Diff for /imach/src/imach.c between versions 1.17 and 1.157

version 1.17, 2002/02/20 17:15:02 version 1.157, 2014/08/27 16:26:55
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.157  2014/08/27 16:26:55  brouard
   individuals from different ages are interviewed on their health status    Summary: Preparing windows Visual studio version
   or degree of  disability. At least a second wave of interviews    Author: Brouard
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    In order to compile on Visual studio, time.h is now correct and time_t
   waves and are computed for each degree of severity of disability (number    and tm struct should be used. difftime should be used but sometimes I
   of life states). More degrees you consider, more time is necessary to    just make the differences in raw time format (time(&now).
   reach the Maximum Likelihood of the parameters involved in the model.    Trying to suppress #ifdef LINUX
   The simplest model is the multinomial logistic model where pij is    Add xdg-open for __linux in order to open default browser.
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.156  2014/08/25 20:10:10  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    *** empty log message ***
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.155  2014/08/25 18:32:34  brouard
     *Covariates have to be included here again* invites you to do it.    Summary: New compile, minor changes
   More covariates you add, less is the speed of the convergence.    Author: Brouard
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.154  2014/06/20 17:32:08  brouard
   delay between waves is not identical for each individual, or if some    Summary: Outputs now all graphs of convergence to period prevalence
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.153  2014/06/20 16:45:46  brouard
   hPijx is the probability to be    Summary: If 3 live state, convergence to period prevalence on same graph
   observed in state i at age x+h conditional to the observed state i at age    Author: Brouard
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.152  2014/06/18 17:54:09  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.150  2014/06/18 16:42:35  brouard
      Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Author: brouard
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.149  2014/06/18 15:51:14  brouard
   from the European Union.    Summary: Some fixes in parameter files errors
   It is copyrighted identically to a GNU software product, ie programme and    Author: Nicolas Brouard
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.148  2014/06/17 17:38:48  brouard
   **********************************************************************/    Summary: Nothing new
      Author: Brouard
 #include <math.h>  
 #include <stdio.h>    Just a new packaging for OS/X version 0.98nS
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.146  2014/06/16 10:20:28  brouard
 /*#define DEBUG*/    Summary: Merge
 #define windows    Author: Brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Merge, before building revised version.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.145  2014/06/10 21:23:15  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: Debugging with valgrind
     Author: Nicolas Brouard
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Lot of changes in order to output the results with some covariates
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define NCOVMAX 8 /* Maximum number of covariates */    improve the code.
 #define MAXN 20000    No more memory valgrind error but a lot has to be done in order to
 #define YEARM 12. /* Number of months per year */    continue the work of splitting the code into subroutines.
 #define AGESUP 130    Also, decodemodel has been improved. Tricode is still not
 #define AGEBASE 40    optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
 int nvar;    Revision 1.143  2014/01/26 09:45:38  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int ndeath=1; /* Number of dead states */    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.141  2014/01/26 02:42:01  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.140  2011/09/02 10:37:54  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: times.h is ok with mingw32 now.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Revision 1.139  2010/06/14 07:50:17  brouard
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 FILE *ficreseij;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.138  2010/04/30 18:19:40  brouard
   char fileresv[FILENAMELENGTH];    *** empty log message ***
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
 #define NR_END 1    than V1+V2. A lot of change to be done. Unstable.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
 #define NRANSI    of likelione (using inter/intrapolation if mle = 0) in order to
 #define ITMAX 200    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 #define TOL 2.0e-4  
     Revision 1.135  2009/10/29 15:33:14  brouard
 #define CGOLD 0.3819660    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.133  2009/07/06 10:21:25  brouard
 #define TINY 1.0e-20    just nforces
   
 static double maxarg1,maxarg2;    Revision 1.132  2009/07/06 08:22:05  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Many tings
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.131  2009/06/20 16:22:47  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Some dimensions resccaled
 #define rint(a) floor(a+0.5)  
     Revision 1.130  2009/05/26 06:44:34  brouard
 static double sqrarg;    (Module): Max Covariate is now set to 20 instead of 8. A
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    lot of cleaning with variables initialized to 0. Trying to make
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
 int imx;    Revision 1.129  2007/08/31 13:49:27  lievre
 int stepm;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.128  2006/06/30 13:02:05  brouard
 int m,nb;    (Module): Clarifications on computing e.j
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.127  2006/04/28 18:11:50  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 double *weight;    loop. Now we define nhstepma in the age loop.
 int **s; /* Status */    (Module): In order to speed up (in case of numerous covariates) we
 double *agedc, **covar, idx;    compute health expectancies (without variances) in a first step
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    computation.
 double ftolhess; /* Tolerance for computing hessian */    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name )    Revision 1.126  2006/04/28 17:23:28  brouard
 {    (Module): Yes the sum of survivors was wrong since
    char *s;                             /* pointer */    imach-114 because nhstepm was no more computed in the age
    int  l1, l2;                         /* length counters */    loop. Now we define nhstepma in the age loop.
     Version 0.98h
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.125  2006/04/04 15:20:31  lievre
    s = strrchr( path, '\\' );           /* find last / */    Errors in calculation of health expectancies. Age was not initialized.
    if ( s == NULL ) {                   /* no directory, so use current */    Forecasting file added.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
       if ( getwd( dirc ) == NULL ) {    The log-likelihood is printed in the log file
 #else  
       extern char       *getcwd( );    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    name. <head> headers where missing.
 #endif  
          return( GLOCK_ERROR_GETCWD );    * imach.c (Module): Weights can have a decimal point as for
       }    English (a comma might work with a correct LC_NUMERIC environment,
       strcpy( name, path );             /* we've got it */    otherwise the weight is truncated).
    } else {                             /* strip direcotry from path */    Modification of warning when the covariates values are not 0 or
       s++;                              /* after this, the filename */    1.
       l2 = strlen( s );                 /* length of filename */    Version 0.98g
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.122  2006/03/20 09:45:41  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Weights can have a decimal point as for
       dirc[l1-l2] = 0;                  /* add zero */    English (a comma might work with a correct LC_NUMERIC environment,
    }    otherwise the weight is truncated).
    l1 = strlen( dirc );                 /* length of directory */    Modification of warning when the covariates values are not 0 or
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    1.
    return( 0 );                         /* we're done */    Version 0.98g
 }  
     Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 /******************************************/  
     * imach.c (Module): refinements in the computation of lli if
 void replace(char *s, char*t)    status=-2 in order to have more reliable computation if stepm is
 {    not 1 month. Version 0.98f
   int i;  
   int lg=20;    Revision 1.120  2006/03/16 15:10:38  lievre
   i=0;    (Module): refinements in the computation of lli if
   lg=strlen(t);    status=-2 in order to have more reliable computation if stepm is
   for(i=0; i<= lg; i++) {    not 1 month. Version 0.98f
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.119  2006/03/15 17:42:26  brouard
   }    (Module): Bug if status = -2, the loglikelihood was
 }    computed as likelihood omitting the logarithm. Version O.98e
   
 int nbocc(char *s, char occ)    Revision 1.118  2006/03/14 18:20:07  brouard
 {    (Module): varevsij Comments added explaining the second
   int i,j=0;    table of variances if popbased=1 .
   int lg=20;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   i=0;    (Module): Function pstamp added
   lg=strlen(s);    (Module): Version 0.98d
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.117  2006/03/14 17:16:22  brouard
   }    (Module): varevsij Comments added explaining the second
   return j;    table of variances if popbased=1 .
 }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 void cutv(char *u,char *v, char*t, char occ)    (Module): Version 0.98d
 {  
   int i,lg,j,p=0;    Revision 1.116  2006/03/06 10:29:27  brouard
   i=0;    (Module): Variance-covariance wrong links and
   for(j=0; j<=strlen(t)-1; j++) {    varian-covariance of ej. is needed (Saito).
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.114  2006/02/26 12:57:58  brouard
     (u[j] = t[j]);    (Module): Some improvements in processing parameter
   }    filename with strsep.
      u[p]='\0';  
     Revision 1.113  2006/02/24 14:20:24  brouard
    for(j=0; j<= lg; j++) {    (Module): Memory leaks checks with valgrind and:
     if (j>=(p+1))(v[j-p-1] = t[j]);    datafile was not closed, some imatrix were not freed and on matrix
   }    allocation too.
 }  
     Revision 1.112  2006/01/30 09:55:26  brouard
 /********************** nrerror ********************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 void nrerror(char error_text[])    Revision 1.111  2006/01/25 20:38:18  brouard
 {    (Module): Lots of cleaning and bugs added (Gompertz)
   fprintf(stderr,"ERREUR ...\n");    (Module): Comments can be added in data file. Missing date values
   fprintf(stderr,"%s\n",error_text);    can be a simple dot '.'.
   exit(1);  
 }    Revision 1.110  2006/01/25 00:51:50  brouard
 /*********************** vector *******************/    (Module): Lots of cleaning and bugs added (Gompertz)
 double *vector(int nl, int nh)  
 {    Revision 1.109  2006/01/24 19:37:15  brouard
   double *v;    (Module): Comments (lines starting with a #) are allowed in data.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.108  2006/01/19 18:05:42  lievre
   return v-nl+NR_END;    Gnuplot problem appeared...
 }    To be fixed
   
 /************************ free vector ******************/    Revision 1.107  2006/01/19 16:20:37  brouard
 void free_vector(double*v, int nl, int nh)    Test existence of gnuplot in imach path
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.106  2006/01/19 13:24:36  brouard
 }    Some cleaning and links added in html output
   
 /************************ivector *******************************/    Revision 1.105  2006/01/05 20:23:19  lievre
 int *ivector(long nl,long nh)    *** empty log message ***
 {  
   int *v;    Revision 1.104  2005/09/30 16:11:43  lievre
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Module): sump fixed, loop imx fixed, and simplifications.
   if (!v) nrerror("allocation failure in ivector");    (Module): If the status is missing at the last wave but we know
   return v-nl+NR_END;    that the person is alive, then we can code his/her status as -2
 }    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 /******************free ivector **************************/    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 void free_ivector(int *v, long nl, long nh)    the healthy state at last known wave). Version is 0.98
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.103  2005/09/30 15:54:49  lievre
 }    (Module): sump fixed, loop imx fixed, and simplifications.
   
 /******************* imatrix *******************************/    Revision 1.102  2004/09/15 17:31:30  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Add the possibility to read data file including tab characters.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.101  2004/09/15 10:38:38  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Fix on curr_time
   int **m;  
      Revision 1.100  2004/07/12 18:29:06  brouard
   /* allocate pointers to rows */    Add version for Mac OS X. Just define UNIX in Makefile
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.99  2004/06/05 08:57:40  brouard
   m += NR_END;    *** empty log message ***
   m -= nrl;  
      Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   /* allocate rows and set pointers to them */    directly from the data i.e. without the need of knowing the health
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    state at each age, but using a Gompertz model: log u =a + b*age .
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    This is the basic analysis of mortality and should be done before any
   m[nrl] += NR_END;    other analysis, in order to test if the mortality estimated from the
   m[nrl] -= ncl;    cross-longitudinal survey is different from the mortality estimated
      from other sources like vital statistic data.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      The same imach parameter file can be used but the option for mle should be -3.
   /* return pointer to array of pointers to rows */  
   return m;    Agnès, who wrote this part of the code, tried to keep most of the
 }    former routines in order to include the new code within the former code.
   
 /****************** free_imatrix *************************/    The output is very simple: only an estimate of the intercept and of
 void free_imatrix(m,nrl,nrh,ncl,nch)    the slope with 95% confident intervals.
       int **m;  
       long nch,ncl,nrh,nrl;    Current limitations:
      /* free an int matrix allocated by imatrix() */    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    B) There is no computation of Life Expectancy nor Life Table.
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 /******************* matrix *******************************/    suppressed.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.96  2003/07/15 15:38:55  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   double **m;    rewritten within the same printf. Workaround: many printfs.
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.95  2003/07/08 07:54:34  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    * imach.c (Repository):
   m += NR_END;    (Repository): Using imachwizard code to output a more meaningful covariance
   m -= nrl;    matrix (cov(a12,c31) instead of numbers.
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.94  2003/06/27 13:00:02  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Just cleaning
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    exist so I changed back to asctime which exists.
   return m;    (Module): Version 0.96b
 }  
     Revision 1.92  2003/06/25 16:30:45  brouard
 /*************************free matrix ************************/    (Module): On windows (cygwin) function asctime_r doesn't
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    exist so I changed back to asctime which exists.
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.91  2003/06/25 15:30:29  brouard
   free((FREE_ARG)(m+nrl-NR_END));    * imach.c (Repository): Duplicated warning errors corrected.
 }    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 /******************* ma3x *******************************/    is stamped in powell.  We created a new html file for the graphs
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Revision 1.90  2003/06/24 12:34:15  brouard
   double ***m;    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    of the covariance matrix to be input.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.89  2003/06/24 12:30:52  brouard
   m -= nrl;    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    of the covariance matrix to be input.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.88  2003/06/23 17:54:56  brouard
   m[nrl] -= ncl;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Revision 1.86  2003/06/17 20:04:08  brouard
   m[nrl][ncl] += NR_END;    (Module): Change position of html and gnuplot routines and added
   m[nrl][ncl] -= nll;    routine fileappend.
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.85  2003/06/17 13:12:43  brouard
      * imach.c (Repository): Check when date of death was earlier that
   for (i=nrl+1; i<=nrh; i++) {    current date of interview. It may happen when the death was just
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    prior to the death. In this case, dh was negative and likelihood
     for (j=ncl+1; j<=nch; j++)    was wrong (infinity). We still send an "Error" but patch by
       m[i][j]=m[i][j-1]+nlay;    assuming that the date of death was just one stepm after the
   }    interview.
   return m;    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /*************************free ma3x ************************/    truncation)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    (Repository): No more line truncation errors.
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.84  2003/06/13 21:44:43  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    * imach.c (Repository): Replace "freqsummary" at a correct
   free((FREE_ARG)(m+nrl-NR_END));    place. It differs from routine "prevalence" which may be called
 }    many times. Probs is memory consuming and must be used with
     parcimony.
 /***************** f1dim *************************/    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 extern int ncom;  
 extern double *pcom,*xicom;    Revision 1.83  2003/06/10 13:39:11  lievre
 extern double (*nrfunc)(double []);    *** empty log message ***
    
 double f1dim(double x)    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   int j;  
   double f;  */
   double *xt;  /*
       Interpolated Markov Chain
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Short summary of the programme:
   f=(*nrfunc)(xt);    
   free_vector(xt,1,ncom);    This program computes Healthy Life Expectancies from
   return f;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /*****************brent *************************/    case of a health survey which is our main interest) -2- at least a
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
   int iter;    computed from the time spent in each health state according to a
   double a,b,d,etemp;    model. More health states you consider, more time is necessary to reach the
   double fu,fv,fw,fx;    Maximum Likelihood of the parameters involved in the model.  The
   double ftemp;    simplest model is the multinomial logistic model where pij is the
   double p,q,r,tol1,tol2,u,v,w,x,xm;    probability to be observed in state j at the second wave
   double e=0.0;    conditional to be observed in state i at the first wave. Therefore
      the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   a=(ax < cx ? ax : cx);    'age' is age and 'sex' is a covariate. If you want to have a more
   b=(ax > cx ? ax : cx);    complex model than "constant and age", you should modify the program
   x=w=v=bx;    where the markup *Covariates have to be included here again* invites
   fw=fv=fx=(*f)(x);    you to do it.  More covariates you add, slower the
   for (iter=1;iter<=ITMAX;iter++) {    convergence.
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    The advantage of this computer programme, compared to a simple
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    multinomial logistic model, is clear when the delay between waves is not
     printf(".");fflush(stdout);    identical for each individual. Also, if a individual missed an
 #ifdef DEBUG    intermediate interview, the information is lost, but taken into
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    account using an interpolation or extrapolation.  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    hPijx is the probability to be observed in state i at age x+h
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    conditional to the observed state i at age x. The delay 'h' can be
       *xmin=x;    split into an exact number (nh*stepm) of unobserved intermediate
       return fx;    states. This elementary transition (by month, quarter,
     }    semester or year) is modelled as a multinomial logistic.  The hPx
     ftemp=fu;    matrix is simply the matrix product of nh*stepm elementary matrices
     if (fabs(e) > tol1) {    and the contribution of each individual to the likelihood is simply
       r=(x-w)*(fx-fv);    hPijx.
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Also this programme outputs the covariance matrix of the parameters but also
       q=2.0*(q-r);    of the life expectancies. It also computes the period (stable) prevalence. 
       if (q > 0.0) p = -p;    
       q=fabs(q);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       etemp=e;             Institut national d'études démographiques, Paris.
       e=d;    This software have been partly granted by Euro-REVES, a concerted action
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    from the European Union.
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    It is copyrighted identically to a GNU software product, ie programme and
       else {    software can be distributed freely for non commercial use. Latest version
         d=p/q;    can be accessed at http://euroreves.ined.fr/imach .
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
           d=SIGN(tol1,xm-x);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       }    
     } else {    **********************************************************************/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*
     }    main
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    read parameterfile
     fu=(*f)(u);    read datafile
     if (fu <= fx) {    concatwav
       if (u >= x) a=x; else b=x;    freqsummary
       SHFT(v,w,x,u)    if (mle >= 1)
         SHFT(fv,fw,fx,fu)      mlikeli
         } else {    print results files
           if (u < x) a=u; else b=u;    if mle==1 
           if (fu <= fw || w == x) {       computes hessian
             v=w;    read end of parameter file: agemin, agemax, bage, fage, estepm
             w=u;        begin-prev-date,...
             fv=fw;    open gnuplot file
             fw=fu;    open html file
           } else if (fu <= fv || v == x || v == w) {    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
             v=u;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
             fv=fu;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
           }      freexexit2 possible for memory heap.
         }  
   }    h Pij x                         | pij_nom  ficrestpij
   nrerror("Too many iterations in brent");     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   *xmin=x;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   return fx;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 }  
          1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 /****************** mnbrak ***********************/         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
             double (*func)(double))     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 {  
   double ulim,u,r,q, dum;    forecasting if prevfcast==1 prevforecast call prevalence()
   double fu;    health expectancies
      Variance-covariance of DFLE
   *fa=(*func)(*ax);    prevalence()
   *fb=(*func)(*bx);     movingaverage()
   if (*fb > *fa) {    varevsij() 
     SHFT(dum,*ax,*bx,dum)    if popbased==1 varevsij(,popbased)
       SHFT(dum,*fb,*fa,dum)    total life expectancies
       }    Variance of period (stable) prevalence
   *cx=(*bx)+GOLD*(*bx-*ax);   end
   *fc=(*func)(*cx);  */
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #include <math.h>
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #include <stdio.h>
     if ((*bx-u)*(u-*cx) > 0.0) {  #include <stdlib.h>
       fu=(*func)(u);  #include <string.h>
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #include <unistd.h>
       fu=(*func)(u);  
       if (fu < *fc) {  #include <limits.h>
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #include <sys/types.h>
           SHFT(*fb,*fc,fu,(*func)(u))  #include <sys/stat.h>
           }  #include <errno.h>
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  extern int errno;
       u=ulim;  
       fu=(*func)(u);  /* #ifdef LINUX */
     } else {  /* #include <time.h> */
       u=(*cx)+GOLD*(*cx-*bx);  /* #include "timeval.h" */
       fu=(*func)(u);  /* #else */
     }  /* #include <sys/time.h> */
     SHFT(*ax,*bx,*cx,u)  /* #endif */
       SHFT(*fa,*fb,*fc,fu)  
       }  #include <time.h>
 }  
   #ifdef GSL
 /*************** linmin ************************/  #include <gsl/gsl_errno.h>
   #include <gsl/gsl_multimin.h>
 int ncom;  #endif
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /* #include <libintl.h> */
    /* #define _(String) gettext (String) */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  #define GNUPLOTPROGRAM "gnuplot"
   double f1dim(double x);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define FILENAMELENGTH 132
               double *fc, double (*func)(double));  
   int j;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double xx,xmin,bx,ax;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double fx,fb,fa;  
    #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   ncom=n;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   pcom=vector(1,n);  
   xicom=vector(1,n);  #define NINTERVMAX 8
   nrfunc=func;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   for (j=1;j<=n;j++) {  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     pcom[j]=p[j];  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     xicom[j]=xi[j];  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   }  #define MAXN 20000
   ax=0.0;  #define YEARM 12. /**< Number of months per year */
   xx=1.0;  #define AGESUP 130
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define AGEBASE 40
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
 #ifdef DEBUG  #ifdef _WIN32
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define DIRSEPARATOR '\\'
 #endif  #define CHARSEPARATOR "\\"
   for (j=1;j<=n;j++) {  #define ODIRSEPARATOR '/'
     xi[j] *= xmin;  #else
     p[j] += xi[j];  #define DIRSEPARATOR '/'
   }  #define CHARSEPARATOR "/"
   free_vector(xicom,1,n);  #define ODIRSEPARATOR '\\'
   free_vector(pcom,1,n);  #endif
 }  
   /* $Id$ */
 /*************** powell ************************/  /* $State$ */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
 {  char fullversion[]="$Revision$ $Date$"; 
   void linmin(double p[], double xi[], int n, double *fret,  char strstart[80];
               double (*func)(double []));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int i,ibig,j;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   double del,t,*pt,*ptt,*xit;  int nvar=0, nforce=0; /* Number of variables, number of forces */
   double fp,fptt;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   double *xits;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   pt=vector(1,n);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   ptt=vector(1,n);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   xit=vector(1,n);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   xits=vector(1,n);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   *fret=(*func)(p);  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   for (j=1;j<=n;j++) pt[j]=p[j];  int cptcov=0; /* Working variable */
   for (*iter=1;;++(*iter)) {  int npar=NPARMAX;
     fp=(*fret);  int nlstate=2; /* Number of live states */
     ibig=0;  int ndeath=1; /* Number of dead states */
     del=0.0;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int popbased=0;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  int *wav; /* Number of waves for this individuual 0 is possible */
     printf("\n");  int maxwav=0; /* Maxim number of waves */
     for (i=1;i<=n;i++) {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       fptt=(*fret);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 #ifdef DEBUG                     to the likelihood and the sum of weights (done by funcone)*/
       printf("fret=%lf \n",*fret);  int mle=1, weightopt=0;
 #endif  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       printf("%d",i);fflush(stdout);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       linmin(p,xit,n,fret,func);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       if (fabs(fptt-(*fret)) > del) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
         del=fabs(fptt-(*fret));  double jmean=1; /* Mean space between 2 waves */
         ibig=i;  double **matprod2(); /* test */
       }  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #ifdef DEBUG  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       printf("%d %.12e",i,(*fret));  /*FILE *fic ; */ /* Used in readdata only */
       for (j=1;j<=n;j++) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  FILE *ficlog, *ficrespow;
         printf(" x(%d)=%.12e",j,xit[j]);  int globpr=0; /* Global variable for printing or not */
       }  double fretone; /* Only one call to likelihood */
       for(j=1;j<=n;j++)  long ipmx=0; /* Number of contributions */
         printf(" p=%.12e",p[j]);  double sw; /* Sum of weights */
       printf("\n");  char filerespow[FILENAMELENGTH];
 #endif  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     }  FILE *ficresilk;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #ifdef DEBUG  FILE *ficresprobmorprev;
       int k[2],l;  FILE *fichtm, *fichtmcov; /* Html File */
       k[0]=1;  FILE *ficreseij;
       k[1]=-1;  char filerese[FILENAMELENGTH];
       printf("Max: %.12e",(*func)(p));  FILE *ficresstdeij;
       for (j=1;j<=n;j++)  char fileresstde[FILENAMELENGTH];
         printf(" %.12e",p[j]);  FILE *ficrescveij;
       printf("\n");  char filerescve[FILENAMELENGTH];
       for(l=0;l<=1;l++) {  FILE  *ficresvij;
         for (j=1;j<=n;j++) {  char fileresv[FILENAMELENGTH];
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  FILE  *ficresvpl;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char fileresvpl[FILENAMELENGTH];
         }  char title[MAXLINE];
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 #endif  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   int  outcmd=0;
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  char filelog[FILENAMELENGTH]; /* Log file */
       return;  char filerest[FILENAMELENGTH];
     }  char fileregp[FILENAMELENGTH];
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  char popfile[FILENAMELENGTH];
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     }  /* struct timezone tzp; */
     fptt=(*func)(ptt);  /* extern int gettimeofday(); */
     if (fptt < fp) {  struct tm tml, *gmtime(), *localtime();
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  extern time_t time();
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  struct tm start_time, end_time, curr_time, last_time, forecast_time;
           xi[j][ibig]=xi[j][n];  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
           xi[j][n]=xit[j];  struct tm tm;
         }  
 #ifdef DEBUG  char strcurr[80], strfor[80];
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  char *endptr;
           printf(" %.12e",xit[j]);  long lval;
         printf("\n");  double dval;
 #endif  
       }  #define NR_END 1
     }  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /**** Prevalence limit ****************/  #define ITMAX 200 
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define TOL 2.0e-4 
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #define CGOLD 0.3819660 
      matrix by transitions matrix until convergence is reached */  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  #define GOLD 1.618034 
   double **matprod2();  #define GLIMIT 100.0 
   double **out, cov[NCOVMAX], **pmij();  #define TINY 1.0e-20 
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     for (j=1;j<=nlstate+ndeath;j++){    
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     }  #define rint(a) floor(a+0.5)
   
    cov[1]=1.;  static double sqrarg;
    #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  int agegomp= AGEGOMP;
     newm=savm;  
     /* Covariates have to be included here again */  int imx; 
      cov[2]=agefin;  int stepm=1;
    /* Stepm, step in month: minimum step interpolation*/
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int estepm;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       }  
       for (k=1; k<=cptcovage;k++)  int m,nb;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  long *num;
       for (k=1; k<=cptcovprod;k++)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  double *ageexmed,*agecens;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double dateintmean=0;
   
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double *weight;
   int **s; /* Status */
     savm=oldm;  double *agedc;
     oldm=newm;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     maxmax=0.;                    * covar=matrix(0,NCOVMAX,1,n); 
     for(j=1;j<=nlstate;j++){                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       min=1.;  double  idx; 
       max=0.;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       for(i=1; i<=nlstate; i++) {  int *Ndum; /** Freq of modality (tricode */
         sumnew=0;  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         prlim[i][j]= newm[i][j]/(1-sumnew);  double *lsurv, *lpop, *tpop;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       }  double ftolhess; /**< Tolerance for computing hessian */
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /**************** split *************************/
     }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     if(maxmax < ftolpl){  {
       return prlim;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */ 
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /*************** transition probabilities ***************/  
     l1 = strlen(path );                   /* length of path */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double s1, s2;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   /*double t34;*/      strcpy( name, path );               /* we got the fullname name because no directory */
   int i,j,j1, nc, ii, jj;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     for(i=1; i<= nlstate; i++){      /* get current working directory */
     for(j=1; j<i;j++){      /*    extern  char* getcwd ( char *buf , int len);*/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         /*s2 += param[i][j][nc]*cov[nc];*/        return( GLOCK_ERROR_GETCWD );
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      /* got dirc from getcwd*/
       }      printf(" DIRC = %s \n",dirc);
       ps[i][j]=s2;    } else {                              /* strip direcotry from path */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
     for(j=i+1; j<=nlstate+ndeath;j++){      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      strcpy( name, ss );         /* save file name */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      dirc[l1-l2] = 0;                    /* add zero */
       }      printf(" DIRC2 = %s \n",dirc);
       ps[i][j]=(s2);    }
     }    /* We add a separator at the end of dirc if not exists */
   }    l1 = strlen( dirc );                  /* length of directory */
     /*ps[3][2]=1;*/    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
   for(i=1; i<= nlstate; i++){      dirc[l1+1] = 0; 
      s1=0;      printf(" DIRC3 = %s \n",dirc);
     for(j=1; j<i; j++)    }
       s1+=exp(ps[i][j]);    ss = strrchr( name, '.' );            /* find last / */
     for(j=i+1; j<=nlstate+ndeath; j++)    if (ss >0){
       s1+=exp(ps[i][j]);      ss++;
     ps[i][i]=1./(s1+1.);      strcpy(ext,ss);                     /* save extension */
     for(j=1; j<i; j++)      l1= strlen( name);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      l2= strlen(ss)+1;
     for(j=i+1; j<=nlstate+ndeath; j++)      strncpy( finame, name, l1-l2);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      finame[l1-l2]= 0;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    }
   } /* end i */  
     return( 0 );                          /* we're done */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /******************************************/
     }  
   }  void replace_back_to_slash(char *s, char*t)
   {
     int i;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    int lg=0;
     for(jj=1; jj<= nlstate+ndeath; jj++){    i=0;
      printf("%lf ",ps[ii][jj]);    lg=strlen(t);
    }    for(i=0; i<= lg; i++) {
     printf("\n ");      (s[i] = t[i]);
     }      if (t[i]== '\\') s[i]='/';
     printf("\n ");printf("%lf ",cov[2]);*/    }
 /*  }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  char *trimbb(char *out, char *in)
     return ps;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 }    char *s;
     s=out;
 /**************** Product of 2 matrices ******************/    while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        in++;
 {      }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      *out++ = *in++;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    }
   /* in, b, out are matrice of pointers which should have been initialized    *out='\0';
      before: only the contents of out is modified. The function returns    return s;
      a pointer to pointers identical to out */  }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  char *cutl(char *blocc, char *alocc, char *in, char occ)
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
         out[i][k] +=in[i][j]*b[j][k];       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   return out;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
 }    */
     char *s, *t, *bl;
     t=in;s=in;
 /************* Higher Matrix Product ***************/    while ((*in != occ) && (*in != '\0')){
       *alocc++ = *in++;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    }
 {    if( *in == occ){
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      *(alocc)='\0';
      duration (i.e. until      s=++in;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   
      (typically every 2 years instead of every month which is too big).    if (s == t) {/* occ not found */
      Model is determined by parameters x and covariates have to be      *(alocc-(in-s))='\0';
      included manually here.      in=s;
     }
      */    while ( *in != '\0'){
       *blocc++ = *in++;
   int i, j, d, h, k;    }
   double **out, cov[NCOVMAX];  
   double **newm;    *blocc='\0';
     return t;
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  char *cutv(char *blocc, char *alocc, char *in, char occ)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       po[i][j][0]=(i==j ? 1.0 : 0.0);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     }       gives blocc="abcdef2ghi" and alocc="j".
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   for(h=1; h <=nhstepm; h++){    */
     for(d=1; d <=hstepm; d++){    char *s, *t;
       newm=savm;    t=in;s=in;
       /* Covariates have to be included here again */    while (*in != '\0'){
       cov[1]=1.;      while( *in == occ){
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        *blocc++ = *in++;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        s=in;
       for (k=1; k<=cptcovage;k++)      }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      *blocc++ = *in++;
       for (k=1; k<=cptcovprod;k++)    }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
     else
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      *(blocc-(in-s)-1)='\0';
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    in=s;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    while ( *in != '\0'){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      *alocc++ = *in++;
       savm=oldm;    }
       oldm=newm;  
     }    *alocc='\0';
     for(i=1; i<=nlstate+ndeath; i++)    return s;
       for(j=1;j<=nlstate+ndeath;j++) {  }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  int nbocc(char *s, char occ)
          */  {
       }    int i,j=0;
   } /* end h */    int lg=20;
   return po;    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /*************** log-likelihood *************/    }
 double func( double *x)    return j;
 {  }
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  /* void cutv(char *u,char *v, char*t, char occ) */
   double **out;  /* { */
   double sw; /* Sum of weights */  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   double lli; /* Individual log likelihood */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   long ipmx;  /*      gives u="abcdef2ghi" and v="j" *\/ */
   /*extern weight */  /*   int i,lg,j,p=0; */
   /* We are differentiating ll according to initial status */  /*   i=0; */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*   lg=strlen(t); */
   /*for(i=1;i<imx;i++)  /*   for(j=0; j<=lg-1; j++) { */
     printf(" %d\n",s[4][i]);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   */  /*   } */
   cov[1]=1.;  
   /*   for(j=0; j<p; j++) { */
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*     (u[j] = t[j]); */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*   } */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /*      u[p]='\0'; */
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  /*    for(j=0; j<= lg; j++) { */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       for(d=0; d<dh[mi][i]; d++){  /*   } */
         newm=savm;  /* } */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /********************** nrerror ********************/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  void nrerror(char error_text[])
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    fprintf(stderr,"ERREUR ...\n");
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    fprintf(stderr,"%s\n",error_text);
         savm=oldm;    exit(EXIT_FAILURE);
         oldm=newm;  }
          /*********************** vector *******************/
          double *vector(int nl, int nh)
       } /* end mult */  {
          double *v;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    if (!v) nrerror("allocation failure in vector");
       ipmx +=1;    return v-nl+NR_END;
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /************************ free vector ******************/
   } /* end of individual */  void free_vector(double*v, int nl, int nh)
   {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    free((FREE_ARG)(v+nl-NR_END));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
     int *v;
 /*********** Maximum Likelihood Estimation ***************/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    return v-nl+NR_END;
 {  }
   int i,j, iter;  
   double **xi,*delti;  /******************free ivector **************************/
   double fret;  void free_ivector(int *v, long nl, long nh)
   xi=matrix(1,npar,1,npar);  {
   for (i=1;i<=npar;i++)    free((FREE_ARG)(v+nl-NR_END));
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  /************************lvector *******************************/
   powell(p,xi,npar,ftol,&iter,&fret,func);  long *lvector(long nl,long nh)
   {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    long *v;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /******************free lvector **************************/
 {  void free_lvector(long *v, long nl, long nh)
   double  **a,**y,*x,pd;  {
   double **hess;    free((FREE_ARG)(v+nl-NR_END));
   int i, j,jk;  }
   int *indx;  
   /******************* imatrix *******************************/
   double hessii(double p[], double delta, int theta, double delti[]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double hessij(double p[], double delti[], int i, int j);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  { 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
   hess=matrix(1,npar,1,npar);    
     /* allocate pointers to rows */ 
   printf("\nCalculation of the hessian matrix. Wait...\n");    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for (i=1;i<=npar;i++){    if (!m) nrerror("allocation failure 1 in matrix()"); 
     printf("%d",i);fflush(stdout);    m += NR_END; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    m -= nrl; 
     /*printf(" %f ",p[i]);*/    
     /*printf(" %lf ",hess[i][i]);*/    
   }    /* allocate rows and set pointers to them */ 
      m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   for (i=1;i<=npar;i++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     for (j=1;j<=npar;j++)  {    m[nrl] += NR_END; 
       if (j>i) {    m[nrl] -= ncl; 
         printf(".%d%d",i,j);fflush(stdout);    
         hess[i][j]=hessij(p,delti,i,j);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         hess[j][i]=hess[i][j];        
         /*printf(" %lf ",hess[i][j]);*/    /* return pointer to array of pointers to rows */ 
       }    return m; 
     }  } 
   }  
   printf("\n");  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        int **m;
          long nch,ncl,nrh,nrl; 
   a=matrix(1,npar,1,npar);       /* free an int matrix allocated by imatrix() */ 
   y=matrix(1,npar,1,npar);  { 
   x=vector(1,npar);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   indx=ivector(1,npar);    free((FREE_ARG) (m+nrl-NR_END)); 
   for (i=1;i<=npar;i++)  } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     x[j]=1;    double **m;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       matcov[i][j]=x[i];    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
   }    m -= nrl;
   
   printf("\n#Hessian matrix#\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (i=1;i<=npar;i++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (j=1;j<=npar;j++) {    m[nrl] += NR_END;
       printf("%.3e ",hess[i][j]);    m[nrl] -= ncl;
     }  
     printf("\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   /* Recompute Inverse */  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   for (i=1;i<=npar;i++)  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];     */
   ludcmp(a,npar,indx,&pd);  }
   
   /*  printf("\n#Hessian matrix recomputed#\n");  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     x[j]=1;    free((FREE_ARG)(m+nrl-NR_END));
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /******************* ma3x *******************************/
       printf("%.3e ",y[i][j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     printf("\n");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   }    double ***m;
   */  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   free_matrix(a,1,npar,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()");
   free_matrix(y,1,npar,1,npar);    m += NR_END;
   free_vector(x,1,npar);    m -= nrl;
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /*************** hessian matrix ****************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double hessii( double x[], double delta, int theta, double delti[])  
 {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int i;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   int l=1, lmax=20;    m[nrl][ncl] += NR_END;
   double k1,k2;    m[nrl][ncl] -= nll;
   double p2[NPARMAX+1];    for (j=ncl+1; j<=nch; j++) 
   double res;      m[nrl][j]=m[nrl][j-1]+nlay;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    
   double fx;    for (i=nrl+1; i<=nrh; i++) {
   int k=0,kmax=10;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double l1;      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   fx=func(x);    }
   for (i=1;i<=npar;i++) p2[i]=x[i];    return m; 
   for(l=0 ; l <=lmax; l++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     l1=pow(10,l);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     delts=delt;    */
     for(k=1 ; k <kmax; k=k+1){  }
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /*************************free ma3x ************************/
       k1=func(p2)-fx;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       p2[theta]=x[theta]-delt;  {
       k2=func(p2)-fx;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       /*res= (k1-2.0*fx+k2)/delt/delt; */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    free((FREE_ARG)(m+nrl-NR_END));
        }
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*************** function subdirf ***********/
 #endif  char *subdirf(char fileres[])
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    /* Caution optionfilefiname is hidden */
         k=kmax;    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    strcat(tmpout,fileres);
         k=kmax; l=lmax*10.;    return tmpout;
       }  }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
     }  {
   }    
   delti[theta]=delts;    /* Caution optionfilefiname is hidden */
   return res;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,fileres);
 double hessij( double x[], double delti[], int thetai,int thetaj)    return tmpout;
 {  }
   int i;  
   int l=1, l1, lmax=20;  /*************** function subdirf3 ***********/
   double k1,k2,k3,k4,res,fx;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double p2[NPARMAX+1];  {
   int k;    
     /* Caution optionfilefiname is hidden */
   fx=func(x);    strcpy(tmpout,optionfilefiname);
   for (k=1; k<=2; k++) {    strcat(tmpout,"/");
     for (i=1;i<=npar;i++) p2[i]=x[i];    strcat(tmpout,preop);
     p2[thetai]=x[thetai]+delti[thetai]/k;    strcat(tmpout,preop2);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    strcat(tmpout,fileres);
     k1=func(p2)-fx;    return tmpout;
    }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /***************** f1dim *************************/
     k2=func(p2)-fx;  extern int ncom; 
    extern double *pcom,*xicom;
     p2[thetai]=x[thetai]-delti[thetai]/k;  extern double (*nrfunc)(double []); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;   
     k3=func(p2)-fx;  double f1dim(double x) 
    { 
     p2[thetai]=x[thetai]-delti[thetai]/k;    int j; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double f;
     k4=func(p2)-fx;    double *xt; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */   
 #ifdef DEBUG    xt=vector(1,ncom); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 #endif    f=(*nrfunc)(xt); 
   }    free_vector(xt,1,ncom); 
   return res;    return f; 
 }  } 
   
 /************** Inverse of matrix **************/  /*****************brent *************************/
 void ludcmp(double **a, int n, int *indx, double *d)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 {  { 
   int i,imax,j,k;    int iter; 
   double big,dum,sum,temp;    double a,b,d,etemp;
   double *vv;    double fu,fv,fw,fx;
      double ftemp;
   vv=vector(1,n);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   *d=1.0;    double e=0.0; 
   for (i=1;i<=n;i++) {   
     big=0.0;    a=(ax < cx ? ax : cx); 
     for (j=1;j<=n;j++)    b=(ax > cx ? ax : cx); 
       if ((temp=fabs(a[i][j])) > big) big=temp;    x=w=v=bx; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    fw=fv=fx=(*f)(x); 
     vv[i]=1.0/big;    for (iter=1;iter<=ITMAX;iter++) { 
   }      xm=0.5*(a+b); 
   for (j=1;j<=n;j++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (i=1;i<j;i++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       sum=a[i][j];      printf(".");fflush(stdout);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      fprintf(ficlog,".");fflush(ficlog);
       a[i][j]=sum;  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     big=0.0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (i=j;i<=n;i++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       sum=a[i][j];  #endif
       for (k=1;k<j;k++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         sum -= a[i][k]*a[k][j];        *xmin=x; 
       a[i][j]=sum;        return fx; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {      } 
         big=dum;      ftemp=fu;
         imax=i;      if (fabs(e) > tol1) { 
       }        r=(x-w)*(fx-fv); 
     }        q=(x-v)*(fx-fw); 
     if (j != imax) {        p=(x-v)*q-(x-w)*r; 
       for (k=1;k<=n;k++) {        q=2.0*(q-r); 
         dum=a[imax][k];        if (q > 0.0) p = -p; 
         a[imax][k]=a[j][k];        q=fabs(q); 
         a[j][k]=dum;        etemp=e; 
       }        e=d; 
       *d = -(*d);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       vv[imax]=vv[j];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }        else { 
     indx[j]=imax;          d=p/q; 
     if (a[j][j] == 0.0) a[j][j]=TINY;          u=x+d; 
     if (j != n) {          if (u-a < tol2 || b-u < tol2) 
       dum=1.0/(a[j][j]);            d=SIGN(tol1,xm-x); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        } 
     }      } else { 
   }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   free_vector(vv,1,n);  /* Doesn't work */      } 
 ;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
 void lubksb(double **a, int n, int *indx, double b[])        if (u >= x) a=x; else b=x; 
 {        SHFT(v,w,x,u) 
   int i,ii=0,ip,j;          SHFT(fv,fw,fx,fu) 
   double sum;          } else { 
              if (u < x) a=u; else b=u; 
   for (i=1;i<=n;i++) {            if (fu <= fw || w == x) { 
     ip=indx[i];              v=w; 
     sum=b[ip];              w=u; 
     b[ip]=b[i];              fv=fw; 
     if (ii)              fw=fu; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            } else if (fu <= fv || v == x || v == w) { 
     else if (sum) ii=i;              v=u; 
     b[i]=sum;              fv=fu; 
   }            } 
   for (i=n;i>=1;i--) {          } 
     sum=b[i];    } 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    nrerror("Too many iterations in brent"); 
     b[i]=sum/a[i][i];    *xmin=x; 
   }    return fx; 
 }  } 
   
 /************ Frequencies ********************/  /****************** mnbrak ***********************/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1,double **mint,double **anint)  
 {  /* Some frequencies */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                double (*func)(double)) 
   int i, m, jk, k1, k2,i1, j1, bool, z1,z2,j;  { 
   double ***freq; /* Frequencies */    double ulim,u,r,q, dum;
   double *pp;    double fu; 
   double pos;   
   FILE *ficresp;    *fa=(*func)(*ax); 
   char fileresp[FILENAMELENGTH];    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   pp=vector(1,nlstate);      SHFT(dum,*ax,*bx,dum) 
   probs= ma3x(1,130 ,1,8, 1,8);        SHFT(dum,*fb,*fa,dum) 
   strcpy(fileresp,"p");        } 
   strcat(fileresp,fileres);    *cx=(*bx)+GOLD*(*bx-*ax); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    *fc=(*func)(*cx); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    while (*fb > *fc) { 
     exit(0);      r=(*bx-*ax)*(*fb-*fc); 
   }      q=(*bx-*cx)*(*fb-*fa); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   j1=0;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   j=cptcoveff;      if ((*bx-u)*(u-*cx) > 0.0) { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for(k1=1; k1<=j;k1++){        fu=(*func)(u); 
    for(i1=1; i1<=ncodemax[k1];i1++){        if (fu < *fc) { 
        j1++;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            SHFT(*fb,*fc,fu,(*func)(u)) 
          scanf("%d", i);*/            } 
         for (i=-1; i<=nlstate+ndeath; i++)        } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
          for (jk=-1; jk<=nlstate+ndeath; jk++)          u=ulim; 
            for(m=agemin; m <= agemax+3; m++)        fu=(*func)(u); 
              freq[i][jk][m]=0;      } else { 
                u=(*cx)+GOLD*(*cx-*bx); 
        for (i=1; i<=imx; i++) {        fu=(*func)(u); 
          bool=1;      } 
          if  (cptcovn>0) {      SHFT(*ax,*bx,*cx,u) 
            for (z1=1; z1<=cptcoveff; z1++)        SHFT(*fa,*fb,*fc,fu) 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        } 
                bool=0;  } 
          }  
           if (bool==1) {  /*************** linmin ************************/
             for(m=fprev1; m<=lprev1; m++){  
              k2=anint[m][i]+(mint[m][i]/12.);  int ncom; 
              if ((k2>=1984) && (k2<=1988.5)) {  double *pcom,*xicom;
              if(agev[m][i]==0) agev[m][i]=agemax+1;  double (*nrfunc)(double []); 
              if(agev[m][i]==1) agev[m][i]=agemax+2;   
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  { 
              }    double brent(double ax, double bx, double cx, 
             }                 double (*f)(double), double tol, double *xmin); 
           }    double f1dim(double x); 
        }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         if  (cptcovn>0) {                double *fc, double (*func)(double)); 
          fprintf(ficresp, "\n#********** Variable ");    int j; 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double xx,xmin,bx,ax; 
        fprintf(ficresp, "**********\n#");    double fx,fb,fa;
         }   
        for(i=1; i<=nlstate;i++)    ncom=n; 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    pcom=vector(1,n); 
        fprintf(ficresp, "\n");    xicom=vector(1,n); 
            nrfunc=func; 
   for(i=(int)agemin; i <= (int)agemax+3; i++){    for (j=1;j<=n;j++) { 
     if(i==(int)agemax+3)      pcom[j]=p[j]; 
       printf("Total");      xicom[j]=xi[j]; 
     else    } 
       printf("Age %d", i);    ax=0.0; 
     for(jk=1; jk <=nlstate ; jk++){    xx=1.0; 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         pp[jk] += freq[jk][m][i];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
     for(jk=1; jk <=nlstate ; jk++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for(m=-1, pos=0; m <=0 ; m++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         pos += freq[jk][m][i];  #endif
       if(pp[jk]>=1.e-10)    for (j=1;j<=n;j++) { 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      xi[j] *= xmin; 
       else      p[j] += xi[j]; 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    } 
     }    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
      for(jk=1; jk <=nlstate ; jk++){  } 
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];  char *asc_diff_time(long time_sec, char ascdiff[])
      }  {
     long sec_left, days, hours, minutes;
     for(jk=1,pos=0; jk <=nlstate ; jk++)    days = (time_sec) / (60*60*24);
       pos += pp[jk];    sec_left = (time_sec) % (60*60*24);
     for(jk=1; jk <=nlstate ; jk++){    hours = (sec_left) / (60*60) ;
       if(pos>=1.e-5)    sec_left = (sec_left) %(60*60);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    minutes = (sec_left) /60;
       else    sec_left = (sec_left) % (60);
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       if( i <= (int) agemax){    return ascdiff;
         if(pos>=1.e-5){  }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
           probs[i][jk][j1]= pp[jk]/pos;  /*************** powell ************************/
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         }              double (*func)(double [])) 
       else  { 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    void linmin(double p[], double xi[], int n, double *fret, 
       }                double (*func)(double [])); 
     }    int i,ibig,j; 
     for(jk=-1; jk <=nlstate+ndeath; jk++)    double del,t,*pt,*ptt,*xit;
       for(m=-1; m <=nlstate+ndeath; m++)    double fp,fptt;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double *xits;
     if(i <= (int) agemax)    int niterf, itmp;
       fprintf(ficresp,"\n");  
     printf("\n");    pt=vector(1,n); 
     }    ptt=vector(1,n); 
     }    xit=vector(1,n); 
  }    xits=vector(1,n); 
      *fret=(*func)(p); 
   fclose(ficresp);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      rcurr_time = time(NULL);  
   free_vector(pp,1,nlstate);    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
 }  /* End of Freq */      ibig=0; 
       del=0.0; 
 /************ Prevalence ********************/      rlast_time=rcurr_time;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)      /* (void) gettimeofday(&curr_time,&tzp); */
 {  /* Some frequencies */      rcurr_time = time(NULL);  
        curr_time = *localtime(&rcurr_time);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
   double ***freq; /* Frequencies */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   double *pp;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
   double pos;     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   pp=vector(1,nlstate);        fprintf(ficlog," %d %.12lf",i, p[i]);
   probs= ma3x(1,130 ,1,8, 1,8);        fprintf(ficrespow," %.12lf", p[i]);
        }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      printf("\n");
   j1=0;      fprintf(ficlog,"\n");
        fprintf(ficrespow,"\n");fflush(ficrespow);
   j=cptcoveff;      if(*iter <=3){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        tml = *localtime(&rcurr_time);
          strcpy(strcurr,asctime(&tml));
  for(k1=1; k1<=j;k1++){  /*       asctime_r(&tm,strcurr); */
     for(i1=1; i1<=ncodemax[k1];i1++){        rforecast_time=rcurr_time; 
       j1++;        itmp = strlen(strcurr);
          if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       for (i=-1; i<=nlstate+ndeath; i++)            strcurr[itmp-1]='\0';
         for (jk=-1; jk<=nlstate+ndeath; jk++)          printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           for(m=agemin; m <= agemax+3; m++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           freq[i][jk][m]=0;        for(niterf=10;niterf<=30;niterf+=10){
                rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
       for (i=1; i<=imx; i++) {          forecast_time = *localtime(&rforecast_time);
         bool=1;  /*      asctime_r(&tmf,strfor); */
         if  (cptcovn>0) {          strcpy(strfor,asctime(&forecast_time));
           for (z1=1; z1<=cptcoveff; z1++)          itmp = strlen(strfor);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          if(strfor[itmp-1]=='\n')
               bool=0;          strfor[itmp-1]='\0';
               }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         if (bool==1) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           for(m=fprev1; m<=lprev1; m++){        }
             if(agev[m][i]==0) agev[m][i]=agemax+1;      }
             if(agev[m][i]==1) agev[m][i]=agemax+2;      for (i=1;i<=n;i++) { 
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        fptt=(*fret); 
           }  #ifdef DEBUG
         }        printf("fret=%lf \n",*fret);
       }        fprintf(ficlog,"fret=%lf \n",*fret);
        for(i=(int)agemin; i <= (int)agemax+3; i++){  #endif
         for(jk=1; jk <=nlstate ; jk++){        printf("%d",i);fflush(stdout);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        fprintf(ficlog,"%d",i);fflush(ficlog);
             pp[jk] += freq[jk][m][i];        linmin(p,xit,n,fret,func); 
         }        if (fabs(fptt-(*fret)) > del) { 
         for(jk=1; jk <=nlstate ; jk++){          del=fabs(fptt-(*fret)); 
           for(m=-1, pos=0; m <=0 ; m++)          ibig=i; 
             pos += freq[jk][m][i];        } 
         }  #ifdef DEBUG
                printf("%d %.12e",i,(*fret));
          for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"%d %.12e",i,(*fret));
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (j=1;j<=n;j++) {
              pp[jk] += freq[jk][m][i];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
          }          printf(" x(%d)=%.12e",j,xit[j]);
                    fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        }
         for(j=1;j<=n;j++) {
          for(jk=1; jk <=nlstate ; jk++){                    printf(" p=%.12e",p[j]);
            if( i <= (int) agemax){          fprintf(ficlog," p=%.12e",p[j]);
              if(pos>=1.e-5){        }
                probs[i][jk][j1]= pp[jk]/pos;        printf("\n");
              }        fprintf(ficlog,"\n");
            }  #endif
          }      } 
                if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
          }  #ifdef DEBUG
     }        int k[2],l;
   }        k[0]=1;
          k[1]=-1;
          printf("Max: %.12e",(*func)(p));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   free_vector(pp,1,nlstate);        for (j=1;j<=n;j++) {
            printf(" %.12e",p[j]);
 }  /* End of Freq */          fprintf(ficlog," %.12e",p[j]);
 /************* Waves Concatenation ***************/        }
         printf("\n");
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        fprintf(ficlog,"\n");
 {        for(l=0;l<=1;l++) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          for (j=1;j<=n;j++) {
      Death is a valid wave (if date is known).            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      and mw[mi+1][i]. dh depends on stepm.          }
      */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i, mi, m;        }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  #endif
      double sum=0., jmean=0.;*/  
   
   int j, k=0,jk, ju, jl;        free_vector(xit,1,n); 
   double sum=0.;        free_vector(xits,1,n); 
   jmin=1e+5;        free_vector(ptt,1,n); 
   jmax=-1;        free_vector(pt,1,n); 
   jmean=0.;        return; 
   for(i=1; i<=imx; i++){      } 
     mi=0;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     m=firstpass;      for (j=1;j<=n;j++) { 
     while(s[m][i] <= nlstate){        ptt[j]=2.0*p[j]-pt[j]; 
       if(s[m][i]>=1)        xit[j]=p[j]-pt[j]; 
         mw[++mi][i]=m;        pt[j]=p[j]; 
       if(m >=lastpass)      } 
         break;      fptt=(*func)(ptt); 
       else      if (fptt < fp) { 
         m++;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }/* end while */        if (t < 0.0) { 
     if (s[m][i] > nlstate){          linmin(p,xit,n,fret,func); 
       mi++;     /* Death is another wave */          for (j=1;j<=n;j++) { 
       /* if(mi==0)  never been interviewed correctly before death */            xi[j][ibig]=xi[j][n]; 
          /* Only death is a correct wave */            xi[j][n]=xit[j]; 
       mw[mi][i]=m;          }
     }  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     wav[i]=mi;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     if(mi==0)          for(j=1;j<=n;j++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
           }
   for(i=1; i<=imx; i++){          printf("\n");
     for(mi=1; mi<wav[i];mi++){          fprintf(ficlog,"\n");
       if (stepm <=0)  #endif
         dh[mi][i]=1;        }
       else{      } 
         if (s[mw[mi+1][i]][i] > nlstate) {    } 
           if (agedc[i] < 2*AGESUP) {  } 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */  /**** Prevalence limit (stable or period prevalence)  ****************/
           k=k+1;  
           if (j >= jmax) jmax=j;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           if (j <= jmin) jmin=j;  {
           sum=sum+j;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           /* if (j<10) printf("j=%d num=%d ",j,i); */       matrix by transitions matrix until convergence is reached */
           }  
         }    int i, ii,j,k;
         else{    double min, max, maxmin, maxmax,sumnew=0.;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* double **matprod2(); */ /* test */
           k=k+1;    double **out, cov[NCOVMAX+1], **pmij();
           if (j >= jmax) jmax=j;    double **newm;
           else if (j <= jmin)jmin=j;    double agefin, delaymax=50 ; /* Max number of years to converge */
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;    for (ii=1;ii<=nlstate+ndeath;ii++)
         }      for (j=1;j<=nlstate+ndeath;j++){
         jk= j/stepm;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         jl= j -jk*stepm;      }
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)     cov[1]=1.;
           dh[mi][i]=jk;   
         else   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           dh[mi][i]=jk+1;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         if(dh[mi][i]==0)      newm=savm;
           dh[mi][i]=1; /* At least one step */      /* Covariates have to be included here again */
       }      cov[2]=agefin;
     }      
   }      for (k=1; k<=cptcovn;k++) {
   jmean=sum/k;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
  }      }
 /*********** Tricode ****************************/      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 void tricode(int *Tvar, int **nbcode, int imx)      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 {      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   int Ndum[20],ij=1, k, j, i;      
   int cptcode=0;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   cptcoveff=0;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for (k=0; k<19; k++) Ndum[k]=0;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   for (k=1; k<=7; k++) ncodemax[k]=0;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      
     for (i=1; i<=imx; i++) {      savm=oldm;
       ij=(int)(covar[Tvar[j]][i]);      oldm=newm;
       Ndum[ij]++;      maxmax=0.;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for(j=1;j<=nlstate;j++){
       if (ij > cptcode) cptcode=ij;        min=1.;
     }        max=0.;
         for(i=1; i<=nlstate; i++) {
     for (i=0; i<=cptcode; i++) {          sumnew=0;
       if(Ndum[i]!=0) ncodemax[j]++;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     }          prlim[i][j]= newm[i][j]/(1-sumnew);
     ij=1;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
     for (i=1; i<=ncodemax[j]; i++) {        }
       for (k=0; k<=19; k++) {        maxmin=max-min;
         if (Ndum[k] != 0) {        maxmax=FMAX(maxmax,maxmin);
           nbcode[Tvar[j]][ij]=k;      }
           ij++;      if(maxmax < ftolpl){
         }        return prlim;
         if (ij > ncodemax[j]) break;      }
       }      }
     }  }
   }    
   /*************** transition probabilities ***************/ 
  for (k=0; k<19; k++) Ndum[k]=0;  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
  for (i=1; i<=ncovmodel-2; i++) {  {
       ij=Tvar[i];    /* According to parameters values stored in x and the covariate's values stored in cov,
       Ndum[ij]++;       computes the probability to be observed in state j being in state i by appying the
     }       model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
  ij=1;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
  for (i=1; i<=10; i++) {       ncth covariate in the global vector x is given by the formula:
    if((Ndum[i]!=0) && (i<=ncov)){       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
      Tvaraff[ij]=i;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      ij++;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
    }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
  }       Outputs ps[i][j] the probability to be observed in j being in j according to
         the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     cptcoveff=ij-1;    */
 }    double s1, lnpijopii;
     /*double t34;*/
 /*********** Health Expectancies ****************/    int i,j,j1, nc, ii, jj;
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      for(i=1; i<= nlstate; i++){
 {        for(j=1; j<i;j++){
   /* Health expectancies */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   int i, j, nhstepm, hstepm, h;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   double age, agelim,hf;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   double ***p3mat;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
            }
   fprintf(ficreseij,"# Health expectancies\n");          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   fprintf(ficreseij,"# Age");  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=nlstate;j++)        for(j=i+1; j<=nlstate+ndeath;j++){
       fprintf(ficreseij," %1d-%1d",i,j);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   fprintf(ficreseij,"\n");            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   hstepm=1*YEARM; /*  Every j years of age (in month) */  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   agelim=AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     /* nhstepm age range expressed in number of stepm */      
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);      for(i=1; i<= nlstate; i++){
     /* Typically if 20 years = 20*12/6=40 stepm */        s1=0;
     if (stepm >= YEARM) hstepm=1;        for(j=1; j<i; j++){
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for(j=i+1; j<=nlstate+ndeath; j++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
     for(i=1; i<=nlstate;i++)        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       for(j=1; j<=nlstate;j++)        ps[i][i]=1./(s1+1.);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        /* Computing other pijs */
           eij[i][j][(int)age] +=p3mat[i][j][h];        for(j=1; j<i; j++)
         }          ps[i][j]= exp(ps[i][j])*ps[i][i];
            for(j=i+1; j<=nlstate+ndeath; j++)
     hf=1;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (stepm >= YEARM) hf=stepm/YEARM;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     fprintf(ficreseij,"%.0f",age );      } /* end i */
     for(i=1; i<=nlstate;i++)      
       for(j=1; j<=nlstate;j++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        for(jj=1; jj<= nlstate+ndeath; jj++){
       }          ps[ii][jj]=0;
     fprintf(ficreseij,"\n");          ps[ii][ii]=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   }      }
 }      
       
 /************ Variance ******************/      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 {      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   /* Variance of health expectancies */      /*   } */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      /*   printf("\n "); */
   double **newm;      /* } */
   double **dnewm,**doldm;      /* printf("\n ");printf("%lf ",cov[2]);*/
   int i, j, nhstepm, hstepm, h;      /*
   int k, cptcode;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double *xp;        goto end;*/
   double **gp, **gm;      return ps;
   double ***gradg, ***trgradg;  }
   double ***p3mat;  
   double age,agelim;  /**************** Product of 2 matrices ******************/
   int theta;  
   double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
    fprintf(ficresvij,"# Covariances of life expectancies\n");  {
   fprintf(ficresvij,"# Age");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for(i=1; i<=nlstate;i++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for(j=1; j<=nlstate;j++)    /* in, b, out are matrice of pointers which should have been initialized 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       before: only the contents of out is modified. The function returns
   fprintf(ficresvij,"\n");       a pointer to pointers identical to out */
     int i, j, k;
   xp=vector(1,npar);    for(i=nrl; i<= nrh; i++)
   dnewm=matrix(1,nlstate,1,npar);      for(k=ncolol; k<=ncoloh; k++){
   doldm=matrix(1,nlstate,1,nlstate);        out[i][k]=0.;
          for(j=ncl; j<=nch; j++)
   hstepm=1*YEARM; /* Every year of age */          out[i][k] +=in[i][j]*b[j][k];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;    return out;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /************* Higher Matrix Product ***************/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     gp=matrix(0,nhstepm,1,nlstate);  {
     gm=matrix(0,nhstepm,1,nlstate);    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
     for(theta=1; theta <=npar; theta++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for(i=1; i<=npar; i++){ /* Computes gradient */       nhstepm*hstepm matrices. 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       }       (typically every 2 years instead of every month which is too big 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         for the memory).
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       Model is determined by parameters x and covariates have to be 
        included manually here. 
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)       */
           prlim[i][i]=probs[(int)age][i][ij];  
       }    int i, j, d, h, k;
          double **out, cov[NCOVMAX+1];
       for(j=1; j<= nlstate; j++){    double **newm;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /* Hstepm could be zero and should return the unit matrix */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=nlstate+ndeath;i++)
         }      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[i][j]=(i==j ? 1.0 : 0.0);
            po[i][j][0]=(i==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++) /* Computes gradient */      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(h=1; h <=nhstepm; h++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(d=1; d <=hstepm; d++){
         newm=savm;
       if (popbased==1) {        /* Covariates have to be included here again */
         for(i=1; i<=nlstate;i++)        cov[1]=1.;
           prlim[i][i]=probs[(int)age][i][ij];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       }        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(j=1; j<= nlstate; j++){        for (k=1; k<=cptcovage;k++)
         for(h=0; h<=nhstepm; h++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }  
       }  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for(j=1; j<= nlstate; j++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for(h=0; h<=nhstepm; h++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         }        savm=oldm;
     } /* End theta */        oldm=newm;
       }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
     for(h=0; h<=nhstepm; h++)          po[i][j][h]=newm[i][j];
       for(j=1; j<=nlstate;j++)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];      /*printf("h=%d ",h);*/
     } /* end h */
     for(i=1;i<=nlstate;i++)  /*     printf("\n H=%d \n",h); */
       for(j=1;j<=nlstate;j++)    return po;
         vareij[i][j][(int)age] =0.;  }
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  /*************** log-likelihood *************/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  double func( double *x)
         for(i=1;i<=nlstate;i++)  {
           for(j=1;j<=nlstate;j++)    int i, ii, j, k, mi, d, kk;
             vareij[i][j][(int)age] += doldm[i][j];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       }    double **out;
     }    double sw; /* Sum of weights */
     h=1;    double lli; /* Individual log likelihood */
     if (stepm >= YEARM) h=stepm/YEARM;    int s1, s2;
     fprintf(ficresvij,"%.0f ",age );    double bbh, survp;
     for(i=1; i<=nlstate;i++)    long ipmx;
       for(j=1; j<=nlstate;j++){    /*extern weight */
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     fprintf(ficresvij,"\n");    /*for(i=1;i<imx;i++) 
     free_matrix(gp,0,nhstepm,1,nlstate);      printf(" %d\n",s[4][i]);
     free_matrix(gm,0,nhstepm,1,nlstate);    */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    cov[1]=1.;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   } /* End age */  
      if(mle==1){
   free_vector(xp,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_matrix(doldm,1,nlstate,1,npar);        /* Computes the values of the ncovmodel covariates of the model
   free_matrix(dnewm,1,nlstate,1,nlstate);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
            Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 }           to be observed in j being in i according to the model.
          */
 /************ Variance of prevlim ******************/        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          cov[2+k]=covar[Tvar[k]][i];
 {        }
   /* Variance of prevalence limit */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   double **newm;           has been calculated etc */
   double **dnewm,**doldm;        for(mi=1; mi<= wav[i]-1; mi++){
   int i, j, nhstepm, hstepm;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int k, cptcode;            for (j=1;j<=nlstate+ndeath;j++){
   double *xp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *gp, *gm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **gradg, **trgradg;            }
   double age,agelim;          for(d=0; d<dh[mi][i]; d++){
   int theta;            newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresvpl,"# Age");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %1d-%1d",i,i);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresvpl,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   xp=vector(1,npar);            oldm=newm;
   dnewm=matrix(1,nlstate,1,npar);          } /* end mult */
   doldm=matrix(1,nlstate,1,nlstate);        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   hstepm=1*YEARM; /* Every year of age */          /* But now since version 0.9 we anticipate for bias at large stepm.
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   agelim = AGESUP;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           * the nearest (and in case of equal distance, to the lowest) interval but now
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     if (stepm >= YEARM) hstepm=1;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */           * probability in order to take into account the bias as a fraction of the way
     gradg=matrix(1,npar,1,nlstate);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     gp=vector(1,nlstate);           * -stepm/2 to stepm/2 .
     gm=vector(1,nlstate);           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
     for(theta=1; theta <=npar; theta++){           */
       for(i=1; i<=npar; i++){ /* Computes gradient */          s1=s[mw[mi][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /* bias bh is positive if real duration
       for(i=1;i<=nlstate;i++)           * is higher than the multiple of stepm and negative otherwise.
         gp[i] = prlim[i][i];           */
              /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(i=1; i<=npar; i++) /* Computes gradient */          if( s2 > nlstate){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            /* i.e. if s2 is a death state and if the date of death is known 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);               then the contribution to the likelihood is the probability to 
       for(i=1;i<=nlstate;i++)               die between last step unit time and current  step unit time, 
         gm[i] = prlim[i][i];               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
       for(i=1;i<=nlstate;i++)               In version up to 0.92 likelihood was computed
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          as if date of death was unknown. Death was treated as any other
     } /* End theta */          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
     trgradg =matrix(1,nlstate,1,npar);          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
     for(j=1; j<=nlstate;j++)          introduced the exact date of death then we should have modified
       for(theta=1; theta <=npar; theta++)          the contribution of an exact death to the likelihood. This new
         trgradg[j][theta]=gradg[theta][j];          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
     for(i=1;i<=nlstate;i++)          and month of death but the probability to survive from last
       varpl[i][(int)age] =0.;          interview up to one month before death multiplied by the
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          probability to die within a month. Thanks to Chris
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          Jackson for correcting this bug.  Former versions increased
     for(i=1;i<=nlstate;i++)          mortality artificially. The bad side is that we add another loop
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          which slows down the processing. The difference can be up to 10%
           lower mortality.
     fprintf(ficresvpl,"%.0f ",age );            */
     for(i=1; i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);          } else if  (s2==-2) {
     free_vector(gm,1,nlstate);            for (j=1,survp=0. ; j<=nlstate; j++) 
     free_matrix(gradg,1,npar,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     free_matrix(trgradg,1,nlstate,1,npar);            /*survp += out[s1][j]; */
   } /* End age */            lli= log(survp);
           }
   free_vector(xp,1,npar);          
   free_matrix(doldm,1,nlstate,1,npar);          else if  (s2==-4) { 
   free_matrix(dnewm,1,nlstate,1,nlstate);            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 }            lli= log(survp); 
           } 
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          else if  (s2==-5) { 
 {            for (j=1,survp=0. ; j<=2; j++)  
   int i, j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int k=0, cptcode;            lli= log(survp); 
   double **dnewm,**doldm;          } 
   double *xp;          
   double *gp, *gm;          else{
   double **gradg, **trgradg;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double age,agelim, cov[NCOVMAX];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   int theta;          } 
   char fileresprob[FILENAMELENGTH];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   strcpy(fileresprob,"prob");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   strcat(fileresprob,fileres);          ipmx +=1;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          sw += weight[i];
     printf("Problem with resultfile: %s\n", fileresprob);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      } /* end of individual */
      }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   xp=vector(1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   cov[1]=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     cov[2]=age;            }
     gradg=matrix(1,npar,1,9);          for(d=0; d<=dh[mi][i]; d++){
     trgradg=matrix(1,9,1,npar);            newm=savm;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            oldm=newm;
              } /* end mult */
       k=0;        
       for(i=1; i<= (nlstate+ndeath); i++){          s1=s[mw[mi][i]][i];
         for(j=1; j<=(nlstate+ndeath);j++){          s2=s[mw[mi+1][i]][i];
            k=k+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           gp[k]=pmmij[i][j];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          ipmx +=1;
       }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=npar; i++)        } /* end of wave */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* end of individual */
        }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       k=0;        for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=(nlstate+ndeath); i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(j=1; j<=(nlstate+ndeath);j++){            for (j=1;j<=nlstate+ndeath;j++){
           k=k+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           gm[k]=pmmij[i][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(theta=1; theta <=npar; theta++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       trgradg[j][theta]=gradg[theta][j];            savm=oldm;
              oldm=newm;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          } /* end mult */
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        
           s1=s[mw[mi][i]][i];
      pmij(pmmij,cov,ncovmodel,x,nlstate);          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
      k=0;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      for(i=1; i<=(nlstate+ndeath); i++){          ipmx +=1;
        for(j=1; j<=(nlstate+ndeath);j++){          sw += weight[i];
          k=k+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          gm[k]=pmmij[i][j];        } /* end of wave */
         }      } /* end of individual */
      }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      /*printf("\n%d ",(int)age);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      }*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   fprintf(ficresprob,"\n%d ",(int)age);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            for (kk=1; kk<=cptcovage;kk++) {
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
           
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            savm=oldm;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            oldm=newm;
 }          } /* end mult */
  free_vector(xp,1,npar);        
 fclose(ficresprob);          s1=s[mw[mi][i]][i];
  exit(0);          s2=s[mw[mi+1][i]][i];
 }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
 /***********************************************/          }else{
 /**************** Main Program *****************/            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 /***********************************************/          }
           ipmx +=1;
 /*int main(int argc, char *argv[])*/          sw += weight[i];
 int main()          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      } /* end of individual */
   double agedeb, agefin,hf;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double agemin=1.e20, agemax=-1.e20;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double fret;        for(mi=1; mi<= wav[i]-1; mi++){
   double **xi,tmp,delta;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   double dum; /* Dummy variable */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int *indx;            }
   char line[MAXLINE], linepar[MAXLINE];          for(d=0; d<dh[mi][i]; d++){
   char title[MAXLINE];            newm=savm;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];            for (kk=1; kk<=cptcovage;kk++) {
   char filerest[FILENAMELENGTH];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   char fileregp[FILENAMELENGTH];            }
   char popfile[FILENAMELENGTH];          
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int firstobs=1, lastobs=10;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int sdeb, sfin; /* Status at beginning and end */            savm=oldm;
   int c,  h , cpt,l;            oldm=newm;
   int ju,jl, mi;          } /* end mult */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          s1=s[mw[mi][i]][i];
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;          s2=s[mw[mi+1][i]][i];
   int hstepm, nhstepm;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int *popage;          ipmx +=1;
           sw += weight[i];
   double bage, fage, age, agelim, agebase;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ftolpl=FTOL;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double **prlim;        } /* end of wave */
   double *severity;      } /* end of individual */
   double ***param; /* Matrix of parameters */    } /* End of if */
   double  *p;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double **matcov; /* Matrix of covariance */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double ***delti3; /* Scale */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double *delti; /* Scale */    return -l;
   double ***eij, ***vareij;  }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  /*************** log-likelihood *************/
   double kk1, kk2;  double funcone( double *x)
   double *popeffectif,*popcount;  {
     /* Same as likeli but slower because of a lot of printf and if */
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    int i, ii, j, k, mi, d, kk;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
     double lli; /* Individual log likelihood */
   char z[1]="c", occ;    double llt;
 #include <sys/time.h>    int s1, s2;
 #include <time.h>    double bbh, survp;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /*extern weight */
   /* long total_usecs;    /* We are differentiating ll according to initial status */
   struct timeval start_time, end_time;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      printf(" %d\n",s[4][i]);
     */
     cov[1]=1.;
   printf("\nIMACH, Version 0.7");  
   printf("\nEnter the parameter file name: ");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 #ifdef windows    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   scanf("%s",pathtot);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   getcwd(pathcd, size);      for(mi=1; mi<= wav[i]-1; mi++){
   /*cygwin_split_path(pathtot,path,optionfile);        for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for (j=1;j<=nlstate+ndeath;j++){
   /* cutv(path,optionfile,pathtot,'\\');*/            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
 split(pathtot, path,optionfile);          }
   chdir(path);        for(d=0; d<dh[mi][i]; d++){
   replace(pathc,path);          newm=savm;
 #endif          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 #ifdef unix          for (kk=1; kk<=cptcovage;kk++) {
   scanf("%s",optionfile);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 #endif          }
           /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 /*-------- arguments in the command line --------*/          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(fileres,"r");          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   strcat(fileres, optionfile);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
   /*---------arguments file --------*/          oldm=newm;
         } /* end mult */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        
     printf("Problem with optionfile %s\n",optionfile);        s1=s[mw[mi][i]][i];
     goto end;        s2=s[mw[mi+1][i]][i];
   }        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   strcpy(filereso,"o");         * is higher than the multiple of stepm and negative otherwise.
   strcat(filereso,fileres);         */
   if((ficparo=fopen(filereso,"w"))==NULL) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          lli=log(out[s1][s2] - savm[s1][s2]);
   }        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
   /* Reads comments: lines beginning with '#' */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   while((c=getc(ficpar))=='#' && c!= EOF){          lli= log(survp);
     ungetc(c,ficpar);        }else if (mle==1){
     fgets(line, MAXLINE, ficpar);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     puts(line);        } else if(mle==2){
     fputs(line,ficparo);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }        } else if(mle==3){  /* exponential inter-extrapolation */
   ungetc(c,ficpar);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          lli=log(out[s1][s2]); /* Original formula */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        } else{  /* mle=0 back to 1 */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 while((c=getc(ficpar))=='#' && c!= EOF){          /*lli=log(out[s1][s2]); */ /* Original formula */
     ungetc(c,ficpar);        } /* End of if */
     fgets(line, MAXLINE, ficpar);        ipmx +=1;
     puts(line);        sw += weight[i];
     fputs(line,ficparo);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   ungetc(c,ficpar);        if(globpr){
            fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);   %11.6f %11.6f %11.6f ", \
   fprintf(ficparo,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                    2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
  while((c=getc(ficpar))=='#' && c!= EOF){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     ungetc(c,ficpar);            llt +=ll[k]*gipmx/gsw;
     fgets(line, MAXLINE, ficpar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     puts(line);          }
     fputs(line,ficparo);          fprintf(ficresilk," %10.6f\n", -llt);
   }        }
   ungetc(c,ficpar);      } /* end of wave */
      } /* end of individual */
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficparo,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
          l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      if(globpr==0){ /* First time we count the contributions and weights */
 while((c=getc(ficpar))=='#' && c!= EOF){      gipmx=ipmx;
     ungetc(c,ficpar);      gsw=sw;
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    return -l;
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  
    /*************** function likelione ***********/
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    {
   covar=matrix(0,NCOVMAX,1,n);    /* This routine should help understanding what is done with 
   cptcovn=0;       the selection of individuals/waves and
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       to check the exact contribution to the likelihood.
        Plotting could be done.
   ncovmodel=2+cptcovn;     */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int k;
    
   /* Read guess parameters */    if(*globpri !=0){ /* Just counts and sums, no printings */
   /* Reads comments: lines beginning with '#' */      strcpy(fileresilk,"ilk"); 
   while((c=getc(ficpar))=='#' && c!= EOF){      strcat(fileresilk,fileres);
     ungetc(c,ficpar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);        printf("Problem with resultfile: %s\n", fileresilk);
     puts(line);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fputs(line,ficparo);      }
   }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   ungetc(c,ficpar);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(k=1; k<=nlstate; k++) 
     for(i=1; i <=nlstate; i++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);    *fretone=(*funcone)(p);
       for(k=1; k<=ncovmodel;k++){    if(*globpri !=0){
         fscanf(ficpar," %lf",&param[i][j][k]);      fclose(ficresilk);
         printf(" %lf",param[i][j][k]);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         fprintf(ficparo," %lf",param[i][j][k]);      fflush(fichtm); 
       }    } 
       fscanf(ficpar,"\n");    return;
       printf("\n");  }
       fprintf(ficparo,"\n");  
     }  
    /*********** Maximum Likelihood Estimation ***************/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   p=param[1][1];  {
      int i,j, iter;
   /* Reads comments: lines beginning with '#' */    double **xi;
   while((c=getc(ficpar))=='#' && c!= EOF){    double fret;
     ungetc(c,ficpar);    double fretone; /* Only one call to likelihood */
     fgets(line, MAXLINE, ficpar);    /*  char filerespow[FILENAMELENGTH];*/
     puts(line);    xi=matrix(1,npar,1,npar);
     fputs(line,ficparo);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++)
   ungetc(c,ficpar);        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcpy(filerespow,"pow"); 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    strcat(filerespow,fileres);
   for(i=1; i <=nlstate; i++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for(j=1; j <=nlstate+ndeath-1; j++){      printf("Problem with resultfile: %s\n", filerespow);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       printf("%1d%1d",i,j);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(k=1; k<=ncovmodel;k++){    for (i=1;i<=nlstate;i++)
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(j=1;j<=nlstate+ndeath;j++)
         printf(" %le",delti3[i][j][k]);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficrespow,"\n");
       }  
       fscanf(ficpar,"\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
       printf("\n");  
       fprintf(ficparo,"\n");    free_matrix(xi,1,npar,1,npar);
     }    fclose(ficrespow);
   }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   delti=delti3[1][1];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /**** Computes Hessian and covariance matrix ***/
     puts(line);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     fputs(line,ficparo);  {
   }    double  **a,**y,*x,pd;
   ungetc(c,ficpar);    double **hess;
      int i, j,jk;
   matcov=matrix(1,npar,1,npar);    int *indx;
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     printf("%s",str);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     fprintf(ficparo,"%s",str);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     for(j=1; j <=i; j++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
       fscanf(ficpar," %le",&matcov[i][j]);    double gompertz(double p[]);
       printf(" %.5le",matcov[i][j]);    hess=matrix(1,npar,1,npar);
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    printf("\nCalculation of the hessian matrix. Wait...\n");
     fscanf(ficpar,"\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     printf("\n");    for (i=1;i<=npar;i++){
     fprintf(ficparo,"\n");      printf("%d",i);fflush(stdout);
   }      fprintf(ficlog,"%d",i);fflush(ficlog);
   for(i=1; i <=npar; i++)     
     for(j=i+1;j<=npar;j++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       matcov[i][j]=matcov[j][i];      
          /*  printf(" %f ",p[i]);
   printf("\n");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     
     /*-------- data file ----------*/    for (i=1;i<=npar;i++) {
     if((ficres =fopen(fileres,"w"))==NULL) {      for (j=1;j<=npar;j++)  {
       printf("Problem with resultfile: %s\n", fileres);goto end;        if (j>i) { 
     }          printf(".%d%d",i,j);fflush(stdout);
     fprintf(ficres,"#%s\n",version);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
              hess[i][j]=hessij(p,delti,i,j,func,npar);
     if((fic=fopen(datafile,"r"))==NULL)    {          
       printf("Problem with datafile: %s\n", datafile);goto end;          hess[j][i]=hess[i][j];    
     }          /*printf(" %lf ",hess[i][j]);*/
         }
     n= lastobs;      }
     severity = vector(1,maxwav);    }
     outcome=imatrix(1,maxwav+1,1,n);    printf("\n");
     num=ivector(1,n);    fprintf(ficlog,"\n");
     moisnais=vector(1,n);  
     annais=vector(1,n);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     moisdc=vector(1,n);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     andc=vector(1,n);    
     agedc=vector(1,n);    a=matrix(1,npar,1,npar);
     cod=ivector(1,n);    y=matrix(1,npar,1,npar);
     weight=vector(1,n);    x=vector(1,npar);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    indx=ivector(1,npar);
     mint=matrix(1,maxwav,1,n);    for (i=1;i<=npar;i++)
     anint=matrix(1,maxwav,1,n);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     s=imatrix(1,maxwav+1,1,n);    ludcmp(a,npar,indx,&pd);
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);    for (j=1;j<=npar;j++) {
     ncodemax=ivector(1,8);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     i=1;      lubksb(a,npar,indx,x);
     while (fgets(line, MAXLINE, fic) != NULL)    {      for (i=1;i<=npar;i++){ 
       if ((i >= firstobs) && (i <=lastobs)) {        matcov[i][j]=x[i];
              }
         for (j=maxwav;j>=1;j--){    }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);    printf("\n#Hessian matrix#\n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n#Hessian matrix#\n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++) { 
         }      for (j=1;j<=npar;j++) { 
                printf("%.3e ",hess[i][j]);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog,"%.3e ",hess[i][j]);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      }
       printf("\n");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    }
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /* Recompute Inverse */
         for (j=ncov;j>=1;j--){    for (i=1;i<=npar;i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         }    ludcmp(a,npar,indx,&pd);
         num[i]=atol(stra);  
            /*  printf("\n#Hessian matrix recomputed#\n");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
         i=i+1;      x[j]=1;
       }      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
     /* printf("ii=%d", ij);        y[i][j]=x[i];
        scanf("%d",i);*/        printf("%.3e ",y[i][j]);
   imx=i-1; /* Number of individuals */        fprintf(ficlog,"%.3e ",y[i][j]);
       }
   /* for (i=1; i<=imx; i++){      printf("\n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      fprintf(ficlog,"\n");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    */
     }  
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   /* Calculation of the number of parameter from char model*/    free_vector(x,1,npar);
   Tvar=ivector(1,15);    free_ivector(indx,1,npar);
   Tprod=ivector(1,15);    free_matrix(hess,1,npar,1,npar);
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);        }
      
   if (strlen(model) >1){  /*************** hessian matrix ****************/
     j=0, j1=0, k1=1, k2=1;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     j=nbocc(model,'+');  {
     j1=nbocc(model,'*');    int i;
     cptcovn=j+1;    int l=1, lmax=20;
     cptcovprod=j1;    double k1,k2;
        double p2[MAXPARM+1]; /* identical to x */
        double res;
     strcpy(modelsav,model);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    double fx;
       printf("Error. Non available option model=%s ",model);    int k=0,kmax=10;
       goto end;    double l1;
     }  
        fx=func(x);
     for(i=(j+1); i>=1;i--){    for (i=1;i<=npar;i++) p2[i]=x[i];
       cutv(stra,strb,modelsav,'+');    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      l1=pow(10,l);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      delts=delt;
       /*scanf("%d",i);*/      for(k=1 ; k <kmax; k=k+1){
       if (strchr(strb,'*')) {        delt = delta*(l1*k);
         cutv(strd,strc,strb,'*');        p2[theta]=x[theta] +delt;
         if (strcmp(strc,"age")==0) {        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
           cptcovprod--;        p2[theta]=x[theta]-delt;
           cutv(strb,stre,strd,'V');        k2=func(p2)-fx;
           Tvar[i]=atoi(stre);        /*res= (k1-2.0*fx+k2)/delt/delt; */
           cptcovage++;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             Tage[cptcovage]=i;        
             /*printf("stre=%s ", stre);*/  #ifdef DEBUGHESS
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         else if (strcmp(strd,"age")==0) {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           cptcovprod--;  #endif
           cutv(strb,stre,strc,'V');        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           Tvar[i]=atoi(stre);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           cptcovage++;          k=kmax;
           Tage[cptcovage]=i;        }
         }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         else {          k=kmax; l=lmax*10.;
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=ncov+k1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           cutv(strb,strc,strd,'V');          delts=delt;
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);      }
           Tvard[k1][2]=atoi(stre);    }
           Tvar[cptcovn+k2]=Tvard[k1][1];    delti[theta]=delts;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    return res; 
           for (k=1; k<=lastobs;k++)    
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  }
           k1++;  
           k2=k2+2;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         }  {
       }    int i;
       else {    int l=1, l1, lmax=20;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double k1,k2,k3,k4,res,fx;
        /*  scanf("%d",i);*/    double p2[MAXPARM+1];
       cutv(strd,strc,strb,'V');    int k;
       Tvar[i]=atoi(strc);  
       }    fx=func(x);
       strcpy(modelsav,stra);      for (k=1; k<=2; k++) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      for (i=1;i<=npar;i++) p2[i]=x[i];
         scanf("%d",i);*/      p2[thetai]=x[thetai]+delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 }      k1=func(p2)-fx;
      
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      p2[thetai]=x[thetai]+delti[thetai]/k;
   printf("cptcovprod=%d ", cptcovprod);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   scanf("%d ",i);*/      k2=func(p2)-fx;
     fclose(fic);    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     /*  if(mle==1){*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     if (weightopt != 1) { /* Maximisation without weights*/      k3=func(p2)-fx;
       for(i=1;i<=n;i++) weight[i]=1.0;    
     }      p2[thetai]=x[thetai]-delti[thetai]/k;
     /*-calculation of age at interview from date of interview and age at death -*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     agev=matrix(1,maxwav,1,imx);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    for (i=1; i<=imx; i++)  #ifdef DEBUG
      for(m=2; (m<= maxwav); m++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
          anint[m][i]=9999;  #endif
          s[m][i]=-1;    }
        }    return res;
      }
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  /************** Inverse of matrix **************/
       for(m=1; (m<= maxwav); m++){  void ludcmp(double **a, int n, int *indx, double *d) 
         if(s[m][i] >0){  { 
           if (s[m][i] == nlstate+1) {    int i,imax,j,k; 
             if(agedc[i]>0)    double big,dum,sum,temp; 
               if(moisdc[i]!=99 && andc[i]!=9999)    double *vv; 
               agev[m][i]=agedc[i];   
             else {    vv=vector(1,n); 
               if (andc[i]!=9999){    *d=1.0; 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    for (i=1;i<=n;i++) { 
               agev[m][i]=-1;      big=0.0; 
               }      for (j=1;j<=n;j++) 
             }        if ((temp=fabs(a[i][j])) > big) big=temp; 
           }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           else if(s[m][i] !=9){ /* Should no more exist */      vv[i]=1.0/big; 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    } 
             if(mint[m][i]==99 || anint[m][i]==9999)    for (j=1;j<=n;j++) { 
               agev[m][i]=1;      for (i=1;i<j;i++) { 
             else if(agev[m][i] <agemin){        sum=a[i][j]; 
               agemin=agev[m][i];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        a[i][j]=sum; 
             }      } 
             else if(agev[m][i] >agemax){      big=0.0; 
               agemax=agev[m][i];      for (i=j;i<=n;i++) { 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        sum=a[i][j]; 
             }        for (k=1;k<j;k++) 
             /*agev[m][i]=anint[m][i]-annais[i];*/          sum -= a[i][k]*a[k][j]; 
             /*   agev[m][i] = age[i]+2*m;*/        a[i][j]=sum; 
           }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           else { /* =9 */          big=dum; 
             agev[m][i]=1;          imax=i; 
             s[m][i]=-1;        } 
           }      } 
         }      if (j != imax) { 
         else /*= 0 Unknown */        for (k=1;k<=n;k++) { 
           agev[m][i]=1;          dum=a[imax][k]; 
       }          a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
     }        } 
     for (i=1; i<=imx; i++)  {        *d = -(*d); 
       for(m=1; (m<= maxwav); m++){        vv[imax]=vv[j]; 
         if (s[m][i] > (nlstate+ndeath)) {      } 
           printf("Error: Wrong value in nlstate or ndeath\n");        indx[j]=imax; 
           goto end;      if (a[j][j] == 0.0) a[j][j]=TINY; 
         }      if (j != n) { 
       }        dum=1.0/(a[j][j]); 
     }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    } 
     free_vector(vv,1,n);  /* Doesn't work */
     free_vector(severity,1,maxwav);  ;
     free_imatrix(outcome,1,maxwav+1,1,n);  } 
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);  void lubksb(double **a, int n, int *indx, double b[]) 
     /* free_matrix(mint,1,maxwav,1,n);  { 
        free_matrix(anint,1,maxwav,1,n);*/    int i,ii=0,ip,j; 
     free_vector(moisdc,1,n);    double sum; 
     free_vector(andc,1,n);   
     for (i=1;i<=n;i++) { 
          ip=indx[i]; 
     wav=ivector(1,imx);      sum=b[ip]; 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      b[ip]=b[i]; 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      if (ii) 
            for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     /* Concatenates waves */      else if (sum) ii=i; 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      b[i]=sum; 
     } 
     for (i=n;i>=1;i--) { 
       Tcode=ivector(1,100);      sum=b[i]; 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       ncodemax[1]=1;      b[i]=sum/a[i][i]; 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    } 
        } 
    codtab=imatrix(1,100,1,10);  
    h=0;  void pstamp(FILE *fichier)
    m=pow(2,cptcoveff);  {
      fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
    for(k=1;k<=cptcoveff; k++){  }
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){  /************ Frequencies ********************/
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
            h++;  {  /* Some frequencies */
            if (h>m) h=1;codtab[h][k]=j;    
          }    int i, m, jk, k1,i1, j1, bool, z1,j;
        }    int first;
      }    double ***freq; /* Frequencies */
    }    double *pp, **prop;
        double pos,posprop, k2, dateintsum=0,k2cpt=0;
    /* Calculates basic frequencies. Computes observed prevalence at single age    char fileresp[FILENAMELENGTH];
        and prints on file fileres'p'. */    
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev,mint,anint);    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
   free_matrix(mint,1,maxwav,1,n);    strcpy(fileresp,"p");
   free_matrix(anint,1,maxwav,1,n);    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with prevalence resultfile: %s\n", fileresp);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      exit(0);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
          j1=0;
     /* For Powell, parameters are in a vector p[] starting at p[1]    
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    j=cptcoveff;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
     if(mle==1){    first=1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
        /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
     /*--------- results files --------------*/    /*    j1++;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  */
    fprintf(ficres,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
    fprintf(ficres,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
    jk=1;        for (i=-5; i<=nlstate+ndeath; i++)  
    fprintf(ficres,"# Parameters\n");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
    printf("# Parameters\n");            for(m=iagemin; m <= iagemax+3; m++)
    for(i=1,jk=1; i <=nlstate; i++){              freq[i][jk][m]=0;
      for(k=1; k <=(nlstate+ndeath); k++){        
        if (k != i)        for (i=1; i<=nlstate; i++)  
          {          for(m=iagemin; m <= iagemax+3; m++)
            printf("%d%d ",i,k);            prop[i][m]=0;
            fprintf(ficres,"%1d%1d ",i,k);        
            for(j=1; j <=ncovmodel; j++){        dateintsum=0;
              printf("%f ",p[jk]);        k2cpt=0;
              fprintf(ficres,"%f ",p[jk]);        for (i=1; i<=imx; i++) {
              jk++;          bool=1;
            }          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
            printf("\n");            for (z1=1; z1<=cptcoveff; z1++)       
            fprintf(ficres,"\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
          }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
      }                bool=0;
    }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
  if(mle==1){                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
     /* Computing hessian and covariance matrix */                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
     ftolhess=ftol; /* Usually correct */                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     hesscov(matcov, p, npar, delti, ftolhess, func);              } 
  }          }
     fprintf(ficres,"# Scales\n");   
     printf("# Scales\n");          if (bool==1){
      for(i=1,jk=1; i <=nlstate; i++){            for(m=firstpass; m<=lastpass; m++){
       for(j=1; j <=nlstate+ndeath; j++){              k2=anint[m][i]+(mint[m][i]/12.);
         if (j!=i) {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           fprintf(ficres,"%1d%1d",i,j);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           printf("%1d%1d",i,j);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           for(k=1; k<=ncovmodel;k++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             printf(" %.5e",delti[jk]);                if (m<lastpass) {
             fprintf(ficres," %.5e",delti[jk]);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             jk++;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           }                }
           printf("\n");                
           fprintf(ficres,"\n");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         }                  dateintsum=dateintsum+k2;
       }                  k2cpt++;
       }                }
                    /*}*/
     k=1;            }
     fprintf(ficres,"# Covariance\n");          }
     printf("# Covariance\n");        } /* end i */
     for(i=1;i<=npar;i++){         
       /*  if (k>nlstate) k=1;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       i1=(i-1)/(ncovmodel*nlstate)+1;        pstamp(ficresp);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        if  (cptcovn>0) {
       printf("%s%d%d",alph[k],i1,tab[i]);*/          fprintf(ficresp, "\n#********** Variable "); 
       fprintf(ficres,"%3d",i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%3d",i);          fprintf(ficresp, "**********\n#");
       for(j=1; j<=i;j++){          fprintf(ficlog, "\n#********** Variable "); 
         fprintf(ficres," %.5e",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         printf(" %.5e",matcov[i][j]);          fprintf(ficlog, "**********\n#");
       }        }
       fprintf(ficres,"\n");        for(i=1; i<=nlstate;i++) 
       printf("\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       k++;        fprintf(ficresp, "\n");
     }        
            for(i=iagemin; i <= iagemax+3; i++){
     while((c=getc(ficpar))=='#' && c!= EOF){          if(i==iagemax+3){
       ungetc(c,ficpar);            fprintf(ficlog,"Total");
       fgets(line, MAXLINE, ficpar);          }else{
       puts(line);            if(first==1){
       fputs(line,ficparo);              first=0;
     }              printf("See log file for details...\n");
     ungetc(c,ficpar);            }
              fprintf(ficlog,"Age %d", i);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          }
              for(jk=1; jk <=nlstate ; jk++){
     if (fage <= 2) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       bage = agemin;              pp[jk] += freq[jk][m][i]; 
       fage = agemax;          }
     }          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              pos += freq[jk][m][i];
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            if(pp[jk]>=1.e-10){
               if(first==1){
                    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 /*------------ gnuplot -------------*/              }
 chdir(pathcd);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   if((ficgp=fopen("graph.plt","w"))==NULL) {            }else{
     printf("Problem with file graph.gp");goto end;              if(first==1)
   }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 #ifdef windows              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficgp,"cd \"%s\" \n",pathc);            }
 #endif          }
 m=pow(2,cptcoveff);  
            for(jk=1; jk <=nlstate ; jk++){
  /* 1eme*/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   for (cpt=1; cpt<= nlstate ; cpt ++) {              pp[jk] += freq[jk][m][i];
    for (k1=1; k1<= m ; k1 ++) {          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 #ifdef windows            pos += pp[jk];
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            posprop += prop[jk][i];
 #endif          }
 #ifdef unix          for(jk=1; jk <=nlstate ; jk++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            if(pos>=1.e-5){
 #endif              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 for (i=1; i<= nlstate ; i ++) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(first==1)
 }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if( i <= iagemax){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(pos>=1.e-5){
 }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
      for (i=1; i<= nlstate ; i ++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              else
 }                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            }
 #ifdef unix          }
 fprintf(ficgp,"\nset ter gif small size 400,300");          
 #endif          for(jk=-1; jk <=nlstate+ndeath; jk++)
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            for(m=-1; m <=nlstate+ndeath; m++)
    }              if(freq[jk][m][i] !=0 ) {
   }              if(first==1)
   /*2 eme*/                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   for (k1=1; k1<= m ; k1 ++) {              }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          if(i <= iagemax)
                fprintf(ficresp,"\n");
     for (i=1; i<= nlstate+1 ; i ++) {          if(first==1)
       k=2*i;            printf("Others in log...\n");
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          fprintf(ficlog,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /*}*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      dateintmean=dateintsum/k2cpt; 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    fclose(ficresp);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       for (j=1; j<= nlstate+1 ; j ++) {    free_vector(pp,1,nlstate);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    /* End of Freq */
 }    }
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  /************ Prevalence ********************/
       for (j=1; j<= nlstate+1 ; j ++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  {  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 }         in each health status at the date of interview (if between dateprev1 and dateprev2).
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       We still use firstpass and lastpass as another selection.
       else fprintf(ficgp,"\" t\"\" w l 0,");    */
     }   
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    int i, m, jk, k1, i1, j1, bool, z1,j;
   }    double ***freq; /* Frequencies */
      double *pp, **prop;
   /*3eme*/    double pos,posprop; 
     double  y2; /* in fractional years */
   for (k1=1; k1<= m ; k1 ++) {    int iagemin, iagemax;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int first; /** to stop verbosity which is redirected to log file */
       k=2+nlstate*(cpt-1);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    iagemin= (int) agemin;
       for (i=1; i< nlstate ; i ++) {    iagemax= (int) agemax;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    /*pp=vector(1,nlstate);*/
       }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     }    j1=0;
   }    
      /*j=cptcoveff;*/
   /* CV preval stat */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<nlstate ; cpt ++) {    first=1;
       k=3;    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);      /*for(i1=1; i1<=ncodemax[k1];i1++){
       for (i=1; i< nlstate ; i ++)        j1++;*/
         fprintf(ficgp,"+$%d",k+i+1);        
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for (i=1; i<=nlstate; i++)  
                for(m=iagemin; m <= iagemax+3; m++)
       l=3+(nlstate+ndeath)*cpt;            prop[i][m]=0.0;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       
       for (i=1; i< nlstate ; i ++) {        for (i=1; i<=imx; i++) { /* Each individual */
         l=3+(nlstate+ndeath)*cpt;          bool=1;
         fprintf(ficgp,"+$%d",l+i+1);          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                bool=0;
     }          } 
   }            if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   /* proba elementaires */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    for(i=1,jk=1; i <=nlstate; i++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for(k=1; k <=(nlstate+ndeath); k++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       if (k != i) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(j=1; j <=ncovmodel; j++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           /*fprintf(ficgp,"%s",alph[1]);*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           jk++;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           fprintf(ficgp,"\n");                } 
         }              }
       }            } /* end selection of waves */
     }          }
     }        }
         for(i=iagemin; i <= iagemax+3; i++){  
   for(jk=1; jk <=m; jk++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);            posprop += prop[jk][i]; 
    i=1;          } 
    for(k2=1; k2<=nlstate; k2++) {          
      k3=i;          for(jk=1; jk <=nlstate ; jk++){     
      for(k=1; k<=(nlstate+ndeath); k++) {            if( i <=  iagemax){ 
        if (k != k2){              if(posprop>=1.e-5){ 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                probs[i][jk][j1]= prop[jk][i]/posprop;
 ij=1;              } else{
         for(j=3; j <=ncovmodel; j++) {                if(first==1){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                  first=0;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
             ij++;                }
           }              }
           else            } 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }/* end jk */ 
         }        }/* end i */ 
           fprintf(ficgp,")/(1");      /*} *//* end i1 */
            } /* end j1 */
         for(k1=1; k1 <=nlstate; k1++){      
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 ij=1;    /*free_vector(pp,1,nlstate);*/
           for(j=3; j <=ncovmodel; j++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  }  /* End of prevalence */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;  /************* Waves Concatenation ***************/
           }  
           else  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {
           }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           fprintf(ficgp,")");       Death is a valid wave (if date is known).
         }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       and mw[mi+1][i]. dh depends on stepm.
         i=i+ncovmodel;       */
        }  
      }    int i, mi, m;
    }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);       double sum=0., jmean=0.;*/
   }    int first;
        int j, k=0,jk, ju, jl;
   fclose(ficgp);    double sum=0.;
        first=0;
 chdir(path);    jmin=1e+5;
        jmax=-1;
     free_ivector(wav,1,imx);    jmean=0.;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    for(i=1; i<=imx; i++){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        mi=0;
     free_ivector(num,1,n);      m=firstpass;
     free_vector(agedc,1,n);      while(s[m][i] <= nlstate){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     fclose(ficparo);          mw[++mi][i]=m;
     fclose(ficres);        if(m >=lastpass)
     /*  }*/          break;
            else
    /*________fin mle=1_________*/          m++;
          }/* end while */
       if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
     /* No more information from the sample is required now */        /* if(mi==0)  never been interviewed correctly before death */
   /* Reads comments: lines beginning with '#' */           /* Only death is a correct wave */
   while((c=getc(ficpar))=='#' && c!= EOF){        mw[mi][i]=m;
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      wav[i]=mi;
     fputs(line,ficparo);      if(mi==0){
   }        nbwarn++;
   ungetc(c,ficpar);        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          first=1;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        if(first==1){
 /*--------- index.htm --------*/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
   strcpy(optionfilehtm,optionfile);      } /* end mi==0 */
   strcat(optionfilehtm,".htm");    } /* End individuals */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm);goto end;    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">          dh[mi][i]=1;
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        else{
 Total number of observations=%d <br>          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>            if (agedc[i] < 2*AGESUP) {
 <hr  size=\"2\" color=\"#EC5E5E\">              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 <li>Outputs files<br><br>\n              if(j==0) j=1;  /* Survives at least one month after exam */
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              else if(j<0){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>                nberr++;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>                j=1; /* Temporary Dangerous patch */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>              }
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>              k=k+1;
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>              if (j >= jmax){
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);                jmax=j;
                 ijmax=i;
  fprintf(fichtm," <li>Graphs</li><p>");              }
               if (j <= jmin){
  m=cptcoveff;                jmin=j;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                ijmin=i;
               }
  j1=0;              sum=sum+j;
  for(k1=1; k1<=m;k1++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    for(i1=1; i1<=ncodemax[k1];i1++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        j1++;            }
        if (cptcovn > 0) {          }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          else{
          for (cpt=1; cpt<=cptcoveff;cpt++)            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
        }            k=k+1;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            if (j >= jmax) {
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                  jmax=j;
        for(cpt=1; cpt<nlstate;cpt++){              ijmax=i;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            else if (j <= jmin){
        }              jmin=j;
     for(cpt=1; cpt<=nlstate;cpt++) {              ijmin=i;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            }
 interval) in state (%d): v%s%d%d.gif <br>            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      }            if(j<0){
      for(cpt=1; cpt<=nlstate;cpt++) {              nberr++;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }            }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            sum=sum+j;
 health expectancies in states (1) and (2): e%s%d.gif<br>          }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          jk= j/stepm;
 fprintf(fichtm,"\n</body>");          jl= j -jk*stepm;
    }          ju= j -(jk+1)*stepm;
  }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 fclose(fichtm);            if(jl==0){
               dh[mi][i]=jk;
   /*--------------- Prevalence limit --------------*/              bh[mi][i]=0;
              }else{ /* We want a negative bias in order to only have interpolation ie
   strcpy(filerespl,"pl");                    * to avoid the price of an extra matrix product in likelihood */
   strcat(filerespl,fileres);              dh[mi][i]=jk+1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              bh[mi][i]=ju;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            }
   }          }else{
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            if(jl <= -ju){
   fprintf(ficrespl,"#Prevalence limit\n");              dh[mi][i]=jk;
   fprintf(ficrespl,"#Age ");              bh[mi][i]=jl;       /* bias is positive if real duration
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                                   * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficrespl,"\n");                                   */
              }
   prlim=matrix(1,nlstate,1,nlstate);            else{
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk+1;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              bh[mi][i]=ju;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(dh[mi][i]==0){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              dh[mi][i]=1; /* At least one step */
   k=0;              bh[mi][i]=ju; /* At least one step */
   agebase=agemin;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   agelim=agemax;            }
   ftolpl=1.e-10;          } /* end if mle */
   i1=cptcoveff;        }
   if (cptcovn < 1){i1=1;}      } /* end wave */
     }
   for(cptcov=1;cptcov<=i1;cptcov++){    jmean=sum/k;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         k=k+1;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   }
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)  /*********** Tricode ****************************/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
         fprintf(ficrespl,"******\n");  {
            /**< Uses cptcovn+2*cptcovprod as the number of covariates */
         for (age=agebase; age<=agelim; age++){    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
           fprintf(ficrespl,"%.0f",age );     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
           for(i=1; i<=nlstate;i++)    /* nbcode[Tvar[j]][1]= 
           fprintf(ficrespl," %.5f", prlim[i][i]);    */
           fprintf(ficrespl,"\n");  
         }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       }    int modmaxcovj=0; /* Modality max of covariates j */
     }    int cptcode=0; /* Modality max of covariates j */
   fclose(ficrespl);    int modmincovj=0; /* Modality min of covariates j */
   
   /*------------- h Pij x at various ages ------------*/  
      cptcoveff=0; 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    /* Loop on covariates without age and products */
      for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
   /*if (stepm<=24) stepsize=2;*/                                 modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   agelim=AGESUP;                                      * If product of Vn*Vm, still boolean *:
   hstepm=stepsize*YEARM; /* Every year of age */                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
          /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   k=0;                                        modality of the nth covariate of individual i. */
   for(cptcov=1;cptcov<=i1;cptcov++){        if (ij > modmaxcovj)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          modmaxcovj=ij; 
       k=k+1;        else if (ij < modmincovj) 
         fprintf(ficrespij,"\n#****** ");          modmincovj=ij; 
         for(j=1;j<=cptcoveff;j++)        if ((ij < -1) && (ij > NCOVMAX)){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
         fprintf(ficrespij,"******\n");          exit(1);
                }else
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* getting the maximum value of the modality of the covariate
           oldm=oldms;savm=savms;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             female is 1, then modmaxcovj=1.*/
           fprintf(ficrespij,"# Age");      }
           for(i=1; i<=nlstate;i++)      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
             for(j=1; j<=nlstate+ndeath;j++)      cptcode=modmaxcovj;
               fprintf(ficrespij," %1d-%1d",i,j);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
           fprintf(ficrespij,"\n");     /*for (i=0; i<=cptcode; i++) {*/
           for (h=0; h<=nhstepm; h++){      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
             for(i=1; i<=nlstate;i++)        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
               for(j=1; j<=nlstate+ndeath;j++)          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        }
             fprintf(ficrespij,"\n");        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
           }           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* Ndum[-1] number of undefined modalities */
           fprintf(ficrespij,"\n");  
         }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     }      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
   }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   fclose(ficrespij);         variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
   /*---------- Forecasting ------------------*/         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
   strcpy(fileresf,"f");         nbcode[Tvar[j]][3]=2;
   strcat(fileresf,fileres);      */
   if((ficresf=fopen(fileresf,"w"))==NULL) {      ij=1; /* ij is similar to i but can jumps over null modalities */
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   }        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   printf("Computing forecasting: result on file '%s' \n", fileresf);          /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
  free_matrix(agev,1,maxwav,1,imx);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /* Mobile average */            ij++;
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
   if (mobilav==1) {      } /* end of loop on modality */ 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    
       for (i=1; i<=nlstate;i++)   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    
           mobaverage[(int)agedeb][i][cptcod]=0.;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
         /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     for (agedeb=bage+4; agedeb<=fage; agedeb++){     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       for (i=1; i<=nlstate;i++){     Ndum[ij]++; 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   } 
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   ij=1;
           }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         }     if((Ndum[i]!=0) && (i<=ncovcol)){
       }       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     }         Tvaraff[ij]=i; /*For printing (unclear) */
   }       ij++;
      }else
   stepsize=(int) (stepm+YEARM-1)/YEARM;         Tvaraff[ij]=0;
   if (stepm<=12) stepsize=1;   }
    ij--;
   agelim=AGESUP;   cptcoveff=ij; /*Number of total covariates*/
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */  }
    
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL)    {  /*********** Health Expectancies ****************/
       printf("Problem with population file : %s\n",popfile);goto end;  
     }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);  {
     popcount=vector(0,AGESUP);    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     i=1;      int nhstepma, nstepma; /* Decreasing with age */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    double age, agelim, hf;
       {    double ***p3mat;
         i=i+1;    double eip;
       }  
     imx=i;    pstamp(ficreseij);
      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    fprintf(ficreseij,"# Age");
   }    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficreseij," e%1d%1d ",i,j);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      }
       k=k+1;      fprintf(ficreseij," e%1d. ",i);
       fprintf(ficresf,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficreseij,"\n");
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    
       fprintf(ficresf,"******\n");    if(estepm < stepm){
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    }
       if (popforecast==1)  fprintf(ficresf," [Population]");    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
       for (agedeb=fage; agedeb>=bage; agedeb--){     * This is mainly to measure the difference between two models: for example
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);     * if stepm=24 months pijx are given only every 2 years and by summing them
        if (mobilav==1) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
         for(j=1; j<=nlstate;j++)     * progression in between and thus overestimating or underestimating according
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);     * to the curvature of the survival function. If, for the same date, we 
         }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         else {     * to compare the new estimate of Life expectancy with the same linear 
           for(j=1; j<=nlstate;j++)     * hypothesis. A more precise result, taking into account a more precise
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);     * curvature will be obtained if estepm is as small as stepm. */
         }    
     /* For example we decided to compute the life expectancy with the smallest unit */
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
             Look at hpijx to understand the reason of that which relies in memory size
       for (cpt=1; cpt<=nforecast;cpt++) {       and note for a fixed period like estepm months */
         fprintf(ficresf,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       survival function given by stepm (the optimization length). Unfortunately it
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       means that if the survival funtion is printed only each two years of age and if
         nhstepm = nhstepm/hstepm;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/       results. So we changed our mind and took the option of the best precision.
     */
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         oldm=oldms;savm=savms;  
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      agelim=AGESUP;
                    /* If stepm=6 months */
         for (h=0; h<=nhstepm; h++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                 in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          if (h*hstepm/YEARM*stepm==cpt)      
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);  /* nhstepm age range expressed in number of stepm */
              nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
              /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          for(j=1; j<=nlstate+ndeath;j++) {    /* if (stepm >= YEARM) hstepm=1;*/
            kk1=0.;kk2=0;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            for(i=1; i<=nlstate;i++) {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              if (mobilav==1)  
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];    for (age=bage; age<=fage; age ++){ 
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             }      /* if (stepm >= YEARM) hstepm=1;*/
            if (h*hstepm/YEARM*stepm==cpt) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
              fprintf(ficresf," %.3f", kk1);  
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);      /* If stepm=6 months */
            }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         }      
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
              
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }      
     }      printf("%d|",(int)age);fflush(stdout);
   }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   if (popforecast==1) {      /* Computing expectancies */
     free_ivector(popage,0,AGESUP);      for(i=1; i<=nlstate;i++)
     free_vector(popeffectif,0,AGESUP);        for(j=1; j<=nlstate;j++)
     free_vector(popcount,0,AGESUP);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   free_imatrix(s,1,maxwav+1,1,n);            
   free_vector(weight,1,n);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fclose(ficresf);  
   /*---------- Health expectancies and variances ------------*/          }
   
   strcpy(filerest,"t");      fprintf(ficreseij,"%3.0f",age );
   strcat(filerest,fileres);      for(i=1; i<=nlstate;i++){
   if((ficrest=fopen(filerest,"w"))==NULL) {        eip=0;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
   strcpy(filerese,"e");      }
   strcat(filerese,fileres);      fprintf(ficreseij,"\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {      
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    printf("\n");
     fprintf(ficlog,"\n");
  strcpy(fileresv,"v");    
   strcat(fileresv,fileres);  }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  {
     /* Covariances of health expectancies eij and of total life expectancies according
   k=0;     to initial status i, ei. .
   for(cptcov=1;cptcov<=i1;cptcov++){    */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       k=k+1;    int nhstepma, nstepma; /* Decreasing with age */
       fprintf(ficrest,"\n#****** ");    double age, agelim, hf;
       for(j=1;j<=cptcoveff;j++)    double ***p3matp, ***p3matm, ***varhe;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **dnewm,**doldm;
       fprintf(ficrest,"******\n");    double *xp, *xm;
     double **gp, **gm;
       fprintf(ficreseij,"\n#****** ");    double ***gradg, ***trgradg;
       for(j=1;j<=cptcoveff;j++)    int theta;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    double eip, vip;
   
       fprintf(ficresvij,"\n#****** ");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for(j=1;j<=cptcoveff;j++)    xp=vector(1,npar);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    xm=vector(1,npar);
       fprintf(ficresvij,"******\n");    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    pstamp(ficresstdeij);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresstdeij,"# Age");
       oldm=oldms;savm=savms;    for(i=1; i<=nlstate;i++){
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for(j=1; j<=nlstate;j++)
              fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      fprintf(ficresstdeij," e%1d. ",i);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    }
       fprintf(ficrest,"\n");    fprintf(ficresstdeij,"\n");
          
       hf=1;    pstamp(ficrescveij);
       if (stepm >= YEARM) hf=stepm/YEARM;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       epj=vector(1,nlstate+1);    fprintf(ficrescveij,"# Age");
       for(age=bage; age <=fage ;age++){    for(i=1; i<=nlstate;i++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(j=1; j<=nlstate;j++){
         if (popbased==1) {        cptj= (j-1)*nlstate+i;
           for(i=1; i<=nlstate;i++)        for(i2=1; i2<=nlstate;i2++)
             prlim[i][i]=probs[(int)age][i][k];          for(j2=1; j2<=nlstate;j2++){
         }            cptj2= (j2-1)*nlstate+i2;
                    if(cptj2 <= cptj)
         fprintf(ficrest," %.0f",age);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      }
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(ficrescveij,"\n");
           }    
           epj[nlstate+1] +=epj[j];    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
         for(i=1, vepp=0.;i <=nlstate;i++)    }
           for(j=1;j <=nlstate;j++)    else  hstepm=estepm;   
             vepp += vareij[i][j][(int)age];    /* We compute the life expectancy from trapezoids spaced every estepm months
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));     * This is mainly to measure the difference between two models: for example
         for(j=1;j <=nlstate;j++){     * if stepm=24 months pijx are given only every 2 years and by summing them
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
         fprintf(ficrest,"\n");     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
             * curvature will be obtained if estepm is as small as stepm. */
          
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  fclose(ficreseij);       nhstepm is the number of hstepm from age to agelim 
  fclose(ficresvij);       nstepm is the number of stepm from age to agelin. 
   fclose(ficrest);       Look at hpijx to understand the reason of that which relies in memory size
   fclose(ficpar);       and note for a fixed period like estepm months */
   free_vector(epj,1,nlstate+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /*  scanf("%d ",i); */       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   /*------- Variance limit prevalence------*/         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
 strcpy(fileresvpl,"vpl");    */
   strcat(fileresvpl,fileres);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    /* If stepm=6 months */
     exit(0);    /* nhstepm age range expressed in number of stepm */
   }    agelim=AGESUP;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  k=0;    /* if (stepm >= YEARM) hstepm=1;*/
  for(cptcov=1;cptcov<=i1;cptcov++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
      k=k+1;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(ficresvpl,"\n#****** ");    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(j=1;j<=cptcoveff;j++)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      fprintf(ficresvpl,"******\n");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
          gm=matrix(0,nhstepm,1,nlstate*nlstate);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  
      oldm=oldms;savm=savms;    for (age=bage; age<=fage; age ++){ 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
    }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  }      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   fclose(ficresvpl);  
       /* If stepm=6 months */
   /*---------- End : free ----------------*/      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
        /* Computing  Variances of health expectancies */
        /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);         decrease memory allocation */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(theta=1; theta <=npar; theta++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++){ 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            xm[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(matcov,1,npar,1,npar);        }
   free_vector(delti,1,npar);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
         for(j=1; j<= nlstate; j++){
   printf("End of Imach\n");          for(i=1; i<=nlstate; i++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            for(h=0; h<=nhstepm-1; h++){
                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   /*printf("Total time was %d uSec.\n", total_usecs);*/            }
   /*------ End -----------*/          }
         }
        
  end:        for(ij=1; ij<= nlstate*nlstate; ij++)
 #ifdef windows          for(h=0; h<=nhstepm-1; h++){
  chdir(pathcd);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 #endif          }
        }/* End theta */
  system("..\\gp37mgw\\wgnuplot graph.plt");      
       
 #ifdef windows      for(h=0; h<=nhstepm-1; h++)
   while (z[0] != 'q') {        for(j=1; j<=nlstate*nlstate;j++)
     chdir(pathcd);          for(theta=1; theta <=npar; theta++)
     printf("\nType e to edit output files, c to start again, and q for exiting: ");            trgradg[h][j][theta]=gradg[h][theta][j];
     scanf("%s",z);      
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') {       for(ij=1;ij<=nlstate*nlstate;ij++)
       chdir(path);        for(ji=1;ji<=nlstate*nlstate;ji++)
       system(optionfilehtm);          varhe[ij][ji][(int)age] =0.;
     }  
     else if (z[0] == 'q') exit(0);       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 #endif       for(h=0;h<=nhstepm-1;h++){
 }        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: %s, err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successul, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef _APPLE_
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.17  
changed lines
  Added in v.1.157


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>