Diff for /imach/src/imach.c between versions 1.22 and 1.156

version 1.22, 2002/02/22 17:54:20 version 1.156, 2014/08/25 20:10:10
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolate Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.156  2014/08/25 20:10:10  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.155  2014/08/25 18:32:34  brouard
   first survey ("cross") where individuals from different ages are    Summary: New compile, minor changes
   interviewed on their health status or degree of disability (in the    Author: Brouard
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.154  2014/06/20 17:32:08  brouard
   (if any) in individual health status.  Health expectancies are    Summary: Outputs now all graphs of convergence to period prevalence
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.153  2014/06/20 16:45:46  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: If 3 live state, convergence to period prevalence on same graph
   simplest model is the multinomial logistic model where pij is the    Author: Brouard
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.152  2014/06/18 17:54:09  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.151  2014/06/18 16:43:30  brouard
   where the markup *Covariates have to be included here again* invites    *** empty log message ***
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   The advantage of this computer programme, compared to a simple    Author: brouard
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.149  2014/06/18 15:51:14  brouard
   intermediate interview, the information is lost, but taken into    Summary: Some fixes in parameter files errors
   account using an interpolation or extrapolation.      Author: Nicolas Brouard
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.148  2014/06/17 17:38:48  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Summary: Nothing new
   split into an exact number (nh*stepm) of unobserved intermediate    Author: Brouard
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Just a new packaging for OS/X version 0.98nS
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.147  2014/06/16 10:33:11  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.146  2014/06/16 10:20:28  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Merge
      Author: Brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Merge, before building revised version.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.145  2014/06/10 21:23:15  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: Debugging with valgrind
   software can be distributed freely for non commercial use. Latest version    Author: Nicolas Brouard
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Lot of changes in order to output the results with some covariates
      After the Edimburgh REVES conference 2014, it seems mandatory to
 #include <math.h>    improve the code.
 #include <stdio.h>    No more memory valgrind error but a lot has to be done in order to
 #include <stdlib.h>    continue the work of splitting the code into subroutines.
 #include <unistd.h>    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
 #define MAXLINE 256    the source code.
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"  
 #define FILENAMELENGTH 80    Revision 1.143  2014/01/26 09:45:38  brouard
 /*#define DEBUG*/    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.142  2014/01/26 03:57:36  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
 #define NINTERVMAX 8    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.141  2014/01/26 02:42:01  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.140  2011/09/02 10:37:54  brouard
 #define AGESUP 130    Summary: times.h is ok with mingw32 now.
 #define AGEBASE 40  
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 int erreur; /* Error number */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.138  2010/04/30 18:19:40  brouard
 int npar=NPARMAX;    *** empty log message ***
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.137  2010/04/29 18:11:38  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Checking covariates for more complex models
 int popbased=0;    than V1+V2. A lot of change to be done. Unstable.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.136  2010/04/26 20:30:53  brouard
 int maxwav; /* Maxim number of waves */    (Module): merging some libgsl code. Fixing computation
 int jmin, jmax; /* min, max spacing between 2 waves */    of likelione (using inter/intrapolation if mle = 0) in order to
 int mle, weightopt;    get same likelihood as if mle=1.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Some cleaning of code and comments added.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.135  2009/10/29 15:33:14  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Revision 1.134  2009/10/29 13:18:53  brouard
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.133  2009/07/06 10:21:25  brouard
  FILE  *ficresvij;    just nforces
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.132  2009/07/06 08:22:05  brouard
   char fileresvpl[FILENAMELENGTH];    Many tings
   
 #define NR_END 1    Revision 1.131  2009/06/20 16:22:47  brouard
 #define FREE_ARG char*    Some dimensions resccaled
 #define FTOL 1.0e-10  
     Revision 1.130  2009/05/26 06:44:34  brouard
 #define NRANSI    (Module): Max Covariate is now set to 20 instead of 8. A
 #define ITMAX 200    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define TOL 2.0e-4  
     Revision 1.129  2007/08/31 13:49:27  lievre
 #define CGOLD 0.3819660    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.127  2006/04/28 18:11:50  brouard
 #define TINY 1.0e-20    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 static double maxarg1,maxarg2;    loop. Now we define nhstepma in the age loop.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): In order to speed up (in case of numerous covariates) we
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    compute health expectancies (without variances) in a first step
      and then all the health expectancies with variances or standard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    deviation (needs data from the Hessian matrices) which slows the
 #define rint(a) floor(a+0.5)    computation.
     In the future we should be able to stop the program is only health
 static double sqrarg;    expectancies and graph are needed without standard deviations.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
 int imx;    imach-114 because nhstepm was no more computed in the age
 int stepm;    loop. Now we define nhstepma in the age loop.
 /* Stepm, step in month: minimum step interpolation*/    Version 0.98h
   
 int m,nb;    Revision 1.125  2006/04/04 15:20:31  lievre
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Errors in calculation of health expectancies. Age was not initialized.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Forecasting file added.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 double *weight;    The log-likelihood is printed in the log file
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.123  2006/03/20 10:52:43  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 /**************** split *************************/    otherwise the weight is truncated).
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Modification of warning when the covariates values are not 0 or
 {    1.
    char *s;                             /* pointer */    Version 0.98g
    int  l1, l2;                         /* length counters */  
     Revision 1.122  2006/03/20 09:45:41  brouard
    l1 = strlen( path );                 /* length of path */    (Module): Weights can have a decimal point as for
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    English (a comma might work with a correct LC_NUMERIC environment,
 #ifdef windows    otherwise the weight is truncated).
    s = strrchr( path, '\\' );           /* find last / */    Modification of warning when the covariates values are not 0 or
 #else    1.
    s = strrchr( path, '/' );            /* find last / */    Version 0.98g
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.121  2006/03/16 17:45:01  lievre
 #if     defined(__bsd__)                /* get current working directory */    * imach.c (Module): Comments concerning covariates added
       extern char       *getwd( );  
     * imach.c (Module): refinements in the computation of lli if
       if ( getwd( dirc ) == NULL ) {    status=-2 in order to have more reliable computation if stepm is
 #else    not 1 month. Version 0.98f
       extern char       *getcwd( );  
     Revision 1.120  2006/03/16 15:10:38  lievre
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): refinements in the computation of lli if
 #endif    status=-2 in order to have more reliable computation if stepm is
          return( GLOCK_ERROR_GETCWD );    not 1 month. Version 0.98f
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.119  2006/03/15 17:42:26  brouard
    } else {                             /* strip direcotry from path */    (Module): Bug if status = -2, the loglikelihood was
       s++;                              /* after this, the filename */    computed as likelihood omitting the logarithm. Version O.98e
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.118  2006/03/14 18:20:07  brouard
       strcpy( name, s );                /* save file name */    (Module): varevsij Comments added explaining the second
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    table of variances if popbased=1 .
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    }    (Module): Function pstamp added
    l1 = strlen( dirc );                 /* length of directory */    (Module): Version 0.98d
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.117  2006/03/14 17:16:22  brouard
 #else    (Module): varevsij Comments added explaining the second
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    table of variances if popbased=1 .
 #endif    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    s = strrchr( name, '.' );            /* find last / */    (Module): Function pstamp added
    s++;    (Module): Version 0.98d
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.116  2006/03/06 10:29:27  brouard
    l2= strlen( s)+1;    (Module): Variance-covariance wrong links and
    strncpy( finame, name, l1-l2);    varian-covariance of ej. is needed (Saito).
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.115  2006/02/27 12:17:45  brouard
 }    (Module): One freematrix added in mlikeli! 0.98c
   
     Revision 1.114  2006/02/26 12:57:58  brouard
 /******************************************/    (Module): Some improvements in processing parameter
     filename with strsep.
 void replace(char *s, char*t)  
 {    Revision 1.113  2006/02/24 14:20:24  brouard
   int i;    (Module): Memory leaks checks with valgrind and:
   int lg=20;    datafile was not closed, some imatrix were not freed and on matrix
   i=0;    allocation too.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.112  2006/01/30 09:55:26  brouard
     (s[i] = t[i]);    (Module): Back to gnuplot.exe instead of wgnuplot.exe
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.111  2006/01/25 20:38:18  brouard
 }    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 int nbocc(char *s, char occ)    can be a simple dot '.'.
 {  
   int i,j=0;    Revision 1.110  2006/01/25 00:51:50  brouard
   int lg=20;    (Module): Lots of cleaning and bugs added (Gompertz)
   i=0;  
   lg=strlen(s);    Revision 1.109  2006/01/24 19:37:15  brouard
   for(i=0; i<= lg; i++) {    (Module): Comments (lines starting with a #) are allowed in data.
   if  (s[i] == occ ) j++;  
   }    Revision 1.108  2006/01/19 18:05:42  lievre
   return j;    Gnuplot problem appeared...
 }    To be fixed
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.107  2006/01/19 16:20:37  brouard
 {    Test existence of gnuplot in imach path
   int i,lg,j,p=0;  
   i=0;    Revision 1.106  2006/01/19 13:24:36  brouard
   for(j=0; j<=strlen(t)-1; j++) {    Some cleaning and links added in html output
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.104  2005/09/30 16:11:43  lievre
     (u[j] = t[j]);    (Module): sump fixed, loop imx fixed, and simplifications.
   }    (Module): If the status is missing at the last wave but we know
      u[p]='\0';    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
    for(j=0; j<= lg; j++) {    contributions to the likelihood is 1 - Prob of dying from last
     if (j>=(p+1))(v[j-p-1] = t[j]);    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   }    the healthy state at last known wave). Version is 0.98
 }  
     Revision 1.103  2005/09/30 15:54:49  lievre
 /********************** nrerror ********************/    (Module): sump fixed, loop imx fixed, and simplifications.
   
 void nrerror(char error_text[])    Revision 1.102  2004/09/15 17:31:30  brouard
 {    Add the possibility to read data file including tab characters.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.101  2004/09/15 10:38:38  brouard
   exit(1);    Fix on curr_time
 }  
 /*********************** vector *******************/    Revision 1.100  2004/07/12 18:29:06  brouard
 double *vector(int nl, int nh)    Add version for Mac OS X. Just define UNIX in Makefile
 {  
   double *v;    Revision 1.99  2004/06/05 08:57:40  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    *** empty log message ***
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.98  2004/05/16 15:05:56  brouard
 }    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 /************************ free vector ******************/    state at each age, but using a Gompertz model: log u =a + b*age .
 void free_vector(double*v, int nl, int nh)    This is the basic analysis of mortality and should be done before any
 {    other analysis, in order to test if the mortality estimated from the
   free((FREE_ARG)(v+nl-NR_END));    cross-longitudinal survey is different from the mortality estimated
 }    from other sources like vital statistic data.
   
 /************************ivector *******************************/    The same imach parameter file can be used but the option for mle should be -3.
 int *ivector(long nl,long nh)  
 {    Agnès, who wrote this part of the code, tried to keep most of the
   int *v;    former routines in order to include the new code within the former code.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    The output is very simple: only an estimate of the intercept and of
   return v-nl+NR_END;    the slope with 95% confident intervals.
 }  
     Current limitations:
 /******************free ivector **************************/    A) Even if you enter covariates, i.e. with the
 void free_ivector(int *v, long nl, long nh)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 {    B) There is no computation of Life Expectancy nor Life Table.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 /******************* imatrix *******************************/    suppressed.
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.96  2003/07/15 15:38:55  brouard
 {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    rewritten within the same printf. Workaround: many printfs.
   int **m;  
      Revision 1.95  2003/07/08 07:54:34  brouard
   /* allocate pointers to rows */    * imach.c (Repository):
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Repository): Using imachwizard code to output a more meaningful covariance
   if (!m) nrerror("allocation failure 1 in matrix()");    matrix (cov(a12,c31) instead of numbers.
   m += NR_END;  
   m -= nrl;    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
    
   /* allocate rows and set pointers to them */    Revision 1.93  2003/06/25 16:33:55  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): On windows (cygwin) function asctime_r doesn't
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    exist so I changed back to asctime which exists.
   m[nrl] += NR_END;    (Module): Version 0.96b
   m[nrl] -= ncl;  
      Revision 1.92  2003/06/25 16:30:45  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 /****************** free_imatrix *************************/    helps to forecast when convergence will be reached. Elapsed time
 void free_imatrix(m,nrl,nrh,ncl,nch)    is stamped in powell.  We created a new html file for the graphs
       int **m;    concerning matrix of covariance. It has extension -cov.htm.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.90  2003/06/24 12:34:15  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    mle=-1 a template is output in file "or"mypar.txt with the design
   free((FREE_ARG) (m+nrl-NR_END));    of the covariance matrix to be input.
 }  
     Revision 1.89  2003/06/24 12:30:52  brouard
 /******************* matrix *******************************/    (Module): Some bugs corrected for windows. Also, when
 double **matrix(long nrl, long nrh, long ncl, long nch)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.87  2003/06/18 12:26:01  brouard
   m += NR_END;    Version 0.96
   m -= nrl;  
     Revision 1.86  2003/06/17 20:04:08  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Change position of html and gnuplot routines and added
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    routine fileappend.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    current date of interview. It may happen when the death was just
   return m;    prior to the death. In this case, dh was negative and likelihood
 }    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 /*************************free matrix ************************/    interview.
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    (Repository): Because some people have very long ID (first column)
 {    we changed int to long in num[] and we added a new lvector for
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    memory allocation. But we also truncated to 8 characters (left
   free((FREE_ARG)(m+nrl-NR_END));    truncation)
 }    (Repository): No more line truncation errors.
   
 /******************* ma3x *******************************/    Revision 1.84  2003/06/13 21:44:43  brouard
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    many times. Probs is memory consuming and must be used with
   double ***m;    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.83  2003/06/10 13:39:11  lievre
   m += NR_END;    *** empty log message ***
   m -= nrl;  
     Revision 1.82  2003/06/05 15:57:20  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Add log in  imach.c and  fullversion number is now printed.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  */
   m[nrl] -= ncl;  /*
      Interpolated Markov Chain
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Short summary of the programme:
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    This program computes Healthy Life Expectancies from
   m[nrl][ncl] += NR_END;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m[nrl][ncl] -= nll;    first survey ("cross") where individuals from different ages are
   for (j=ncl+1; j<=nch; j++)    interviewed on their health status or degree of disability (in the
     m[nrl][j]=m[nrl][j-1]+nlay;    case of a health survey which is our main interest) -2- at least a
      second wave of interviews ("longitudinal") which measure each change
   for (i=nrl+1; i<=nrh; i++) {    (if any) in individual health status.  Health expectancies are
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    computed from the time spent in each health state according to a
     for (j=ncl+1; j<=nch; j++)    model. More health states you consider, more time is necessary to reach the
       m[i][j]=m[i][j-1]+nlay;    Maximum Likelihood of the parameters involved in the model.  The
   }    simplest model is the multinomial logistic model where pij is the
   return m;    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /*************************free ma3x ************************/    'age' is age and 'sex' is a covariate. If you want to have a more
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    you to do it.  More covariates you add, slower the
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    convergence.
   free((FREE_ARG)(m+nrl-NR_END));  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /***************** f1dim *************************/    identical for each individual. Also, if a individual missed an
 extern int ncom;    intermediate interview, the information is lost, but taken into
 extern double *pcom,*xicom;    account using an interpolation or extrapolation.  
 extern double (*nrfunc)(double []);  
      hPijx is the probability to be observed in state i at age x+h
 double f1dim(double x)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   int j;    states. This elementary transition (by month, quarter,
   double f;    semester or year) is modelled as a multinomial logistic.  The hPx
   double *xt;    matrix is simply the matrix product of nh*stepm elementary matrices
      and the contribution of each individual to the likelihood is simply
   xt=vector(1,ncom);    hPijx.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Also this programme outputs the covariance matrix of the parameters but also
   free_vector(xt,1,ncom);    of the life expectancies. It also computes the period (stable) prevalence. 
   return f;    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 /*****************brent *************************/    This software have been partly granted by Euro-REVES, a concerted action
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   int iter;    software can be distributed freely for non commercial use. Latest version
   double a,b,d,etemp;    can be accessed at http://euroreves.ined.fr/imach .
   double fu,fv,fw,fx;  
   double ftemp;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   double p,q,r,tol1,tol2,u,v,w,x,xm;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   double e=0.0;    
      **********************************************************************/
   a=(ax < cx ? ax : cx);  /*
   b=(ax > cx ? ax : cx);    main
   x=w=v=bx;    read parameterfile
   fw=fv=fx=(*f)(x);    read datafile
   for (iter=1;iter<=ITMAX;iter++) {    concatwav
     xm=0.5*(a+b);    freqsummary
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (mle >= 1)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      mlikeli
     printf(".");fflush(stdout);    print results files
 #ifdef DEBUG    if mle==1 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);       computes hessian
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    read end of parameter file: agemin, agemax, bage, fage, estepm
 #endif        begin-prev-date,...
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    open gnuplot file
       *xmin=x;    open html file
       return fx;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     ftemp=fu;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     if (fabs(e) > tol1) {      freexexit2 possible for memory heap.
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    h Pij x                         | pij_nom  ficrestpij
       p=(x-v)*q-(x-w)*r;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       q=2.0*(q-r);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       if (q > 0.0) p = -p;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       q=fabs(q);  
       etemp=e;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       e=d;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       else {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
         d=p/q;  
         u=x+d;    forecasting if prevfcast==1 prevforecast call prevalence()
         if (u-a < tol2 || b-u < tol2)    health expectancies
           d=SIGN(tol1,xm-x);    Variance-covariance of DFLE
       }    prevalence()
     } else {     movingaverage()
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    varevsij() 
     }    if popbased==1 varevsij(,popbased)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    total life expectancies
     fu=(*f)(u);    Variance of period (stable) prevalence
     if (fu <= fx) {   end
       if (u >= x) a=x; else b=x;  */
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  
         } else {  
           if (u < x) a=u; else b=u;   
           if (fu <= fw || w == x) {  #include <math.h>
             v=w;  #include <stdio.h>
             w=u;  #include <stdlib.h>
             fv=fw;  #include <string.h>
             fw=fu;  #include <unistd.h>
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  #include <limits.h>
             fv=fu;  #include <sys/types.h>
           }  #include <sys/stat.h>
         }  #include <errno.h>
   }  extern int errno;
   nrerror("Too many iterations in brent");  
   *xmin=x;  #ifdef LINUX
   return fx;  #include <time.h>
 }  #include "timeval.h"
   #else
 /****************** mnbrak ***********************/  #include <sys/time.h>
   #endif
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  #ifdef GSL
 {  #include <gsl/gsl_errno.h>
   double ulim,u,r,q, dum;  #include <gsl/gsl_multimin.h>
   double fu;  #endif
    
   *fa=(*func)(*ax);  /* #include <libintl.h> */
   *fb=(*func)(*bx);  /* #define _(String) gettext (String) */
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       SHFT(dum,*fb,*fa,dum)  
       }  #define GNUPLOTPROGRAM "gnuplot"
   *cx=(*bx)+GOLD*(*bx-*ax);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   *fc=(*func)(*cx);  #define FILENAMELENGTH 132
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     q=(*bx-*cx)*(*fb-*fa);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  #define NINTERVMAX 8
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       fu=(*func)(u);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       if (fu < *fc) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
           SHFT(*fb,*fc,fu,(*func)(u))  #define MAXN 20000
           }  #define YEARM 12. /**< Number of months per year */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define AGESUP 130
       u=ulim;  #define AGEBASE 40
       fu=(*func)(u);  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
     } else {  #ifdef UNIX
       u=(*cx)+GOLD*(*cx-*bx);  #define DIRSEPARATOR '/'
       fu=(*func)(u);  #define CHARSEPARATOR "/"
     }  #define ODIRSEPARATOR '\\'
     SHFT(*ax,*bx,*cx,u)  #else
       SHFT(*fa,*fb,*fc,fu)  #define DIRSEPARATOR '\\'
       }  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /*************** linmin ************************/  
   /* $Id$ */
 int ncom;  /* $State$ */
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  char version[]="Imach version 0.98nV, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
    char fullversion[]="$Revision$ $Date$"; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  char strstart[80];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double brent(double ax, double bx, double cx,  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
                double (*f)(double), double tol, double *xmin);  int nvar=0, nforce=0; /* Number of variables, number of forces */
   double f1dim(double x);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
               double *fc, double (*func)(double));  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int j;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   double xx,xmin,bx,ax;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   double fx,fb,fa;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
    int cptcoveff=0; /* Total number of covariates to vary for printing results */
   ncom=n;  int cptcov=0; /* Working variable */
   pcom=vector(1,n);  int npar=NPARMAX;
   xicom=vector(1,n);  int nlstate=2; /* Number of live states */
   nrfunc=func;  int ndeath=1; /* Number of dead states */
   for (j=1;j<=n;j++) {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     pcom[j]=p[j];  int popbased=0;
     xicom[j]=xi[j];  
   }  int *wav; /* Number of waves for this individuual 0 is possible */
   ax=0.0;  int maxwav=0; /* Maxim number of waves */
   xx=1.0;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 #ifdef DEBUG                     to the likelihood and the sum of weights (done by funcone)*/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int mle=1, weightopt=0;
 #endif  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   for (j=1;j<=n;j++) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     xi[j] *= xmin;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     p[j] += xi[j];             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   }  double jmean=1; /* Mean space between 2 waves */
   free_vector(xicom,1,n);  double **matprod2(); /* test */
   free_vector(pcom,1,n);  double **oldm, **newm, **savm; /* Working pointers to matrices */
 }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /*FILE *fic ; */ /* Used in readdata only */
 /*************** powell ************************/  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  FILE *ficlog, *ficrespow;
             double (*func)(double []))  int globpr=0; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   void linmin(double p[], double xi[], int n, double *fret,  long ipmx=0; /* Number of contributions */
               double (*func)(double []));  double sw; /* Sum of weights */
   int i,ibig,j;  char filerespow[FILENAMELENGTH];
   double del,t,*pt,*ptt,*xit;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double fp,fptt;  FILE *ficresilk;
   double *xits;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   pt=vector(1,n);  FILE *ficresprobmorprev;
   ptt=vector(1,n);  FILE *fichtm, *fichtmcov; /* Html File */
   xit=vector(1,n);  FILE *ficreseij;
   xits=vector(1,n);  char filerese[FILENAMELENGTH];
   *fret=(*func)(p);  FILE *ficresstdeij;
   for (j=1;j<=n;j++) pt[j]=p[j];  char fileresstde[FILENAMELENGTH];
   for (*iter=1;;++(*iter)) {  FILE *ficrescveij;
     fp=(*fret);  char filerescve[FILENAMELENGTH];
     ibig=0;  FILE  *ficresvij;
     del=0.0;  char fileresv[FILENAMELENGTH];
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  FILE  *ficresvpl;
     for (i=1;i<=n;i++)  char fileresvpl[FILENAMELENGTH];
       printf(" %d %.12f",i, p[i]);  char title[MAXLINE];
     printf("\n");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     for (i=1;i<=n;i++) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       fptt=(*fret);  char command[FILENAMELENGTH];
 #ifdef DEBUG  int  outcmd=0;
       printf("fret=%lf \n",*fret);  
 #endif  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  char filelog[FILENAMELENGTH]; /* Log file */
       if (fabs(fptt-(*fret)) > del) {  char filerest[FILENAMELENGTH];
         del=fabs(fptt-(*fret));  char fileregp[FILENAMELENGTH];
         ibig=i;  char popfile[FILENAMELENGTH];
       }  
 #ifdef DEBUG  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  struct timezone tzp;
         printf(" x(%d)=%.12e",j,xit[j]);  extern int gettimeofday();
       }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       for(j=1;j<=n;j++)  long time_value;
         printf(" p=%.12e",p[j]);  extern long time();
       printf("\n");  char strcurr[80], strfor[80];
 #endif  
     }  char *endptr;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  long lval;
 #ifdef DEBUG  double dval;
       int k[2],l;  
       k[0]=1;  #define NR_END 1
       k[1]=-1;  #define FREE_ARG char*
       printf("Max: %.12e",(*func)(p));  #define FTOL 1.0e-10
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  #define NRANSI 
       printf("\n");  #define ITMAX 200 
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  #define TOL 2.0e-4 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define CGOLD 0.3819660 
         }  #define ZEPS 1.0e-10 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       }  
 #endif  #define GOLD 1.618034 
   #define GLIMIT 100.0 
   #define TINY 1.0e-20 
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  static double maxarg1,maxarg2;
       free_vector(ptt,1,n);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       free_vector(pt,1,n);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       return;    
     }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define rint(a) floor(a+0.5)
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  static double sqrarg;
       xit[j]=p[j]-pt[j];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       pt[j]=p[j];  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     }  int agegomp= AGEGOMP;
     fptt=(*func)(ptt);  
     if (fptt < fp) {  int imx; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int stepm=1;
       if (t < 0.0) {  /* Stepm, step in month: minimum step interpolation*/
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  int estepm;
           xi[j][ibig]=xi[j][n];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
           xi[j][n]=xit[j];  
         }  int m,nb;
 #ifdef DEBUG  long *num;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         for(j=1;j<=n;j++)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
           printf(" %.12e",xit[j]);  double **pmmij, ***probs;
         printf("\n");  double *ageexmed,*agecens;
 #endif  double dateintmean=0;
       }  
     }  double *weight;
   }  int **s; /* Status */
 }  double *agedc;
   double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 /**** Prevalence limit ****************/                    * covar=matrix(0,NCOVMAX,1,n); 
                     * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double  idx; 
 {  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  int *Ndum; /** Freq of modality (tricode */
      matrix by transitions matrix until convergence is reached */  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int i, ii,j,k;  double *lsurv, *lpop, *tpop;
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   double **out, cov[NCOVMAX], **pmij();  double ftolhess; /**< Tolerance for computing hessian */
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     }    */ 
     char  *ss;                            /* pointer */
    cov[1]=1.;    int   l1, l2;                         /* length counters */
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    l1 = strlen(path );                   /* length of path */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     newm=savm;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     /* Covariates have to be included here again */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
      cov[2]=agefin;      strcpy( name, path );               /* we got the fullname name because no directory */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       for (k=1; k<=cptcovn;k++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      /* get current working directory */
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/      /*    extern  char* getcwd ( char *buf , int len);*/
       }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       for (k=1; k<=cptcovage;k++)        return( GLOCK_ERROR_GETCWD );
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
       for (k=1; k<=cptcovprod;k++)      /* got dirc from getcwd*/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      ss++;                               /* after this, the filename */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
     savm=oldm;      dirc[l1-l2] = 0;                    /* add zero */
     oldm=newm;      printf(" DIRC2 = %s \n",dirc);
     maxmax=0.;    }
     for(j=1;j<=nlstate;j++){    /* We add a separator at the end of dirc if not exists */
       min=1.;    l1 = strlen( dirc );                  /* length of directory */
       max=0.;    if( dirc[l1-1] != DIRSEPARATOR ){
       for(i=1; i<=nlstate; i++) {      dirc[l1] =  DIRSEPARATOR;
         sumnew=0;      dirc[l1+1] = 0; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      printf(" DIRC3 = %s \n",dirc);
         prlim[i][j]= newm[i][j]/(1-sumnew);    }
         max=FMAX(max,prlim[i][j]);    ss = strrchr( name, '.' );            /* find last / */
         min=FMIN(min,prlim[i][j]);    if (ss >0){
       }      ss++;
       maxmin=max-min;      strcpy(ext,ss);                     /* save extension */
       maxmax=FMAX(maxmax,maxmin);      l1= strlen( name);
     }      l2= strlen(ss)+1;
     if(maxmax < ftolpl){      strncpy( finame, name, l1-l2);
       return prlim;      finame[l1-l2]= 0;
     }    }
   }  
 }    return( 0 );                          /* we're done */
   }
 /*************** transition probabilities ***************/  
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /******************************************/
 {  
   double s1, s2;  void replace_back_to_slash(char *s, char*t)
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;    int i;
     int lg=0;
     for(i=1; i<= nlstate; i++){    i=0;
     for(j=1; j<i;j++){    lg=strlen(t);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for(i=0; i<= lg; i++) {
         /*s2 += param[i][j][nc]*cov[nc];*/      (s[i] = t[i]);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (t[i]== '\\') s[i]='/';
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    }
       }  }
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char *trimbb(char *out, char *in)
     }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     for(j=i+1; j<=nlstate+ndeath;j++){    char *s;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    s=out;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    while (*in != '\0'){
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       }        in++;
       ps[i][j]=s2;      }
     }      *out++ = *in++;
   }    }
     /*ps[3][2]=1;*/    *out='\0';
     return s;
   for(i=1; i<= nlstate; i++){  }
      s1=0;  
     for(j=1; j<i; j++)  char *cutl(char *blocc, char *alocc, char *in, char occ)
       s1+=exp(ps[i][j]);  {
     for(j=i+1; j<=nlstate+ndeath; j++)    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       s1+=exp(ps[i][j]);       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     ps[i][i]=1./(s1+1.);       gives blocc="abcdef2ghi" and alocc="j".
     for(j=1; j<i; j++)       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       ps[i][j]= exp(ps[i][j])*ps[i][i];    */
     for(j=i+1; j<=nlstate+ndeath; j++)    char *s, *t, *bl;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    t=in;s=in;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    while ((*in != occ) && (*in != '\0')){
   } /* end i */      *alocc++ = *in++;
     }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    if( *in == occ){
     for(jj=1; jj<= nlstate+ndeath; jj++){      *(alocc)='\0';
       ps[ii][jj]=0;      s=++in;
       ps[ii][ii]=1;    }
     }   
   }    if (s == t) {/* occ not found */
       *(alocc-(in-s))='\0';
       in=s;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){    while ( *in != '\0'){
      printf("%lf ",ps[ii][jj]);      *blocc++ = *in++;
    }    }
     printf("\n ");  
     }    *blocc='\0';
     printf("\n ");printf("%lf ",cov[2]);*/    return t;
 /*  }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  char *cutv(char *blocc, char *alocc, char *in, char occ)
   goto end;*/  {
     return ps;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
 }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
 /**************** Product of 2 matrices ******************/       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    char *s, *t;
 {    t=in;s=in;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    while (*in != '\0'){
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      while( *in == occ){
   /* in, b, out are matrice of pointers which should have been initialized        *blocc++ = *in++;
      before: only the contents of out is modified. The function returns        s=in;
      a pointer to pointers identical to out */      }
   long i, j, k;      *blocc++ = *in++;
   for(i=nrl; i<= nrh; i++)    }
     for(k=ncolol; k<=ncoloh; k++)    if (s == t) /* occ not found */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      *(blocc-(in-s))='\0';
         out[i][k] +=in[i][j]*b[j][k];    else
       *(blocc-(in-s)-1)='\0';
   return out;    in=s;
 }    while ( *in != '\0'){
       *alocc++ = *in++;
     }
 /************* Higher Matrix Product ***************/  
     *alocc='\0';
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    return s;
 {  }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  int nbocc(char *s, char occ)
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    int i,j=0;
      (typically every 2 years instead of every month which is too big).    int lg=20;
      Model is determined by parameters x and covariates have to be    i=0;
      included manually here.    lg=strlen(s);
     for(i=0; i<= lg; i++) {
      */    if  (s[i] == occ ) j++;
     }
   int i, j, d, h, k;    return j;
   double **out, cov[NCOVMAX];  }
   double **newm;  
   /* void cutv(char *u,char *v, char*t, char occ) */
   /* Hstepm could be zero and should return the unit matrix */  /* { */
   for (i=1;i<=nlstate+ndeath;i++)  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for (j=1;j<=nlstate+ndeath;j++){  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*      gives u="abcdef2ghi" and v="j" *\/ */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*   int i,lg,j,p=0; */
     }  /*   i=0; */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*   lg=strlen(t); */
   for(h=1; h <=nhstepm; h++){  /*   for(j=0; j<=lg-1; j++) { */
     for(d=1; d <=hstepm; d++){  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       newm=savm;  /*   } */
       /* Covariates have to be included here again */  
       cov[1]=1.;  /*   for(j=0; j<p; j++) { */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /*     (u[j] = t[j]); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*   } */
       for (k=1; k<=cptcovage;k++)  /*      u[p]='\0'; */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*    for(j=0; j<= lg; j++) { */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*   } */
   /* } */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /********************** nrerror ********************/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  void nrerror(char error_text[])
       savm=oldm;  {
       oldm=newm;    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
     for(i=1; i<=nlstate+ndeath; i++)    exit(EXIT_FAILURE);
       for(j=1;j<=nlstate+ndeath;j++) {  }
         po[i][j][h]=newm[i][j];  /*********************** vector *******************/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double *vector(int nl, int nh)
          */  {
       }    double *v;
   } /* end h */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   return po;    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
   
 /*************** log-likelihood *************/  /************************ free vector ******************/
 double func( double *x)  void free_vector(double*v, int nl, int nh)
 {  {
   int i, ii, j, k, mi, d, kk;    free((FREE_ARG)(v+nl-NR_END));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  }
   double **out;  
   double sw; /* Sum of weights */  /************************ivector *******************************/
   double lli; /* Individual log likelihood */  int *ivector(long nl,long nh)
   long ipmx;  {
   /*extern weight */    int *v;
   /* We are differentiating ll according to initial status */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    if (!v) nrerror("allocation failure in ivector");
   /*for(i=1;i<imx;i++)    return v-nl+NR_END;
     printf(" %d\n",s[4][i]);  }
   */  
   cov[1]=1.;  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   for(k=1; k<=nlstate; k++) ll[k]=0.;  {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    free((FREE_ARG)(v+nl-NR_END));
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  /************************lvector *******************************/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  long *lvector(long nl,long nh)
       for(d=0; d<dh[mi][i]; d++){  {
         newm=savm;    long *v;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         for (kk=1; kk<=cptcovage;kk++) {    if (!v) nrerror("allocation failure in ivector");
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    return v-nl+NR_END;
         }  }
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /******************free lvector **************************/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  void free_lvector(long *v, long nl, long nh)
         savm=oldm;  {
         oldm=newm;    free((FREE_ARG)(v+nl-NR_END));
          }
          
       } /* end mult */  /******************* imatrix *******************************/
        int **imatrix(long nrl, long nrh, long ncl, long nch) 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  { 
       ipmx +=1;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       sw += weight[i];    int **m; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    
     } /* end of wave */    /* allocate pointers to rows */ 
   } /* end of individual */    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    m += NR_END; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    m -= nrl; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    
   return -l;    
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 /*********** Maximum Likelihood Estimation ***************/    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int i,j, iter;    
   double **xi,*delti;    /* return pointer to array of pointers to rows */ 
   double fret;    return m; 
   xi=matrix(1,npar,1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /****************** free_imatrix *************************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  void free_imatrix(m,nrl,nrh,ncl,nch)
   printf("Powell\n");        int **m;
   powell(p,xi,npar,ftol,&iter,&fret,func);        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
 }  } 
   
 /**** Computes Hessian and covariance matrix ***/  /******************* matrix *******************************/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
   double  **a,**y,*x,pd;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **hess;    double **m;
   int i, j,jk;  
   int *indx;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   double hessii(double p[], double delta, int theta, double delti[]);    m += NR_END;
   double hessij(double p[], double delti[], int i, int j);    m -= nrl;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   hess=matrix(1,npar,1,npar);    m[nrl] += NR_END;
     m[nrl] -= ncl;
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf("%d",i);fflush(stdout);    return m;
     hess[i][i]=hessii(p,ftolhess,i,delti);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     /*printf(" %f ",p[i]);*/  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     /*printf(" %lf ",hess[i][i]);*/  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   }     */
    }
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  /*************************free matrix ************************/
       if (j>i) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         printf(".%d%d",i,j);fflush(stdout);  {
         hess[i][j]=hessij(p,delti,i,j);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         hess[j][i]=hess[i][j];        free((FREE_ARG)(m+nrl-NR_END));
         /*printf(" %lf ",hess[i][j]);*/  }
       }  
     }  /******************* ma3x *******************************/
   }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   printf("\n");  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    double ***m;
    
   a=matrix(1,npar,1,npar);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   y=matrix(1,npar,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()");
   x=vector(1,npar);    m += NR_END;
   indx=ivector(1,npar);    m -= nrl;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   ludcmp(a,npar,indx,&pd);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
   for (j=1;j<=npar;j++) {    m[nrl] -= ncl;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       matcov[i][j]=x[i];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
   printf("\n#Hessian matrix#\n");      m[nrl][j]=m[nrl][j-1]+nlay;
   for (i=1;i<=npar;i++) {    
     for (j=1;j<=npar;j++) {    for (i=nrl+1; i<=nrh; i++) {
       printf("%.3e ",hess[i][j]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
     printf("\n");        m[i][j]=m[i][j-1]+nlay;
   }    }
     return m; 
   /* Recompute Inverse */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   for (i=1;i<=npar;i++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    */
   ludcmp(a,npar,indx,&pd);  }
   
   /*  printf("\n#Hessian matrix recomputed#\n");  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     x[j]=1;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     lubksb(a,npar,indx,x);    free((FREE_ARG)(m+nrl-NR_END));
     for (i=1;i<=npar;i++){  }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
     printf("\n");  {
   }    /* Caution optionfilefiname is hidden */
   */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   free_matrix(a,1,npar,1,npar);    strcat(tmpout,fileres);
   free_matrix(y,1,npar,1,npar);    return tmpout;
   free_vector(x,1,npar);  }
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   {
 }    
     /* Caution optionfilefiname is hidden */
 /*************** hessian matrix ****************/    strcpy(tmpout,optionfilefiname);
 double hessii( double x[], double delta, int theta, double delti[])    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   int i;    strcat(tmpout,fileres);
   int l=1, lmax=20;    return tmpout;
   double k1,k2;  }
   double p2[NPARMAX+1];  
   double res;  /*************** function subdirf3 ***********/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double fx;  {
   int k=0,kmax=10;    
   double l1;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   fx=func(x);    strcat(tmpout,"/");
   for (i=1;i<=npar;i++) p2[i]=x[i];    strcat(tmpout,preop);
   for(l=0 ; l <=lmax; l++){    strcat(tmpout,preop2);
     l1=pow(10,l);    strcat(tmpout,fileres);
     delts=delt;    return tmpout;
     for(k=1 ; k <kmax; k=k+1){  }
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /***************** f1dim *************************/
       k1=func(p2)-fx;  extern int ncom; 
       p2[theta]=x[theta]-delt;  extern double *pcom,*xicom;
       k2=func(p2)-fx;  extern double (*nrfunc)(double []); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */   
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  double f1dim(double x) 
        { 
 #ifdef DEBUG    int j; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double f;
 #endif    double *xt; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */   
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    xt=vector(1,ncom); 
         k=kmax;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    free_vector(xt,1,ncom); 
         k=kmax; l=lmax*10.;    return f; 
       }  } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  /*****************brent *************************/
       }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
   }    int iter; 
   delti[theta]=delts;    double a,b,d,etemp;
   return res;    double fu,fv,fw,fx;
      double ftemp;
 }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
 double hessij( double x[], double delti[], int thetai,int thetaj)   
 {    a=(ax < cx ? ax : cx); 
   int i;    b=(ax > cx ? ax : cx); 
   int l=1, l1, lmax=20;    x=w=v=bx; 
   double k1,k2,k3,k4,res,fx;    fw=fv=fx=(*f)(x); 
   double p2[NPARMAX+1];    for (iter=1;iter<=ITMAX;iter++) { 
   int k;      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   fx=func(x);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (k=1; k<=2; k++) {      printf(".");fflush(stdout);
     for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficlog,".");fflush(ficlog);
     p2[thetai]=x[thetai]+delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     k1=func(p2)-fx;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     p2[thetai]=x[thetai]+delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     k2=func(p2)-fx;        *xmin=x; 
          return fx; 
     p2[thetai]=x[thetai]-delti[thetai]/k;      } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      ftemp=fu;
     k3=func(p2)-fx;      if (fabs(e) > tol1) { 
          r=(x-w)*(fx-fv); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        q=(x-v)*(fx-fw); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        p=(x-v)*q-(x-w)*r; 
     k4=func(p2)-fx;        q=2.0*(q-r); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        if (q > 0.0) p = -p; 
 #ifdef DEBUG        q=fabs(q); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        etemp=e; 
 #endif        e=d; 
   }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   return res;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }        else { 
           d=p/q; 
 /************** Inverse of matrix **************/          u=x+d; 
 void ludcmp(double **a, int n, int *indx, double *d)          if (u-a < tol2 || b-u < tol2) 
 {            d=SIGN(tol1,xm-x); 
   int i,imax,j,k;        } 
   double big,dum,sum,temp;      } else { 
   double *vv;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
        } 
   vv=vector(1,n);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   *d=1.0;      fu=(*f)(u); 
   for (i=1;i<=n;i++) {      if (fu <= fx) { 
     big=0.0;        if (u >= x) a=x; else b=x; 
     for (j=1;j<=n;j++)        SHFT(v,w,x,u) 
       if ((temp=fabs(a[i][j])) > big) big=temp;          SHFT(fv,fw,fx,fu) 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          } else { 
     vv[i]=1.0/big;            if (u < x) a=u; else b=u; 
   }            if (fu <= fw || w == x) { 
   for (j=1;j<=n;j++) {              v=w; 
     for (i=1;i<j;i++) {              w=u; 
       sum=a[i][j];              fv=fw; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];              fw=fu; 
       a[i][j]=sum;            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
     big=0.0;              fv=fu; 
     for (i=j;i<=n;i++) {            } 
       sum=a[i][j];          } 
       for (k=1;k<j;k++)    } 
         sum -= a[i][k]*a[k][j];    nrerror("Too many iterations in brent"); 
       a[i][j]=sum;    *xmin=x; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    return fx; 
         big=dum;  } 
         imax=i;  
       }  /****************** mnbrak ***********************/
     }  
     if (j != imax) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for (k=1;k<=n;k++) {              double (*func)(double)) 
         dum=a[imax][k];  { 
         a[imax][k]=a[j][k];    double ulim,u,r,q, dum;
         a[j][k]=dum;    double fu; 
       }   
       *d = -(*d);    *fa=(*func)(*ax); 
       vv[imax]=vv[j];    *fb=(*func)(*bx); 
     }    if (*fb > *fa) { 
     indx[j]=imax;      SHFT(dum,*ax,*bx,dum) 
     if (a[j][j] == 0.0) a[j][j]=TINY;        SHFT(dum,*fb,*fa,dum) 
     if (j != n) {        } 
       dum=1.0/(a[j][j]);    *cx=(*bx)+GOLD*(*bx-*ax); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
   free_vector(vv,1,n);  /* Doesn't work */      q=(*bx-*cx)*(*fb-*fa); 
 ;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 void lubksb(double **a, int n, int *indx, double b[])      if ((*bx-u)*(u-*cx) > 0.0) { 
 {        fu=(*func)(u); 
   int i,ii=0,ip,j;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double sum;        fu=(*func)(u); 
          if (fu < *fc) { 
   for (i=1;i<=n;i++) {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     ip=indx[i];            SHFT(*fb,*fc,fu,(*func)(u)) 
     sum=b[ip];            } 
     b[ip]=b[i];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     if (ii)        u=ulim; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        fu=(*func)(u); 
     else if (sum) ii=i;      } else { 
     b[i]=sum;        u=(*cx)+GOLD*(*cx-*bx); 
   }        fu=(*func)(u); 
   for (i=n;i>=1;i--) {      } 
     sum=b[i];      SHFT(*ax,*bx,*cx,u) 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        SHFT(*fa,*fb,*fc,fu) 
     b[i]=sum/a[i][i];        } 
   }  } 
 }  
   /*************** linmin ************************/
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)  int ncom; 
 {  /* Some frequencies */  double *pcom,*xicom;
    double (*nrfunc)(double []); 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;   
   double ***freq; /* Frequencies */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double *pp;  { 
   double pos, k2, dateintsum=0,k2cpt=0;    double brent(double ax, double bx, double cx, 
   FILE *ficresp;                 double (*f)(double), double tol, double *xmin); 
   char fileresp[FILENAMELENGTH];    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   pp=vector(1,nlstate);                double *fc, double (*func)(double)); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int j; 
   strcpy(fileresp,"p");    double xx,xmin,bx,ax; 
   strcat(fileresp,fileres);    double fx,fb,fa;
   if((ficresp=fopen(fileresp,"w"))==NULL) {   
     printf("Problem with prevalence resultfile: %s\n", fileresp);    ncom=n; 
     exit(0);    pcom=vector(1,n); 
   }    xicom=vector(1,n); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    nrfunc=func; 
   j1=0;    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   j=cptcoveff;      xicom[j]=xi[j]; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    } 
     ax=0.0; 
   for(k1=1; k1<=j;k1++){    xx=1.0; 
    for(i1=1; i1<=ncodemax[k1];i1++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
        j1++;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  #ifdef DEBUG
          scanf("%d", i);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for (i=-1; i<=nlstate+ndeath; i++)      fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
          for (jk=-1; jk<=nlstate+ndeath; jk++)    #endif
            for(m=agemin; m <= agemax+3; m++)    for (j=1;j<=n;j++) { 
              freq[i][jk][m]=0;      xi[j] *= xmin; 
       p[j] += xi[j]; 
         dateintsum=0;    } 
         k2cpt=0;    free_vector(xicom,1,n); 
        for (i=1; i<=imx; i++) {    free_vector(pcom,1,n); 
          bool=1;  } 
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcoveff; z1++)  char *asc_diff_time(long time_sec, char ascdiff[])
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  {
                bool=0;    long sec_left, days, hours, minutes;
          }    days = (time_sec) / (60*60*24);
          if (bool==1) {    sec_left = (time_sec) % (60*60*24);
            for(m=firstpass; m<=lastpass; m++){    hours = (sec_left) / (60*60) ;
              k2=anint[m][i]+(mint[m][i]/12.);    sec_left = (sec_left) %(60*60);
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    minutes = (sec_left) /60;
                if(agev[m][i]==0) agev[m][i]=agemax+1;    sec_left = (sec_left) % (60);
                if(agev[m][i]==1) agev[m][i]=agemax+2;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    return ascdiff;
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  }
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                  dateintsum=dateintsum+k2;  /*************** powell ************************/
                  k2cpt++;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                }              double (*func)(double [])) 
   { 
              }    void linmin(double p[], double xi[], int n, double *fret, 
            }                double (*func)(double [])); 
          }    int i,ibig,j; 
        }    double del,t,*pt,*ptt,*xit;
         if  (cptcovn>0) {    double fp,fptt;
          fprintf(ficresp, "\n#********** Variable ");    double *xits;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int niterf, itmp;
        fprintf(ficresp, "**********\n#");  
         }    pt=vector(1,n); 
        for(i=1; i<=nlstate;i++)    ptt=vector(1,n); 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    xit=vector(1,n); 
        fprintf(ficresp, "\n");    xits=vector(1,n); 
            *fret=(*func)(p); 
   for(i=(int)agemin; i <= (int)agemax+3; i++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
     if(i==(int)agemax+3)    for (*iter=1;;++(*iter)) { 
       printf("Total");      fp=(*fret); 
     else      ibig=0; 
       printf("Age %d", i);      del=0.0; 
     for(jk=1; jk <=nlstate ; jk++){      last_time=curr_time;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      (void) gettimeofday(&curr_time,&tzp);
         pp[jk] += freq[jk][m][i];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     for(jk=1; jk <=nlstate ; jk++){  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       for(m=-1, pos=0; m <=0 ; m++)     for (i=1;i<=n;i++) {
         pos += freq[jk][m][i];        printf(" %d %.12f",i, p[i]);
       if(pp[jk]>=1.e-10)        fprintf(ficlog," %d %.12lf",i, p[i]);
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        fprintf(ficrespow," %.12lf", p[i]);
       else      }
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      printf("\n");
     }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
      for(jk=1; jk <=nlstate ; jk++){      if(*iter <=3){
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        tm = *localtime(&curr_time.tv_sec);
         pp[jk] += freq[jk][m][i];        strcpy(strcurr,asctime(&tm));
      }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
     for(jk=1,pos=0; jk <=nlstate ; jk++)        itmp = strlen(strcurr);
       pos += pp[jk];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for(jk=1; jk <=nlstate ; jk++){          strcurr[itmp-1]='\0';
       if(pos>=1.e-5)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       else        for(niterf=10;niterf<=30;niterf+=10){
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       if( i <= (int) agemax){          tmf = *localtime(&forecast_time.tv_sec);
         if(pos>=1.e-5){  /*      asctime_r(&tmf,strfor); */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          strcpy(strfor,asctime(&tmf));
           probs[i][jk][j1]= pp[jk]/pos;          itmp = strlen(strfor);
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          if(strfor[itmp-1]=='\n')
         }          strfor[itmp-1]='\0';
       else          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }        }
     }      }
     for(jk=-1; jk <=nlstate+ndeath; jk++)      for (i=1;i<=n;i++) { 
       for(m=-1; m <=nlstate+ndeath; m++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        fptt=(*fret); 
     if(i <= (int) agemax)  #ifdef DEBUG
       fprintf(ficresp,"\n");        printf("fret=%lf \n",*fret);
     printf("\n");        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
     }        printf("%d",i);fflush(stdout);
  }        fprintf(ficlog,"%d",i);fflush(ficlog);
   dateintmean=dateintsum/k2cpt;        linmin(p,xit,n,fret,func); 
          if (fabs(fptt-(*fret)) > del) { 
   fclose(ficresp);          del=fabs(fptt-(*fret)); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ibig=i; 
   free_vector(pp,1,nlstate);        } 
   #ifdef DEBUG
   /* End of Freq */        printf("%d %.12e",i,(*fret));
 }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 /************ Prevalence ********************/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          printf(" x(%d)=%.12e",j,xit[j]);
 {  /* Some frequencies */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
          }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for(j=1;j<=n;j++) {
   double ***freq; /* Frequencies */          printf(" p=%.12e",p[j]);
   double *pp;          fprintf(ficlog," p=%.12e",p[j]);
   double pos, k2;        }
         printf("\n");
   pp=vector(1,nlstate);        fprintf(ficlog,"\n");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  #endif
        } 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   j1=0;  #ifdef DEBUG
          int k[2],l;
   j=cptcoveff;        k[0]=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        k[1]=-1;
          printf("Max: %.12e",(*func)(p));
  for(k1=1; k1<=j;k1++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(i1=1; i1<=ncodemax[k1];i1++){        for (j=1;j<=n;j++) {
       j1++;          printf(" %.12e",p[j]);
            fprintf(ficlog," %.12e",p[j]);
       for (i=-1; i<=nlstate+ndeath; i++)          }
         for (jk=-1; jk<=nlstate+ndeath; jk++)          printf("\n");
           for(m=agemin; m <= agemax+3; m++)        fprintf(ficlog,"\n");
             freq[i][jk][m]=0;        for(l=0;l<=1;l++) {
                for (j=1;j<=n;j++) {
       for (i=1; i<=imx; i++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         bool=1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if  (cptcovn>0) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           for (z1=1; z1<=cptcoveff; z1++)          }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
               bool=0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }        }
         if (bool==1) {  #endif
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        free_vector(xit,1,n); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        free_vector(xits,1,n); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        free_vector(ptt,1,n); 
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        free_vector(pt,1,n); 
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];          return; 
             }      } 
           }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         }      for (j=1;j<=n;j++) { 
       }        ptt[j]=2.0*p[j]-pt[j]; 
              xit[j]=p[j]-pt[j]; 
         for(i=(int)agemin; i <= (int)agemax+3; i++){        pt[j]=p[j]; 
           for(jk=1; jk <=nlstate ; jk++){      } 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      fptt=(*func)(ptt); 
               pp[jk] += freq[jk][m][i];      if (fptt < fp) { 
           }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
           for(jk=1; jk <=nlstate ; jk++){        if (t < 0.0) { 
             for(m=-1, pos=0; m <=0 ; m++)          linmin(p,xit,n,fret,func); 
             pos += freq[jk][m][i];          for (j=1;j<=n;j++) { 
         }            xi[j][ibig]=xi[j][n]; 
                    xi[j][n]=xit[j]; 
          for(jk=1; jk <=nlstate ; jk++){          }
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  #ifdef DEBUG
              pp[jk] += freq[jk][m][i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
          }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                    for(j=1;j<=n;j++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
          for(jk=1; jk <=nlstate ; jk++){                    }
            if( i <= (int) agemax){          printf("\n");
              if(pos>=1.e-5){          fprintf(ficlog,"\n");
                probs[i][jk][j1]= pp[jk]/pos;  #endif
              }        }
            }      } 
          }    } 
            } 
         }  
     }  /**** Prevalence limit (stable or period prevalence)  ****************/
   }  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   free_vector(pp,1,nlstate);       matrix by transitions matrix until convergence is reached */
    
 }  /* End of Freq */    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 /************* Waves Concatenation ***************/    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double **newm;
 {    double agefin, delaymax=50 ; /* Max number of years to converge */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).    for (ii=1;ii<=nlstate+ndeath;ii++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (j=1;j<=nlstate+ndeath;j++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.      }
      */  
      cov[1]=1.;
   int i, mi, m;   
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      double sum=0., jmean=0.;*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   int j, k=0,jk, ju, jl;      /* Covariates have to be included here again */
   double sum=0.;      cov[2]=agefin;
   jmin=1e+5;      
   jmax=-1;      for (k=1; k<=cptcovn;k++) {
   jmean=0.;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for(i=1; i<=imx; i++){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
     mi=0;      }
     m=firstpass;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     while(s[m][i] <= nlstate){      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       if(s[m][i]>=1)      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
         mw[++mi][i]=m;      
       if(m >=lastpass)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         break;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       else      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         m++;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     }/* end while */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     if (s[m][i] > nlstate){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       mi++;     /* Death is another wave */      
       /* if(mi==0)  never been interviewed correctly before death */      savm=oldm;
          /* Only death is a correct wave */      oldm=newm;
       mw[mi][i]=m;      maxmax=0.;
     }      for(j=1;j<=nlstate;j++){
         min=1.;
     wav[i]=mi;        max=0.;
     if(mi==0)        for(i=1; i<=nlstate; i++) {
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   for(i=1; i<=imx; i++){          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     for(mi=1; mi<wav[i];mi++){          max=FMAX(max,prlim[i][j]);
       if (stepm <=0)          min=FMIN(min,prlim[i][j]);
         dh[mi][i]=1;        }
       else{        maxmin=max-min;
         if (s[mw[mi+1][i]][i] > nlstate) {        maxmax=FMAX(maxmax,maxmin);
           if (agedc[i] < 2*AGESUP) {      }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      if(maxmax < ftolpl){
           if(j==0) j=1;  /* Survives at least one month after exam */        return prlim;
           k=k+1;      }
           if (j >= jmax) jmax=j;    }
           if (j <= jmin) jmin=j;  }
           sum=sum+j;  
           /* if (j<10) printf("j=%d num=%d ",j,i); */  /*************** transition probabilities ***************/ 
           }  
         }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         else{  {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* According to parameters values stored in x and the covariate's values stored in cov,
           k=k+1;       computes the probability to be observed in state j being in state i by appying the
           if (j >= jmax) jmax=j;       model to the ncovmodel covariates (including constant and age).
           else if (j <= jmin)jmin=j;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           sum=sum+j;       ncth covariate in the global vector x is given by the formula:
         }       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         jk= j/stepm;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         jl= j -jk*stepm;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
         ju= j -(jk+1)*stepm;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         if(jl <= -ju)       Outputs ps[i][j] the probability to be observed in j being in j according to
           dh[mi][i]=jk;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         else    */
           dh[mi][i]=jk+1;    double s1, lnpijopii;
         if(dh[mi][i]==0)    /*double t34;*/
           dh[mi][i]=1; /* At least one step */    int i,j,j1, nc, ii, jj;
       }  
     }      for(i=1; i<= nlstate; i++){
   }        for(j=1; j<i;j++){
   jmean=sum/k;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            /*lnpijopii += param[i][j][nc]*cov[nc];*/
  }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 /*********** Tricode ****************************/  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 void tricode(int *Tvar, int **nbcode, int imx)          }
 {          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   int Ndum[20],ij=1, k, j, i;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   int cptcode=0;        }
   cptcoveff=0;        for(j=i+1; j<=nlstate+ndeath;j++){
            for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   for (k=0; k<19; k++) Ndum[k]=0;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   for (k=1; k<=7; k++) ncodemax[k]=0;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          }
     for (i=1; i<=imx; i++) {          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       ij=(int)(covar[Tvar[j]][i]);        }
       Ndum[ij]++;      }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      
       if (ij > cptcode) cptcode=ij;      for(i=1; i<= nlstate; i++){
     }        s1=0;
         for(j=1; j<i; j++){
     for (i=0; i<=cptcode; i++) {          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       if(Ndum[i]!=0) ncodemax[j]++;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     }        }
     ij=1;        for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     for (i=1; i<=ncodemax[j]; i++) {        }
       for (k=0; k<=19; k++) {        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         if (Ndum[k] != 0) {        ps[i][i]=1./(s1+1.);
           nbcode[Tvar[j]][ij]=k;        /* Computing other pijs */
           ij++;        for(j=1; j<i; j++)
         }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         if (ij > ncodemax[j]) break;        for(j=i+1; j<=nlstate+ndeath; j++)
       }            ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   }        } /* end i */
       
  for (k=0; k<19; k++) Ndum[k]=0;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
  for (i=1; i<=ncovmodel-2; i++) {          ps[ii][jj]=0;
       ij=Tvar[i];          ps[ii][ii]=1;
       Ndum[ij]++;        }
     }      }
       
  ij=1;      
  for (i=1; i<=10; i++) {      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
    if((Ndum[i]!=0) && (i<=ncov)){      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
      Tvaraff[ij]=i;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
      ij++;      /*   } */
    }      /*   printf("\n "); */
  }      /* } */
        /* printf("\n ");printf("%lf ",cov[2]);*/
     cptcoveff=ij-1;      /*
 }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
 /*********** Health Expectancies ****************/      return ps;
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  
 {  /**************** Product of 2 matrices ******************/
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   double age, agelim,hf;  {
   double ***p3mat;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   fprintf(ficreseij,"# Health expectancies\n");    /* in, b, out are matrice of pointers which should have been initialized 
   fprintf(ficreseij,"# Age");       before: only the contents of out is modified. The function returns
   for(i=1; i<=nlstate;i++)       a pointer to pointers identical to out */
     for(j=1; j<=nlstate;j++)    int i, j, k;
       fprintf(ficreseij," %1d-%1d",i,j);    for(i=nrl; i<= nrh; i++)
   fprintf(ficreseij,"\n");      for(k=ncolol; k<=ncoloh; k++){
         out[i][k]=0.;
   hstepm=1*YEARM; /*  Every j years of age (in month) */        for(j=ncl; j<=nch; j++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          out[i][k] +=in[i][j]*b[j][k];
       }
   agelim=AGESUP;    return out;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years = 20*12/6=40 stepm */  /************* Higher Matrix Product ***************/
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* Computes the transition matrix starting at age 'age' over 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       'nhstepm*hstepm*stepm' months (i.e. until
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(i=1; i<=nlstate;i++)       (typically every 2 years instead of every month which is too big 
       for(j=1; j<=nlstate;j++)       for the memory).
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){       Model is determined by parameters x and covariates have to be 
           eij[i][j][(int)age] +=p3mat[i][j][h];       included manually here. 
         }  
           */
     hf=1;  
     if (stepm >= YEARM) hf=stepm/YEARM;    int i, j, d, h, k;
     fprintf(ficreseij,"%.0f",age );    double **out, cov[NCOVMAX+1];
     for(i=1; i<=nlstate;i++)    double **newm;
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    /* Hstepm could be zero and should return the unit matrix */
       }    for (i=1;i<=nlstate+ndeath;i++)
     fprintf(ficreseij,"\n");      for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
 }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /************ Variance ******************/    for(h=1; h <=nhstepm; h++){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for(d=1; d <=hstepm; d++){
 {        newm=savm;
   /* Variance of health expectancies */        /* Covariates have to be included here again */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        cov[1]=1.;
   double **newm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double **dnewm,**doldm;        for (k=1; k<=cptcovn;k++) 
   int i, j, nhstepm, hstepm, h;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int k, cptcode;        for (k=1; k<=cptcovage;k++)
   double *xp;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double **gp, **gm;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   double ***gradg, ***trgradg;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double ***p3mat;  
   double age,agelim;  
   int theta;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
    fprintf(ficresvij,"# Covariances of life expectancies\n");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   fprintf(ficresvij,"# Age");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=nlstate;i++)        savm=oldm;
     for(j=1; j<=nlstate;j++)        oldm=newm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      }
   fprintf(ficresvij,"\n");      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   xp=vector(1,npar);          po[i][j][h]=newm[i][j];
   dnewm=matrix(1,nlstate,1,npar);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   doldm=matrix(1,nlstate,1,nlstate);        }
        /*printf("h=%d ",h);*/
   hstepm=1*YEARM; /* Every year of age */    } /* end h */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /*     printf("\n H=%d \n",h); */
   agelim = AGESUP;    return po;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /*************** log-likelihood *************/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  double func( double *x)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  {
     gp=matrix(0,nhstepm,1,nlstate);    int i, ii, j, k, mi, d, kk;
     gm=matrix(0,nhstepm,1,nlstate);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
     for(theta=1; theta <=npar; theta++){    double sw; /* Sum of weights */
       for(i=1; i<=npar; i++){ /* Computes gradient */    double lli; /* Individual log likelihood */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int s1, s2;
       }    double bbh, survp;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      long ipmx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*extern weight */
     /* We are differentiating ll according to initial status */
       if (popbased==1) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(i=1; i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
           prlim[i][i]=probs[(int)age][i][ij];      printf(" %d\n",s[4][i]);
       }    */
          cov[1]=1.;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    if(mle==1){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        /* Computes the values of the ncovmodel covariates of the model
               depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       for(i=1; i<=npar; i++) /* Computes gradient */           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         xp[i] = x[i] - (i==theta ?delti[theta]:0);           to be observed in j being in i according to the model.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
           cov[2+k]=covar[Tvar[k]][i];
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
           prlim[i][i]=probs[(int)age][i][ij];           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       }           has been calculated etc */
         for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(h=0; h<=nhstepm; h++){            for (j=1;j<=nlstate+ndeath;j++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
       for(j=1; j<= nlstate; j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(h=0; h<=nhstepm; h++){            for (kk=1; kk<=cptcovage;kk++) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
         }            }
     } /* End theta */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            savm=oldm;
             oldm=newm;
     for(h=0; h<=nhstepm; h++)          } /* end mult */
       for(j=1; j<=nlstate;j++)        
         for(theta=1; theta <=npar; theta++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           trgradg[h][j][theta]=gradg[h][theta][j];          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(i=1;i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(j=1;j<=nlstate;j++)           * the nearest (and in case of equal distance, to the lowest) interval but now
         vareij[i][j][(int)age] =0.;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for(h=0;h<=nhstepm;h++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       for(k=0;k<=nhstepm;k++){           * probability in order to take into account the bias as a fraction of the way
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);           * -stepm/2 to stepm/2 .
         for(i=1;i<=nlstate;i++)           * For stepm=1 the results are the same as for previous versions of Imach.
           for(j=1;j<=nlstate;j++)           * For stepm > 1 the results are less biased than in previous versions. 
             vareij[i][j][(int)age] += doldm[i][j];           */
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
     h=1;          bbh=(double)bh[mi][i]/(double)stepm; 
     if (stepm >= YEARM) h=stepm/YEARM;          /* bias bh is positive if real duration
     fprintf(ficresvij,"%.0f ",age );           * is higher than the multiple of stepm and negative otherwise.
     for(i=1; i<=nlstate;i++)           */
       for(j=1; j<=nlstate;j++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          if( s2 > nlstate){ 
       }            /* i.e. if s2 is a death state and if the date of death is known 
     fprintf(ficresvij,"\n");               then the contribution to the likelihood is the probability to 
     free_matrix(gp,0,nhstepm,1,nlstate);               die between last step unit time and current  step unit time, 
     free_matrix(gm,0,nhstepm,1,nlstate);               which is also equal to probability to die before dh 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);               minus probability to die before dh-stepm . 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);               In version up to 0.92 likelihood was computed
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          as if date of death was unknown. Death was treated as any other
   } /* End age */          health state: the date of the interview describes the actual state
            and not the date of a change in health state. The former idea was
   free_vector(xp,1,npar);          to consider that at each interview the state was recorded
   free_matrix(doldm,1,nlstate,1,npar);          (healthy, disable or death) and IMaCh was corrected; but when we
   free_matrix(dnewm,1,nlstate,1,nlstate);          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
 }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
 /************ Variance of prevlim ******************/          and month of death but the probability to survive from last
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          interview up to one month before death multiplied by the
 {          probability to die within a month. Thanks to Chris
   /* Variance of prevalence limit */          Jackson for correcting this bug.  Former versions increased
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          mortality artificially. The bad side is that we add another loop
   double **newm;          which slows down the processing. The difference can be up to 10%
   double **dnewm,**doldm;          lower mortality.
   int i, j, nhstepm, hstepm;            */
   int k, cptcode;            lli=log(out[s1][s2] - savm[s1][s2]);
   double *xp;  
   double *gp, *gm;  
   double **gradg, **trgradg;          } else if  (s2==-2) {
   double age,agelim;            for (j=1,survp=0. ; j<=nlstate; j++) 
   int theta;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                /*survp += out[s1][j]; */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            lli= log(survp);
   fprintf(ficresvpl,"# Age");          }
   for(i=1; i<=nlstate;i++)          
       fprintf(ficresvpl," %1d-%1d",i,i);          else if  (s2==-4) { 
   fprintf(ficresvpl,"\n");            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   xp=vector(1,npar);            lli= log(survp); 
   dnewm=matrix(1,nlstate,1,npar);          } 
   doldm=matrix(1,nlstate,1,nlstate);  
            else if  (s2==-5) { 
   hstepm=1*YEARM; /* Every year of age */            for (j=1,survp=0. ; j<=2; j++)  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   agelim = AGESUP;            lli= log(survp); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          
     if (stepm >= YEARM) hstepm=1;          else{
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     gradg=matrix(1,npar,1,nlstate);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     gp=vector(1,nlstate);          } 
     gm=vector(1,nlstate);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
     for(theta=1; theta <=npar; theta++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(i=1; i<=npar; i++){ /* Computes gradient */          ipmx +=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } /* end of wave */
       for(i=1;i<=nlstate;i++)      } /* end of individual */
         gp[i] = prlim[i][i];    }  else if(mle==2){
          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=npar; i++) /* Computes gradient */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(mi=1; mi<= wav[i]-1; mi++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         gm[i] = prlim[i][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1;i<=nlstate;i++)            }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for(d=0; d<=dh[mi][i]; d++){
     } /* End theta */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     trgradg =matrix(1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(j=1; j<=nlstate;j++)            }
       for(theta=1; theta <=npar; theta++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         trgradg[j][theta]=gradg[theta][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     for(i=1;i<=nlstate;i++)            oldm=newm;
       varpl[i][(int)age] =0.;          } /* end mult */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          s1=s[mw[mi][i]][i];
     for(i=1;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     fprintf(ficresvpl,"%.0f ",age );          ipmx +=1;
     for(i=1; i<=nlstate;i++)          sw += weight[i];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresvpl,"\n");        } /* end of wave */
     free_vector(gp,1,nlstate);      } /* end of individual */
     free_vector(gm,1,nlstate);    }  else if(mle==3){  /* exponential inter-extrapolation */
     free_matrix(gradg,1,npar,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_matrix(trgradg,1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   } /* End age */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(xp,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(doldm,1,nlstate,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(dnewm,1,nlstate,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************ Variance of one-step probabilities  ******************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j;            }
   int k=0, cptcode;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **dnewm,**doldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *xp;            savm=oldm;
   double *gp, *gm;            oldm=newm;
   double **gradg, **trgradg;          } /* end mult */
   double age,agelim, cov[NCOVMAX];        
   int theta;          s1=s[mw[mi][i]][i];
   char fileresprob[FILENAMELENGTH];          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   strcpy(fileresprob,"prob");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   strcat(fileresprob,fileres);          ipmx +=1;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          sw += weight[i];
     printf("Problem with resultfile: %s\n", fileresprob);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   xp=vector(1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   cov[1]=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     cov[2]=age;            }
     gradg=matrix(1,npar,1,9);          for(d=0; d<dh[mi][i]; d++){
     trgradg=matrix(1,9,1,npar);            newm=savm;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++)          
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            savm=oldm;
                oldm=newm;
       k=0;          } /* end mult */
       for(i=1; i<= (nlstate+ndeath); i++){        
         for(j=1; j<=(nlstate+ndeath);j++){          s1=s[mw[mi][i]][i];
            k=k+1;          s2=s[mw[mi+1][i]][i];
           gp[k]=pmmij[i][j];          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
       }          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(i=1; i<=npar; i++)          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ipmx +=1;
              sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       k=0;        } /* end of wave */
       for(i=1; i<=(nlstate+ndeath); i++){      } /* end of individual */
         for(j=1; j<=(nlstate+ndeath);j++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           k=k+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           gm[k]=pmmij[i][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
           for(d=0; d<dh[mi][i]; d++){
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            newm=savm;
       for(theta=1; theta <=npar; theta++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       trgradg[j][theta]=gradg[theta][j];            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);            }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      pmij(pmmij,cov,ncovmodel,x,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
      k=0;            oldm=newm;
      for(i=1; i<=(nlstate+ndeath); i++){          } /* end mult */
        for(j=1; j<=(nlstate+ndeath);j++){        
          k=k+1;          s1=s[mw[mi][i]][i];
          gm[k]=pmmij[i][j];          s2=s[mw[mi+1][i]][i];
         }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      }          ipmx +=1;
                sw += weight[i];
      /*printf("\n%d ",(int)age);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                } /* end of wave */
       } /* end of individual */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    } /* End of if */
      }*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficresprob,"\n%d ",(int)age);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  }
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  /*************** log-likelihood *************/
   }  double funcone( double *x)
   {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* Same as likeli but slower because of a lot of printf and if */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int i, ii, j, k, mi, d, kk;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double **out;
 }    double lli; /* Individual log likelihood */
  free_vector(xp,1,npar);    double llt;
 fclose(ficresprob);    int s1, s2;
  exit(0);    double bbh, survp;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /***********************************************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 /**************** Main Program *****************/    /*for(i=1;i<imx;i++) 
 /***********************************************/      printf(" %d\n",s[4][i]);
     */
 int main(int argc, char *argv[])    cov[1]=1.;
 {  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double agemin=1.e20, agemax=-1.e20;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   double fret;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double **xi,tmp,delta;          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double dum; /* Dummy variable */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;          }
   int *indx;        for(d=0; d<dh[mi][i]; d++){
   char line[MAXLINE], linepar[MAXLINE];          newm=savm;
   char title[MAXLINE];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];          for (kk=1; kk<=cptcovage;kk++) {
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   char filerest[FILENAMELENGTH];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char fileregp[FILENAMELENGTH];          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   char popfile[FILENAMELENGTH];          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          savm=oldm;
   int firstobs=1, lastobs=10;          oldm=newm;
   int sdeb, sfin; /* Status at beginning and end */        } /* end mult */
   int c,  h , cpt,l;        
   int ju,jl, mi;        s1=s[mw[mi][i]][i];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        s2=s[mw[mi+1][i]][i];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        bbh=(double)bh[mi][i]/(double)stepm; 
   int mobilav=0,popforecast=0;        /* bias is positive if real duration
   int hstepm, nhstepm;         * is higher than the multiple of stepm and negative otherwise.
   int *popage;/*boolprev=0 if date and zero if wave*/         */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   double bage, fage, age, agelim, agebase;        } else if  (s2==-2) {
   double ftolpl=FTOL;          for (j=1,survp=0. ; j<=nlstate; j++) 
   double **prlim;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double *severity;          lli= log(survp);
   double ***param; /* Matrix of parameters */        }else if (mle==1){
   double  *p;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double **matcov; /* Matrix of covariance */        } else if(mle==2){
   double ***delti3; /* Scale */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double *delti; /* Scale */        } else if(mle==3){  /* exponential inter-extrapolation */
   double ***eij, ***vareij;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double **varpl; /* Variances of prevalence limits by age */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double *epj, vepp;          lli=log(out[s1][s2]); /* Original formula */
   double kk1, kk2;        } else{  /* mle=0 back to 1 */
   double *popeffectif,*popcount;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;          /*lli=log(out[s1][s2]); */ /* Original formula */
   double yp,yp1,yp2;        } /* End of if */
         ipmx +=1;
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";        sw += weight[i];
   char *alph[]={"a","a","b","c","d","e"}, str[4];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   char z[1]="c", occ;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 #include <sys/time.h>   %11.6f %11.6f %11.6f ", \
 #include <time.h>                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   /* long total_usecs;            llt +=ll[k]*gipmx/gsw;
   struct timeval start_time, end_time;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
            }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          fprintf(ficresilk," %10.6f\n", -llt);
         }
       } /* end of wave */
   printf("\n%s",version);    } /* end of individual */
   if(argc <=1){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     printf("\nEnter the parameter file name: ");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     scanf("%s",pathtot);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    if(globpr==0){ /* First time we count the contributions and weights */
   else{      gipmx=ipmx;
     strcpy(pathtot,argv[1]);      gsw=sw;
   }    }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    return -l;
   /*cygwin_split_path(pathtot,path,optionfile);  }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/  
   /*************** function likelione ***********/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  {
   chdir(path);    /* This routine should help understanding what is done with 
   replace(pathc,path);       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 /*-------- arguments in the command line --------*/       Plotting could be done.
      */
   strcpy(fileres,"r");    int k;
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
   /*---------arguments file --------*/      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        printf("Problem with resultfile: %s\n", fileresilk);
     printf("Problem with optionfile %s\n",optionfile);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     goto end;      }
   }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   strcpy(filereso,"o");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   strcat(filereso,fileres);      for(k=1; k<=nlstate; k++) 
   if((ficparo=fopen(filereso,"w"))==NULL) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   
   /* Reads comments: lines beginning with '#' */    *fretone=(*funcone)(p);
   while((c=getc(ficpar))=='#' && c!= EOF){    if(*globpri !=0){
     ungetc(c,ficpar);      fclose(ficresilk);
     fgets(line, MAXLINE, ficpar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     puts(line);      fflush(fichtm); 
     fputs(line,ficparo);    } 
   }    return;
   ungetc(c,ficpar);  }
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  /*********** Maximum Likelihood Estimation ***************/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    int i,j, iter;
     puts(line);    double **xi;
     fputs(line,ficparo);    double fret;
   }    double fretone; /* Only one call to likelihood */
   ungetc(c,ficpar);    /*  char filerespow[FILENAMELENGTH];*/
      xi=matrix(1,npar,1,npar);
        for (i=1;i<=npar;i++)
   covar=matrix(0,NCOVMAX,1,n);      for (j=1;j<=npar;j++)
   cptcovn=0;        xi[i][j]=(i==j ? 1.0 : 0.0);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
   ncovmodel=2+cptcovn;    strcat(filerespow,fileres);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", filerespow);
   /* Read guess parameters */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     ungetc(c,ficpar);    for (i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);      for(j=1;j<=nlstate+ndeath;j++)
     puts(line);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fputs(line,ficparo);    fprintf(ficrespow,"\n");
   }  
   ungetc(c,ficpar);    powell(p,xi,npar,ftol,&iter,&fret,func);
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_matrix(xi,1,npar,1,npar);
     for(i=1; i <=nlstate; i++)    fclose(ficrespow);
     for(j=1; j <=nlstate+ndeath-1; j++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){  }
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);  /**** Computes Hessian and covariance matrix ***/
         fprintf(ficparo," %lf",param[i][j][k]);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
       fscanf(ficpar,"\n");    double  **a,**y,*x,pd;
       printf("\n");    double **hess;
       fprintf(ficparo,"\n");    int i, j,jk;
     }    int *indx;
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   p=param[1][1];    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
   /* Reads comments: lines beginning with '#' */    double gompertz(double p[]);
   while((c=getc(ficpar))=='#' && c!= EOF){    hess=matrix(1,npar,1,npar);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    printf("\nCalculation of the hessian matrix. Wait...\n");
     puts(line);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     fputs(line,ficparo);    for (i=1;i<=npar;i++){
   }      printf("%d",i);fflush(stdout);
   ungetc(c,ficpar);      fprintf(ficlog,"%d",i);fflush(ficlog);
      
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      
   for(i=1; i <=nlstate; i++){      /*  printf(" %f ",p[i]);
     for(j=1; j <=nlstate+ndeath-1; j++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       printf("%1d%1d",i,j);    
       fprintf(ficparo,"%1d%1d",i1,j1);    for (i=1;i<=npar;i++) {
       for(k=1; k<=ncovmodel;k++){      for (j=1;j<=npar;j++)  {
         fscanf(ficpar,"%le",&delti3[i][j][k]);        if (j>i) { 
         printf(" %le",delti3[i][j][k]);          printf(".%d%d",i,j);fflush(stdout);
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j,func,npar);
       fscanf(ficpar,"\n");          
       printf("\n");          hess[j][i]=hess[i][j];    
       fprintf(ficparo,"\n");          /*printf(" %lf ",hess[i][j]);*/
     }        }
   }      }
   delti=delti3[1][1];    }
      printf("\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     puts(line);    
     fputs(line,ficparo);    a=matrix(1,npar,1,npar);
   }    y=matrix(1,npar,1,npar);
   ungetc(c,ficpar);    x=vector(1,npar);
      indx=ivector(1,npar);
   matcov=matrix(1,npar,1,npar);    for (i=1;i<=npar;i++)
   for(i=1; i <=npar; i++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     fscanf(ficpar,"%s",&str);    ludcmp(a,npar,indx,&pd);
     printf("%s",str);  
     fprintf(ficparo,"%s",str);    for (j=1;j<=npar;j++) {
     for(j=1; j <=i; j++){      for (i=1;i<=npar;i++) x[i]=0;
       fscanf(ficpar," %le",&matcov[i][j]);      x[j]=1;
       printf(" %.5le",matcov[i][j]);      lubksb(a,npar,indx,x);
       fprintf(ficparo," %.5le",matcov[i][j]);      for (i=1;i<=npar;i++){ 
     }        matcov[i][j]=x[i];
     fscanf(ficpar,"\n");      }
     printf("\n");    }
     fprintf(ficparo,"\n");  
   }    printf("\n#Hessian matrix#\n");
   for(i=1; i <=npar; i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
     for(j=i+1;j<=npar;j++)    for (i=1;i<=npar;i++) { 
       matcov[i][j]=matcov[j][i];      for (j=1;j<=npar;j++) { 
            printf("%.3e ",hess[i][j]);
   printf("\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
       printf("\n");
     /*-------- data file ----------*/      fprintf(ficlog,"\n");
     if((ficres =fopen(fileres,"w"))==NULL) {    }
       printf("Problem with resultfile: %s\n", fileres);goto end;  
     }    /* Recompute Inverse */
     fprintf(ficres,"#%s\n",version);    for (i=1;i<=npar;i++)
          for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     if((fic=fopen(datafile,"r"))==NULL)    {    ludcmp(a,npar,indx,&pd);
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }    /*  printf("\n#Hessian matrix recomputed#\n");
   
     n= lastobs;    for (j=1;j<=npar;j++) {
     severity = vector(1,maxwav);      for (i=1;i<=npar;i++) x[i]=0;
     outcome=imatrix(1,maxwav+1,1,n);      x[j]=1;
     num=ivector(1,n);      lubksb(a,npar,indx,x);
     moisnais=vector(1,n);      for (i=1;i<=npar;i++){ 
     annais=vector(1,n);        y[i][j]=x[i];
     moisdc=vector(1,n);        printf("%.3e ",y[i][j]);
     andc=vector(1,n);        fprintf(ficlog,"%.3e ",y[i][j]);
     agedc=vector(1,n);      }
     cod=ivector(1,n);      printf("\n");
     weight=vector(1,n);      fprintf(ficlog,"\n");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    }
     mint=matrix(1,maxwav,1,n);    */
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    free_matrix(a,1,npar,1,npar);
     adl=imatrix(1,maxwav+1,1,n);        free_matrix(y,1,npar,1,npar);
     tab=ivector(1,NCOVMAX);    free_vector(x,1,npar);
     ncodemax=ivector(1,8);    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {  }
          
         for (j=maxwav;j>=1;j--){  /*************** hessian matrix ****************/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           strcpy(line,stra);  {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int i;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int l=1, lmax=20;
         }    double k1,k2;
            double p2[MAXPARM+1]; /* identical to x */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double res;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    int k=0,kmax=10;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double l1;
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fx=func(x);
         for (j=ncov;j>=1;j--){    for (i=1;i<=npar;i++) p2[i]=x[i];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
         }      l1=pow(10,l);
         num[i]=atol(stra);      delts=delt;
              for(k=1 ; k <kmax; k=k+1){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        delt = delta*(l1*k);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         i=i+1;        p2[theta]=x[theta]-delt;
       }        k2=func(p2)-fx;
     }        /*res= (k1-2.0*fx+k2)/delt/delt; */
     /* printf("ii=%d", ij);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
        scanf("%d",i);*/        
   imx=i-1; /* Number of individuals */  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* for (i=1; i<=imx; i++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  #endif
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     }          k=kmax;
         }
     for (i=1; i<=imx; i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          k=kmax; l=lmax*10.;
         }
   /* Calculation of the number of parameter from char model*/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   Tvar=ivector(1,15);          delts=delt;
   Tprod=ivector(1,15);        }
   Tvaraff=ivector(1,15);      }
   Tvard=imatrix(1,15,1,2);    }
   Tage=ivector(1,15);          delti[theta]=delts;
        return res; 
   if (strlen(model) >1){    
     j=0, j1=0, k1=1, k2=1;  }
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     cptcovn=j+1;  {
     cptcovprod=j1;    int i;
        int l=1, l1, lmax=20;
        double k1,k2,k3,k4,res,fx;
     strcpy(modelsav,model);    double p2[MAXPARM+1];
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    int k;
       printf("Error. Non available option model=%s ",model);  
       goto end;    fx=func(x);
     }    for (k=1; k<=2; k++) {
          for (i=1;i<=npar;i++) p2[i]=x[i];
     for(i=(j+1); i>=1;i--){      p2[thetai]=x[thetai]+delti[thetai]/k;
       cutv(stra,strb,modelsav,'+');      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      k1=func(p2)-fx;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    
       /*scanf("%d",i);*/      p2[thetai]=x[thetai]+delti[thetai]/k;
       if (strchr(strb,'*')) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         cutv(strd,strc,strb,'*');      k2=func(p2)-fx;
         if (strcmp(strc,"age")==0) {    
           cptcovprod--;      p2[thetai]=x[thetai]-delti[thetai]/k;
           cutv(strb,stre,strd,'V');      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           Tvar[i]=atoi(stre);      k3=func(p2)-fx;
           cptcovage++;    
             Tage[cptcovage]=i;      p2[thetai]=x[thetai]-delti[thetai]/k;
             /*printf("stre=%s ", stre);*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k4=func(p2)-fx;
         else if (strcmp(strd,"age")==0) {      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           cptcovprod--;  #ifdef DEBUG
           cutv(strb,stre,strc,'V');      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           Tvar[i]=atoi(stre);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           cptcovage++;  #endif
           Tage[cptcovage]=i;    }
         }    return res;
         else {  }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncov+k1;  /************** Inverse of matrix **************/
           cutv(strb,strc,strd,'V');  void ludcmp(double **a, int n, int *indx, double *d) 
           Tprod[k1]=i;  { 
           Tvard[k1][1]=atoi(strc);    int i,imax,j,k; 
           Tvard[k1][2]=atoi(stre);    double big,dum,sum,temp; 
           Tvar[cptcovn+k2]=Tvard[k1][1];    double *vv; 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   
           for (k=1; k<=lastobs;k++)    vv=vector(1,n); 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    *d=1.0; 
           k1++;    for (i=1;i<=n;i++) { 
           k2=k2+2;      big=0.0; 
         }      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
       else {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      vv[i]=1.0/big; 
        /*  scanf("%d",i);*/    } 
       cutv(strd,strc,strb,'V');    for (j=1;j<=n;j++) { 
       Tvar[i]=atoi(strc);      for (i=1;i<j;i++) { 
       }        sum=a[i][j]; 
       strcpy(modelsav,stra);          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        a[i][j]=sum; 
         scanf("%d",i);*/      } 
     }      big=0.0; 
 }      for (i=j;i<=n;i++) { 
          sum=a[i][j]; 
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        for (k=1;k<j;k++) 
   printf("cptcovprod=%d ", cptcovprod);          sum -= a[i][k]*a[k][j]; 
   scanf("%d ",i);*/        a[i][j]=sum; 
     fclose(fic);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     /*  if(mle==1){*/          imax=i; 
     if (weightopt != 1) { /* Maximisation without weights*/        } 
       for(i=1;i<=n;i++) weight[i]=1.0;      } 
     }      if (j != imax) { 
     /*-calculation of age at interview from date of interview and age at death -*/        for (k=1;k<=n;k++) { 
     agev=matrix(1,maxwav,1,imx);          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
    for (i=1; i<=imx; i++)          a[j][k]=dum; 
      for(m=2; (m<= maxwav); m++)        } 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        *d = -(*d); 
          anint[m][i]=9999;        vv[imax]=vv[j]; 
          s[m][i]=-1;      } 
        }      indx[j]=imax; 
          if (a[j][j] == 0.0) a[j][j]=TINY; 
     for (i=1; i<=imx; i++)  {      if (j != n) { 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        dum=1.0/(a[j][j]); 
       for(m=1; (m<= maxwav); m++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         if(s[m][i] >0){      } 
           if (s[m][i] == nlstate+1) {    } 
             if(agedc[i]>0)    free_vector(vv,1,n);  /* Doesn't work */
               if(moisdc[i]!=99 && andc[i]!=9999)  ;
               agev[m][i]=agedc[i];  } 
             else {  
               if (andc[i]!=9999){  void lubksb(double **a, int n, int *indx, double b[]) 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  { 
               agev[m][i]=-1;    int i,ii=0,ip,j; 
               }    double sum; 
             }   
           }    for (i=1;i<=n;i++) { 
           else if(s[m][i] !=9){ /* Should no more exist */      ip=indx[i]; 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      sum=b[ip]; 
             if(mint[m][i]==99 || anint[m][i]==9999)      b[ip]=b[i]; 
               agev[m][i]=1;      if (ii) 
             else if(agev[m][i] <agemin){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
               agemin=agev[m][i];      else if (sum) ii=i; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      b[i]=sum; 
             }    } 
             else if(agev[m][i] >agemax){    for (i=n;i>=1;i--) { 
               agemax=agev[m][i];      sum=b[i]; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
             }      b[i]=sum/a[i][i]; 
             /*agev[m][i]=anint[m][i]-annais[i];*/    } 
             /*   agev[m][i] = age[i]+2*m;*/  } 
           }  
           else { /* =9 */  void pstamp(FILE *fichier)
             agev[m][i]=1;  {
             s[m][i]=-1;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           }  }
         }  
         else /*= 0 Unknown */  /************ Frequencies ********************/
           agev[m][i]=1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       }  {  /* Some frequencies */
        
     }    int i, m, jk, k1,i1, j1, bool, z1,j;
     for (i=1; i<=imx; i++)  {    int first;
       for(m=1; (m<= maxwav); m++){    double ***freq; /* Frequencies */
         if (s[m][i] > (nlstate+ndeath)) {    double *pp, **prop;
           printf("Error: Wrong value in nlstate or ndeath\n");      double pos,posprop, k2, dateintsum=0,k2cpt=0;
           goto end;    char fileresp[FILENAMELENGTH];
         }    
       }    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_vector(severity,1,maxwav);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     free_imatrix(outcome,1,maxwav+1,1,n);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     free_vector(moisnais,1,n);      exit(0);
     free_vector(annais,1,n);    }
     /* free_matrix(mint,1,maxwav,1,n);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        free_matrix(anint,1,maxwav,1,n);*/    j1=0;
     free_vector(moisdc,1,n);    
     free_vector(andc,1,n);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
     wav=ivector(1,imx);    first=1;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
        /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
     /* Concatenates waves */    /*    j1++;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  */
     for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       Tcode=ivector(1,100);          scanf("%d", i);*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        for (i=-5; i<=nlstate+ndeath; i++)  
       ncodemax[1]=1;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            for(m=iagemin; m <= iagemax+3; m++)
                    freq[i][jk][m]=0;
    codtab=imatrix(1,100,1,10);        
    h=0;        for (i=1; i<=nlstate; i++)  
    m=pow(2,cptcoveff);          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0;
    for(k=1;k<=cptcoveff; k++){        
      for(i=1; i <=(m/pow(2,k));i++){        dateintsum=0;
        for(j=1; j <= ncodemax[k]; j++){        k2cpt=0;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for (i=1; i<=imx; i++) {
            h++;          bool=1;
            if (h>m) h=1;codtab[h][k]=j;          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
          }            for (z1=1; z1<=cptcoveff; z1++)       
        }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
      }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
    }                bool=0;
                 /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
    /*for(i=1; i <=m ;i++){                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
      for(k=1; k <=cptcovn; k++){                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);              } 
      }          }
      printf("\n");   
    }          if (bool==1){
    scanf("%d",i);*/            for(m=firstpass; m<=lastpass; m++){
                  k2=anint[m][i]+(mint[m][i]/12.);
    /* Calculates basic frequencies. Computes observed prevalence at single age              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
        and prints on file fileres'p'. */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    if (m<lastpass) {
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                        dateintsum=dateintsum+k2;
     /* For Powell, parameters are in a vector p[] starting at p[1]                  k2cpt++;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                /*}*/
             }
     if(mle==1){          }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        } /* end i */
     }         
            /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     /*--------- results files --------------*/        pstamp(ficresp);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    jk=1;          fprintf(ficresp, "**********\n#");
    fprintf(ficres,"# Parameters\n");          fprintf(ficlog, "\n#********** Variable "); 
    printf("# Parameters\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficlog, "**********\n#");
      for(k=1; k <=(nlstate+ndeath); k++){        }
        if (k != i)        for(i=1; i<=nlstate;i++) 
          {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
            printf("%d%d ",i,k);        fprintf(ficresp, "\n");
            fprintf(ficres,"%1d%1d ",i,k);        
            for(j=1; j <=ncovmodel; j++){        for(i=iagemin; i <= iagemax+3; i++){
              printf("%f ",p[jk]);          if(i==iagemax+3){
              fprintf(ficres,"%f ",p[jk]);            fprintf(ficlog,"Total");
              jk++;          }else{
            }            if(first==1){
            printf("\n");              first=0;
            fprintf(ficres,"\n");              printf("See log file for details...\n");
          }            }
      }            fprintf(ficlog,"Age %d", i);
    }          }
  if(mle==1){          for(jk=1; jk <=nlstate ; jk++){
     /* Computing hessian and covariance matrix */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     ftolhess=ftol; /* Usually correct */              pp[jk] += freq[jk][m][i]; 
     hesscov(matcov, p, npar, delti, ftolhess, func);          }
  }          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficres,"# Scales\n");            for(m=-1, pos=0; m <=0 ; m++)
     printf("# Scales\n");              pos += freq[jk][m][i];
      for(i=1,jk=1; i <=nlstate; i++){            if(pp[jk]>=1.e-10){
       for(j=1; j <=nlstate+ndeath; j++){              if(first==1){
         if (j!=i) {                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           fprintf(ficres,"%1d%1d",i,j);              }
           printf("%1d%1d",i,j);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(k=1; k<=ncovmodel;k++){            }else{
             printf(" %.5e",delti[jk]);              if(first==1)
             fprintf(ficres," %.5e",delti[jk]);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             jk++;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           }            }
           printf("\n");          }
           fprintf(ficres,"\n");  
         }          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
      }              pp[jk] += freq[jk][m][i];
              }       
     k=1;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     fprintf(ficres,"# Covariance\n");            pos += pp[jk];
     printf("# Covariance\n");            posprop += prop[jk][i];
     for(i=1;i<=npar;i++){          }
       /*  if (k>nlstate) k=1;          for(jk=1; jk <=nlstate ; jk++){
       i1=(i-1)/(ncovmodel*nlstate)+1;            if(pos>=1.e-5){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              if(first==1)
       printf("%s%d%d",alph[k],i1,tab[i]);*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficres,"%3d",i);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       printf("%3d",i);            }else{
       for(j=1; j<=i;j++){              if(first==1)
         fprintf(ficres," %.5e",matcov[i][j]);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         printf(" %.5e",matcov[i][j]);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       fprintf(ficres,"\n");            if( i <= iagemax){
       printf("\n");              if(pos>=1.e-5){
       k++;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     while((c=getc(ficpar))=='#' && c!= EOF){              }
       ungetc(c,ficpar);              else
       fgets(line, MAXLINE, ficpar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       puts(line);            }
       fputs(line,ficparo);          }
     }          
     ungetc(c,ficpar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
              for(m=-1; m <=nlstate+ndeath; m++)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);              if(freq[jk][m][i] !=0 ) {
                  if(first==1)
     if (fage <= 2) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       bage = agemin;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fage = agemax;              }
     }          if(i <= iagemax)
                fprintf(ficresp,"\n");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          if(first==1)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            printf("Others in log...\n");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          fprintf(ficlog,"\n");
          }
     while((c=getc(ficpar))=='#' && c!= EOF){        /*}*/
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    dateintmean=dateintsum/k2cpt; 
     puts(line);   
     fputs(line,ficparo);    fclose(ficresp);
   }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   ungetc(c,ficpar);    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    /* End of Freq */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
        /************ Prevalence ********************/
   while((c=getc(ficpar))=='#' && c!= EOF){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     ungetc(c,ficpar);  {  
     fgets(line, MAXLINE, ficpar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     puts(line);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     fputs(line,ficparo);       We still use firstpass and lastpass as another selection.
   }    */
   ungetc(c,ficpar);   
      int i, m, jk, k1, i1, j1, bool, z1,j;
     double ***freq; /* Frequencies */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    double *pp, **prop;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    double pos,posprop; 
     double  y2; /* in fractional years */
   fscanf(ficpar,"pop_based=%d\n",&popbased);    int iagemin, iagemax;
    fprintf(ficparo,"pop_based=%d\n",popbased);      int first; /** to stop verbosity which is redirected to log file */
    fprintf(ficres,"pop_based=%d\n",popbased);    
     iagemin= (int) agemin;
   while((c=getc(ficpar))=='#' && c!= EOF){    iagemax= (int) agemax;
     ungetc(c,ficpar);    /*pp=vector(1,nlstate);*/
     fgets(line, MAXLINE, ficpar);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     puts(line);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     fputs(line,ficparo);    j1=0;
   }    
   ungetc(c,ficpar);    /*j=cptcoveff;*/
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);      /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
            
     /*------------ gnuplot -------------*/        for (i=1; i<=nlstate; i++)  
     /*chdir(pathcd);*/          for(m=iagemin; m <= iagemax+3; m++)
     strcpy(optionfilegnuplot,optionfilefiname);            prop[i][m]=0.0;
     strcat(optionfilegnuplot,".plt");       
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        for (i=1; i<=imx; i++) { /* Each individual */
       printf("Problem with file %s",optionfilegnuplot);goto end;          bool=1;
     }          if  (cptcovn>0) {
 #ifdef windows            for (z1=1; z1<=cptcoveff; z1++) 
     fprintf(ficgp,"cd \"%s\" \n",pathc);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 #endif                bool=0;
 m=pow(2,cptcoveff);          } 
            if (bool==1) { 
  /* 1eme*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    for (k1=1; k1<= m ; k1 ++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
 #ifdef windows                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 #endif                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 #ifdef unix                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #endif                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
 for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            } /* end selection of waves */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }        }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(i=iagemin; i <= iagemax+3; i++){  
     for (i=1; i<= nlstate ; i ++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            posprop += prop[jk][i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          } 
 }          
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){     
      for (i=1; i<= nlstate ; i ++) {            if( i <=  iagemax){ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(posprop>=1.e-5){ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                probs[i][jk][j1]= prop[jk][i]/posprop;
 }                } else{
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                if(first==1){
 #ifdef unix                  first=0;
 fprintf(ficgp,"\nset ter gif small size 400,300");                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 #endif                }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              }
    }            } 
   }          }/* end jk */ 
   /*2 eme*/        }/* end i */ 
       /*} *//* end i1 */
   for (k1=1; k1<= m ; k1 ++) {    } /* end j1 */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    
        /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for (i=1; i<= nlstate+1 ; i ++) {    /*free_vector(pp,1,nlstate);*/
       k=2*i;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  }  /* End of prevalence */
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /************* Waves Concatenation ***************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       Death is a valid wave (if date is known).
       for (j=1; j<= nlstate+1 ; j ++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         else fprintf(ficgp," \%%*lf (\%%*lf)");       and mw[mi+1][i]. dh depends on stepm.
 }         */
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    int i, mi, m;
       for (j=1; j<= nlstate+1 ; j ++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       double sum=0., jmean=0.;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int first;
 }      int j, k=0,jk, ju, jl;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double sum=0.;
       else fprintf(ficgp,"\" t\"\" w l 0,");    first=0;
     }    jmin=1e+5;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    jmax=-1;
   }    jmean=0.;
      for(i=1; i<=imx; i++){
   /*3eme*/      mi=0;
       m=firstpass;
   for (k1=1; k1<= m ; k1 ++) {      while(s[m][i] <= nlstate){
     for (cpt=1; cpt<= nlstate ; cpt ++) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       k=2+nlstate*(cpt-1);          mw[++mi][i]=m;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        if(m >=lastpass)
       for (i=1; i< nlstate ; i ++) {          break;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        else
       }          m++;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }/* end while */
     }      if (s[m][i] > nlstate){
   }        mi++;     /* Death is another wave */
          /* if(mi==0)  never been interviewed correctly before death */
   /* CV preval stat */           /* Only death is a correct wave */
   for (k1=1; k1<= m ; k1 ++) {        mw[mi][i]=m;
     for (cpt=1; cpt<nlstate ; cpt ++) {      }
       k=3;  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);      wav[i]=mi;
       for (i=1; i< nlstate ; i ++)      if(mi==0){
         fprintf(ficgp,"+$%d",k+i+1);        nbwarn++;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        if(first==0){
                printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       l=3+(nlstate+ndeath)*cpt;          first=1;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {        if(first==1){
         l=3+(nlstate+ndeath)*cpt;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         fprintf(ficgp,"+$%d",l+i+1);        }
       }      } /* end mi==0 */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      } /* End individuals */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    for(i=1; i<=imx; i++){
   }        for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
   /* proba elementaires */          dh[mi][i]=1;
    for(i=1,jk=1; i <=nlstate; i++){        else{
     for(k=1; k <=(nlstate+ndeath); k++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       if (k != i) {            if (agedc[i] < 2*AGESUP) {
         for(j=1; j <=ncovmodel; j++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/              if(j==0) j=1;  /* Survives at least one month after exam */
           /*fprintf(ficgp,"%s",alph[1]);*/              else if(j<0){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                nberr++;
           jk++;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"\n");                j=1; /* Temporary Dangerous patch */
         }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }              }
               k=k+1;
   for(jk=1; jk <=m; jk++) {              if (j >= jmax){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);                jmax=j;
    i=1;                ijmax=i;
    for(k2=1; k2<=nlstate; k2++) {              }
      k3=i;              if (j <= jmin){
      for(k=1; k<=(nlstate+ndeath); k++) {                jmin=j;
        if (k != k2){                ijmin=i;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              }
 ij=1;              sum=sum+j;
         for(j=3; j <=ncovmodel; j++) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
             ij++;          }
           }          else{
           else            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         }  
           fprintf(ficgp,")/(1");            k=k+1;
                    if (j >= jmax) {
         for(k1=1; k1 <=nlstate; k1++){                jmax=j;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              ijmax=i;
 ij=1;            }
           for(j=3; j <=ncovmodel; j++){            else if (j <= jmin){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              jmin=j;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              ijmin=i;
             ij++;            }
           }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           else            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            if(j<0){
           }              nberr++;
           fprintf(ficgp,")");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            sum=sum+j;
         i=i+ncovmodel;          }
        }          jk= j/stepm;
      }          jl= j -jk*stepm;
    }          ju= j -(jk+1)*stepm;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   }            if(jl==0){
                  dh[mi][i]=jk;
   fclose(ficgp);              bh[mi][i]=0;
   /* end gnuplot */            }else{ /* We want a negative bias in order to only have interpolation ie
                        * to avoid the price of an extra matrix product in likelihood */
 chdir(path);              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
     free_ivector(wav,1,imx);            }
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          }else{
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              if(jl <= -ju){
     free_ivector(num,1,n);              dh[mi][i]=jk;
     free_vector(agedc,1,n);              bh[mi][i]=jl;       /* bias is positive if real duration
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                                   * is higher than the multiple of stepm and negative otherwise.
     fclose(ficparo);                                   */
     fclose(ficres);            }
     /*  }*/            else{
                  dh[mi][i]=jk+1;
    /*________fin mle=1_________*/              bh[mi][i]=ju;
                }
             if(dh[mi][i]==0){
                dh[mi][i]=1; /* At least one step */
     /* No more information from the sample is required now */              bh[mi][i]=ju; /* At least one step */
   /* Reads comments: lines beginning with '#' */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          } /* end if mle */
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      } /* end wave */
     fputs(line,ficparo);    }
   }    jmean=sum/k;
   ungetc(c,ficpar);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);   }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  /*********** Tricode ****************************/
 /*--------- index.htm --------*/  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
   strcpy(optionfilehtm,optionfile);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   strcat(optionfilehtm,".htm");    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
     printf("Problem with %s \n",optionfilehtm);goto end;     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   }    /* nbcode[Tvar[j]][1]= 
     */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">  
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 Total number of observations=%d <br>    int modmaxcovj=0; /* Modality max of covariates j */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    int cptcode=0; /* Modality max of covariates j */
 <hr  size=\"2\" color=\"#EC5E5E\">    int modmincovj=0; /* Modality min of covariates j */
 <li>Outputs files<br><br>\n  
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    cptcoveff=0; 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>   
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    for (k=-1; k < maxncov; k++) Ndum[k]=0;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    /* Loop on covariates without age and products */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>                                 modality of this covariate Vj*/ 
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
  fprintf(fichtm," <li>Graphs</li><p>");                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                       * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
  m=cptcoveff;        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                                        modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
  j1=0;          modmaxcovj=ij; 
  for(k1=1; k1<=m;k1++){        else if (ij < modmincovj) 
    for(i1=1; i1<=ncodemax[k1];i1++){          modmincovj=ij; 
        j1++;        if ((ij < -1) && (ij > NCOVMAX)){
        if (cptcovn > 0) {          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          exit(1);
          for (cpt=1; cpt<=cptcoveff;cpt++)        }else
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
        }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        /* getting the maximum value of the modality of the covariate
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);               (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
        for(cpt=1; cpt<nlstate;cpt++){           female is 1, then modmaxcovj=1.*/
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
        }      cptcode=modmaxcovj;
     for(cpt=1; cpt<=nlstate;cpt++) {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident     /*for (i=0; i<=cptcode; i++) {*/
 interval) in state (%d): v%s%d%d.gif <br>      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
      }        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
      for(cpt=1; cpt<=nlstate;cpt++) {          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
      }           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      } /* Ndum[-1] number of undefined modalities */
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 fprintf(fichtm,"\n</body>");      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
    }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
  }         modmincovj=3; modmaxcovj = 7;
 fclose(fichtm);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   /*--------------- Prevalence limit --------------*/         variables V1_1 and V1_2.
           nbcode[Tvar[j]][ij]=k;
   strcpy(filerespl,"pl");         nbcode[Tvar[j]][1]=0;
   strcat(filerespl,fileres);         nbcode[Tvar[j]][2]=1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         nbcode[Tvar[j]][3]=2;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      */
   }      ij=1; /* ij is similar to i but can jumps over null modalities */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   fprintf(ficrespl,"#Prevalence limit\n");        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   fprintf(ficrespl,"#Age ");          /*recode from 0 */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   fprintf(ficrespl,"\n");            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                         k is a modality. If we have model=V1+V1*sex 
   prlim=matrix(1,nlstate,1,nlstate);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            ij++;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if (ij > ncodemax[j]) break; 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }  /* end of loop on */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      } /* end of loop on modality */ 
   k=0;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   agebase=agemin;    
   agelim=agemax;   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   ftolpl=1.e-10;    
   i1=cptcoveff;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   if (cptcovn < 1){i1=1;}     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   for(cptcov=1;cptcov<=i1;cptcov++){     Ndum[ij]++; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   } 
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   ij=1;
         fprintf(ficrespl,"\n#******");   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         for(j=1;j<=cptcoveff;j++)     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     if((Ndum[i]!=0) && (i<=ncovcol)){
         fprintf(ficrespl,"******\n");       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
               Tvaraff[ij]=i; /*For printing (unclear) */
         for (age=agebase; age<=agelim; age++){       ij++;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     }else
           fprintf(ficrespl,"%.0f",age );         Tvaraff[ij]=0;
           for(i=1; i<=nlstate;i++)   }
           fprintf(ficrespl," %.5f", prlim[i][i]);   ij--;
           fprintf(ficrespl,"\n");   cptcoveff=ij; /*Number of total covariates*/
         }  
       }  }
     }  
   fclose(ficrespl);  
   /*********** Health Expectancies ****************/
   /*------------- h Pij x at various ages ------------*/  
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /* Health expectancies, no variances */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   printf("Computing pij: result on file '%s' \n", filerespij);    int nhstepma, nstepma; /* Decreasing with age */
      double age, agelim, hf;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***p3mat;
   /*if (stepm<=24) stepsize=2;*/    double eip;
   
   agelim=AGESUP;    pstamp(ficreseij);
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(ficreseij,"# Age");
      for(i=1; i<=nlstate;i++){
   k=0;      for(j=1; j<=nlstate;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficreseij," e%1d%1d ",i,j);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;      fprintf(ficreseij," e%1d. ",i);
         fprintf(ficrespij,"\n#****** ");    }
         for(j=1;j<=cptcoveff;j++)    fprintf(ficreseij,"\n");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    
            if(estepm < stepm){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      printf ("Problem %d lower than %d\n",estepm, stepm);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    else  hstepm=estepm;   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* We compute the life expectancy from trapezoids spaced every estepm months
           oldm=oldms;savm=savms;     * This is mainly to measure the difference between two models: for example
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * if stepm=24 months pijx are given only every 2 years and by summing them
           fprintf(ficrespij,"# Age");     * we are calculating an estimate of the Life Expectancy assuming a linear 
           for(i=1; i<=nlstate;i++)     * progression in between and thus overestimating or underestimating according
             for(j=1; j<=nlstate+ndeath;j++)     * to the curvature of the survival function. If, for the same date, we 
               fprintf(ficrespij," %1d-%1d",i,j);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           fprintf(ficrespij,"\n");     * to compare the new estimate of Life expectancy with the same linear 
           for (h=0; h<=nhstepm; h++){     * hypothesis. A more precise result, taking into account a more precise
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );     * curvature will be obtained if estepm is as small as stepm. */
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)    /* For example we decided to compute the life expectancy with the smallest unit */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             fprintf(ficrespij,"\n");       nhstepm is the number of hstepm from age to agelim 
           }       nstepm is the number of stepm from age to agelin. 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficrespij,"\n");       and note for a fixed period like estepm months */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/       results. So we changed our mind and took the option of the best precision.
     */
   fclose(ficrespij);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   if(stepm == 1) {    agelim=AGESUP;
   /*---------- Forecasting ------------------*/    /* If stepm=6 months */
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /*printf("calage= %f", calagedate);*/      
    /* nhstepm age range expressed in number of stepm */
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   strcpy(fileresf,"f");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(fileresf,fileres);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    for (age=bage; age<=fage; age ++){ 
   }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   printf("Computing forecasting: result on file '%s' \n", fileresf);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   free_matrix(mint,1,maxwav,1,n);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   free_matrix(anint,1,maxwav,1,n);  
   free_matrix(agev,1,maxwav,1,imx);      /* If stepm=6 months */
   /* Mobile average */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   if (mobilav==1) {      
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      
       for (i=1; i<=nlstate;i++)      printf("%d|",(int)age);fflush(stdout);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           mobaverage[(int)agedeb][i][cptcod]=0.;      
          /* Computing expectancies */
     for (agedeb=bage+4; agedeb<=fage; agedeb++){      for(i=1; i<=nlstate;i++)
       for (i=1; i<=nlstate;i++){        for(j=1; j<=nlstate;j++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           for (cpt=0;cpt<=4;cpt++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            
           }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }          }
       }  
     }        fprintf(ficreseij,"%3.0f",age );
   }      for(i=1; i<=nlstate;i++){
         eip=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1; j<=nlstate;j++){
   if (stepm<=12) stepsize=1;          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   agelim=AGESUP;        }
   /*hstepm=stepsize*YEARM; *//* Every year of age */        fprintf(ficreseij,"%9.4f", eip );
   hstepm=1;      }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */      fprintf(ficreseij,"\n");
   yp1=modf(dateintmean,&yp);      
   anprojmean=yp;    }
   yp2=modf((yp1*12),&yp);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   mprojmean=yp;    printf("\n");
   yp1=modf((yp2*30.5),&yp);    fprintf(ficlog,"\n");
   jprojmean=yp;    
   if(jprojmean==0) jprojmean=1;  }
   if(mprojmean==0) jprojmean=1;  
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
   {
   if (popforecast==1) {    /* Covariances of health expectancies eij and of total life expectancies according
     if((ficpop=fopen(popfile,"r"))==NULL)    {     to initial status i, ei. .
       printf("Problem with population file : %s\n",popfile);goto end;    */
     }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     popage=ivector(0,AGESUP);    int nhstepma, nstepma; /* Decreasing with age */
     popeffectif=vector(0,AGESUP);    double age, agelim, hf;
     popcount=vector(0,AGESUP);    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     i=1;      double *xp, *xm;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    double **gp, **gm;
       {    double ***gradg, ***trgradg;
         i=i+1;    int theta;
       }  
     imx=i;    double eip, vip;
      
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
     xm=vector(1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       k=k+1;    
       fprintf(ficresf,"\n#******");    pstamp(ficresstdeij);
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresstdeij,"# Age");
       }    for(i=1; i<=nlstate;i++){
       fprintf(ficresf,"******\n");      for(j=1; j<=nlstate;j++)
       fprintf(ficresf,"# StartingAge FinalAge");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      fprintf(ficresstdeij," e%1d. ",i);
       if (popforecast==1)  fprintf(ficresf," [Population]");    }
        fprintf(ficresstdeij,"\n");
       for (cpt=0; cpt<4;cpt++) {  
         fprintf(ficresf,"\n");    pstamp(ficrescveij);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */    for(i=1; i<=nlstate;i++)
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=1; j<=nlstate;j++){
         nhstepm = nhstepm/hstepm;        cptj= (j-1)*nlstate+i;
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cptj2= (j2-1)*nlstate+i2;
         oldm=oldms;savm=savms;            if(cptj2 <= cptj)
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                  }
         for (h=0; h<=nhstepm; h++){      }
           if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficrescveij,"\n");
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);    
           }    if(estepm < stepm){
           for(j=1; j<=nlstate+ndeath;j++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
             kk1=0.;kk2=0;    }
             for(i=1; i<=nlstate;i++) {            else  hstepm=estepm;   
               if (mobilav==1)    /* We compute the life expectancy from trapezoids spaced every estepm months
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * This is mainly to measure the difference between two models: for example
               else {     * if stepm=24 months pijx are given only every 2 years and by summing them
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * we are calculating an estimate of the Life Expectancy assuming a linear 
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/     * progression in between and thus overestimating or underestimating according
               }     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];     * to compare the new estimate of Life expectancy with the same linear 
             }     * hypothesis. A more precise result, taking into account a more precise
               * curvature will be obtained if estepm is as small as stepm. */
             if (h==(int)(calagedate+12*cpt)){  
               fprintf(ficresf," %.3f", kk1);    /* For example we decided to compute the life expectancy with the smallest unit */
                  /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);       nhstepm is the number of hstepm from age to agelim 
             }       nstepm is the number of stepm from age to agelin. 
           }       Look at hpijx to understand the reason of that which relies in memory size
         }       and note for a fixed period like estepm months */
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    */
   if (popforecast==1) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);    /* If stepm=6 months */
     free_vector(popcount,0,AGESUP);    /* nhstepm age range expressed in number of stepm */
   }    agelim=AGESUP;
   free_imatrix(s,1,maxwav+1,1,n);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   free_vector(weight,1,n);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fclose(ficresf);    /* if (stepm >= YEARM) hstepm=1;*/
   }/* End forecasting */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   else{    
     erreur=108;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   /*---------- Health expectancies and variances ------------*/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   strcpy(filerest,"t");  
   strcat(filerest,fileres);    for (age=bage; age<=fage; age ++){ 
   if((ficrest=fopen(filerest,"w"))==NULL) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }      /* if (stepm >= YEARM) hstepm=1;*/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
   strcpy(filerese,"e");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   strcat(filerese,fileres);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if((ficreseij=fopen(filerese,"w"))==NULL) {      
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
  strcpy(fileresv,"v");         decrease memory allocation */
   strcat(fileresv,fileres);      for(theta=1; theta <=npar; theta++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        for(i=1; i<=npar; i++){ 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   k=0;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j<= nlstate; j++){
       k=k+1;          for(i=1; i<=nlstate; i++){
       fprintf(ficrest,"\n#****** ");            for(h=0; h<=nhstepm-1; h++){
       for(j=1;j<=cptcoveff;j++)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       fprintf(ficrest,"******\n");            }
           }
       fprintf(ficreseij,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)       
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        for(ij=1; ij<= nlstate*nlstate; ij++)
       fprintf(ficreseij,"******\n");          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       fprintf(ficresvij,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)      }/* End theta */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      
       fprintf(ficresvij,"******\n");      
       for(h=0; h<=nhstepm-1; h++)
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(j=1; j<=nlstate*nlstate;j++)
       oldm=oldms;savm=savms;          for(theta=1; theta <=npar; theta++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);              trgradg[h][j][theta]=gradg[h][theta][j];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      
       oldm=oldms;savm=savms;  
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       for(ij=1;ij<=nlstate*nlstate;ij++)
              for(ji=1;ji<=nlstate*nlstate;ji++)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          varhe[ij][ji][(int)age] =0.;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");       printf("%d|",(int)age);fflush(stdout);
               fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       hf=1;       for(h=0;h<=nhstepm-1;h++){
       if (stepm >= YEARM) hf=stepm/YEARM;        for(k=0;k<=nhstepm-1;k++){
       epj=vector(1,nlstate+1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for(age=bage; age <=fage ;age++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(ij=1;ij<=nlstate*nlstate;ij++)
         if (popbased==1) {            for(ji=1;ji<=nlstate*nlstate;ji++)
           for(i=1; i<=nlstate;i++)              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
             prlim[i][i]=probs[(int)age][i][k];        }
         }      }
          
         fprintf(ficrest," %.0f",age);      /* Computing expectancies */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      for(i=1; i<=nlstate;i++)
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];        for(j=1; j<=nlstate;j++)
           }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           epj[nlstate+1] +=epj[j];            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         }            
         for(i=1, vepp=0.;i <=nlstate;i++)            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];          }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){      fprintf(ficresstdeij,"%3.0f",age );
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));      for(i=1; i<=nlstate;i++){
         }        eip=0.;
         fprintf(ficrest,"\n");        vip=0.;
       }        for(j=1; j<=nlstate;j++){
     }          eip += eij[i][j][(int)age];
   }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                    vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                  fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
  fclose(ficreseij);      }
  fclose(ficresvij);      fprintf(ficresstdeij,"\n");
   fclose(ficrest);  
   fclose(ficpar);      fprintf(ficrescveij,"%3.0f",age );
   free_vector(epj,1,nlstate+1);      for(i=1; i<=nlstate;i++)
   /*  scanf("%d ",i); */        for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
   /*------- Variance limit prevalence------*/            for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
 strcpy(fileresvpl,"vpl");              cptj2= (j2-1)*nlstate+i2;
   strcat(fileresvpl,fileres);              if(cptj2 <= cptj)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            }
     exit(0);        }
   }      fprintf(ficrescveij,"\n");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);     
     }
  k=0;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  for(cptcov=1;cptcov<=i1;cptcov++){    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      k=k+1;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      fprintf(ficresvpl,"\n#****** ");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(j=1;j<=cptcoveff;j++)    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("\n");
      fprintf(ficresvpl,"******\n");    fprintf(ficlog,"\n");
        
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    free_vector(xm,1,npar);
      oldm=oldms;savm=savms;    free_vector(xp,1,npar);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
    }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
  }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   fclose(ficresvpl);  
   /************ Variance ******************/
   /*---------- End : free ----------------*/  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  {
      /* Variance of health expectancies */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /* double **newm;*/
      double **dnewm,**doldm;
      double **dnewmp,**doldmp;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    int i, j, nhstepm, hstepm, h, nstepm ;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    int k, cptcode;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double *xp;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
   free_matrix(matcov,1,npar,1,npar);    double **gradgp, **trgradgp; /* for var p point j */
   free_vector(delti,1,npar);    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double ***p3mat;
     double age,agelim, hf;
   if(erreur >0)    double ***mobaverage;
     printf("End of Imach with error %d\n",erreur);    int theta;
   else   printf("End of Imach\n");    char digit[4];
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    char digitp[25];
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    char fileresprobmorprev[FILENAMELENGTH];
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
  end:      else strcpy(digitp,"-populbased-nomobil-");
 #ifdef windows    }
   /* chdir(pathcd);*/    else 
 #endif      strcpy(digitp,"-stablbased-");
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/    if (mobilav!=0) {
  /*system("cd ../gp37mgw");*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  strcpy(plotcmd,GNUPLOTPROGRAM);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  strcat(plotcmd," ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  strcat(plotcmd,optionfilegnuplot);      }
  system(plotcmd);    }
   
 #ifdef windows    strcpy(fileresprobmorprev,"prmorprev"); 
   while (z[0] != 'q') {    sprintf(digit,"%-d",ij);
     chdir(path);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     scanf("%s",z);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     if (z[0] == 'c') system("./imach");    strcat(fileresprobmorprev,fileres);
     else if (z[0] == 'e') {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       chdir(path);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       system(optionfilehtm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }    }
     else if (z[0] == 'q') exit(0);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }   
 #endif    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 }    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: %s, err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successul, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef OSX
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.22  
changed lines
  Added in v.1.156


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>