *s;                             /* pointer */    Version 0.98g
    int  l1, l2;                         /* length counters */  
     Revision 1.122  2006/03/20 09:45:41  brouard
    l1 = strlen( path );                 /* length of path */    (Module): Weights can have a decimal point as for
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    English (a comma might work with a correct LC_NUMERIC environment,
    s = strrchr( path, '\\' );           /* find last / */    otherwise the weight is truncated).
    if ( s == NULL ) {                   /* no directory, so use current */    Modification of warning when the covariates values are not 0 or
 #if     defined(__bsd__)                /* get current working directory */    1.
       extern char       *getwd( );    Version 0.98g
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.121  2006/03/16 17:45:01  lievre
 #else    * imach.c (Module): Comments concerning covariates added
       extern char       *getcwd( );  
     * imach.c (Module): refinements in the computation of lli if
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    status=-2 in order to have more reliable computation if stepm is
 #endif    not 1 month. Version 0.98f
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.120  2006/03/16 15:10:38  lievre
       strcpy( name, path );             /* we've got it */    (Module): refinements in the computation of lli if
    } else {                             /* strip direcotry from path */    status=-2 in order to have more reliable computation if stepm is
       s++;                              /* after this, the filename */    not 1 month. Version 0.98f
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.119  2006/03/15 17:42:26  brouard
       strcpy( name, s );                /* save file name */    (Module): Bug if status = -2, the loglikelihood was
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    computed as likelihood omitting the logarithm. Version O.98e
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.118  2006/03/14 18:20:07  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): varevsij Comments added explaining the second
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    table of variances if popbased=1 .
    return( 0 );                         /* we're done */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 }    (Module): Function pstamp added
     (Module): Version 0.98d
   
 /******************************************/    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 void replace(char *s, char*t)    table of variances if popbased=1 .
 {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   int i;    (Module): Function pstamp added
   int lg=20;    (Module): Version 0.98d
   i=0;  
   lg=strlen(t);    Revision 1.116  2006/03/06 10:29:27  brouard
   for(i=0; i<= lg; i++) {    (Module): Variance-covariance wrong links and
     (s[i] = t[i]);    varian-covariance of ej. is needed (Saito).
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.115  2006/02/27 12:17:45  brouard
 }    (Module): One freematrix added in mlikeli! 0.98c
   
 int nbocc(char *s, char occ)    Revision 1.114  2006/02/26 12:57:58  brouard
 {    (Module): Some improvements in processing parameter
   int i,j=0;    filename with strsep.
   int lg=20;  
   i=0;    Revision 1.113  2006/02/24 14:20:24  brouard
   lg=strlen(s);    (Module): Memory leaks checks with valgrind and:
   for(i=0; i<= lg; i++) {    datafile was not closed, some imatrix were not freed and on matrix
   if  (s[i] == occ ) j++;    allocation too.
   }  
   return j;    Revision 1.112  2006/01/30 09:55:26  brouard
 }    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.111  2006/01/25 20:38:18  brouard
 {    (Module): Lots of cleaning and bugs added (Gompertz)
   int i,lg,j,p=0;    (Module): Comments can be added in data file. Missing date values
   i=0;    can be a simple dot '.'.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.110  2006/01/25 00:51:50  brouard
   }    (Module): Lots of cleaning and bugs added (Gompertz)
   
   lg=strlen(t);    Revision 1.109  2006/01/24 19:37:15  brouard
   for(j=0; j<p; j++) {    (Module): Comments (lines starting with a #) are allowed in data.
     (u[j] = t[j]);  
   }    Revision 1.108  2006/01/19 18:05:42  lievre
      u[p]='\0';    Gnuplot problem appeared...
     To be fixed
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.107  2006/01/19 16:20:37  brouard
   }    Test existence of gnuplot in imach path
 }  
     Revision 1.106  2006/01/19 13:24:36  brouard
 /********************** nrerror ********************/    Some cleaning and links added in html output
   
 void nrerror(char error_text[])    Revision 1.105  2006/01/05 20:23:19  lievre
 {    *** empty log message ***
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.104  2005/09/30 16:11:43  lievre
   exit(1);    (Module): sump fixed, loop imx fixed, and simplifications.
 }    (Module): If the status is missing at the last wave but we know
 /*********************** vector *******************/    that the person is alive, then we can code his/her status as -2
 double *vector(int nl, int nh)    (instead of missing=-1 in earlier versions) and his/her
 {    contributions to the likelihood is 1 - Prob of dying from last
   double *v;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    the healthy state at last known wave). Version is 0.98
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.103  2005/09/30 15:54:49  lievre
 }    (Module): sump fixed, loop imx fixed, and simplifications.
   
 /************************ free vector ******************/    Revision 1.102  2004/09/15 17:31:30  brouard
 void free_vector(double*v, int nl, int nh)    Add the possibility to read data file including tab characters.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.101  2004/09/15 10:38:38  brouard
 }    Fix on curr_time
   
 /************************ivector *******************************/    Revision 1.100  2004/07/12 18:29:06  brouard
 int *ivector(long nl,long nh)    Add version for Mac OS X. Just define UNIX in Makefile
 {  
   int *v;    Revision 1.99  2004/06/05 08:57:40  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    *** empty log message ***
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.98  2004/05/16 15:05:56  brouard
 }    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 /******************free ivector **************************/    state at each age, but using a Gompertz model: log u =a + b*age .
 void free_ivector(int *v, long nl, long nh)    This is the basic analysis of mortality and should be done before any
 {    other analysis, in order to test if the mortality estimated from the
   free((FREE_ARG)(v+nl-NR_END));    cross-longitudinal survey is different from the mortality estimated
 }    from other sources like vital statistic data.
   
 /******************* imatrix *******************************/    The same imach parameter file can be used but the option for mle should be -3.
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Agnès, who wrote this part of the code, tried to keep most of the
 {    former routines in order to include the new code within the former code.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    The output is very simple: only an estimate of the intercept and of
      the slope with 95% confident intervals.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Current limitations:
   if (!m) nrerror("allocation failure 1 in matrix()");    A) Even if you enter covariates, i.e. with the
   m += NR_END;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   m -= nrl;    B) There is no computation of Life Expectancy nor Life Table.
    
      Revision 1.97  2004/02/20 13:25:42  lievre
   /* allocate rows and set pointers to them */    Version 0.96d. Population forecasting command line is (temporarily)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    suppressed.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.96  2003/07/15 15:38:55  brouard
   m[nrl] -= ncl;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
      rewritten within the same printf. Workaround: many printfs.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.95  2003/07/08 07:54:34  brouard
   /* return pointer to array of pointers to rows */    * imach.c (Repository):
   return m;    (Repository): Using imachwizard code to output a more meaningful covariance
 }    matrix (cov(a12,c31) instead of numbers.
   
 /****************** free_imatrix *************************/    Revision 1.94  2003/06/27 13:00:02  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    Just cleaning
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.93  2003/06/25 16:33:55  brouard
      /* free an int matrix allocated by imatrix() */    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    (Module): Version 0.96b
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /******************* matrix *******************************/    exist so I changed back to asctime which exists.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    * imach.c (Repository): Duplicated warning errors corrected.
   double **m;    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    is stamped in powell.  We created a new html file for the graphs
   if (!m) nrerror("allocation failure 1 in matrix()");    concerning matrix of covariance. It has extension -cov.htm.
   m += NR_END;  
   m -= nrl;    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    of the covariance matrix to be input.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    mle=-1 a template is output in file "or"mypar.txt with the design
   return m;    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
 /*************************free matrix ************************/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.87  2003/06/18 12:26:01  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Version 0.96
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 /******************* ma3x *******************************/    routine fileappend.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    * imach.c (Repository): Check when date of death was earlier that
   double ***m;    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    was wrong (infinity). We still send an "Error" but patch by
   if (!m) nrerror("allocation failure 1 in matrix()");    assuming that the date of death was just one stepm after the
   m += NR_END;    interview.
   m -= nrl;    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    memory allocation. But we also truncated to 8 characters (left
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    truncation)
   m[nrl] += NR_END;    (Repository): No more line truncation errors.
   m[nrl] -= ncl;  
     Revision 1.84  2003/06/13 21:44:43  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    many times. Probs is memory consuming and must be used with
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    parcimony.
   m[nrl][ncl] += NR_END;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Revision 1.83  2003/06/10 13:39:11  lievre
     m[nrl][j]=m[nrl][j-1]+nlay;    *** empty log message ***
    
   for (i=nrl+1; i<=nrh; i++) {    Revision 1.82  2003/06/05 15:57:20  brouard
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Add log in  imach.c and  fullversion number is now printed.
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  */
   }  /*
   return m;     Interpolated Markov Chain
 }  
     Short summary of the programme:
 /*************************free ma3x ************************/    
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    This program computes Healthy Life Expectancies from
 {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    first survey ("cross") where individuals from different ages are
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    interviewed on their health status or degree of disability (in the
   free((FREE_ARG)(m+nrl-NR_END));    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /***************** f1dim *************************/    computed from the time spent in each health state according to a
 extern int ncom;    model. More health states you consider, more time is necessary to reach the
 extern double *pcom,*xicom;    Maximum Likelihood of the parameters involved in the model.  The
 extern double (*nrfunc)(double []);    simplest model is the multinomial logistic model where pij is the
      probability to be observed in state j at the second wave
 double f1dim(double x)    conditional to be observed in state i at the first wave. Therefore
 {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   int j;    'age' is age and 'sex' is a covariate. If you want to have a more
   double f;    complex model than "constant and age", you should modify the program
   double *xt;    where the markup *Covariates have to be included here again* invites
      you to do it.  More covariates you add, slower the
   xt=vector(1,ncom);    convergence.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    The advantage of this computer programme, compared to a simple
   free_vector(xt,1,ncom);    multinomial logistic model, is clear when the delay between waves is not
   return f;    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   int iter;    split into an exact number (nh*stepm) of unobserved intermediate
   double a,b,d,etemp;    states. This elementary transition (by month, quarter,
   double fu,fv,fw,fx;    semester or year) is modelled as a multinomial logistic.  The hPx
   double ftemp;    matrix is simply the matrix product of nh*stepm elementary matrices
   double p,q,r,tol1,tol2,u,v,w,x,xm;    and the contribution of each individual to the likelihood is simply
   double e=0.0;    hPijx.
    
   a=(ax < cx ? ax : cx);    Also this programme outputs the covariance matrix of the parameters but also
   b=(ax > cx ? ax : cx);    of the life expectancies. It also computes the period (stable) prevalence. 
   x=w=v=bx;    
   fw=fv=fx=(*f)(x);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   for (iter=1;iter<=ITMAX;iter++) {             Institut national d'études démographiques, Paris.
     xm=0.5*(a+b);    This software have been partly granted by Euro-REVES, a concerted action
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    from the European Union.
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    It is copyrighted identically to a GNU software product, ie programme and
     printf(".");fflush(stdout);    software can be distributed freely for non commercial use. Latest version
 #ifdef DEBUG    can be accessed at http://euroreves.ined.fr/imach .
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #endif    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    
       *xmin=x;    **********************************************************************/
       return fx;  /*
     }    main
     ftemp=fu;    read parameterfile
     if (fabs(e) > tol1) {    read datafile
       r=(x-w)*(fx-fv);    concatwav
       q=(x-v)*(fx-fw);    freqsummary
       p=(x-v)*q-(x-w)*r;    if (mle >= 1)
       q=2.0*(q-r);      mlikeli
       if (q > 0.0) p = -p;    print results files
       q=fabs(q);    if mle==1 
       etemp=e;       computes hessian
       e=d;    read end of parameter file: agemin, agemax, bage, fage, estepm
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))        begin-prev-date,...
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    open gnuplot file
       else {    open html file
         d=p/q;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
         u=x+d;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
         if (u-a < tol2 || b-u < tol2)                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
           d=SIGN(tol1,xm-x);      freexexit2 possible for memory heap.
       }  
     } else {    h Pij x                         | pij_nom  ficrestpij
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     }         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     fu=(*f)(u);  
     if (fu <= fx) {         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       if (u >= x) a=x; else b=x;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       SHFT(v,w,x,u)    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
         SHFT(fv,fw,fx,fu)     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
         } else {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {    forecasting if prevfcast==1 prevforecast call prevalence()
             v=w;    health expectancies
             w=u;    Variance-covariance of DFLE
             fv=fw;    prevalence()
             fw=fu;     movingaverage()
           } else if (fu <= fv || v == x || v == w) {    varevsij() 
             v=u;    if popbased==1 varevsij(,popbased)
             fv=fu;    total life expectancies
           }    Variance of period (stable) prevalence
         }   end
   }  */
   nrerror("Too many iterations in brent");  
   *xmin=x;  
   return fx;  
 }   
   #include <math.h>
 /****************** mnbrak ***********************/  #include <stdio.h>
   #include <stdlib.h>
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #include <string.h>
             double (*func)(double))  #include <unistd.h>
 {  
   double ulim,u,r,q, dum;  #include <limits.h>
   double fu;  #include <sys/types.h>
    #include <sys/stat.h>
   *fa=(*func)(*ax);  #include <errno.h>
   *fb=(*func)(*bx);  extern int errno;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  #ifdef LINUX
       SHFT(dum,*fb,*fa,dum)  #include <time.h>
       }  #include "timeval.h"
   *cx=(*bx)+GOLD*(*bx-*ax);  #else
   *fc=(*func)(*cx);  #include <sys/time.h>
   while (*fb > *fc) {  #endif
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  #ifdef GSL
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #include <gsl/gsl_errno.h>
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #include <gsl/gsl_multimin.h>
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #endif
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /* #include <libintl.h> */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /* #define _(String) gettext (String) */
       fu=(*func)(u);  
       if (fu < *fc) {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  #define GNUPLOTPROGRAM "gnuplot"
           }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define FILENAMELENGTH 132
       u=ulim;  
       fu=(*func)(u);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     } else {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     }  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  #define NINTERVMAX 8
       }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 /*************** linmin ************************/  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   #define MAXN 20000
 int ncom;  #define YEARM 12. /**< Number of months per year */
 double *pcom,*xicom;  #define AGESUP 130
 double (*nrfunc)(double []);  #define AGEBASE 40
    #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #ifdef UNIX
 {  #define DIRSEPARATOR '/'
   double brent(double ax, double bx, double cx,  #define CHARSEPARATOR "/"
                double (*f)(double), double tol, double *xmin);  #define ODIRSEPARATOR '\\'
   double f1dim(double x);  #else
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define DIRSEPARATOR '\\'
               double *fc, double (*func)(double));  #define CHARSEPARATOR "\\"
   int j;  #define ODIRSEPARATOR '/'
   double xx,xmin,bx,ax;  #endif
   double fx,fb,fa;  
    /* $Id$ */
   ncom=n;  /* $State$ */
   pcom=vector(1,n);  
   xicom=vector(1,n);  char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   nrfunc=func;  char fullversion[]="$Revision$ $Date$"; 
   for (j=1;j<=n;j++) {  char strstart[80];
     pcom[j]=p[j];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     xicom[j]=xi[j];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   }  int nvar=0, nforce=0; /* Number of variables, number of forces */
   ax=0.0;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   xx=1.0;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 #ifdef DEBUG  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 #endif  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   for (j=1;j<=n;j++) {  int cptcov=0; /* Working variable */
     xi[j] *= xmin;  int npar=NPARMAX;
     p[j] += xi[j];  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
   free_vector(xicom,1,n);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   free_vector(pcom,1,n);  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /*************** powell ************************/  int maxwav=0; /* Maxim number of waves */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
             double (*func)(double []))  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   void linmin(double p[], double xi[], int n, double *fret,                     to the likelihood and the sum of weights (done by funcone)*/
               double (*func)(double []));  int mle=1, weightopt=0;
   int i,ibig,j;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double del,t,*pt,*ptt,*xit;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   double fp,fptt;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double *xits;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   pt=vector(1,n);  double jmean=1; /* Mean space between 2 waves */
   ptt=vector(1,n);  double **matprod2(); /* test */
   xit=vector(1,n);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   xits=vector(1,n);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   *fret=(*func)(p);  /*FILE *fic ; */ /* Used in readdata only */
   for (j=1;j<=n;j++) pt[j]=p[j];  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for (*iter=1;;++(*iter)) {  FILE *ficlog, *ficrespow;
     fp=(*fret);  int globpr=0; /* Global variable for printing or not */
     ibig=0;  double fretone; /* Only one call to likelihood */
     del=0.0;  long ipmx=0; /* Number of contributions */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double sw; /* Sum of weights */
     for (i=1;i<=n;i++)  char filerespow[FILENAMELENGTH];
       printf(" %d %.12f",i, p[i]);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     printf("\n");  FILE *ficresilk;
     for (i=1;i<=n;i++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  FILE *ficresprobmorprev;
       fptt=(*fret);  FILE *fichtm, *fichtmcov; /* Html File */
 #ifdef DEBUG  FILE *ficreseij;
       printf("fret=%lf \n",*fret);  char filerese[FILENAMELENGTH];
 #endif  FILE *ficresstdeij;
       printf("%d",i);fflush(stdout);  char fileresstde[FILENAMELENGTH];
       linmin(p,xit,n,fret,func);  FILE *ficrescveij;
       if (fabs(fptt-(*fret)) > del) {  char filerescve[FILENAMELENGTH];
         del=fabs(fptt-(*fret));  FILE  *ficresvij;
         ibig=i;  char fileresv[FILENAMELENGTH];
       }  FILE  *ficresvpl;
 #ifdef DEBUG  char fileresvpl[FILENAMELENGTH];
       printf("%d %.12e",i,(*fret));  char title[MAXLINE];
       for (j=1;j<=n;j++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         printf(" x(%d)=%.12e",j,xit[j]);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       }  char command[FILENAMELENGTH];
       for(j=1;j<=n;j++)  int  outcmd=0;
         printf(" p=%.12e",p[j]);  
       printf("\n");  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #endif  
     }  char filelog[FILENAMELENGTH]; /* Log file */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  char filerest[FILENAMELENGTH];
 #ifdef DEBUG  char fileregp[FILENAMELENGTH];
       int k[2],l;  char popfile[FILENAMELENGTH];
       k[0]=1;  
       k[1]=-1;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
         printf(" %.12e",p[j]);  struct timezone tzp;
       printf("\n");  extern int gettimeofday();
       for(l=0;l<=1;l++) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
         for (j=1;j<=n;j++) {  long time_value;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  extern long time();
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char strcurr[80], strfor[80];
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char *endptr;
       }  long lval;
 #endif  double dval;
   
   #define NR_END 1
       free_vector(xit,1,n);  #define FREE_ARG char*
       free_vector(xits,1,n);  #define FTOL 1.0e-10
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  #define NRANSI 
       return;  #define ITMAX 200 
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define TOL 2.0e-4 
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  #define CGOLD 0.3819660 
       xit[j]=p[j]-pt[j];  #define ZEPS 1.0e-10 
       pt[j]=p[j];  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     }  
     fptt=(*func)(ptt);  #define GOLD 1.618034 
     if (fptt < fp) {  #define GLIMIT 100.0 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #define TINY 1.0e-20 
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  static double maxarg1,maxarg2;
         for (j=1;j<=n;j++) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
           xi[j][ibig]=xi[j][n];  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
           xi[j][n]=xit[j];    
         }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #ifdef DEBUG  #define rint(a) floor(a+0.5)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  static double sqrarg;
           printf(" %.12e",xit[j]);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         printf("\n");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #endif  int agegomp= AGEGOMP;
       }  
     }  int imx; 
   }  int stepm=1;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /**** Prevalence limit ****************/  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  int m,nb;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  long *num;
      matrix by transitions matrix until convergence is reached */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int i, ii,j,k;  double **pmmij, ***probs;
   double min, max, maxmin, maxmax,sumnew=0.;  double *ageexmed,*agecens;
   double **matprod2();  double dateintmean=0;
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  double *weight;
   double agefin, delaymax=50 ; /* Max number of years to converge */  int **s; /* Status */
   double *agedc;
   for (ii=1;ii<=nlstate+ndeath;ii++)  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     for (j=1;j<=nlstate+ndeath;j++){                    * covar=matrix(0,NCOVMAX,1,n); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     }  double  idx; 
   int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
    cov[1]=1.;  int *Ndum; /** Freq of modality (tricode */
    int **codtab; /**< codtab=imatrix(1,100,1,10); */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  double *lsurv, *lpop, *tpop;
     newm=savm;  
     /* Covariates have to be included here again */  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
      cov[2]=agefin;  double ftolhess; /**< Tolerance for computing hessian */
    
       for (k=1; k<=cptcovn;k++) {  /**************** split *************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       for (k=1; k<=cptcovage;k++)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    */ 
       for (k=1; k<=cptcovprod;k++)    char  *ss;                            /* pointer */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int   l1, l2;                         /* length counters */
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    l1 = strlen(path );                   /* length of path */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
     savm=oldm;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     oldm=newm;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     maxmax=0.;      /* get current working directory */
     for(j=1;j<=nlstate;j++){      /*    extern  char* getcwd ( char *buf , int len);*/
       min=1.;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       max=0.;        return( GLOCK_ERROR_GETCWD );
       for(i=1; i<=nlstate; i++) {      }
         sumnew=0;      /* got dirc from getcwd*/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      printf(" DIRC = %s \n",dirc);
         prlim[i][j]= newm[i][j]/(1-sumnew);    } else {                              /* strip direcotry from path */
         max=FMAX(max,prlim[i][j]);      ss++;                               /* after this, the filename */
         min=FMIN(min,prlim[i][j]);      l2 = strlen( ss );                  /* length of filename */
       }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       maxmin=max-min;      strcpy( name, ss );         /* save file name */
       maxmax=FMAX(maxmax,maxmin);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     }      dirc[l1-l2] = 0;                    /* add zero */
     if(maxmax < ftolpl){      printf(" DIRC2 = %s \n",dirc);
       return prlim;    }
     }    /* We add a separator at the end of dirc if not exists */
   }    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /*************** transition probabilities ***************/      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    }
 {    ss = strrchr( name, '.' );            /* find last / */
   double s1, s2;    if (ss >0){
   /*double t34;*/      ss++;
   int i,j,j1, nc, ii, jj;      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
     for(i=1; i<= nlstate; i++){      l2= strlen(ss)+1;
     for(j=1; j<i;j++){      strncpy( finame, name, l1-l2);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      finame[l1-l2]= 0;
         /*s2 += param[i][j][nc]*cov[nc];*/    }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return( 0 );                          /* we're done */
       }  }
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /******************************************/
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void replace_back_to_slash(char *s, char*t)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    int i;
       }    int lg=0;
       ps[i][j]=(s2);    i=0;
     }    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
     /*ps[3][2]=1;*/      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   for(i=1; i<= nlstate; i++){    }
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  char *trimbb(char *out, char *in)
     for(j=i+1; j<=nlstate+ndeath; j++)  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       s1+=exp(ps[i][j]);    char *s;
     ps[i][i]=1./(s1+1.);    s=out;
     for(j=1; j<i; j++)    while (*in != '\0'){
       ps[i][j]= exp(ps[i][j])*ps[i][i];      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     for(j=i+1; j<=nlstate+ndeath; j++)        in++;
       ps[i][j]= exp(ps[i][j])*ps[i][i];      }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      *out++ = *in++;
   } /* end i */    }
     *out='\0';
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    return s;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  char *cutl(char *blocc, char *alocc, char *in, char occ)
     }  {
   }    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
        and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     for(jj=1; jj<= nlstate+ndeath; jj++){    */
      printf("%lf ",ps[ii][jj]);    char *s, *t, *bl;
    }    t=in;s=in;
     printf("\n ");    while ((*in != occ) && (*in != '\0')){
     }      *alocc++ = *in++;
     printf("\n ");printf("%lf ",cov[2]);*/    }
 /*    if( *in == occ){
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      *(alocc)='\0';
   goto end;*/      s=++in;
     return ps;    }
 }   
     if (s == t) {/* occ not found */
 /**************** Product of 2 matrices ******************/      *(alocc-(in-s))='\0';
       in=s;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    }
 {    while ( *in != '\0'){
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      *blocc++ = *in++;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns    *blocc='\0';
      a pointer to pointers identical to out */    return t;
   long i, j, k;  }
   for(i=nrl; i<= nrh; i++)  char *cutv(char *blocc, char *alocc, char *in, char occ)
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         out[i][k] +=in[i][j]*b[j][k];       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   return out;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
 }    */
     char *s, *t;
     t=in;s=in;
 /************* Higher Matrix Product ***************/    while (*in != '\0'){
       while( *in == occ){
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        *blocc++ = *in++;
 {        s=in;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      }
      duration (i.e. until      *blocc++ = *in++;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    if (s == t) /* occ not found */
      (typically every 2 years instead of every month which is too big).      *(blocc-(in-s))='\0';
      Model is determined by parameters x and covariates have to be    else
      included manually here.      *(blocc-(in-s)-1)='\0';
     in=s;
      */    while ( *in != '\0'){
       *alocc++ = *in++;
   int i, j, d, h, k;    }
   double **out, cov[NCOVMAX];  
   double **newm;    *alocc='\0';
     return s;
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  int nbocc(char *s, char occ)
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    int i,j=0;
     }    int lg=20;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    i=0;
   for(h=1; h <=nhstepm; h++){    lg=strlen(s);
     for(d=1; d <=hstepm; d++){    for(i=0; i<= lg; i++) {
       newm=savm;    if  (s[i] == occ ) j++;
       /* Covariates have to be included here again */    }
       cov[1]=1.;    return j;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /* void cutv(char *u,char *v, char*t, char occ) */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /* { */
       for (k=1; k<=cptcovprod;k++)  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
   /*   int i,lg,j,p=0; */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*   i=0; */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /*   lg=strlen(t); */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*   for(j=0; j<=lg-1; j++) { */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       savm=oldm;  /*   } */
       oldm=newm;  
     }  /*   for(j=0; j<p; j++) { */
     for(i=1; i<=nlstate+ndeath; i++)  /*     (u[j] = t[j]); */
       for(j=1;j<=nlstate+ndeath;j++) {  /*   } */
         po[i][j][h]=newm[i][j];  /*      u[p]='\0'; */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /*    for(j=0; j<= lg; j++) { */
       }  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   } /* end h */  /*   } */
   return po;  /* } */
 }  
   /********************** nrerror ********************/
   
 /*************** log-likelihood *************/  void nrerror(char error_text[])
 double func( double *x)  {
 {    fprintf(stderr,"ERREUR ...\n");
   int i, ii, j, k, mi, d, kk;    fprintf(stderr,"%s\n",error_text);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    exit(EXIT_FAILURE);
   double **out;  }
   double sw; /* Sum of weights */  /*********************** vector *******************/
   double lli; /* Individual log likelihood */  double *vector(int nl, int nh)
   long ipmx;  {
   /*extern weight */    double *v;
   /* We are differentiating ll according to initial status */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    if (!v) nrerror("allocation failure in vector");
   /*for(i=1;i<imx;i++)    return v-nl+NR_END;
     printf(" %d\n",s[4][i]);  }
   */  
   cov[1]=1.;  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   for(k=1; k<=nlstate; k++) ll[k]=0.;  {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    free((FREE_ARG)(v+nl-NR_END));
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  /************************ivector *******************************/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int *ivector(long nl,long nh)
       for(d=0; d<dh[mi][i]; d++){  {
         newm=savm;    int *v;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         for (kk=1; kk<=cptcovage;kk++) {    if (!v) nrerror("allocation failure in ivector");
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    return v-nl+NR_END;
         }  }
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /******************free ivector **************************/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  void free_ivector(int *v, long nl, long nh)
         savm=oldm;  {
         oldm=newm;    free((FREE_ARG)(v+nl-NR_END));
          }
          
       } /* end mult */  /************************lvector *******************************/
        long *lvector(long nl,long nh)
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    long *v;
       ipmx +=1;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       sw += weight[i];    if (!v) nrerror("allocation failure in ivector");
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    return v-nl+NR_END;
     } /* end of wave */  }
   } /* end of individual */  
   /******************free lvector **************************/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  void free_lvector(long *v, long nl, long nh)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    free((FREE_ARG)(v+nl-NR_END));
   return -l;  }
 }  
   /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /*********** Maximum Likelihood Estimation ***************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 {    int **m; 
   int i,j, iter;    
   double **xi,*delti;    /* allocate pointers to rows */ 
   double fret;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   xi=matrix(1,npar,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   for (i=1;i<=npar;i++)    m += NR_END; 
     for (j=1;j<=npar;j++)    m -= nrl; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    
   printf("Powell\n");    
   powell(p,xi,npar,ftol,&iter,&fret,func);    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 }    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 /**** Computes Hessian and covariance matrix ***/    
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    /* return pointer to array of pointers to rows */ 
 {    return m; 
   double  **a,**y,*x,pd;  } 
   double **hess;  
   int i, j,jk;  /****************** free_imatrix *************************/
   int *indx;  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   double hessii(double p[], double delta, int theta, double delti[]);        long nch,ncl,nrh,nrl; 
   double hessij(double p[], double delti[], int i, int j);       /* free an int matrix allocated by imatrix() */ 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  { 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
   hess=matrix(1,npar,1,npar);  } 
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  /******************* matrix *******************************/
   for (i=1;i<=npar;i++){  double **matrix(long nrl, long nrh, long ncl, long nch)
     printf("%d",i);fflush(stdout);  {
     hess[i][i]=hessii(p,ftolhess,i,delti);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     /*printf(" %f ",p[i]);*/    double **m;
     /*printf(" %lf ",hess[i][i]);*/  
   }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
   for (i=1;i<=npar;i++) {    m += NR_END;
     for (j=1;j<=npar;j++)  {    m -= nrl;
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         hess[i][j]=hessij(p,delti,i,j);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         hess[j][i]=hess[i][j];        m[nrl] += NR_END;
         /*printf(" %lf ",hess[i][j]);*/    m[nrl] -= ncl;
       }  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }    return m;
   printf("\n");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       */
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /*************************free matrix ************************/
   indx=ivector(1,npar);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   ludcmp(a,npar,indx,&pd);    free((FREE_ARG)(m+nrl-NR_END));
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /******************* ma3x *******************************/
     x[j]=1;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       matcov[i][j]=x[i];    double ***m;
     }  
   }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   printf("\n#Hessian matrix#\n");    m += NR_END;
   for (i=1;i<=npar;i++) {    m -= nrl;
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\n");    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   
   /* Recompute Inverse */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   ludcmp(a,npar,indx,&pd);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
   /*  printf("\n#Hessian matrix recomputed#\n");    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
   for (j=1;j<=npar;j++) {      m[nrl][j]=m[nrl][j-1]+nlay;
     for (i=1;i<=npar;i++) x[i]=0;    
     x[j]=1;    for (i=nrl+1; i<=nrh; i++) {
     lubksb(a,npar,indx,x);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (i=1;i<=npar;i++){      for (j=ncl+1; j<=nch; j++) 
       y[i][j]=x[i];        m[i][j]=m[i][j-1]+nlay;
       printf("%.3e ",y[i][j]);    }
     }    return m; 
     printf("\n");    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   */    */
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /*************************free ma3x ************************/
   free_vector(x,1,npar);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /*************** hessian matrix ****************/  /*************** function subdirf ***********/
 double hessii( double x[], double delta, int theta, double delti[])  char *subdirf(char fileres[])
 {  {
   int i;    /* Caution optionfilefiname is hidden */
   int l=1, lmax=20;    strcpy(tmpout,optionfilefiname);
   double k1,k2;    strcat(tmpout,"/"); /* Add to the right */
   double p2[NPARMAX+1];    strcat(tmpout,fileres);
   double res;    return tmpout;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  }
   double fx;  
   int k=0,kmax=10;  /*************** function subdirf2 ***********/
   double l1;  char *subdirf2(char fileres[], char *preop)
   {
   fx=func(x);    
   for (i=1;i<=npar;i++) p2[i]=x[i];    /* Caution optionfilefiname is hidden */
   for(l=0 ; l <=lmax; l++){    strcpy(tmpout,optionfilefiname);
     l1=pow(10,l);    strcat(tmpout,"/");
     delts=delt;    strcat(tmpout,preop);
     for(k=1 ; k <kmax; k=k+1){    strcat(tmpout,fileres);
       delt = delta*(l1*k);    return tmpout;
       p2[theta]=x[theta] +delt;  }
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /*************** function subdirf3 ***********/
       k2=func(p2)-fx;  char *subdirf3(char fileres[], char *preop, char *preop2)
       /*res= (k1-2.0*fx+k2)/delt/delt; */  {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    
          /* Caution optionfilefiname is hidden */
 #ifdef DEBUG    strcpy(tmpout,optionfilefiname);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    strcat(tmpout,"/");
 #endif    strcat(tmpout,preop);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    strcat(tmpout,preop2);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    strcat(tmpout,fileres);
         k=kmax;    return tmpout;
       }  }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /***************** f1dim *************************/
       }  extern int ncom; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  extern double *pcom,*xicom;
         delts=delt;  extern double (*nrfunc)(double []); 
       }   
     }  double f1dim(double x) 
   }  { 
   delti[theta]=delts;    int j; 
   return res;    double f;
      double *xt; 
 }   
     xt=vector(1,ncom); 
 double hessij( double x[], double delti[], int thetai,int thetaj)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 {    f=(*nrfunc)(xt); 
   int i;    free_vector(xt,1,ncom); 
   int l=1, l1, lmax=20;    return f; 
   double k1,k2,k3,k4,res,fx;  } 
   double p2[NPARMAX+1];  
   int k;  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   fx=func(x);  { 
   for (k=1; k<=2; k++) {    int iter; 
     for (i=1;i<=npar;i++) p2[i]=x[i];    double a,b,d,etemp;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double fu,fv,fw,fx;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double ftemp;
     k1=func(p2)-fx;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      double e=0.0; 
     p2[thetai]=x[thetai]+delti[thetai]/k;   
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    a=(ax < cx ? ax : cx); 
     k2=func(p2)-fx;    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    fw=fv=fx=(*f)(x); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (iter=1;iter<=ITMAX;iter++) { 
     k3=func(p2)-fx;      xm=0.5*(a+b); 
        tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     p2[thetai]=x[thetai]-delti[thetai]/k;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      printf(".");fflush(stdout);
     k4=func(p2)-fx;      fprintf(ficlog,".");fflush(ficlog);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  #ifdef DEBUG
 #ifdef DEBUG      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #endif      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   }  #endif
   return res;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 }        *xmin=x; 
         return fx; 
 /************** Inverse of matrix **************/      } 
 void ludcmp(double **a, int n, int *indx, double *d)      ftemp=fu;
 {      if (fabs(e) > tol1) { 
   int i,imax,j,k;        r=(x-w)*(fx-fv); 
   double big,dum,sum,temp;        q=(x-v)*(fx-fw); 
   double *vv;        p=(x-v)*q-(x-w)*r; 
          q=2.0*(q-r); 
   vv=vector(1,n);        if (q > 0.0) p = -p; 
   *d=1.0;        q=fabs(q); 
   for (i=1;i<=n;i++) {        etemp=e; 
     big=0.0;        e=d; 
     for (j=1;j<=n;j++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       if ((temp=fabs(a[i][j])) > big) big=temp;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        else { 
     vv[i]=1.0/big;          d=p/q; 
   }          u=x+d; 
   for (j=1;j<=n;j++) {          if (u-a < tol2 || b-u < tol2) 
     for (i=1;i<j;i++) {            d=SIGN(tol1,xm-x); 
       sum=a[i][j];        } 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      } else { 
       a[i][j]=sum;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     big=0.0;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for (i=j;i<=n;i++) {      fu=(*f)(u); 
       sum=a[i][j];      if (fu <= fx) { 
       for (k=1;k<j;k++)        if (u >= x) a=x; else b=x; 
         sum -= a[i][k]*a[k][j];        SHFT(v,w,x,u) 
       a[i][j]=sum;          SHFT(fv,fw,fx,fu) 
       if ( (dum=vv[i]*fabs(sum)) >= big) {          } else { 
         big=dum;            if (u < x) a=u; else b=u; 
         imax=i;            if (fu <= fw || w == x) { 
       }              v=w; 
     }              w=u; 
     if (j != imax) {              fv=fw; 
       for (k=1;k<=n;k++) {              fw=fu; 
         dum=a[imax][k];            } else if (fu <= fv || v == x || v == w) { 
         a[imax][k]=a[j][k];              v=u; 
         a[j][k]=dum;              fv=fu; 
       }            } 
       *d = -(*d);          } 
       vv[imax]=vv[j];    } 
     }    nrerror("Too many iterations in brent"); 
     indx[j]=imax;    *xmin=x; 
     if (a[j][j] == 0.0) a[j][j]=TINY;    return fx; 
     if (j != n) {  } 
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /****************** mnbrak ***********************/
     }  
   }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   free_vector(vv,1,n);  /* Doesn't work */              double (*func)(double)) 
 ;  { 
 }    double ulim,u,r,q, dum;
     double fu; 
 void lubksb(double **a, int n, int *indx, double b[])   
 {    *fa=(*func)(*ax); 
   int i,ii=0,ip,j;    *fb=(*func)(*bx); 
   double sum;    if (*fb > *fa) { 
        SHFT(dum,*ax,*bx,dum) 
   for (i=1;i<=n;i++) {        SHFT(dum,*fb,*fa,dum) 
     ip=indx[i];        } 
     sum=b[ip];    *cx=(*bx)+GOLD*(*bx-*ax); 
     b[ip]=b[i];    *fc=(*func)(*cx); 
     if (ii)    while (*fb > *fc) { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      r=(*bx-*ax)*(*fb-*fc); 
     else if (sum) ii=i;      q=(*bx-*cx)*(*fb-*fa); 
     b[i]=sum;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for (i=n;i>=1;i--) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     sum=b[i];      if ((*bx-u)*(u-*cx) > 0.0) { 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        fu=(*func)(u); 
     b[i]=sum/a[i][i];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   }        fu=(*func)(u); 
 }        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 /************ Frequencies ********************/            SHFT(*fb,*fc,fu,(*func)(u)) 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)            } 
 {  /* Some frequencies */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
          u=ulim; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        fu=(*func)(u); 
   double ***freq; /* Frequencies */      } else { 
   double *pp;        u=(*cx)+GOLD*(*cx-*bx); 
   double pos, k2, dateintsum=0,k2cpt=0;        fu=(*func)(u); 
   FILE *ficresp;      } 
   char fileresp[FILENAMELENGTH];      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   pp=vector(1,nlstate);        } 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  } 
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  /*************** linmin ************************/
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);  int ncom; 
     exit(0);  double *pcom,*xicom;
   }  double (*nrfunc)(double []); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);   
   j1=0;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   j=cptcoveff;    double brent(double ax, double bx, double cx, 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   for(k1=1; k1<=j;k1++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
    for(i1=1; i1<=ncodemax[k1];i1++){                double *fc, double (*func)(double)); 
        j1++;    int j; 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double xx,xmin,bx,ax; 
          scanf("%d", i);*/    double fx,fb,fa;
         for (i=-1; i<=nlstate+ndeath; i++)     
          for (jk=-1; jk<=nlstate+ndeath; jk++)      ncom=n; 
            for(m=agemin; m <= agemax+3; m++)    pcom=vector(1,n); 
              freq[i][jk][m]=0;    xicom=vector(1,n); 
     nrfunc=func; 
         dateintsum=0;    for (j=1;j<=n;j++) { 
         k2cpt=0;      pcom[j]=p[j]; 
        for (i=1; i<=imx; i++) {      xicom[j]=xi[j]; 
          bool=1;    } 
          if  (cptcovn>0) {    ax=0.0; 
            for (z1=1; z1<=cptcoveff; z1++)    xx=1.0; 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
                bool=0;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
          }  #ifdef DEBUG
          if (bool==1) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            for(m=firstpass; m<=lastpass; m++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
              k2=anint[m][i]+(mint[m][i]/12.);  #endif
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    for (j=1;j<=n;j++) { 
                if(agev[m][i]==0) agev[m][i]=agemax+1;      xi[j] *= xmin; 
                if(agev[m][i]==1) agev[m][i]=agemax+2;      p[j] += xi[j]; 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    } 
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    free_vector(xicom,1,n); 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    free_vector(pcom,1,n); 
                  dateintsum=dateintsum+k2;  } 
                  k2cpt++;  
                }  char *asc_diff_time(long time_sec, char ascdiff[])
   {
              }    long sec_left, days, hours, minutes;
            }    days = (time_sec) / (60*60*24);
          }    sec_left = (time_sec) % (60*60*24);
        }    hours = (sec_left) / (60*60) ;
         if  (cptcovn>0) {    sec_left = (sec_left) %(60*60);
          fprintf(ficresp, "\n#********** Variable ");    minutes = (sec_left) /60;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    sec_left = (sec_left) % (60);
        fprintf(ficresp, "**********\n#");    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         }    return ascdiff;
        for(i=1; i<=nlstate;i++)  }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
        fprintf(ficresp, "\n");  /*************** powell ************************/
          void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   for(i=(int)agemin; i <= (int)agemax+3; i++){              double (*func)(double [])) 
     if(i==(int)agemax+3)  { 
       printf("Total");    void linmin(double p[], double xi[], int n, double *fret, 
     else                double (*func)(double [])); 
       printf("Age %d", i);    int i,ibig,j; 
     for(jk=1; jk <=nlstate ; jk++){    double del,t,*pt,*ptt,*xit;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double fp,fptt;
         pp[jk] += freq[jk][m][i];    double *xits;
     }    int niterf, itmp;
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pos=0; m <=0 ; m++)    pt=vector(1,n); 
         pos += freq[jk][m][i];    ptt=vector(1,n); 
       if(pp[jk]>=1.e-10)    xit=vector(1,n); 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    xits=vector(1,n); 
       else    *fret=(*func)(p); 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
      for(jk=1; jk <=nlstate ; jk++){      ibig=0; 
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      del=0.0; 
         pp[jk] += freq[jk][m][i];      last_time=curr_time;
      }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for(jk=1,pos=0; jk <=nlstate ; jk++)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       pos += pp[jk];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     for(jk=1; jk <=nlstate ; jk++){     for (i=1;i<=n;i++) {
       if(pos>=1.e-5)        printf(" %d %.12f",i, p[i]);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        fprintf(ficlog," %d %.12lf",i, p[i]);
       else        fprintf(ficrespow," %.12lf", p[i]);
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      }
       if( i <= (int) agemax){      printf("\n");
         if(pos>=1.e-5){      fprintf(ficlog,"\n");
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      fprintf(ficrespow,"\n");fflush(ficrespow);
           probs[i][jk][j1]= pp[jk]/pos;      if(*iter <=3){
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        tm = *localtime(&curr_time.tv_sec);
         }        strcpy(strcurr,asctime(&tm));
       else  /*       asctime_r(&tm,strcurr); */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        forecast_time=curr_time; 
       }        itmp = strlen(strcurr);
     }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for(jk=-1; jk <=nlstate+ndeath; jk++)          strcurr[itmp-1]='\0';
       for(m=-1; m <=nlstate+ndeath; m++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     if(i <= (int) agemax)        for(niterf=10;niterf<=30;niterf+=10){
       fprintf(ficresp,"\n");          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     printf("\n");          tmf = *localtime(&forecast_time.tv_sec);
     }  /*      asctime_r(&tmf,strfor); */
     }          strcpy(strfor,asctime(&tmf));
  }          itmp = strlen(strfor);
   dateintmean=dateintsum/k2cpt;          if(strfor[itmp-1]=='\n')
            strfor[itmp-1]='\0';
   fclose(ficresp);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   free_vector(pp,1,nlstate);        }
       }
   /* End of Freq */      for (i=1;i<=n;i++) { 
 }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
 /************ Prevalence ********************/  #ifdef DEBUG
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        printf("fret=%lf \n",*fret);
 {  /* Some frequencies */        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        printf("%d",i);fflush(stdout);
   double ***freq; /* Frequencies */        fprintf(ficlog,"%d",i);fflush(ficlog);
   double *pp;        linmin(p,xit,n,fret,func); 
   double pos, k2;        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   pp=vector(1,nlstate);          ibig=i; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        } 
    #ifdef DEBUG
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        printf("%d %.12e",i,(*fret));
   j1=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
          for (j=1;j<=n;j++) {
   j=cptcoveff;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          printf(" x(%d)=%.12e",j,xit[j]);
            fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  for(k1=1; k1<=j;k1++){        }
     for(i1=1; i1<=ncodemax[k1];i1++){        for(j=1;j<=n;j++) {
       j1++;          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
       for (i=-1; i<=nlstate+ndeath; i++)          }
         for (jk=-1; jk<=nlstate+ndeath; jk++)          printf("\n");
           for(m=agemin; m <= agemax+3; m++)        fprintf(ficlog,"\n");
             freq[i][jk][m]=0;  #endif
            } 
       for (i=1; i<=imx; i++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         bool=1;  #ifdef DEBUG
         if  (cptcovn>0) {        int k[2],l;
           for (z1=1; z1<=cptcoveff; z1++)        k[0]=1;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        k[1]=-1;
               bool=0;        printf("Max: %.12e",(*func)(p));
         }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         if (bool==1) {        for (j=1;j<=n;j++) {
           for(m=firstpass; m<=lastpass; m++){          printf(" %.12e",p[j]);
             k2=anint[m][i]+(mint[m][i]/12.);          fprintf(ficlog," %.12e",p[j]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        }
               if(agev[m][i]==0) agev[m][i]=agemax+1;        printf("\n");
               if(agev[m][i]==1) agev[m][i]=agemax+2;        fprintf(ficlog,"\n");
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for(l=0;l<=1;l++) {
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            for (j=1;j<=n;j++) {
             }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }          }
                printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         for(i=(int)agemin; i <= (int)agemax+3; i++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           for(jk=1; jk <=nlstate ; jk++){        }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  #endif
               pp[jk] += freq[jk][m][i];  
           }  
           for(jk=1; jk <=nlstate ; jk++){        free_vector(xit,1,n); 
             for(m=-1, pos=0; m <=0 ; m++)        free_vector(xits,1,n); 
             pos += freq[jk][m][i];        free_vector(ptt,1,n); 
         }        free_vector(pt,1,n); 
                return; 
          for(jk=1; jk <=nlstate ; jk++){      } 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
              pp[jk] += freq[jk][m][i];      for (j=1;j<=n;j++) { 
          }        ptt[j]=2.0*p[j]-pt[j]; 
                  xit[j]=p[j]-pt[j]; 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        pt[j]=p[j]; 
       } 
          for(jk=1; jk <=nlstate ; jk++){                fptt=(*func)(ptt); 
            if( i <= (int) agemax){      if (fptt < fp) { 
              if(pos>=1.e-5){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
                probs[i][jk][j1]= pp[jk]/pos;        if (t < 0.0) { 
              }          linmin(p,xit,n,fret,func); 
            }          for (j=1;j<=n;j++) { 
          }            xi[j][ibig]=xi[j][n]; 
                      xi[j][n]=xit[j]; 
         }          }
     }  #ifdef DEBUG
   }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            printf(" %.12e",xit[j]);
   free_vector(pp,1,nlstate);            fprintf(ficlog," %.12e",xit[j]);
            }
 }  /* End of Freq */          printf("\n");
           fprintf(ficlog,"\n");
 /************* Waves Concatenation ***************/  #endif
         }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      } 
 {    } 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  } 
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /**** Prevalence limit (stable or period prevalence)  ****************/
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      */  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int i, mi, m;       matrix by transitions matrix until convergence is reached */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   int j, k=0,jk, ju, jl;    /* double **matprod2(); */ /* test */
   double sum=0.;    double **out, cov[NCOVMAX+1], **pmij();
   jmin=1e+5;    double **newm;
   jmax=-1;    double agefin, delaymax=50 ; /* Max number of years to converge */
   jmean=0.;  
   for(i=1; i<=imx; i++){    for (ii=1;ii<=nlstate+ndeath;ii++)
     mi=0;      for (j=1;j<=nlstate+ndeath;j++){
     m=firstpass;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){      }
       if(s[m][i]>=1)  
         mw[++mi][i]=m;     cov[1]=1.;
       if(m >=lastpass)   
         break;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       else    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         m++;      newm=savm;
     }/* end while */      /* Covariates have to be included here again */
     if (s[m][i] > nlstate){      cov[2]=agefin;
       mi++;     /* Death is another wave */      
       /* if(mi==0)  never been interviewed correctly before death */      for (k=1; k<=cptcovn;k++) {
          /* Only death is a correct wave */        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       mw[mi][i]=m;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
     }      }
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     wav[i]=mi;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
     if(mi==0)      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      
   }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   for(i=1; i<=imx; i++){      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for(mi=1; mi<wav[i];mi++){      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       if (stepm <=0)      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         dh[mi][i]=1;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       else{      
         if (s[mw[mi+1][i]][i] > nlstate) {      savm=oldm;
           if (agedc[i] < 2*AGESUP) {      oldm=newm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      maxmax=0.;
           if(j==0) j=1;  /* Survives at least one month after exam */      for(j=1;j<=nlstate;j++){
           k=k+1;        min=1.;
           if (j >= jmax) jmax=j;        max=0.;
           if (j <= jmin) jmin=j;        for(i=1; i<=nlstate; i++) {
           sum=sum+j;          sumnew=0;
           /* if (j<10) printf("j=%d num=%d ",j,i); */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           }          prlim[i][j]= newm[i][j]/(1-sumnew);
         }          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         else{          max=FMAX(max,prlim[i][j]);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          min=FMIN(min,prlim[i][j]);
           k=k+1;        }
           if (j >= jmax) jmax=j;        maxmin=max-min;
           else if (j <= jmin)jmin=j;        maxmax=FMAX(maxmax,maxmin);
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      }
           sum=sum+j;      if(maxmax < ftolpl){
         }        return prlim;
         jk= j/stepm;      }
         jl= j -jk*stepm;    }
         ju= j -(jk+1)*stepm;  }
         if(jl <= -ju)  
           dh[mi][i]=jk;  /*************** transition probabilities ***************/ 
         else  
           dh[mi][i]=jk+1;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         if(dh[mi][i]==0)  {
           dh[mi][i]=1; /* At least one step */    /* According to parameters values stored in x and the covariate's values stored in cov,
       }       computes the probability to be observed in state j being in state i by appying the
     }       model to the ncovmodel covariates (including constant and age).
   }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   jmean=sum/k;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);       ncth covariate in the global vector x is given by the formula:
  }       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 /*********** Tricode ****************************/       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 void tricode(int *Tvar, int **nbcode, int imx)       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 {       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   int Ndum[20],ij=1, k, j, i;       Outputs ps[i][j] the probability to be observed in j being in j according to
   int cptcode=0;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   cptcoveff=0;    */
      double s1, lnpijopii;
   for (k=0; k<19; k++) Ndum[k]=0;    /*double t34;*/
   for (k=1; k<=7; k++) ncodemax[k]=0;    int i,j,j1, nc, ii, jj;
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for(i=1; i<= nlstate; i++){
     for (i=1; i<=imx; i++) {        for(j=1; j<i;j++){
       ij=(int)(covar[Tvar[j]][i]);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       Ndum[ij]++;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
       if (ij > cptcode) cptcode=ij;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     }          }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     for (i=0; i<=cptcode; i++) {  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       if(Ndum[i]!=0) ncodemax[j]++;        }
     }        for(j=i+1; j<=nlstate+ndeath;j++){
     ij=1;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     for (i=1; i<=ncodemax[j]; i++) {  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       for (k=0; k<=19; k++) {          }
         if (Ndum[k] != 0) {          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           nbcode[Tvar[j]][ij]=k;        }
           ij++;      }
         }      
         if (ij > ncodemax[j]) break;      for(i=1; i<= nlstate; i++){
       }          s1=0;
     }        for(j=1; j<i; j++){
   }            s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
  for (k=0; k<19; k++) Ndum[k]=0;        }
         for(j=i+1; j<=nlstate+ndeath; j++){
  for (i=1; i<=ncovmodel-2; i++) {          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       ij=Tvar[i];          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       Ndum[ij]++;        }
     }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         ps[i][i]=1./(s1+1.);
  ij=1;        /* Computing other pijs */
  for (i=1; i<=10; i++) {        for(j=1; j<i; j++)
    if((Ndum[i]!=0) && (i<=ncov)){          ps[i][j]= exp(ps[i][j])*ps[i][i];
      Tvaraff[ij]=i;        for(j=i+1; j<=nlstate+ndeath; j++)
      ij++;          ps[i][j]= exp(ps[i][j])*ps[i][i];
    }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
  }      } /* end i */
        
     cptcoveff=ij-1;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 }        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
 /*********** Health Expectancies ****************/          ps[ii][ii]=1;
         }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      }
 {      
   /* Health expectancies */      
   int i, j, nhstepm, hstepm, h;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double age, agelim,hf;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double ***p3mat;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
        /*   } */
   fprintf(ficreseij,"# Health expectancies\n");      /*   printf("\n "); */
   fprintf(ficreseij,"# Age");      /* } */
   for(i=1; i<=nlstate;i++)      /* printf("\n ");printf("%lf ",cov[2]);*/
     for(j=1; j<=nlstate;j++)      /*
       fprintf(ficreseij," %1d-%1d",i,j);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   fprintf(ficreseij,"\n");        goto end;*/
       return ps;
   hstepm=1*YEARM; /*  Every j years of age (in month) */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   /**************** Product of 2 matrices ******************/
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     /* nhstepm age range expressed in number of stepm */  {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     /* Typically if 20 years = 20*12/6=40 stepm */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     if (stepm >= YEARM) hstepm=1;    /* in, b, out are matrice of pointers which should have been initialized 
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */       before: only the contents of out is modified. The function returns
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       a pointer to pointers identical to out */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    int i, j, k;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for(i=nrl; i<= nrh; i++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        for(k=ncolol; k<=ncoloh; k++){
         out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
     for(i=1; i<=nlstate;i++)          out[i][k] +=in[i][j]*b[j][k];
       for(j=1; j<=nlstate;j++)      }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    return out;
           eij[i][j][(int)age] +=p3mat[i][j][h];  }
         }  
      
     hf=1;  /************* Higher Matrix Product ***************/
     if (stepm >= YEARM) hf=stepm/YEARM;  
     fprintf(ficreseij,"%.0f",age );  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for(i=1; i<=nlstate;i++)  {
       for(j=1; j<=nlstate;j++){    /* Computes the transition matrix starting at age 'age' over 
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);       'nhstepm*hstepm*stepm' months (i.e. until
       }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     fprintf(ficreseij,"\n");       nhstepm*hstepm matrices. 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   }       (typically every 2 years instead of every month which is too big 
 }       for the memory).
        Model is determined by parameters x and covariates have to be 
 /************ Variance ******************/       included manually here. 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {       */
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i, j, d, h, k;
   double **newm;    double **out, cov[NCOVMAX+1];
   double **dnewm,**doldm;    double **newm;
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;    /* Hstepm could be zero and should return the unit matrix */
   double *xp;    for (i=1;i<=nlstate+ndeath;i++)
   double **gp, **gm;      for (j=1;j<=nlstate+ndeath;j++){
   double ***gradg, ***trgradg;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double ***p3mat;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double age,agelim;      }
   int theta;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");      for(d=1; d <=hstepm; d++){
   fprintf(ficresvij,"# Age");        newm=savm;
   for(i=1; i<=nlstate;i++)        /* Covariates have to be included here again */
     for(j=1; j<=nlstate;j++)        cov[1]=1.;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   fprintf(ficresvij,"\n");        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   xp=vector(1,npar);        for (k=1; k<=cptcovage;k++)
   dnewm=matrix(1,nlstate,1,npar);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   doldm=matrix(1,nlstate,1,nlstate);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     if (stepm >= YEARM) hstepm=1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        savm=oldm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        oldm=newm;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      }
     gp=matrix(0,nhstepm,1,nlstate);      for(i=1; i<=nlstate+ndeath; i++)
     gm=matrix(0,nhstepm,1,nlstate);        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
     for(theta=1; theta <=npar; theta++){          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /*printf("h=%d ",h);*/
       }    } /* end h */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*     printf("\n H=%d \n",h); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    return po;
   }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  /*************** log-likelihood *************/
       }  double func( double *x)
        {
       for(j=1; j<= nlstate; j++){    int i, ii, j, k, mi, d, kk;
         for(h=0; h<=nhstepm; h++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double **out;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
       }    int s1, s2;
        double bbh, survp;
       for(i=1; i<=npar; i++) /* Computes gradient */    long ipmx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*extern weight */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* We are differentiating ll according to initial status */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
       if (popbased==1) {      printf(" %d\n",s[4][i]);
         for(i=1; i<=nlstate;i++)    */
           prlim[i][i]=probs[(int)age][i][ij];    cov[1]=1.;
       }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    if(mle==1){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        /* Computes the values of the ncovmodel covariates of the model
         }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
       for(j=1; j<= nlstate; j++)         */
         for(h=0; h<=nhstepm; h++){        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          cov[2+k]=covar[Tvar[k]][i];
         }        }
     } /* End theta */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);           has been calculated etc */
         for(mi=1; mi<= wav[i]-1; mi++){
     for(h=0; h<=nhstepm; h++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
         for(theta=1; theta <=npar; theta++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           trgradg[h][j][theta]=gradg[h][theta][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(i=1;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
       for(j=1;j<=nlstate;j++)            newm=savm;
         vareij[i][j][(int)age] =0.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(h=0;h<=nhstepm;h++){            for (kk=1; kk<=cptcovage;kk++) {
       for(k=0;k<=nhstepm;k++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(i=1;i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(j=1;j<=nlstate;j++)            savm=oldm;
             vareij[i][j][(int)age] += doldm[i][j];            oldm=newm;
       }          } /* end mult */
     }        
     h=1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if (stepm >= YEARM) h=stepm/YEARM;          /* But now since version 0.9 we anticipate for bias at large stepm.
     fprintf(ficresvij,"%.0f ",age );           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(i=1; i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(j=1; j<=nlstate;j++){           * the nearest (and in case of equal distance, to the lowest) interval but now
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     fprintf(ficresvij,"\n");           * probability in order to take into account the bias as a fraction of the way
     free_matrix(gp,0,nhstepm,1,nlstate);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     free_matrix(gm,0,nhstepm,1,nlstate);           * -stepm/2 to stepm/2 .
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);           * For stepm=1 the results are the same as for previous versions of Imach.
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);           * For stepm > 1 the results are less biased than in previous versions. 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           */
   } /* End age */          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   free_vector(xp,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_matrix(doldm,1,nlstate,1,npar);          /* bias bh is positive if real duration
   free_matrix(dnewm,1,nlstate,1,nlstate);           * is higher than the multiple of stepm and negative otherwise.
            */
 }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
 /************ Variance of prevlim ******************/            /* i.e. if s2 is a death state and if the date of death is known 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)               then the contribution to the likelihood is the probability to 
 {               die between last step unit time and current  step unit time, 
   /* Variance of prevalence limit */               which is also equal to probability to die before dh 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/               minus probability to die before dh-stepm . 
   double **newm;               In version up to 0.92 likelihood was computed
   double **dnewm,**doldm;          as if date of death was unknown. Death was treated as any other
   int i, j, nhstepm, hstepm;          health state: the date of the interview describes the actual state
   int k, cptcode;          and not the date of a change in health state. The former idea was
   double *xp;          to consider that at each interview the state was recorded
   double *gp, *gm;          (healthy, disable or death) and IMaCh was corrected; but when we
   double **gradg, **trgradg;          introduced the exact date of death then we should have modified
   double age,agelim;          the contribution of an exact death to the likelihood. This new
   int theta;          contribution is smaller and very dependent of the step unit
              stepm. It is no more the probability to die between last interview
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          and month of death but the probability to survive from last
   fprintf(ficresvpl,"# Age");          interview up to one month before death multiplied by the
   for(i=1; i<=nlstate;i++)          probability to die within a month. Thanks to Chris
       fprintf(ficresvpl," %1d-%1d",i,i);          Jackson for correcting this bug.  Former versions increased
   fprintf(ficresvpl,"\n");          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
   xp=vector(1,npar);          lower mortality.
   dnewm=matrix(1,nlstate,1,npar);            */
   doldm=matrix(1,nlstate,1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
    
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          } else if  (s2==-2) {
   agelim = AGESUP;            for (j=1,survp=0. ; j<=nlstate; j++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            /*survp += out[s1][j]; */
     if (stepm >= YEARM) hstepm=1;            lli= log(survp);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);          
     gp=vector(1,nlstate);          else if  (s2==-4) { 
     gm=vector(1,nlstate);            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(theta=1; theta <=npar; theta++){            lli= log(survp); 
       for(i=1; i<=npar; i++){ /* Computes gradient */          } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }          else if  (s2==-5) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (j=1,survp=0. ; j<=2; j++)  
       for(i=1;i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         gp[i] = prlim[i][i];            lli= log(survp); 
              } 
       for(i=1; i<=npar; i++) /* Computes gradient */          
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(i=1;i<=nlstate;i++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         gm[i] = prlim[i][i];          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for(i=1;i<=nlstate;i++)          /*if(lli ==000.0)*/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     } /* End theta */          ipmx +=1;
           sw += weight[i];
     trgradg =matrix(1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     for(j=1; j<=nlstate;j++)      } /* end of individual */
       for(theta=1; theta <=npar; theta++)    }  else if(mle==2){
         trgradg[j][theta]=gradg[theta][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1;i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       varpl[i][(int)age] =0.;          for (ii=1;ii<=nlstate+ndeath;ii++)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            for (j=1;j<=nlstate+ndeath;j++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1;i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            }
           for(d=0; d<=dh[mi][i]; d++){
     fprintf(ficresvpl,"%.0f ",age );            newm=savm;
     for(i=1; i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficresvpl,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_vector(gp,1,nlstate);            }
     free_vector(gm,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_matrix(gradg,1,npar,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_matrix(trgradg,1,nlstate,1,npar);            savm=oldm;
   } /* End age */            oldm=newm;
           } /* end mult */
   free_vector(xp,1,npar);        
   free_matrix(doldm,1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
   free_matrix(dnewm,1,nlstate,1,nlstate);          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
 /************ Variance of one-step probabilities  ******************/          sw += weight[i];
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {        } /* end of wave */
   int i, j;      } /* end of individual */
   int k=0, cptcode;    }  else if(mle==3){  /* exponential inter-extrapolation */
   double **dnewm,**doldm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *xp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *gp, *gm;        for(mi=1; mi<= wav[i]-1; mi++){
   double **gradg, **trgradg;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double age,agelim, cov[NCOVMAX];            for (j=1;j<=nlstate+ndeath;j++){
   int theta;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileresprob[FILENAMELENGTH];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   strcpy(fileresprob,"prob");          for(d=0; d<dh[mi][i]; d++){
   strcat(fileresprob,fileres);            newm=savm;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("Problem with resultfile: %s\n", fileresprob);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   xp=vector(1,npar);            savm=oldm;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            oldm=newm;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          } /* end mult */
          
   cov[1]=1;          s1=s[mw[mi][i]][i];
   for (age=bage; age<=fage; age ++){          s2=s[mw[mi+1][i]][i];
     cov[2]=age;          bbh=(double)bh[mi][i]/(double)stepm; 
     gradg=matrix(1,npar,1,9);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     trgradg=matrix(1,9,1,npar);          ipmx +=1;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          sw += weight[i];
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
     for(theta=1; theta <=npar; theta++){      } /* end of individual */
       for(i=1; i<=npar; i++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
       k=0;            for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<= (nlstate+ndeath); i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(j=1; j<=(nlstate+ndeath);j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
            k=k+1;            }
           gp[k]=pmmij[i][j];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=npar; i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
              
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       pmij(pmmij,cov,ncovmodel,xp,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       k=0;            savm=oldm;
       for(i=1; i<=(nlstate+ndeath); i++){            oldm=newm;
         for(j=1; j<=(nlstate+ndeath);j++){          } /* end mult */
           k=k+1;        
           gm[k]=pmmij[i][j];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          if( s2 > nlstate){ 
                  lli=log(out[s1][s2] - savm[s1][s2]);
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          }else{
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          }
           ipmx +=1;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          sw += weight[i];
       for(theta=1; theta <=npar; theta++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       trgradg[j][theta]=gradg[theta][j];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      } /* end of individual */
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      pmij(pmmij,cov,ncovmodel,x,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
      k=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
      for(i=1; i<=(nlstate+ndeath); i++){            for (j=1;j<=nlstate+ndeath;j++){
        for(j=1; j<=(nlstate+ndeath);j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          k=k+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          gm[k]=pmmij[i][j];            }
         }          for(d=0; d<dh[mi][i]; d++){
      }            newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      /*printf("\n%d ",(int)age);            for (kk=1; kk<=cptcovage;kk++) {
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
           
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      }*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   fprintf(ficresprob,"\n%d ",(int)age);            oldm=newm;
           } /* end mult */
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          s1=s[mw[mi][i]][i];
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          s2=s[mw[mi+1][i]][i];
   }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          sw += weight[i];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        } /* end of wave */
 }      } /* end of individual */
  free_vector(xp,1,npar);    } /* End of if */
 fclose(ficresprob);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  exit(0);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
 /***********************************************/  }
 /**************** Main Program *****************/  
 /***********************************************/  /*************** log-likelihood *************/
   double funcone( double *x)
 /*int main(int argc, char *argv[])*/  {
 int main()    /* Same as likeli but slower because of a lot of printf and if */
 {    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double **out;
   double agedeb, agefin,hf;    double lli; /* Individual log likelihood */
   double agemin=1.e20, agemax=-1.e20;    double llt;
     int s1, s2;
   double fret;    double bbh, survp;
   double **xi,tmp,delta;    /*extern weight */
     /* We are differentiating ll according to initial status */
   double dum; /* Dummy variable */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double ***p3mat;    /*for(i=1;i<imx;i++) 
   int *indx;      printf(" %d\n",s[4][i]);
   char line[MAXLINE], linepar[MAXLINE];    */
   char title[MAXLINE];    cov[1]=1.;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char popfile[FILENAMELENGTH];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      for(mi=1; mi<= wav[i]-1; mi++){
   int firstobs=1, lastobs=10;        for (ii=1;ii<=nlstate+ndeath;ii++)
   int sdeb, sfin; /* Status at beginning and end */          for (j=1;j<=nlstate+ndeath;j++){
   int c,  h , cpt,l;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int ju,jl, mi;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(d=0; d<dh[mi][i]; d++){
   int mobilav=0,popforecast=0;          newm=savm;
   int hstepm, nhstepm;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int *popage;/*boolprev=0 if date and zero if wave*/          for (kk=1; kk<=cptcovage;kk++) {
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   double bage, fage, age, agelim, agebase;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   double ftolpl=FTOL;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **prlim;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *severity;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   double ***param; /* Matrix of parameters */          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   double  *p;          savm=oldm;
   double **matcov; /* Matrix of covariance */          oldm=newm;
   double ***delti3; /* Scale */        } /* end mult */
   double *delti; /* Scale */        
   double ***eij, ***vareij;        s1=s[mw[mi][i]][i];
   double **varpl; /* Variances of prevalence limits by age */        s2=s[mw[mi+1][i]][i];
   double *epj, vepp;        bbh=(double)bh[mi][i]/(double)stepm; 
   double kk1, kk2;        /* bias is positive if real duration
   double *popeffectif,*popcount;         * is higher than the multiple of stepm and negative otherwise.
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;         */
   double yp,yp1,yp2;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";        } else if  (s2==-2) {
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
   char z[1]="c", occ;        }else if (mle==1){
 #include <sys/time.h>          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 #include <time.h>        } else if(mle==2){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          } else if(mle==3){  /* exponential inter-extrapolation */
   /* long total_usecs;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   struct timeval start_time, end_time;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
            lli=log(out[s1][s2]); /* Original formula */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        } else{  /* mle=0 back to 1 */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
   printf("\nIMACH, Version 0.7");        } /* End of if */
   printf("\nEnter the parameter file name: ");        ipmx +=1;
         sw += weight[i];
 #ifdef windows        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   scanf("%s",pathtot);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   getcwd(pathcd, size);        if(globpr){
   /*cygwin_split_path(pathtot,path,optionfile);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/   %11.6f %11.6f %11.6f ", \
   /* cutv(path,optionfile,pathtot,'\\');*/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 split(pathtot, path,optionfile);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   chdir(path);            llt +=ll[k]*gipmx/gsw;
   replace(pathc,path);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 #endif          }
 #ifdef unix          fprintf(ficresilk," %10.6f\n", -llt);
   scanf("%s",optionfile);        }
 #endif      } /* end of wave */
     } /* end of individual */
 /*-------- arguments in the command line --------*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   strcpy(fileres,"r");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   strcat(fileres, optionfile);    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   /*---------arguments file --------*/      gsw=sw;
     }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    return -l;
     printf("Problem with optionfile %s\n",optionfile);  }
     goto end;  
   }  
   /*************** function likelione ***********/
   strcpy(filereso,"o");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   strcat(filereso,fileres);  {
   if((ficparo=fopen(filereso,"w"))==NULL) {    /* This routine should help understanding what is done with 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;       the selection of individuals/waves and
   }       to check the exact contribution to the likelihood.
        Plotting could be done.
   /* Reads comments: lines beginning with '#' */     */
   while((c=getc(ficpar))=='#' && c!= EOF){    int k;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if(*globpri !=0){ /* Just counts and sums, no printings */
     puts(line);      strcpy(fileresilk,"ilk"); 
     fputs(line,ficparo);      strcat(fileresilk,fileres);
   }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   ungetc(c,ficpar);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 while((c=getc(ficpar))=='#' && c!= EOF){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     ungetc(c,ficpar);      for(k=1; k<=nlstate; k++) 
     fgets(line, MAXLINE, ficpar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     puts(line);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    *fretone=(*funcone)(p);
      if(*globpri !=0){
          fclose(ficresilk);
   covar=matrix(0,NCOVMAX,1,n);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   cptcovn=0;      fflush(fichtm); 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    } 
     return;
   ncovmodel=2+cptcovn;  }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
    
   /* Read guess parameters */  /*********** Maximum Likelihood Estimation ***************/
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    int i,j, iter;
     puts(line);    double **xi;
     fputs(line,ficparo);    double fret;
   }    double fretone; /* Only one call to likelihood */
   ungetc(c,ficpar);    /*  char filerespow[FILENAMELENGTH];*/
      xi=matrix(1,npar,1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (i=1;i<=npar;i++)
     for(i=1; i <=nlstate; i++)      for (j=1;j<=npar;j++)
     for(j=1; j <=nlstate+ndeath-1; j++){        xi[i][j]=(i==j ? 1.0 : 0.0);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       fprintf(ficparo,"%1d%1d",i1,j1);    strcpy(filerespow,"pow"); 
       printf("%1d%1d",i,j);    strcat(filerespow,fileres);
       for(k=1; k<=ncovmodel;k++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         fscanf(ficpar," %lf",&param[i][j][k]);      printf("Problem with resultfile: %s\n", filerespow);
         printf(" %lf",param[i][j][k]);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         fprintf(ficparo," %lf",param[i][j][k]);    }
       }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       fscanf(ficpar,"\n");    for (i=1;i<=nlstate;i++)
       printf("\n");      for(j=1;j<=nlstate+ndeath;j++)
       fprintf(ficparo,"\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }    fprintf(ficrespow,"\n");
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   p=param[1][1];    free_matrix(xi,1,npar,1,npar);
      fclose(ficrespow);
   /* Reads comments: lines beginning with '#' */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     ungetc(c,ficpar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fgets(line, MAXLINE, ficpar);  
     puts(line);  }
     fputs(line,ficparo);  
   }  /**** Computes Hessian and covariance matrix ***/
   ungetc(c,ficpar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double  **a,**y,*x,pd;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double **hess;
   for(i=1; i <=nlstate; i++){    int i, j,jk;
     for(j=1; j <=nlstate+ndeath-1; j++){    int *indx;
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(k=1; k<=ncovmodel;k++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    void ludcmp(double **a, int npar, int *indx, double *d) ;
         printf(" %le",delti3[i][j][k]);    double gompertz(double p[]);
         fprintf(ficparo," %le",delti3[i][j][k]);    hess=matrix(1,npar,1,npar);
       }  
       fscanf(ficpar,"\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
       printf("\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       fprintf(ficparo,"\n");    for (i=1;i<=npar;i++){
     }      printf("%d",i);fflush(stdout);
   }      fprintf(ficlog,"%d",i);fflush(ficlog);
   delti=delti3[1][1];     
         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){      /*  printf(" %f ",p[i]);
     ungetc(c,ficpar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    
     fputs(line,ficparo);    for (i=1;i<=npar;i++) {
   }      for (j=1;j<=npar;j++)  {
   ungetc(c,ficpar);        if (j>i) { 
            printf(".%d%d",i,j);fflush(stdout);
   matcov=matrix(1,npar,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   for(i=1; i <=npar; i++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
     fscanf(ficpar,"%s",&str);          
     printf("%s",str);          hess[j][i]=hess[i][j];    
     fprintf(ficparo,"%s",str);          /*printf(" %lf ",hess[i][j]);*/
     for(j=1; j <=i; j++){        }
       fscanf(ficpar," %le",&matcov[i][j]);      }
       printf(" %.5le",matcov[i][j]);    }
       fprintf(ficparo," %.5le",matcov[i][j]);    printf("\n");
     }    fprintf(ficlog,"\n");
     fscanf(ficpar,"\n");  
     printf("\n");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficparo,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    
   for(i=1; i <=npar; i++)    a=matrix(1,npar,1,npar);
     for(j=i+1;j<=npar;j++)    y=matrix(1,npar,1,npar);
       matcov[i][j]=matcov[j][i];    x=vector(1,npar);
        indx=ivector(1,npar);
   printf("\n");    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     /*-------- data file ----------*/  
     if((ficres =fopen(fileres,"w"))==NULL) {    for (j=1;j<=npar;j++) {
       printf("Problem with resultfile: %s\n", fileres);goto end;      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
     fprintf(ficres,"#%s\n",version);      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
     if((fic=fopen(datafile,"r"))==NULL)    {        matcov[i][j]=x[i];
       printf("Problem with datafile: %s\n", datafile);goto end;      }
     }    }
   
     n= lastobs;    printf("\n#Hessian matrix#\n");
     severity = vector(1,maxwav);    fprintf(ficlog,"\n#Hessian matrix#\n");
     outcome=imatrix(1,maxwav+1,1,n);    for (i=1;i<=npar;i++) { 
     num=ivector(1,n);      for (j=1;j<=npar;j++) { 
     moisnais=vector(1,n);        printf("%.3e ",hess[i][j]);
     annais=vector(1,n);        fprintf(ficlog,"%.3e ",hess[i][j]);
     moisdc=vector(1,n);      }
     andc=vector(1,n);      printf("\n");
     agedc=vector(1,n);      fprintf(ficlog,"\n");
     cod=ivector(1,n);    }
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /* Recompute Inverse */
     mint=matrix(1,maxwav,1,n);    for (i=1;i<=npar;i++)
     anint=matrix(1,maxwav,1,n);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     s=imatrix(1,maxwav+1,1,n);    ludcmp(a,npar,indx,&pd);
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);    /*  printf("\n#Hessian matrix recomputed#\n");
     ncodemax=ivector(1,8);  
     for (j=1;j<=npar;j++) {
     i=1;      for (i=1;i<=npar;i++) x[i]=0;
     while (fgets(line, MAXLINE, fic) != NULL)    {      x[j]=1;
       if ((i >= firstobs) && (i <=lastobs)) {      lubksb(a,npar,indx,x);
              for (i=1;i<=npar;i++){ 
         for (j=maxwav;j>=1;j--){        y[i][j]=x[i];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        printf("%.3e ",y[i][j]);
           strcpy(line,stra);        fprintf(ficlog,"%.3e ",y[i][j]);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("\n");
         }      fprintf(ficlog,"\n");
            }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     free_matrix(a,1,npar,1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(y,1,npar,1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(hess,1,npar,1,npar);
         for (j=ncov;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }  }
         num[i]=atol(stra);  
          /*************** hessian matrix ****************/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  {
     int i;
         i=i+1;    int l=1, lmax=20;
       }    double k1,k2;
     }    double p2[MAXPARM+1]; /* identical to x */
     /* printf("ii=%d", ij);    double res;
        scanf("%d",i);*/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   imx=i-1; /* Number of individuals */    double fx;
     int k=0,kmax=10;
   /* for (i=1; i<=imx; i++){    double l1;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fx=func(x);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    for (i=1;i<=npar;i++) p2[i]=x[i];
     }    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       l1=pow(10,l);
     for (i=1; i<=imx; i++)      delts=delt;
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   /* Calculation of the number of parameter from char model*/        p2[theta]=x[theta] +delt;
   Tvar=ivector(1,15);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   Tprod=ivector(1,15);        p2[theta]=x[theta]-delt;
   Tvaraff=ivector(1,15);        k2=func(p2)-fx;
   Tvard=imatrix(1,15,1,2);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   Tage=ivector(1,15);              res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
            
   if (strlen(model) >1){  #ifdef DEBUGHESS
     j=0, j1=0, k1=1, k2=1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     j=nbocc(model,'+');        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     j1=nbocc(model,'*');  #endif
     cptcovn=j+1;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     cptcovprod=j1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
              k=kmax;
            }
     strcpy(modelsav,model);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          k=kmax; l=lmax*10.;
       printf("Error. Non available option model=%s ",model);        }
       goto end;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     }          delts=delt;
            }
     for(i=(j+1); i>=1;i--){      }
       cutv(stra,strb,modelsav,'+');    }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    delti[theta]=delts;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    return res; 
       /*scanf("%d",i);*/    
       if (strchr(strb,'*')) {  }
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           cptcovprod--;  {
           cutv(strb,stre,strd,'V');    int i;
           Tvar[i]=atoi(stre);    int l=1, l1, lmax=20;
           cptcovage++;    double k1,k2,k3,k4,res,fx;
             Tage[cptcovage]=i;    double p2[MAXPARM+1];
             /*printf("stre=%s ", stre);*/    int k;
         }  
         else if (strcmp(strd,"age")==0) {    fx=func(x);
           cptcovprod--;    for (k=1; k<=2; k++) {
           cutv(strb,stre,strc,'V');      for (i=1;i<=npar;i++) p2[i]=x[i];
           Tvar[i]=atoi(stre);      p2[thetai]=x[thetai]+delti[thetai]/k;
           cptcovage++;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           Tage[cptcovage]=i;      k1=func(p2)-fx;
         }    
         else {      p2[thetai]=x[thetai]+delti[thetai]/k;
           cutv(strb,stre,strc,'V');      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           Tvar[i]=ncov+k1;      k2=func(p2)-fx;
           cutv(strb,strc,strd,'V');    
           Tprod[k1]=i;      p2[thetai]=x[thetai]-delti[thetai]/k;
           Tvard[k1][1]=atoi(strc);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           Tvard[k1][2]=atoi(stre);      k3=func(p2)-fx;
           Tvar[cptcovn+k2]=Tvard[k1][1];    
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      p2[thetai]=x[thetai]-delti[thetai]/k;
           for (k=1; k<=lastobs;k++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      k4=func(p2)-fx;
           k1++;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           k2=k2+2;  #ifdef DEBUG
         }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       else {  #endif
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    }
        /*  scanf("%d",i);*/    return res;
       cutv(strd,strc,strb,'V');  }
       Tvar[i]=atoi(strc);  
       }  /************** Inverse of matrix **************/
       strcpy(modelsav,stra);    void ludcmp(double **a, int n, int *indx, double *d) 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  { 
         scanf("%d",i);*/    int i,imax,j,k; 
     }    double big,dum,sum,temp; 
 }    double *vv; 
     
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    vv=vector(1,n); 
   printf("cptcovprod=%d ", cptcovprod);    *d=1.0; 
   scanf("%d ",i);*/    for (i=1;i<=n;i++) { 
     fclose(fic);      big=0.0; 
       for (j=1;j<=n;j++) 
     /*  if(mle==1){*/        if ((temp=fabs(a[i][j])) > big) big=temp; 
     if (weightopt != 1) { /* Maximisation without weights*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(i=1;i<=n;i++) weight[i]=1.0;      vv[i]=1.0/big; 
     }    } 
     /*-calculation of age at interview from date of interview and age at death -*/    for (j=1;j<=n;j++) { 
     agev=matrix(1,maxwav,1,imx);      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
    for (i=1; i<=imx; i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      for(m=2; (m<= maxwav); m++)        a[i][j]=sum; 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      } 
          anint[m][i]=9999;      big=0.0; 
          s[m][i]=-1;      for (i=j;i<=n;i++) { 
        }        sum=a[i][j]; 
            for (k=1;k<j;k++) 
     for (i=1; i<=imx; i++)  {          sum -= a[i][k]*a[k][j]; 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        a[i][j]=sum; 
       for(m=1; (m<= maxwav); m++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         if(s[m][i] >0){          big=dum; 
           if (s[m][i] == nlstate+1) {          imax=i; 
             if(agedc[i]>0)        } 
               if(moisdc[i]!=99 && andc[i]!=9999)      } 
               agev[m][i]=agedc[i];      if (j != imax) { 
             else {        for (k=1;k<=n;k++) { 
               if (andc[i]!=9999){          dum=a[imax][k]; 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          a[imax][k]=a[j][k]; 
               agev[m][i]=-1;          a[j][k]=dum; 
               }        } 
             }        *d = -(*d); 
           }        vv[imax]=vv[j]; 
           else if(s[m][i] !=9){ /* Should no more exist */      } 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      indx[j]=imax; 
             if(mint[m][i]==99 || anint[m][i]==9999)      if (a[j][j] == 0.0) a[j][j]=TINY; 
               agev[m][i]=1;      if (j != n) { 
             else if(agev[m][i] <agemin){        dum=1.0/(a[j][j]); 
               agemin=agev[m][i];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      } 
             }    } 
             else if(agev[m][i] >agemax){    free_vector(vv,1,n);  /* Doesn't work */
               agemax=agev[m][i];  ;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  } 
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/  void lubksb(double **a, int n, int *indx, double b[]) 
             /*   agev[m][i] = age[i]+2*m;*/  { 
           }    int i,ii=0,ip,j; 
           else { /* =9 */    double sum; 
             agev[m][i]=1;   
             s[m][i]=-1;    for (i=1;i<=n;i++) { 
           }      ip=indx[i]; 
         }      sum=b[ip]; 
         else /*= 0 Unknown */      b[ip]=b[i]; 
           agev[m][i]=1;      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
          else if (sum) ii=i; 
     }      b[i]=sum; 
     for (i=1; i<=imx; i++)  {    } 
       for(m=1; (m<= maxwav); m++){    for (i=n;i>=1;i--) { 
         if (s[m][i] > (nlstate+ndeath)) {      sum=b[i]; 
           printf("Error: Wrong value in nlstate or ndeath\n");        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           goto end;      b[i]=sum/a[i][i]; 
         }    } 
       }  } 
     }  
   void pstamp(FILE *fichier)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     free_vector(severity,1,maxwav);  }
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);  /************ Frequencies ********************/
     free_vector(annais,1,n);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     /* free_matrix(mint,1,maxwav,1,n);  {  /* Some frequencies */
        free_matrix(anint,1,maxwav,1,n);*/    
     free_vector(moisdc,1,n);    int i, m, jk, k1,i1, j1, bool, z1,j;
     free_vector(andc,1,n);    int first;
     double ***freq; /* Frequencies */
        double *pp, **prop;
     wav=ivector(1,imx);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    char fileresp[FILENAMELENGTH];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    
        pp=vector(1,nlstate);
     /* Concatenates waves */    prop=matrix(1,nlstate,iagemin,iagemax+3);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
       Tcode=ivector(1,100);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       ncodemax[1]=1;      exit(0);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    }
          freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
    codtab=imatrix(1,100,1,10);    j1=0;
    h=0;    
    m=pow(2,cptcoveff);    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){    first=1;
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
            h++;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
            if (h>m) h=1;codtab[h][k]=j;    /*    j1++;
          }  */
        }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
      }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
    }          scanf("%d", i);*/
            for (i=-5; i<=nlstate+ndeath; i++)  
    /* Calculates basic frequencies. Computes observed prevalence at single age          for (jk=-5; jk<=nlstate+ndeath; jk++)  
        and prints on file fileres'p'. */            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
            
            for (i=1; i<=nlstate; i++)  
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(m=iagemin; m <= iagemax+3; m++)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prop[i][m]=0;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        dateintsum=0;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        k2cpt=0;
              for (i=1; i<=imx; i++) {
     /* For Powell, parameters are in a vector p[] starting at p[1]          bool=1;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            for (z1=1; z1<=cptcoveff; z1++)       
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
     if(mle==1){                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                bool=0;
     }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                      bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
     /*--------- results files --------------*/                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                } 
           }
    jk=1;   
    fprintf(ficres,"# Parameters\n");          if (bool==1){
    printf("# Parameters\n");            for(m=firstpass; m<=lastpass; m++){
    for(i=1,jk=1; i <=nlstate; i++){              k2=anint[m][i]+(mint[m][i]/12.);
      for(k=1; k <=(nlstate+ndeath); k++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
        if (k != i)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
          {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
            printf("%d%d ",i,k);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
            fprintf(ficres,"%1d%1d ",i,k);                if (m<lastpass) {
            for(j=1; j <=ncovmodel; j++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
              printf("%f ",p[jk]);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
              fprintf(ficres,"%f ",p[jk]);                }
              jk++;                
            }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
            printf("\n");                  dateintsum=dateintsum+k2;
            fprintf(ficres,"\n");                  k2cpt++;
          }                }
      }                /*}*/
    }            }
  if(mle==1){          }
     /* Computing hessian and covariance matrix */        } /* end i */
     ftolhess=ftol; /* Usually correct */         
     hesscov(matcov, p, npar, delti, ftolhess, func);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  }        pstamp(ficresp);
     fprintf(ficres,"# Scales\n");        if  (cptcovn>0) {
     printf("# Scales\n");          fprintf(ficresp, "\n#********** Variable "); 
      for(i=1,jk=1; i <=nlstate; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficresp, "**********\n#");
         if (j!=i) {          fprintf(ficlog, "\n#********** Variable "); 
           fprintf(ficres,"%1d%1d",i,j);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           printf("%1d%1d",i,j);          fprintf(ficlog, "**********\n#");
           for(k=1; k<=ncovmodel;k++){        }
             printf(" %.5e",delti[jk]);        for(i=1; i<=nlstate;i++) 
             fprintf(ficres," %.5e",delti[jk]);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             jk++;        fprintf(ficresp, "\n");
           }        
           printf("\n");        for(i=iagemin; i <= iagemax+3; i++){
           fprintf(ficres,"\n");          if(i==iagemax+3){
         }            fprintf(ficlog,"Total");
       }          }else{
      }            if(first==1){
                  first=0;
     k=1;              printf("See log file for details...\n");
     fprintf(ficres,"# Covariance\n");            }
     printf("# Covariance\n");            fprintf(ficlog,"Age %d", i);
     for(i=1;i<=npar;i++){          }
       /*  if (k>nlstate) k=1;          for(jk=1; jk <=nlstate ; jk++){
       i1=(i-1)/(ncovmodel*nlstate)+1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              pp[jk] += freq[jk][m][i]; 
       printf("%s%d%d",alph[k],i1,tab[i]);*/          }
       fprintf(ficres,"%3d",i);          for(jk=1; jk <=nlstate ; jk++){
       printf("%3d",i);            for(m=-1, pos=0; m <=0 ; m++)
       for(j=1; j<=i;j++){              pos += freq[jk][m][i];
         fprintf(ficres," %.5e",matcov[i][j]);            if(pp[jk]>=1.e-10){
         printf(" %.5e",matcov[i][j]);              if(first==1){
       }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficres,"\n");              }
       printf("\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       k++;            }else{
     }              if(first==1)
                    printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       ungetc(c,ficpar);            }
       fgets(line, MAXLINE, ficpar);          }
       puts(line);  
       fputs(line,ficparo);          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     ungetc(c,ficpar);              pp[jk] += freq[jk][m][i];
            }       
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                pos += pp[jk];
     if (fage <= 2) {            posprop += prop[jk][i];
       bage = agemin;          }
       fage = agemax;          for(jk=1; jk <=nlstate ; jk++){
     }            if(pos>=1.e-5){
               if(first==1)
     fprintf(ficres,"# agemin agemax for life expectancy.\n");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            }else{
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            if( i <= iagemax){
     puts(line);              if(pos>=1.e-5){
     fputs(line,ficparo);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   ungetc(c,ficpar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);              else
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            }
                }
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     fgets(line, MAXLINE, ficpar);            for(m=-1; m <=nlstate+ndeath; m++)
     puts(line);              if(freq[jk][m][i] !=0 ) {
     fputs(line,ficparo);              if(first==1)
   }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   ungetc(c,ficpar);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                }
           if(i <= iagemax)
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            fprintf(ficresp,"\n");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          if(first==1)
             printf("Others in log...\n");
   fscanf(ficpar,"pop_based=%d\n",&popbased);          fprintf(ficlog,"\n");
    fprintf(ficparo,"pop_based=%d\n",popbased);          }
    fprintf(ficres,"pop_based=%d\n",popbased);          /*}*/
     }
   while((c=getc(ficpar))=='#' && c!= EOF){    dateintmean=dateintsum/k2cpt; 
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);    fclose(ficresp);
     puts(line);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     fputs(line,ficparo);    free_vector(pp,1,nlstate);
   }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   ungetc(c,ficpar);    /* End of Freq */
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);  }
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);  
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  /*------------ gnuplot -------------*/       in each health status at the date of interview (if between dateprev1 and dateprev2).
 chdir(pathcd);       We still use firstpass and lastpass as another selection.
   if((ficgp=fopen("graph.plt","w"))==NULL) {    */
     printf("Problem with file graph.gp");goto end;   
   }    int i, m, jk, k1, i1, j1, bool, z1,j;
 #ifdef windows    double ***freq; /* Frequencies */
   fprintf(ficgp,"cd \"%s\" \n",pathc);    double *pp, **prop;
 #endif    double pos,posprop; 
 m=pow(2,cptcoveff);    double  y2; /* in fractional years */
      int iagemin, iagemax;
  /* 1eme*/    int first; /** to stop verbosity which is redirected to log file */
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    iagemin= (int) agemin;
     iagemax= (int) agemax;
 #ifdef windows    /*pp=vector(1,nlstate);*/
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 #endif    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 #ifdef unix    j1=0;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    
 #endif    /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    first=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 }      /*for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        j1++;*/
     for (i=1; i<= nlstate ; i ++) {        
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for (i=1; i<=nlstate; i++)  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0.0;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       
      for (i=1; i<= nlstate ; i ++) {        for (i=1; i<=imx; i++) { /* Each individual */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          bool=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if  (cptcovn>0) {
 }              for (z1=1; z1<=cptcoveff; z1++) 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 #ifdef unix                bool=0;
 fprintf(ficgp,"\nset ter gif small size 400,300");          } 
 #endif          if (bool==1) { 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   /*2 eme*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for (k1=1; k1<= m ; k1 ++) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     for (i=1; i<= nlstate+1 ; i ++) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       k=2*i;                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                } 
       for (j=1; j<= nlstate+1 ; j ++) {              }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            } /* end selection of waves */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for(i=iagemin; i <= iagemax+3; i++){  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            posprop += prop[jk][i]; 
       for (j=1; j<= nlstate+1 ; j ++) {          } 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){     
 }              if( i <=  iagemax){ 
       fprintf(ficgp,"\" t\"\" w l 0,");              if(posprop>=1.e-5){ 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                probs[i][jk][j1]= prop[jk][i]/posprop;
       for (j=1; j<= nlstate+1 ; j ++) {              } else{
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                if(first==1){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  first=0;
 }                    printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                }
       else fprintf(ficgp,"\" t\"\" w l 0,");              }
     }            } 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          }/* end jk */ 
   }        }/* end i */ 
        /*} *//* end i1 */
   /*3eme*/    } /* end j1 */
     
   for (k1=1; k1<= m ; k1 ++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {    /*free_vector(pp,1,nlstate);*/
       k=2+nlstate*(cpt-1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);  }  /* End of prevalence */
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  /************* Waves Concatenation ***************/
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
   /* CV preval stat */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   for (k1=1; k1<= m ; k1 ++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for (cpt=1; cpt<nlstate ; cpt ++) {       and mw[mi+1][i]. dh depends on stepm.
       k=3;       */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  
       for (i=1; i< nlstate ; i ++)    int i, mi, m;
         fprintf(ficgp,"+$%d",k+i+1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       double sum=0., jmean=0.;*/
          int first;
       l=3+(nlstate+ndeath)*cpt;    int j, k=0,jk, ju, jl;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    double sum=0.;
       for (i=1; i< nlstate ; i ++) {    first=0;
         l=3+(nlstate+ndeath)*cpt;    jmin=1e+5;
         fprintf(ficgp,"+$%d",l+i+1);    jmax=-1;
       }    jmean=0.;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for(i=1; i<=imx; i++){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      mi=0;
     }      m=firstpass;
   }        while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   /* proba elementaires */          mw[++mi][i]=m;
    for(i=1,jk=1; i <=nlstate; i++){        if(m >=lastpass)
     for(k=1; k <=(nlstate+ndeath); k++){          break;
       if (k != i) {        else
         for(j=1; j <=ncovmodel; j++){          m++;
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      }/* end while */
           /*fprintf(ficgp,"%s",alph[1]);*/      if (s[m][i] > nlstate){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        mi++;     /* Death is another wave */
           jk++;        /* if(mi==0)  never been interviewed correctly before death */
           fprintf(ficgp,"\n");           /* Only death is a correct wave */
         }        mw[mi][i]=m;
       }      }
     }  
     }      wav[i]=mi;
       if(mi==0){
   for(jk=1; jk <=m; jk++) {        nbwarn++;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        if(first==0){
    i=1;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    for(k2=1; k2<=nlstate; k2++) {          first=1;
      k3=i;        }
      for(k=1; k<=(nlstate+ndeath); k++) {        if(first==1){
        if (k != k2){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        }
 ij=1;      } /* end mi==0 */
         for(j=3; j <=ncovmodel; j++) {    } /* End individuals */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for(i=1; i<=imx; i++){
             ij++;      for(mi=1; mi<wav[i];mi++){
           }        if (stepm <=0)
           else          dh[mi][i]=1;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        else{
         }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           fprintf(ficgp,")/(1");            if (agedc[i] < 2*AGESUP) {
                      j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for(k1=1; k1 <=nlstate; k1++){                if(j==0) j=1;  /* Survives at least one month after exam */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              else if(j<0){
 ij=1;                nberr++;
           for(j=3; j <=ncovmodel; j++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                j=1; /* Temporary Dangerous patch */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             ij++;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           else              }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              k=k+1;
           }              if (j >= jmax){
           fprintf(ficgp,")");                jmax=j;
         }                ijmax=i;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              if (j <= jmin){
         i=i+ncovmodel;                jmin=j;
        }                ijmin=i;
      }              }
    }              sum=sum+j;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                }
   fclose(ficgp);          }
              else{
 chdir(path);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            k=k+1;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              if (j >= jmax) {
     free_ivector(num,1,n);              jmax=j;
     free_vector(agedc,1,n);              ijmax=i;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            }
     fclose(ficparo);            else if (j <= jmin){
     fclose(ficres);              jmin=j;
     /*  }*/              ijmin=i;
                }
    /*________fin mle=1_________*/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
                nberr++;
     /* No more information from the sample is required now */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* Reads comments: lines beginning with '#' */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            sum=sum+j;
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          jk= j/stepm;
     fputs(line,ficparo);          jl= j -jk*stepm;
   }          ju= j -(jk+1)*stepm;
   ungetc(c,ficpar);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);              dh[mi][i]=jk;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);              bh[mi][i]=0;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            }else{ /* We want a negative bias in order to only have interpolation ie
 /*--------- index.htm --------*/                    * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
   strcpy(optionfilehtm,optionfile);              bh[mi][i]=ju;
   strcat(optionfilehtm,".htm");            }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }else{
     printf("Problem with %s \n",optionfilehtm);goto end;            if(jl <= -ju){
   }              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">                                   * is higher than the multiple of stepm and negative otherwise.
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>                                   */
 Total number of observations=%d <br>            }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>            else{
 <hr  size=\"2\" color=\"#EC5E5E\">              dh[mi][i]=jk+1;
 <li>Outputs files<br><br>\n              bh[mi][i]=ju;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>            if(dh[mi][i]==0){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>              dh[mi][i]=1; /* At least one step */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>              bh[mi][i]=ju; /* At least one step */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>            }
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>          } /* end if mle */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        }
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>      } /* end wave */
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>    }
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
  fprintf(fichtm," <li>Graphs</li><p>");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
  j1=0;  {
  for(k1=1; k1<=m;k1++){    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
    for(i1=1; i1<=ncodemax[k1];i1++){    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
        j1++;    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
        if (cptcovn > 0) {     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* nbcode[Tvar[j]][1]= 
          for (cpt=1; cpt<=cptcoveff;cpt++)    */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
        }    int modmaxcovj=0; /* Modality max of covariates j */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    int cptcode=0; /* Modality max of covariates j */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        int modmincovj=0; /* Modality min of covariates j */
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    cptcoveff=0; 
        }   
     for(cpt=1; cpt<=nlstate;cpt++) {    for (k=-1; k < maxncov; k++) Ndum[k]=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      /* Loop on covariates without age and products */
      }    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
      for(cpt=1; cpt<=nlstate;cpt++) {      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>                                 modality of this covariate Vj*/ 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
      }                                      * If product of Vn*Vm, still boolean *:
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 health expectancies in states (1) and (2): e%s%d.gif<br>                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 fprintf(fichtm,"\n</body>");                                        modality of the nth covariate of individual i. */
    }        if (ij > modmaxcovj)
  }          modmaxcovj=ij; 
 fclose(fichtm);        else if (ij < modmincovj) 
           modmincovj=ij; 
   /*--------------- Prevalence limit --------------*/        if ((ij < -1) && (ij > NCOVMAX)){
            printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   strcpy(filerespl,"pl");          exit(1);
   strcat(filerespl,fileres);        }else
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        /* getting the maximum value of the modality of the covariate
   fprintf(ficrespl,"#Prevalence limit\n");           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   fprintf(ficrespl,"#Age ");           female is 1, then modmaxcovj=1.*/
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      }
   fprintf(ficrespl,"\n");      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
        cptcode=modmaxcovj;
   prlim=matrix(1,nlstate,1,nlstate);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     /*for (i=0; i<=cptcode; i++) {*/
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   k=0;        }
   agebase=agemin;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   agelim=agemax;           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   ftolpl=1.e-10;      } /* Ndum[-1] number of undefined modalities */
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
   for(cptcov=1;cptcov<=i1;cptcov++){      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         modmincovj=3; modmaxcovj = 7;
         k=k+1;         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
         fprintf(ficrespl,"\n#******");         variables V1_1 and V1_2.
         for(j=1;j<=cptcoveff;j++)         nbcode[Tvar[j]][ij]=k;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         nbcode[Tvar[j]][1]=0;
         fprintf(ficrespl,"******\n");         nbcode[Tvar[j]][2]=1;
                 nbcode[Tvar[j]][3]=2;
         for (age=agebase; age<=agelim; age++){      */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      ij=1; /* ij is similar to i but can jumps over null modalities */
           fprintf(ficrespl,"%.0f",age );      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
           for(i=1; i<=nlstate;i++)        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           fprintf(ficrespl," %.5f", prlim[i][i]);          /*recode from 0 */
           fprintf(ficrespl,"\n");          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
         }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       }                                       k is a modality. If we have model=V1+V1*sex 
     }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fclose(ficrespl);            ij++;
           }
   /*------------- h Pij x at various ages ------------*/          if (ij > ncodemax[j]) break; 
          }  /* end of loop on */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      } /* end of loop on modality */ 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    
   }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   printf("Computing pij: result on file '%s' \n", filerespij);    
      for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   /*if (stepm<=24) stepsize=2;*/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; 
   agelim=AGESUP;   } 
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   ij=1;
     for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   k=0;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   for(cptcov=1;cptcov<=i1;cptcov++){     if((Ndum[i]!=0) && (i<=ncovcol)){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
       k=k+1;       Tvaraff[ij]=i; /*For printing (unclear) */
         fprintf(ficrespij,"\n#****** ");       ij++;
         for(j=1;j<=cptcoveff;j++)     }else
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         Tvaraff[ij]=0;
         fprintf(ficrespij,"******\n");   }
           ij--;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   cptcoveff=ij; /*Number of total covariates*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*********** Health Expectancies ****************/
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);  {
           fprintf(ficrespij,"\n");    /* Health expectancies, no variances */
           for (h=0; h<=nhstepm; h++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    int nhstepma, nstepma; /* Decreasing with age */
             for(i=1; i<=nlstate;i++)    double age, agelim, hf;
               for(j=1; j<=nlstate+ndeath;j++)    double ***p3mat;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double eip;
             fprintf(ficrespij,"\n");  
           }    pstamp(ficreseij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           fprintf(ficrespij,"\n");    fprintf(ficreseij,"# Age");
         }    for(i=1; i<=nlstate;i++){
     }      for(j=1; j<=nlstate;j++){
   }        fprintf(ficreseij," e%1d%1d ",i,j);
       }
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      fprintf(ficreseij," e%1d. ",i);
     }
   fclose(ficrespij);    fprintf(ficreseij,"\n");
   
   /*---------- Forecasting ------------------*/    
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   strcpy(fileresf,"f");     * This is mainly to measure the difference between two models: for example
   strcat(fileresf,fileres);     * if stepm=24 months pijx are given only every 2 years and by summing them
   if((ficresf=fopen(fileresf,"w"))==NULL) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
   printf("Computing forecasting: result on file '%s' \n", fileresf);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   free_matrix(mint,1,maxwav,1,n);     * hypothesis. A more precise result, taking into account a more precise
   free_matrix(anint,1,maxwav,1,n);     * curvature will be obtained if estepm is as small as stepm. */
   free_matrix(agev,1,maxwav,1,imx);  
   /* Mobile average */    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   if (mobilav==1) {       Look at hpijx to understand the reason of that which relies in memory size
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       and note for a fixed period like estepm months */
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for (i=1; i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)       means that if the survival funtion is printed only each two years of age and if
           mobaverage[(int)agedeb][i][cptcod]=0.;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    */
       for (i=1; i<=nlstate;i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){    agelim=AGESUP;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    /* If stepm=6 months */
           }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         }      
       }  /* nhstepm age range expressed in number of stepm */
     }      nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (stepm<=12) stepsize=1;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   agelim=AGESUP;    for (age=bage; age<=fage; age ++){ 
   /*hstepm=stepsize*YEARM; *//* Every year of age */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   hstepm=1;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */      /* if (stepm >= YEARM) hstepm=1;*/
   yp1=modf(dateintmean,&yp);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);      /* If stepm=6 months */
   mprojmean=yp;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   yp1=modf((yp2*30.5),&yp);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   jprojmean=yp;      
   if(jprojmean==0) jprojmean=1;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   if(mprojmean==0) jprojmean=1;      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      
       printf("%d|",(int)age);fflush(stdout);
   if (popforecast==1) {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     if((ficpop=fopen(popfile,"r"))==NULL)    {      
       printf("Problem with population file : %s\n",popfile);goto end;      /* Computing expectancies */
     }      for(i=1; i<=nlstate;i++)
     popage=ivector(0,AGESUP);        for(j=1; j<=nlstate;j++)
     popeffectif=vector(0,AGESUP);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     popcount=vector(0,AGESUP);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
     i=1;              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  
       {          }
         i=i+1;  
       }      fprintf(ficreseij,"%3.0f",age );
     imx=i;      for(i=1; i<=nlstate;i++){
            eip=0;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficreseij,"%9.4f", eip );
       k=k+1;      }
       fprintf(ficresf,"\n#******");      fprintf(ficreseij,"\n");
       for(j=1;j<=cptcoveff;j++) {      
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresf,"******\n");    printf("\n");
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficlog,"\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    
       if (popforecast==1)  fprintf(ficresf," [Population]");  }
    
       for (cpt=0; cpt<=5;cpt++) {  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         fprintf(ficresf,"\n");  
   fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    {
       for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */    /* Covariances of health expectancies eij and of total life expectancies according
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     to initial status i, ei. .
         nhstepm = nhstepm/hstepm;    */
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double age, agelim, hf;
         oldm=oldms;savm=savms;    double ***p3matp, ***p3matm, ***varhe;
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double **dnewm,**doldm;
                    double *xp, *xm;
         for (h=0; h<=nhstepm; h++){    double **gp, **gm;
           if (h==(int) (calagedate+YEARM*cpt)) {    double ***gradg, ***trgradg;
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);    int theta;
           }  
           for(j=1; j<=nlstate+ndeath;j++) {    double eip, vip;
             kk1=0.;kk2=0;  
             for(i=1; i<=nlstate;i++) {            varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
               if (mobilav==1)    xp=vector(1,npar);
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    xm=vector(1,npar);
               else {    dnewm=matrix(1,nlstate*nlstate,1,npar);
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/    
               }    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];    fprintf(ficresstdeij,"# Age");
             }    for(i=1; i<=nlstate;i++){
                for(j=1; j<=nlstate;j++)
             if (h==(int)(calagedate+12*cpt)){        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
               fprintf(ficresf," %.3f", kk1);      fprintf(ficresstdeij," e%1d. ",i);
                  }
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    fprintf(ficresstdeij,"\n");
             }  
           }    pstamp(ficrescveij);
         }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficrescveij,"# Age");
       }    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++){
     }        cptj= (j-1)*nlstate+i;
   }        for(i2=1; i2<=nlstate;i2++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(j2=1; j2<=nlstate;j2++){
   if (popforecast==1) {            cptj2= (j2-1)*nlstate+i2;
     free_ivector(popage,0,AGESUP);            if(cptj2 <= cptj)
     free_vector(popeffectif,0,AGESUP);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     free_vector(popcount,0,AGESUP);          }
   }      }
   free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficrescveij,"\n");
   free_vector(weight,1,n);    
   fclose(ficresf);    if(estepm < stepm){
   /*---------- Health expectancies and variances ------------*/      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   strcpy(filerest,"t");    else  hstepm=estepm;   
   strcat(filerest,fileres);    /* We compute the life expectancy from trapezoids spaced every estepm months
   if((ficrest=fopen(filerest,"w"))==NULL) {     * This is mainly to measure the difference between two models: for example
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   strcpy(filerese,"e");     * to compare the new estimate of Life expectancy with the same linear 
   strcat(filerese,fileres);     * hypothesis. A more precise result, taking into account a more precise
   if((ficreseij=fopen(filerese,"w"))==NULL) {     * curvature will be obtained if estepm is as small as stepm. */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    /* For example we decided to compute the life expectancy with the smallest unit */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
  strcpy(fileresv,"v");       nstepm is the number of stepm from age to agelin. 
   strcat(fileresv,fileres);       Look at hpijx to understand the reason of that which relies in memory size
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       and note for a fixed period like estepm months */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   k=0;       results. So we changed our mind and took the option of the best precision.
   for(cptcov=1;cptcov<=i1;cptcov++){    */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       k=k+1;  
       fprintf(ficrest,"\n#****** ");    /* If stepm=6 months */
       for(j=1;j<=cptcoveff;j++)    /* nhstepm age range expressed in number of stepm */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim=AGESUP;
       fprintf(ficrest,"******\n");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficreseij,"\n#****** ");    /* if (stepm >= YEARM) hstepm=1;*/
       for(j=1;j<=cptcoveff;j++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    
       fprintf(ficreseij,"******\n");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresvij,"\n#****** ");    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for(j=1;j<=cptcoveff;j++)    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresvij,"******\n");    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    for (age=bage; age<=fage; age ++){ 
       oldm=oldms;savm=savms;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      /* if (stepm >= YEARM) hstepm=1;*/
       oldm=oldms;savm=savms;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
            /* If stepm=6 months */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       fprintf(ficrest,"\n");      
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       hf=1;  
       if (stepm >= YEARM) hf=stepm/YEARM;      /* Computing  Variances of health expectancies */
       epj=vector(1,nlstate+1);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       for(age=bage; age <=fage ;age++){         decrease memory allocation */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(theta=1; theta <=npar; theta++){
         if (popbased==1) {        for(i=1; i<=npar; i++){ 
           for(i=1; i<=nlstate;i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             prlim[i][i]=probs[(int)age][i][k];          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }        }
                hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficrest," %.0f",age);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for(j=1; j<= nlstate; j++){
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          for(i=1; i<=nlstate; i++){
           }            for(h=0; h<=nhstepm-1; h++){
           epj[nlstate+1] +=epj[j];              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         for(i=1, vepp=0.;i <=nlstate;i++)            }
           for(j=1;j <=nlstate;j++)          }
             vepp += vareij[i][j][(int)age];        }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));       
         for(j=1;j <=nlstate;j++){        for(ij=1; ij<= nlstate*nlstate; ij++)
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          for(h=0; h<=nhstepm-1; h++){
         }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         fprintf(ficrest,"\n");          }
       }      }/* End theta */
     }      
   }      
              for(h=0; h<=nhstepm-1; h++)
                for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
  fclose(ficreseij);      
  fclose(ficresvij);  
   fclose(ficrest);       for(ij=1;ij<=nlstate*nlstate;ij++)
   fclose(ficpar);        for(ji=1;ji<=nlstate*nlstate;ji++)
   free_vector(epj,1,nlstate+1);          varhe[ij][ji][(int)age] =0.;
   /*  scanf("%d ",i); */  
        printf("%d|",(int)age);fflush(stdout);
   /*------- Variance limit prevalence------*/         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
 strcpy(fileresvpl,"vpl");        for(k=0;k<=nhstepm-1;k++){
   strcat(fileresvpl,fileres);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          for(ij=1;ij<=nlstate*nlstate;ij++)
     exit(0);            for(ji=1;ji<=nlstate*nlstate;ji++)
   }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        }
       }
  k=0;  
  for(cptcov=1;cptcov<=i1;cptcov++){      /* Computing expectancies */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      k=k+1;      for(i=1; i<=nlstate;i++)
      fprintf(ficresvpl,"\n#****** ");        for(j=1; j<=nlstate;j++)
      for(j=1;j<=cptcoveff;j++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
      fprintf(ficresvpl,"******\n");            
                  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  
      oldm=oldms;savm=savms;          }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
    }      fprintf(ficresstdeij,"%3.0f",age );
  }      for(i=1; i<=nlstate;i++){
         eip=0.;
   fclose(ficresvpl);        vip=0.;
         for(j=1; j<=nlstate;j++){
   /*---------- End : free ----------------*/          eip += eij[i][j][(int)age];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
              vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
          fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresstdeij,"\n");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficrescveij,"%3.0f",age );
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   free_matrix(matcov,1,npar,1,npar);          cptj= (j-1)*nlstate+i;
   free_vector(delti,1,npar);          for(i2=1; i2<=nlstate;i2++)
              for(j2=1; j2<=nlstate;j2++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   printf("End of Imach\n");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            }
          }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      fprintf(ficrescveij,"\n");
   /*printf("Total time was %d uSec.\n", total_usecs);*/     
   /*------ End -----------*/    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  end:    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 #ifdef windows    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  chdir(pathcd);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
  system("..\\gp37mgw\\wgnuplot graph.plt");    fprintf(ficlog,"\n");
   
 #ifdef windows    free_vector(xm,1,npar);
   while (z[0] != 'q') {    free_vector(xp,1,npar);
     chdir(pathcd);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     scanf("%s",z);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     if (z[0] == 'c') system("./imach");  }
     else if (z[0] == 'e') {  
       chdir(path);  /************ Variance ******************/
       system(optionfilehtm);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     }  {
     else if (z[0] == 'q') exit(0);    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 #endif    /* double **newm;*/
 }    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         l=(nlstate+ndeath)*(cpt-1)+1;
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l,k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
       printf("\n Trying on same directory\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef OSX
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.20  
changed lines
  Added in v.1.153


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>