Diff for /imach/src/imach.c between versions 1.51 and 1.157

version 1.51, 2002/07/19 12:22:25 version 1.157, 2014/08/27 16:26:55
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.157  2014/08/27 16:26:55  brouard
      Summary: Preparing windows Visual studio version
   This program computes Healthy Life Expectancies from    Author: Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    In order to compile on Visual studio, time.h is now correct and time_t
   interviewed on their health status or degree of disability (in the    and tm struct should be used. difftime should be used but sometimes I
   case of a health survey which is our main interest) -2- at least a    just make the differences in raw time format (time(&now).
   second wave of interviews ("longitudinal") which measure each change    Trying to suppress #ifdef LINUX
   (if any) in individual health status.  Health expectancies are    Add xdg-open for __linux in order to open default browser.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.156  2014/08/25 20:10:10  brouard
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.155  2014/08/25 18:32:34  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: New compile, minor changes
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Author: Brouard
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.154  2014/06/20 17:32:08  brouard
   where the markup *Covariates have to be included here again* invites    Summary: Outputs now all graphs of convergence to period prevalence
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
   The advantage of this computer programme, compared to a simple    Author: Brouard
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.152  2014/06/18 17:54:09  brouard
   intermediate interview, the information is lost, but taken into    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   account using an interpolation or extrapolation.    
     Revision 1.151  2014/06/18 16:43:30  brouard
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.150  2014/06/18 16:42:35  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   semester or year) is model as a multinomial logistic.  The hPx    Author: brouard
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.149  2014/06/18 15:51:14  brouard
   hPijx.    Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.148  2014/06/17 17:38:48  brouard
      Summary: Nothing new
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Author: Brouard
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Just a new packaging for OS/X version 0.98nS
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.147  2014/06/16 10:33:11  brouard
   software can be distributed freely for non commercial use. Latest version    *** empty log message ***
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.146  2014/06/16 10:20:28  brouard
      Summary: Merge
 #include <math.h>    Author: Brouard
 #include <stdio.h>  
 #include <stdlib.h>    Merge, before building revised version.
 #include <unistd.h>  
     Revision 1.145  2014/06/10 21:23:15  brouard
 #define MAXLINE 256    Summary: Debugging with valgrind
 #define GNUPLOTPROGRAM "gnuplot"    Author: Nicolas Brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Lot of changes in order to output the results with some covariates
 /*#define DEBUG*/    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define windows    improve the code.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    No more memory valgrind error but a lot has to be done in order to
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    optimal. nbcode should be improved. Documentation has been added in
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    the source code.
   
 #define NINTERVMAX 8    Revision 1.143  2014/01/26 09:45:38  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define MAXN 20000    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.142  2014/01/26 03:57:36  brouard
 #define AGEBASE 40    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #ifdef windows  
 #define DIRSEPARATOR '\\'    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.141  2014/01/26 02:42:01  brouard
 #define DIRSEPARATOR '/'    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.139  2010/06/14 07:50:17  brouard
 int nvar;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.138  2010/04/30 18:19:40  brouard
 int ndeath=1; /* Number of dead states */    *** empty log message ***
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
 int *wav; /* Number of waves for this individuual 0 is possible */    than V1+V2. A lot of change to be done. Unstable.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.136  2010/04/26 20:30:53  brouard
 int mle, weightopt;    (Module): merging some libgsl code. Fixing computation
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    of likelione (using inter/intrapolation if mle = 0) in order to
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    get same likelihood as if mle=1.
 double jmean; /* Mean space between 2 waves */    Some cleaning of code and comments added.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.135  2009/10/29 15:33:14  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.134  2009/10/29 13:18:53  brouard
 FILE *ficresprobmorprev;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.133  2009/07/06 10:21:25  brouard
 char filerese[FILENAMELENGTH];    just nforces
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.132  2009/07/06 08:22:05  brouard
 FILE  *ficresvpl;    Many tings
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.131  2009/06/20 16:22:47  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Some dimensions resccaled
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.130  2009/05/26 06:44:34  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Module): Max Covariate is now set to 20 instead of 8. A
 char filelog[FILENAMELENGTH]; /* Log file */    lot of cleaning with variables initialized to 0. Trying to make
 char filerest[FILENAMELENGTH];    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.128  2006/06/30 13:02:05  brouard
 #define NR_END 1    (Module): Clarifications on computing e.j
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
 #define NRANSI    imach-114 because nhstepm was no more computed in the age
 #define ITMAX 200    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 #define TOL 2.0e-4    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
 #define CGOLD 0.3819660    deviation (needs data from the Hessian matrices) which slows the
 #define ZEPS 1.0e-10    computation.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.126  2006/04/28 17:23:28  brouard
 #define TINY 1.0e-20    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 static double maxarg1,maxarg2;    loop. Now we define nhstepma in the age loop.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Version 0.98h
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.125  2006/04/04 15:20:31  lievre
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Errors in calculation of health expectancies. Age was not initialized.
 #define rint(a) floor(a+0.5)    Forecasting file added.
   
 static double sqrarg;    Revision 1.124  2006/03/22 17:13:53  lievre
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    The log-likelihood is printed in the log file
   
 int imx;    Revision 1.123  2006/03/20 10:52:43  brouard
 int stepm;    * imach.c (Module): <title> changed, corresponds to .htm file
 /* Stepm, step in month: minimum step interpolation*/    name. <head> headers where missing.
   
 int estepm;    * imach.c (Module): Weights can have a decimal point as for
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 int m,nb;    Modification of warning when the covariates values are not 0 or
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    1.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Version 0.98g
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 double *weight;    English (a comma might work with a correct LC_NUMERIC environment,
 int **s; /* Status */    otherwise the weight is truncated).
 double *agedc, **covar, idx;    Modification of warning when the covariates values are not 0 or
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    1.
     Version 0.98g
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    * imach.c (Module): refinements in the computation of lli if
 {    status=-2 in order to have more reliable computation if stepm is
    char *s;                             /* pointer */    not 1 month. Version 0.98f
    int  l1, l2;                         /* length counters */  
     Revision 1.120  2006/03/16 15:10:38  lievre
    l1 = strlen( path );                 /* length of path */    (Module): refinements in the computation of lli if
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    status=-2 in order to have more reliable computation if stepm is
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    not 1 month. Version 0.98f
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.119  2006/03/15 17:42:26  brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    (Module): Bug if status = -2, the loglikelihood was
 #if     defined(__bsd__)                /* get current working directory */    computed as likelihood omitting the logarithm. Version O.98e
       extern char       *getwd( );  
     Revision 1.118  2006/03/14 18:20:07  brouard
       if ( getwd( dirc ) == NULL ) {    (Module): varevsij Comments added explaining the second
 #else    table of variances if popbased=1 .
       extern char       *getcwd( );    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): Version 0.98d
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.117  2006/03/14 17:16:22  brouard
       }    (Module): varevsij Comments added explaining the second
       strcpy( name, path );             /* we've got it */    table of variances if popbased=1 .
    } else {                             /* strip direcotry from path */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       s++;                              /* after this, the filename */    (Module): Function pstamp added
       l2 = strlen( s );                 /* length of filename */    (Module): Version 0.98d
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.116  2006/03/06 10:29:27  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Variance-covariance wrong links and
       dirc[l1-l2] = 0;                  /* add zero */    varian-covariance of ej. is needed (Saito).
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.115  2006/02/27 12:17:45  brouard
 #ifdef windows    (Module): One freematrix added in mlikeli! 0.98c
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.114  2006/02/26 12:57:58  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): Some improvements in processing parameter
 #endif    filename with strsep.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.113  2006/02/24 14:20:24  brouard
    strcpy(ext,s);                       /* save extension */    (Module): Memory leaks checks with valgrind and:
    l1= strlen( name);    datafile was not closed, some imatrix were not freed and on matrix
    l2= strlen( s)+1;    allocation too.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.112  2006/01/30 09:55:26  brouard
    return( 0 );                         /* we're done */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 }  
     Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /******************************************/    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 void replace(char *s, char*t)  
 {    Revision 1.110  2006/01/25 00:51:50  brouard
   int i;    (Module): Lots of cleaning and bugs added (Gompertz)
   int lg=20;  
   i=0;    Revision 1.109  2006/01/24 19:37:15  brouard
   lg=strlen(t);    (Module): Comments (lines starting with a #) are allowed in data.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.108  2006/01/19 18:05:42  lievre
     if (t[i]== '\\') s[i]='/';    Gnuplot problem appeared...
   }    To be fixed
 }  
     Revision 1.107  2006/01/19 16:20:37  brouard
 int nbocc(char *s, char occ)    Test existence of gnuplot in imach path
 {  
   int i,j=0;    Revision 1.106  2006/01/19 13:24:36  brouard
   int lg=20;    Some cleaning and links added in html output
   i=0;  
   lg=strlen(s);    Revision 1.105  2006/01/05 20:23:19  lievre
   for(i=0; i<= lg; i++) {    *** empty log message ***
   if  (s[i] == occ ) j++;  
   }    Revision 1.104  2005/09/30 16:11:43  lievre
   return j;    (Module): sump fixed, loop imx fixed, and simplifications.
 }    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 void cutv(char *u,char *v, char*t, char occ)    (instead of missing=-1 in earlier versions) and his/her
 {    contributions to the likelihood is 1 - Prob of dying from last
   /* cuts string t into u and v where u is ended by char occ excluding it    health status (= 1-p13= p11+p12 in the easiest case of somebody in
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    the healthy state at last known wave). Version is 0.98
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;    Revision 1.103  2005/09/30 15:54:49  lievre
   i=0;    (Module): sump fixed, loop imx fixed, and simplifications.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.102  2004/09/15 17:31:30  brouard
   }    Add the possibility to read data file including tab characters.
   
   lg=strlen(t);    Revision 1.101  2004/09/15 10:38:38  brouard
   for(j=0; j<p; j++) {    Fix on curr_time
     (u[j] = t[j]);  
   }    Revision 1.100  2004/07/12 18:29:06  brouard
      u[p]='\0';    Add version for Mac OS X. Just define UNIX in Makefile
   
    for(j=0; j<= lg; j++) {    Revision 1.99  2004/06/05 08:57:40  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    *** empty log message ***
   }  
 }    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 /********************** nrerror ********************/    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 void nrerror(char error_text[])    This is the basic analysis of mortality and should be done before any
 {    other analysis, in order to test if the mortality estimated from the
   fprintf(stderr,"ERREUR ...\n");    cross-longitudinal survey is different from the mortality estimated
   fprintf(stderr,"%s\n",error_text);    from other sources like vital statistic data.
   exit(1);  
 }    The same imach parameter file can be used but the option for mle should be -3.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Agnès, who wrote this part of the code, tried to keep most of the
 {    former routines in order to include the new code within the former code.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    The output is very simple: only an estimate of the intercept and of
   if (!v) nrerror("allocation failure in vector");    the slope with 95% confident intervals.
   return v-nl+NR_END;  
 }    Current limitations:
     A) Even if you enter covariates, i.e. with the
 /************************ free vector ******************/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 void free_vector(double*v, int nl, int nh)    B) There is no computation of Life Expectancy nor Life Table.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.97  2004/02/20 13:25:42  lievre
 }    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.96  2003/07/15 15:38:55  brouard
 {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   int *v;    rewritten within the same printf. Workaround: many printfs.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.95  2003/07/08 07:54:34  brouard
   return v-nl+NR_END;    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.94  2003/06/27 13:00:02  brouard
 {    Just cleaning
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /******************* imatrix *******************************/    exist so I changed back to asctime which exists.
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): Version 0.96b
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.92  2003/06/25 16:30:45  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): On windows (cygwin) function asctime_r doesn't
   int **m;    exist so I changed back to asctime which exists.
    
   /* allocate pointers to rows */    Revision 1.91  2003/06/25 15:30:29  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    * imach.c (Repository): Duplicated warning errors corrected.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Repository): Elapsed time after each iteration is now output. It
   m += NR_END;    helps to forecast when convergence will be reached. Elapsed time
   m -= nrl;    is stamped in powell.  We created a new html file for the graphs
      concerning matrix of covariance. It has extension -cov.htm.
    
   /* allocate rows and set pointers to them */    Revision 1.90  2003/06/24 12:34:15  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): Some bugs corrected for windows. Also, when
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    mle=-1 a template is output in file "or"mypar.txt with the design
   m[nrl] += NR_END;    of the covariance matrix to be input.
   m[nrl] -= ncl;  
      Revision 1.89  2003/06/24 12:30:52  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
   /* return pointer to array of pointers to rows */    of the covariance matrix to be input.
   return m;  
 }    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.87  2003/06/18 12:26:01  brouard
       int **m;    Version 0.96
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    routine fileappend.
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 /******************* matrix *******************************/    current date of interview. It may happen when the death was just
 double **matrix(long nrl, long nrh, long ncl, long nch)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    assuming that the date of death was just one stepm after the
   double **m;    interview.
     (Repository): Because some people have very long ID (first column)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    we changed int to long in num[] and we added a new lvector for
   if (!m) nrerror("allocation failure 1 in matrix()");    memory allocation. But we also truncated to 8 characters (left
   m += NR_END;    truncation)
   m -= nrl;    (Repository): No more line truncation errors.
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.84  2003/06/13 21:44:43  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    * imach.c (Repository): Replace "freqsummary" at a correct
   m[nrl] += NR_END;    place. It differs from routine "prevalence" which may be called
   m[nrl] -= ncl;    many times. Probs is memory consuming and must be used with
     parcimony.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   return m;  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  */
 }  /*
      Interpolated Markov Chain
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Short summary of the programme:
 {    
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    This program computes Healthy Life Expectancies from
   double ***m;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    interviewed on their health status or degree of disability (in the
   if (!m) nrerror("allocation failure 1 in matrix()");    case of a health survey which is our main interest) -2- at least a
   m += NR_END;    second wave of interviews ("longitudinal") which measure each change
   m -= nrl;    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    model. More health states you consider, more time is necessary to reach the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Maximum Likelihood of the parameters involved in the model.  The
   m[nrl] += NR_END;    simplest model is the multinomial logistic model where pij is the
   m[nrl] -= ncl;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    complex model than "constant and age", you should modify the program
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    where the markup *Covariates have to be included here again* invites
   m[nrl][ncl] += NR_END;    you to do it.  More covariates you add, slower the
   m[nrl][ncl] -= nll;    convergence.
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    The advantage of this computer programme, compared to a simple
      multinomial logistic model, is clear when the delay between waves is not
   for (i=nrl+1; i<=nrh; i++) {    identical for each individual. Also, if a individual missed an
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    intermediate interview, the information is lost, but taken into
     for (j=ncl+1; j<=nch; j++)    account using an interpolation or extrapolation.  
       m[i][j]=m[i][j-1]+nlay;  
   }    hPijx is the probability to be observed in state i at age x+h
   return m;    conditional to the observed state i at age x. The delay 'h' can be
 }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 /*************************free ma3x ************************/    semester or year) is modelled as a multinomial logistic.  The hPx
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    hPijx.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Also this programme outputs the covariance matrix of the parameters but also
 }    of the life expectancies. It also computes the period (stable) prevalence. 
     
 /***************** f1dim *************************/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 extern int ncom;             Institut national d'études démographiques, Paris.
 extern double *pcom,*xicom;    This software have been partly granted by Euro-REVES, a concerted action
 extern double (*nrfunc)(double []);    from the European Union.
      It is copyrighted identically to a GNU software product, ie programme and
 double f1dim(double x)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   int j;  
   double f;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   double *xt;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   xt=vector(1,ncom);    **********************************************************************/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /*
   f=(*nrfunc)(xt);    main
   free_vector(xt,1,ncom);    read parameterfile
   return f;    read datafile
 }    concatwav
     freqsummary
 /*****************brent *************************/    if (mle >= 1)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      mlikeli
 {    print results files
   int iter;    if mle==1 
   double a,b,d,etemp;       computes hessian
   double fu,fv,fw,fx;    read end of parameter file: agemin, agemax, bage, fage, estepm
   double ftemp;        begin-prev-date,...
   double p,q,r,tol1,tol2,u,v,w,x,xm;    open gnuplot file
   double e=0.0;    open html file
      period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   a=(ax < cx ? ax : cx);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   b=(ax > cx ? ax : cx);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   x=w=v=bx;      freexexit2 possible for memory heap.
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    h Pij x                         | pij_nom  ficrestpij
     xm=0.5*(a+b);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 #ifdef DEBUG         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    forecasting if prevfcast==1 prevforecast call prevalence()
       *xmin=x;    health expectancies
       return fx;    Variance-covariance of DFLE
     }    prevalence()
     ftemp=fu;     movingaverage()
     if (fabs(e) > tol1) {    varevsij() 
       r=(x-w)*(fx-fv);    if popbased==1 varevsij(,popbased)
       q=(x-v)*(fx-fw);    total life expectancies
       p=(x-v)*q-(x-w)*r;    Variance of period (stable) prevalence
       q=2.0*(q-r);   end
       if (q > 0.0) p = -p;  */
       q=fabs(q);  
       etemp=e;  
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <math.h>
       else {  #include <stdio.h>
         d=p/q;  #include <stdlib.h>
         u=x+d;  #include <string.h>
         if (u-a < tol2 || b-u < tol2)  #include <unistd.h>
           d=SIGN(tol1,xm-x);  
       }  #include <limits.h>
     } else {  #include <sys/types.h>
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <sys/stat.h>
     }  #include <errno.h>
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  extern int errno;
     fu=(*f)(u);  
     if (fu <= fx) {  /* #ifdef LINUX */
       if (u >= x) a=x; else b=x;  /* #include <time.h> */
       SHFT(v,w,x,u)  /* #include "timeval.h" */
         SHFT(fv,fw,fx,fu)  /* #else */
         } else {  /* #include <sys/time.h> */
           if (u < x) a=u; else b=u;  /* #endif */
           if (fu <= fw || w == x) {  
             v=w;  #include <time.h>
             w=u;  
             fv=fw;  #ifdef GSL
             fw=fu;  #include <gsl/gsl_errno.h>
           } else if (fu <= fv || v == x || v == w) {  #include <gsl/gsl_multimin.h>
             v=u;  #endif
             fv=fu;  
           }  /* #include <libintl.h> */
         }  /* #define _(String) gettext (String) */
   }  
   nrerror("Too many iterations in brent");  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   *xmin=x;  
   return fx;  #define GNUPLOTPROGRAM "gnuplot"
 }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 /****************** mnbrak ***********************/  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
             double (*func)(double))  
 {  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   double ulim,u,r,q, dum;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   double fu;  
    #define NINTERVMAX 8
   *fa=(*func)(*ax);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   *fb=(*func)(*bx);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   if (*fb > *fa) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     SHFT(dum,*ax,*bx,dum)  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       SHFT(dum,*fb,*fa,dum)  #define MAXN 20000
       }  #define YEARM 12. /**< Number of months per year */
   *cx=(*bx)+GOLD*(*bx-*ax);  #define AGESUP 130
   *fc=(*func)(*cx);  #define AGEBASE 40
   while (*fb > *fc) {  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
     r=(*bx-*ax)*(*fb-*fc);  #ifdef _WIN32
     q=(*bx-*cx)*(*fb-*fa);  #define DIRSEPARATOR '\\'
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define CHARSEPARATOR "\\"
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define ODIRSEPARATOR '/'
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #else
     if ((*bx-u)*(u-*cx) > 0.0) {  #define DIRSEPARATOR '/'
       fu=(*func)(u);  #define CHARSEPARATOR "/"
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define ODIRSEPARATOR '\\'
       fu=(*func)(u);  #endif
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /* $Id$ */
           SHFT(*fb,*fc,fu,(*func)(u))  /* $State$ */
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
       u=ulim;  char fullversion[]="$Revision$ $Date$"; 
       fu=(*func)(u);  char strstart[80];
     } else {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       u=(*cx)+GOLD*(*cx-*bx);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       fu=(*func)(u);  int nvar=0, nforce=0; /* Number of variables, number of forces */
     }  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     SHFT(*ax,*bx,*cx,u)  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       SHFT(*fa,*fb,*fc,fu)  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 }  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
 /*************** linmin ************************/  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int cptcov=0; /* Working variable */
 int ncom;  int npar=NPARMAX;
 double *pcom,*xicom;  int nlstate=2; /* Number of live states */
 double (*nrfunc)(double []);  int ndeath=1; /* Number of dead states */
    int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int popbased=0;
 {  
   double brent(double ax, double bx, double cx,  int *wav; /* Number of waves for this individuual 0 is possible */
                double (*f)(double), double tol, double *xmin);  int maxwav=0; /* Maxim number of waves */
   double f1dim(double x);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
               double *fc, double (*func)(double));  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   int j;                     to the likelihood and the sum of weights (done by funcone)*/
   double xx,xmin,bx,ax;  int mle=1, weightopt=0;
   double fx,fb,fa;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   ncom=n;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   pcom=vector(1,n);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   xicom=vector(1,n);  double jmean=1; /* Mean space between 2 waves */
   nrfunc=func;  double **matprod2(); /* test */
   for (j=1;j<=n;j++) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
     pcom[j]=p[j];  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     xicom[j]=xi[j];  /*FILE *fic ; */ /* Used in readdata only */
   }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   ax=0.0;  FILE *ficlog, *ficrespow;
   xx=1.0;  int globpr=0; /* Global variable for printing or not */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double fretone; /* Only one call to likelihood */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  long ipmx=0; /* Number of contributions */
 #ifdef DEBUG  double sw; /* Sum of weights */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char filerespow[FILENAMELENGTH];
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #endif  FILE *ficresilk;
   for (j=1;j<=n;j++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     xi[j] *= xmin;  FILE *ficresprobmorprev;
     p[j] += xi[j];  FILE *fichtm, *fichtmcov; /* Html File */
   }  FILE *ficreseij;
   free_vector(xicom,1,n);  char filerese[FILENAMELENGTH];
   free_vector(pcom,1,n);  FILE *ficresstdeij;
 }  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
 /*************** powell ************************/  char filerescve[FILENAMELENGTH];
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  FILE  *ficresvij;
             double (*func)(double []))  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   void linmin(double p[], double xi[], int n, double *fret,  char fileresvpl[FILENAMELENGTH];
               double (*func)(double []));  char title[MAXLINE];
   int i,ibig,j;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double del,t,*pt,*ptt,*xit;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double fp,fptt;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double *xits;  char command[FILENAMELENGTH];
   pt=vector(1,n);  int  outcmd=0;
   ptt=vector(1,n);  
   xit=vector(1,n);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   xits=vector(1,n);  
   *fret=(*func)(p);  char filelog[FILENAMELENGTH]; /* Log file */
   for (j=1;j<=n;j++) pt[j]=p[j];  char filerest[FILENAMELENGTH];
   for (*iter=1;;++(*iter)) {  char fileregp[FILENAMELENGTH];
     fp=(*fret);  char popfile[FILENAMELENGTH];
     ibig=0;  
     del=0.0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     for (i=1;i<=n;i++)  /* struct timezone tzp; */
       printf(" %d %.12f",i, p[i]);  /* extern int gettimeofday(); */
     fprintf(ficlog," %d %.12f",i, p[i]);  struct tm tml, *gmtime(), *localtime();
     printf("\n");  
     fprintf(ficlog,"\n");  extern time_t time();
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  struct tm start_time, end_time, curr_time, last_time, forecast_time;
       fptt=(*fret);  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 #ifdef DEBUG  struct tm tm;
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  char strcurr[80], strfor[80];
 #endif  
       printf("%d",i);fflush(stdout);  char *endptr;
       fprintf(ficlog,"%d",i);fflush(ficlog);  long lval;
       linmin(p,xit,n,fret,func);  double dval;
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  #define NR_END 1
         ibig=i;  #define FREE_ARG char*
       }  #define FTOL 1.0e-10
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  #define NRANSI 
       fprintf(ficlog,"%d %.12e",i,(*fret));  #define ITMAX 200 
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #define TOL 2.0e-4 
         printf(" x(%d)=%.12e",j,xit[j]);  
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  #define CGOLD 0.3819660 
       }  #define ZEPS 1.0e-10 
       for(j=1;j<=n;j++) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         printf(" p=%.12e",p[j]);  
         fprintf(ficlog," p=%.12e",p[j]);  #define GOLD 1.618034 
       }  #define GLIMIT 100.0 
       printf("\n");  #define TINY 1.0e-20 
       fprintf(ficlog,"\n");  
 #endif  static double maxarg1,maxarg2;
     }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 #ifdef DEBUG    
       int k[2],l;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       k[0]=1;  #define rint(a) floor(a+0.5)
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  static double sqrarg;
       fprintf(ficlog,"Max: %.12e",(*func)(p));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       for (j=1;j<=n;j++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
         printf(" %.12e",p[j]);  int agegomp= AGEGOMP;
         fprintf(ficlog," %.12e",p[j]);  
       }  int imx; 
       printf("\n");  int stepm=1;
       fprintf(ficlog,"\n");  /* Stepm, step in month: minimum step interpolation*/
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  int estepm;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int m,nb;
         }  long *num;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       }  double **pmmij, ***probs;
 #endif  double *ageexmed,*agecens;
   double dateintmean=0;
   
       free_vector(xit,1,n);  double *weight;
       free_vector(xits,1,n);  int **s; /* Status */
       free_vector(ptt,1,n);  double *agedc;
       free_vector(pt,1,n);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       return;                    * covar=matrix(0,NCOVMAX,1,n); 
     }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  double  idx; 
     for (j=1;j<=n;j++) {  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       ptt[j]=2.0*p[j]-pt[j];  int *Ndum; /** Freq of modality (tricode */
       xit[j]=p[j]-pt[j];  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       pt[j]=p[j];  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     }  double *lsurv, *lpop, *tpop;
     fptt=(*func)(ptt);  
     if (fptt < fp) {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double ftolhess; /**< Tolerance for computing hessian */
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /**************** split *************************/
         for (j=1;j<=n;j++) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */ 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    char  *ss;                            /* pointer */
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    int   l1, l2;                         /* length counters */
         for(j=1;j<=n;j++){  
           printf(" %.12e",xit[j]);    l1 = strlen(path );                   /* length of path */
           fprintf(ficlog," %.12e",xit[j]);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         printf("\n");    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         fprintf(ficlog,"\n");      strcpy( name, path );               /* we got the fullname name because no directory */
 #endif      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     }      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /**** Prevalence limit ****************/      }
       /* got dirc from getcwd*/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      ss++;                               /* after this, the filename */
      matrix by transitions matrix until convergence is reached */      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   int i, ii,j,k;      strcpy( name, ss );         /* save file name */
   double min, max, maxmin, maxmax,sumnew=0.;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double **matprod2();      dirc[l1-l2] = 0;                    /* add zero */
   double **out, cov[NCOVMAX], **pmij();      printf(" DIRC2 = %s \n",dirc);
   double **newm;    }
   double agefin, delaymax=50 ; /* Max number of years to converge */    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
   for (ii=1;ii<=nlstate+ndeath;ii++)    if( dirc[l1-1] != DIRSEPARATOR ){
     for (j=1;j<=nlstate+ndeath;j++){      dirc[l1] =  DIRSEPARATOR;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      dirc[l1+1] = 0; 
     }      printf(" DIRC3 = %s \n",dirc);
     }
    cov[1]=1.;    ss = strrchr( name, '.' );            /* find last / */
      if (ss >0){
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      ss++;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      strcpy(ext,ss);                     /* save extension */
     newm=savm;      l1= strlen( name);
     /* Covariates have to be included here again */      l2= strlen(ss)+1;
      cov[2]=agefin;      strncpy( finame, name, l1-l2);
        finame[l1-l2]= 0;
       for (k=1; k<=cptcovn;k++) {    }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    return( 0 );                          /* we're done */
       }  }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /******************************************/
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  void replace_back_to_slash(char *s, char*t)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    int i;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    int lg=0;
     i=0;
     savm=oldm;    lg=strlen(t);
     oldm=newm;    for(i=0; i<= lg; i++) {
     maxmax=0.;      (s[i] = t[i]);
     for(j=1;j<=nlstate;j++){      if (t[i]== '\\') s[i]='/';
       min=1.;    }
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  char *trimbb(char *out, char *in)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         prlim[i][j]= newm[i][j]/(1-sumnew);    char *s;
         max=FMAX(max,prlim[i][j]);    s=out;
         min=FMIN(min,prlim[i][j]);    while (*in != '\0'){
       }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       maxmin=max-min;        in++;
       maxmax=FMAX(maxmax,maxmin);      }
     }      *out++ = *in++;
     if(maxmax < ftolpl){    }
       return prlim;    *out='\0';
     }    return s;
   }  }
 }  
   char *cutl(char *blocc, char *alocc, char *in, char occ)
 /*************** transition probabilities ***************/  {
     /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 {       gives blocc="abcdef2ghi" and alocc="j".
   double s1, s2;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   /*double t34;*/    */
   int i,j,j1, nc, ii, jj;    char *s, *t, *bl;
     t=in;s=in;
     for(i=1; i<= nlstate; i++){    while ((*in != occ) && (*in != '\0')){
     for(j=1; j<i;j++){      *alocc++ = *in++;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    }
         /*s2 += param[i][j][nc]*cov[nc];*/    if( *in == occ){
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      *(alocc)='\0';
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      s=++in;
       }    }
       ps[i][j]=s2;   
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    if (s == t) {/* occ not found */
     }      *(alocc-(in-s))='\0';
     for(j=i+1; j<=nlstate+ndeath;j++){      in=s;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    while ( *in != '\0'){
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      *blocc++ = *in++;
       }    }
       ps[i][j]=s2;  
     }    *blocc='\0';
   }    return t;
     /*ps[3][2]=1;*/  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
   for(i=1; i<= nlstate; i++){  {
      s1=0;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     for(j=1; j<i; j++)       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       s1+=exp(ps[i][j]);       gives blocc="abcdef2ghi" and alocc="j".
     for(j=i+1; j<=nlstate+ndeath; j++)       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       s1+=exp(ps[i][j]);    */
     ps[i][i]=1./(s1+1.);    char *s, *t;
     for(j=1; j<i; j++)    t=in;s=in;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    while (*in != '\0'){
     for(j=i+1; j<=nlstate+ndeath; j++)      while( *in == occ){
       ps[i][j]= exp(ps[i][j])*ps[i][i];        *blocc++ = *in++;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        s=in;
   } /* end i */      }
       *blocc++ = *in++;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){    if (s == t) /* occ not found */
       ps[ii][jj]=0;      *(blocc-(in-s))='\0';
       ps[ii][ii]=1;    else
     }      *(blocc-(in-s)-1)='\0';
   }    in=s;
     while ( *in != '\0'){
       *alocc++ = *in++;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);    *alocc='\0';
    }    return s;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  int nbocc(char *s, char occ)
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    int i,j=0;
   goto end;*/    int lg=20;
     return ps;    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /**************** Product of 2 matrices ******************/    if  (s[i] == occ ) j++;
     }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return j;
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /* void cutv(char *u,char *v, char*t, char occ) */
   /* in, b, out are matrice of pointers which should have been initialized  /* { */
      before: only the contents of out is modified. The function returns  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
      a pointer to pointers identical to out */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   long i, j, k;  /*      gives u="abcdef2ghi" and v="j" *\/ */
   for(i=nrl; i<= nrh; i++)  /*   int i,lg,j,p=0; */
     for(k=ncolol; k<=ncoloh; k++)  /*   i=0; */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /*   lg=strlen(t); */
         out[i][k] +=in[i][j]*b[j][k];  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   return out;  /*   } */
 }  
   /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
 /************* Higher Matrix Product ***************/  /*   } */
   /*      u[p]='\0'; */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /*    for(j=0; j<= lg; j++) { */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
      duration (i.e. until  /*   } */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /* } */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /********************** nrerror ********************/
      Model is determined by parameters x and covariates have to be  
      included manually here.  void nrerror(char error_text[])
   {
      */    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
   int i, j, d, h, k;    exit(EXIT_FAILURE);
   double **out, cov[NCOVMAX];  }
   double **newm;  /*********************** vector *******************/
   double *vector(int nl, int nh)
   /* Hstepm could be zero and should return the unit matrix */  {
   for (i=1;i<=nlstate+ndeath;i++)    double *v;
     for (j=1;j<=nlstate+ndeath;j++){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       oldm[i][j]=(i==j ? 1.0 : 0.0);    if (!v) nrerror("allocation failure in vector");
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return v-nl+NR_END;
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /************************ free vector ******************/
     for(d=1; d <=hstepm; d++){  void free_vector(double*v, int nl, int nh)
       newm=savm;  {
       /* Covariates have to be included here again */    free((FREE_ARG)(v+nl-NR_END));
       cov[1]=1.;  }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /************************ivector *******************************/
       for (k=1; k<=cptcovage;k++)  int *ivector(long nl,long nh)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    int *v;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /******************free ivector **************************/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  void free_ivector(int *v, long nl, long nh)
       savm=oldm;  {
       oldm=newm;    free((FREE_ARG)(v+nl-NR_END));
     }  }
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /************************lvector *******************************/
         po[i][j][h]=newm[i][j];  long *lvector(long nl,long nh)
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  {
          */    long *v;
       }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   } /* end h */    if (!v) nrerror("allocation failure in ivector");
   return po;    return v-nl+NR_END;
 }  }
   
   /******************free lvector **************************/
 /*************** log-likelihood *************/  void free_lvector(long *v, long nl, long nh)
 double func( double *x)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /******************* imatrix *******************************/
   double sw; /* Sum of weights */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double lli; /* Individual log likelihood */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   long ipmx;  { 
   /*extern weight */    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   /* We are differentiating ll according to initial status */    int **m; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    
   /*for(i=1;i<imx;i++)    /* allocate pointers to rows */ 
     printf(" %d\n",s[4][i]);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   */    if (!m) nrerror("allocation failure 1 in matrix()"); 
   cov[1]=1.;    m += NR_END; 
     m -= nrl; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* allocate rows and set pointers to them */ 
     for(mi=1; mi<= wav[i]-1; mi++){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl] += NR_END; 
       for(d=0; d<dh[mi][i]; d++){    m[nrl] -= ncl; 
         newm=savm;    
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         for (kk=1; kk<=cptcovage;kk++) {    
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    /* return pointer to array of pointers to rows */ 
         }    return m; 
          } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /****************** free_imatrix *************************/
         savm=oldm;  void free_imatrix(m,nrl,nrh,ncl,nch)
         oldm=newm;        int **m;
                long nch,ncl,nrh,nrl; 
               /* free an int matrix allocated by imatrix() */ 
       } /* end mult */  { 
          free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    free((FREE_ARG) (m+nrl-NR_END)); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  } 
       ipmx +=1;  
       sw += weight[i];  /******************* matrix *******************************/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  double **matrix(long nrl, long nrh, long ncl, long nch)
     } /* end of wave */  {
   } /* end of individual */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    if (!m) nrerror("allocation failure 1 in matrix()");
   return -l;    m += NR_END;
 }    m -= nrl;
   
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /*********** Maximum Likelihood Estimation ***************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    m[nrl] -= ncl;
 {  
   int i,j, iter;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double **xi,*delti;    return m;
   double fret;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   xi=matrix(1,npar,1,npar);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   for (i=1;i<=npar;i++)  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     for (j=1;j<=npar;j++)     */
       xi[i][j]=(i==j ? 1.0 : 0.0);  }
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  {
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    free((FREE_ARG)(m+nrl-NR_END));
   }
 }  
   /******************* ma3x *******************************/
 /**** Computes Hessian and covariance matrix ***/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  {
 {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double  **a,**y,*x,pd;    double ***m;
   double **hess;  
   int i, j,jk;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int *indx;    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   double hessii(double p[], double delta, int theta, double delti[]);    m -= nrl;
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   void ludcmp(double **a, int npar, int *indx, double *d) ;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
   hess=matrix(1,npar,1,npar);    m[nrl] -= ncl;
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     printf("%d",i);fflush(stdout);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     fprintf(ficlog,"%d",i);fflush(ficlog);    m[nrl][ncl] += NR_END;
     hess[i][i]=hessii(p,ftolhess,i,delti);    m[nrl][ncl] -= nll;
     /*printf(" %f ",p[i]);*/    for (j=ncl+1; j<=nch; j++) 
     /*printf(" %lf ",hess[i][i]);*/      m[nrl][j]=m[nrl][j-1]+nlay;
   }    
      for (i=nrl+1; i<=nrh; i++) {
   for (i=1;i<=npar;i++) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=1;j<=npar;j++)  {      for (j=ncl+1; j<=nch; j++) 
       if (j>i) {        m[i][j]=m[i][j-1]+nlay;
         printf(".%d%d",i,j);fflush(stdout);    }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    return m; 
         hess[i][j]=hessij(p,delti,i,j);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         hess[j][i]=hess[i][j];                 &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         /*printf(" %lf ",hess[i][j]);*/    */
       }  }
     }  
   }  /*************************free ma3x ************************/
   printf("\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   fprintf(ficlog,"\n");  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    free((FREE_ARG)(m+nrl-NR_END));
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  /*************** function subdirf ***********/
   x=vector(1,npar);  char *subdirf(char fileres[])
   indx=ivector(1,npar);  {
   for (i=1;i<=npar;i++)    /* Caution optionfilefiname is hidden */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    strcpy(tmpout,optionfilefiname);
   ludcmp(a,npar,indx,&pd);    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   for (j=1;j<=npar;j++) {    return tmpout;
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  
     lubksb(a,npar,indx,x);  /*************** function subdirf2 ***********/
     for (i=1;i<=npar;i++){  char *subdirf2(char fileres[], char *preop)
       matcov[i][j]=x[i];  {
     }    
   }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   printf("\n#Hessian matrix#\n");    strcat(tmpout,"/");
   fprintf(ficlog,"\n#Hessian matrix#\n");    strcat(tmpout,preop);
   for (i=1;i<=npar;i++) {    strcat(tmpout,fileres);
     for (j=1;j<=npar;j++) {    return tmpout;
       printf("%.3e ",hess[i][j]);  }
       fprintf(ficlog,"%.3e ",hess[i][j]);  
     }  /*************** function subdirf3 ***********/
     printf("\n");  char *subdirf3(char fileres[], char *preop, char *preop2)
     fprintf(ficlog,"\n");  {
   }    
     /* Caution optionfilefiname is hidden */
   /* Recompute Inverse */    strcpy(tmpout,optionfilefiname);
   for (i=1;i<=npar;i++)    strcat(tmpout,"/");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    strcat(tmpout,preop);
   ludcmp(a,npar,indx,&pd);    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   /*  printf("\n#Hessian matrix recomputed#\n");    return tmpout;
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /***************** f1dim *************************/
     x[j]=1;  extern int ncom; 
     lubksb(a,npar,indx,x);  extern double *pcom,*xicom;
     for (i=1;i<=npar;i++){  extern double (*nrfunc)(double []); 
       y[i][j]=x[i];   
       printf("%.3e ",y[i][j]);  double f1dim(double x) 
       fprintf(ficlog,"%.3e ",y[i][j]);  { 
     }    int j; 
     printf("\n");    double f;
     fprintf(ficlog,"\n");    double *xt; 
   }   
   */    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   free_matrix(a,1,npar,1,npar);    f=(*nrfunc)(xt); 
   free_matrix(y,1,npar,1,npar);    free_vector(xt,1,ncom); 
   free_vector(x,1,npar);    return f; 
   free_ivector(indx,1,npar);  } 
   free_matrix(hess,1,npar,1,npar);  
   /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 }  { 
     int iter; 
 /*************** hessian matrix ****************/    double a,b,d,etemp;
 double hessii( double x[], double delta, int theta, double delti[])    double fu,fv,fw,fx;
 {    double ftemp;
   int i;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   int l=1, lmax=20;    double e=0.0; 
   double k1,k2;   
   double p2[NPARMAX+1];    a=(ax < cx ? ax : cx); 
   double res;    b=(ax > cx ? ax : cx); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    x=w=v=bx; 
   double fx;    fw=fv=fx=(*f)(x); 
   int k=0,kmax=10;    for (iter=1;iter<=ITMAX;iter++) { 
   double l1;      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   fx=func(x);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (i=1;i<=npar;i++) p2[i]=x[i];      printf(".");fflush(stdout);
   for(l=0 ; l <=lmax; l++){      fprintf(ficlog,".");fflush(ficlog);
     l1=pow(10,l);  #ifdef DEBUG
     delts=delt;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(k=1 ; k <kmax; k=k+1){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       delt = delta*(l1*k);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       p2[theta]=x[theta] +delt;  #endif
       k1=func(p2)-fx;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       p2[theta]=x[theta]-delt;        *xmin=x; 
       k2=func(p2)-fx;        return fx; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      ftemp=fu;
            if (fabs(e) > tol1) { 
 #ifdef DEBUG        r=(x-w)*(fx-fv); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        q=(x-v)*(fx-fw); 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        p=(x-v)*q-(x-w)*r; 
 #endif        q=2.0*(q-r); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        if (q > 0.0) p = -p; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        q=fabs(q); 
         k=kmax;        etemp=e; 
       }        e=d; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         k=kmax; l=lmax*10.;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }        else { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          d=p/q; 
         delts=delt;          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
   }        } 
   delti[theta]=delts;      } else { 
   return res;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
        } 
 }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
 double hessij( double x[], double delti[], int thetai,int thetaj)      if (fu <= fx) { 
 {        if (u >= x) a=x; else b=x; 
   int i;        SHFT(v,w,x,u) 
   int l=1, l1, lmax=20;          SHFT(fv,fw,fx,fu) 
   double k1,k2,k3,k4,res,fx;          } else { 
   double p2[NPARMAX+1];            if (u < x) a=u; else b=u; 
   int k;            if (fu <= fw || w == x) { 
               v=w; 
   fx=func(x);              w=u; 
   for (k=1; k<=2; k++) {              fv=fw; 
     for (i=1;i<=npar;i++) p2[i]=x[i];              fw=fu; 
     p2[thetai]=x[thetai]+delti[thetai]/k;            } else if (fu <= fv || v == x || v == w) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              v=u; 
     k1=func(p2)-fx;              fv=fu; 
              } 
     p2[thetai]=x[thetai]+delti[thetai]/k;          } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    } 
     k2=func(p2)-fx;    nrerror("Too many iterations in brent"); 
      *xmin=x; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    return fx; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  } 
     k3=func(p2)-fx;  
    /****************** mnbrak ***********************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     k4=func(p2)-fx;              double (*func)(double)) 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  { 
 #ifdef DEBUG    double ulim,u,r,q, dum;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double fu; 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);   
 #endif    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
   return res;    if (*fb > *fa) { 
 }      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
 /************** Inverse of matrix **************/        } 
 void ludcmp(double **a, int n, int *indx, double *d)    *cx=(*bx)+GOLD*(*bx-*ax); 
 {    *fc=(*func)(*cx); 
   int i,imax,j,k;    while (*fb > *fc) { 
   double big,dum,sum,temp;      r=(*bx-*ax)*(*fb-*fc); 
   double *vv;      q=(*bx-*cx)*(*fb-*fa); 
        u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   vv=vector(1,n);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   *d=1.0;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for (i=1;i<=n;i++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
     big=0.0;        fu=(*func)(u); 
     for (j=1;j<=n;j++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       if ((temp=fabs(a[i][j])) > big) big=temp;        fu=(*func)(u); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        if (fu < *fc) { 
     vv[i]=1.0/big;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   }            SHFT(*fb,*fc,fu,(*func)(u)) 
   for (j=1;j<=n;j++) {            } 
     for (i=1;i<j;i++) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       sum=a[i][j];        u=ulim; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        fu=(*func)(u); 
       a[i][j]=sum;      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
     big=0.0;        fu=(*func)(u); 
     for (i=j;i<=n;i++) {      } 
       sum=a[i][j];      SHFT(*ax,*bx,*cx,u) 
       for (k=1;k<j;k++)        SHFT(*fa,*fb,*fc,fu) 
         sum -= a[i][k]*a[k][j];        } 
       a[i][j]=sum;  } 
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  /*************** linmin ************************/
         imax=i;  
       }  int ncom; 
     }  double *pcom,*xicom;
     if (j != imax) {  double (*nrfunc)(double []); 
       for (k=1;k<=n;k++) {   
         dum=a[imax][k];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         a[imax][k]=a[j][k];  { 
         a[j][k]=dum;    double brent(double ax, double bx, double cx, 
       }                 double (*f)(double), double tol, double *xmin); 
       *d = -(*d);    double f1dim(double x); 
       vv[imax]=vv[j];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     }                double *fc, double (*func)(double)); 
     indx[j]=imax;    int j; 
     if (a[j][j] == 0.0) a[j][j]=TINY;    double xx,xmin,bx,ax; 
     if (j != n) {    double fx,fb,fa;
       dum=1.0/(a[j][j]);   
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    ncom=n; 
     }    pcom=vector(1,n); 
   }    xicom=vector(1,n); 
   free_vector(vv,1,n);  /* Doesn't work */    nrfunc=func; 
 ;    for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 void lubksb(double **a, int n, int *indx, double b[])    } 
 {    ax=0.0; 
   int i,ii=0,ip,j;    xx=1.0; 
   double sum;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for (i=1;i<=n;i++) {  #ifdef DEBUG
     ip=indx[i];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     sum=b[ip];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     b[ip]=b[i];  #endif
     if (ii)    for (j=1;j<=n;j++) { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      xi[j] *= xmin; 
     else if (sum) ii=i;      p[j] += xi[j]; 
     b[i]=sum;    } 
   }    free_vector(xicom,1,n); 
   for (i=n;i>=1;i--) {    free_vector(pcom,1,n); 
     sum=b[i];  } 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  char *asc_diff_time(long time_sec, char ascdiff[])
   }  {
 }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 /************ Frequencies ********************/    sec_left = (time_sec) % (60*60*24);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    hours = (sec_left) / (60*60) ;
 {  /* Some frequencies */    sec_left = (sec_left) %(60*60);
      minutes = (sec_left) /60;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    sec_left = (sec_left) % (60);
   int first;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   double ***freq; /* Frequencies */    return ascdiff;
   double *pp;  }
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  /*************** powell ************************/
   char fileresp[FILENAMELENGTH];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                double (*func)(double [])) 
   pp=vector(1,nlstate);  { 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    void linmin(double p[], double xi[], int n, double *fret, 
   strcpy(fileresp,"p");                double (*func)(double [])); 
   strcat(fileresp,fileres);    int i,ibig,j; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double del,t,*pt,*ptt,*xit;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double fp,fptt;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double *xits;
     exit(0);    int niterf, itmp;
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    pt=vector(1,n); 
   j1=0;    ptt=vector(1,n); 
      xit=vector(1,n); 
   j=cptcoveff;    xits=vector(1,n); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   first=1;      rcurr_time = time(NULL);  
     for (*iter=1;;++(*iter)) { 
   for(k1=1; k1<=j;k1++){      fp=(*fret); 
     for(i1=1; i1<=ncodemax[k1];i1++){      ibig=0; 
       j1++;      del=0.0; 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      rlast_time=rcurr_time;
         scanf("%d", i);*/      /* (void) gettimeofday(&curr_time,&tzp); */
       for (i=-1; i<=nlstate+ndeath; i++)        rcurr_time = time(NULL);  
         for (jk=-1; jk<=nlstate+ndeath; jk++)        curr_time = *localtime(&rcurr_time);
           for(m=agemin; m <= agemax+3; m++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
             freq[i][jk][m]=0;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
        /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       dateintsum=0;     for (i=1;i<=n;i++) {
       k2cpt=0;        printf(" %d %.12f",i, p[i]);
       for (i=1; i<=imx; i++) {        fprintf(ficlog," %d %.12lf",i, p[i]);
         bool=1;        fprintf(ficrespow," %.12lf", p[i]);
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)      printf("\n");
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      fprintf(ficlog,"\n");
               bool=0;      fprintf(ficrespow,"\n");fflush(ficrespow);
         }      if(*iter <=3){
         if (bool==1) {        tml = *localtime(&rcurr_time);
           for(m=firstpass; m<=lastpass; m++){        strcpy(strcurr,asctime(&tml));
             k2=anint[m][i]+(mint[m][i]/12.);  /*       asctime_r(&tm,strcurr); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        rforecast_time=rcurr_time; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        itmp = strlen(strcurr);
               if(agev[m][i]==1) agev[m][i]=agemax+2;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
               if (m<lastpass) {          strcurr[itmp-1]='\0';
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
               }        for(niterf=10;niterf<=30;niterf+=10){
                        rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          forecast_time = *localtime(&rforecast_time);
                 dateintsum=dateintsum+k2;  /*      asctime_r(&tmf,strfor); */
                 k2cpt++;          strcpy(strfor,asctime(&forecast_time));
               }          itmp = strlen(strfor);
             }          if(strfor[itmp-1]=='\n')
           }          strfor[itmp-1]='\0';
         }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      }
       for (i=1;i<=n;i++) { 
       if  (cptcovn>0) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fprintf(ficresp, "\n#********** Variable ");        fptt=(*fret); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  #ifdef DEBUG
         fprintf(ficresp, "**********\n#");        printf("fret=%lf \n",*fret);
       }        fprintf(ficlog,"fret=%lf \n",*fret);
       for(i=1; i<=nlstate;i++)  #endif
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        printf("%d",i);fflush(stdout);
       fprintf(ficresp, "\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
              linmin(p,xit,n,fret,func); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        if (fabs(fptt-(*fret)) > del) { 
         if(i==(int)agemax+3){          del=fabs(fptt-(*fret)); 
           fprintf(ficlog,"Total");          ibig=i; 
         }else{        } 
           if(first==1){  #ifdef DEBUG
             first=0;        printf("%d %.12e",i,(*fret));
             printf("See log file for details...\n");        fprintf(ficlog,"%d %.12e",i,(*fret));
           }        for (j=1;j<=n;j++) {
           fprintf(ficlog,"Age %d", i);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         }          printf(" x(%d)=%.12e",j,xit[j]);
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        }
             pp[jk] += freq[jk][m][i];        for(j=1;j<=n;j++) {
         }          printf(" p=%.12e",p[j]);
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog," p=%.12e",p[j]);
           for(m=-1, pos=0; m <=0 ; m++)        }
             pos += freq[jk][m][i];        printf("\n");
           if(pp[jk]>=1.e-10){        fprintf(ficlog,"\n");
             if(first==1){  #endif
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      } 
             }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  #ifdef DEBUG
           }else{        int k[2],l;
             if(first==1)        k[0]=1;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        k[1]=-1;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        printf("Max: %.12e",(*func)(p));
           }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         }        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog," %.12e",p[j]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
             pp[jk] += freq[jk][m][i];        printf("\n");
         }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
         for(jk=1,pos=0; jk <=nlstate ; jk++)          for (j=1;j<=n;j++) {
           pos += pp[jk];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         for(jk=1; jk <=nlstate ; jk++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           if(pos>=1.e-5){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             if(first==1)          }
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           }else{        }
             if(first==1)  #endif
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           }        free_vector(xit,1,n); 
           if( i <= (int) agemax){        free_vector(xits,1,n); 
             if(pos>=1.e-5){        free_vector(ptt,1,n); 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        free_vector(pt,1,n); 
               probs[i][jk][j1]= pp[jk]/pos;        return; 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      } 
             }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
             else      for (j=1;j<=n;j++) { 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        ptt[j]=2.0*p[j]-pt[j]; 
           }        xit[j]=p[j]-pt[j]; 
         }        pt[j]=p[j]; 
              } 
         for(jk=-1; jk <=nlstate+ndeath; jk++)      fptt=(*func)(ptt); 
           for(m=-1; m <=nlstate+ndeath; m++)      if (fptt < fp) { 
             if(freq[jk][m][i] !=0 ) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             if(first==1)        if (t < 0.0) { 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          linmin(p,xit,n,fret,func); 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          for (j=1;j<=n;j++) { 
             }            xi[j][ibig]=xi[j][n]; 
         if(i <= (int) agemax)            xi[j][n]=xit[j]; 
           fprintf(ficresp,"\n");          }
         if(first==1)  #ifdef DEBUG
           printf("Others in log...\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficlog,"\n");          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          for(j=1;j<=n;j++){
     }            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
   dateintmean=dateintsum/k2cpt;          }
            printf("\n");
   fclose(ficresp);          fprintf(ficlog,"\n");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  #endif
   free_vector(pp,1,nlstate);        }
        } 
   /* End of Freq */    } 
 }  } 
   
 /************ Prevalence ********************/  /**** Prevalence limit (stable or period prevalence)  ****************/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double ***freq; /* Frequencies */       matrix by transitions matrix until convergence is reached */
   double *pp;  
   double pos, k2;    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   pp=vector(1,nlstate);    /* double **matprod2(); */ /* test */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **out, cov[NCOVMAX+1], **pmij();
      double **newm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double agefin, delaymax=50 ; /* Max number of years to converge */
   j1=0;  
      for (ii=1;ii<=nlstate+ndeath;ii++)
   j=cptcoveff;      for (j=1;j<=nlstate+ndeath;j++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){     cov[1]=1.;
       j1++;   
         /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (i=-1; i<=nlstate+ndeath; i++)      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         for (jk=-1; jk<=nlstate+ndeath; jk++)        newm=savm;
           for(m=agemin; m <= agemax+3; m++)      /* Covariates have to be included here again */
             freq[i][jk][m]=0;      cov[2]=agefin;
            
       for (i=1; i<=imx; i++) {      for (k=1; k<=cptcovn;k++) {
         bool=1;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         if  (cptcovn>0) {        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
           for (z1=1; z1<=cptcoveff; z1++)      }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
               bool=0;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
         }      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
         if (bool==1) {      
           for(m=firstpass; m<=lastpass; m++){      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
             k2=anint[m][i]+(mint[m][i]/12.);      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
               if (m<lastpass) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
                 if (calagedate>0)      
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      savm=oldm;
                 else      oldm=newm;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      maxmax=0.;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      for(j=1;j<=nlstate;j++){
               }        min=1.;
             }        max=0.;
           }        for(i=1; i<=nlstate; i++) {
         }          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(i=(int)agemin; i <= (int)agemax+3; i++){          prlim[i][j]= newm[i][j]/(1-sumnew);
         for(jk=1; jk <=nlstate ; jk++){          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          max=FMAX(max,prlim[i][j]);
             pp[jk] += freq[jk][m][i];          min=FMIN(min,prlim[i][j]);
         }        }
         for(jk=1; jk <=nlstate ; jk++){        maxmin=max-min;
           for(m=-1, pos=0; m <=0 ; m++)        maxmax=FMAX(maxmax,maxmin);
             pos += freq[jk][m][i];      }
         }      if(maxmax < ftolpl){
                return prlim;
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }
             pp[jk] += freq[jk][m][i];  }
         }  
          /*************** transition probabilities ***************/ 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
          double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         for(jk=1; jk <=nlstate ; jk++){      {
           if( i <= (int) agemax){    /* According to parameters values stored in x and the covariate's values stored in cov,
             if(pos>=1.e-5){       computes the probability to be observed in state j being in state i by appying the
               probs[i][jk][j1]= pp[jk]/pos;       model to the ncovmodel covariates (including constant and age).
             }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           }       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         }/* end jk */       ncth covariate in the global vector x is given by the formula:
       }/* end i */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     } /* end i1 */       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   } /* end k1 */       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         Outputs ps[i][j] the probability to be observed in j being in j according to
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   free_vector(pp,1,nlstate);    */
      double s1, lnpijopii;
 }  /* End of Freq */    /*double t34;*/
     int i,j,j1, nc, ii, jj;
 /************* Waves Concatenation ***************/  
       for(i=1; i<= nlstate; i++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(j=1; j<i;j++){
 {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            /*lnpijopii += param[i][j][nc]*cov[nc];*/
      Death is a valid wave (if date is known).            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          }
      and mw[mi+1][i]. dh depends on stepm.          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
      */  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
   int i, mi, m;        for(j=i+1; j<=nlstate+ndeath;j++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
      double sum=0., jmean=0.;*/            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   int first;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   int j, k=0,jk, ju, jl;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   double sum=0.;          }
   first=0;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   jmin=1e+5;        }
   jmax=-1;      }
   jmean=0.;      
   for(i=1; i<=imx; i++){      for(i=1; i<= nlstate; i++){
     mi=0;        s1=0;
     m=firstpass;        for(j=1; j<i; j++){
     while(s[m][i] <= nlstate){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       if(s[m][i]>=1)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         mw[++mi][i]=m;        }
       if(m >=lastpass)        for(j=i+1; j<=nlstate+ndeath; j++){
         break;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       else          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         m++;        }
     }/* end while */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     if (s[m][i] > nlstate){        ps[i][i]=1./(s1+1.);
       mi++;     /* Death is another wave */        /* Computing other pijs */
       /* if(mi==0)  never been interviewed correctly before death */        for(j=1; j<i; j++)
          /* Only death is a correct wave */          ps[i][j]= exp(ps[i][j])*ps[i][i];
       mw[mi][i]=m;        for(j=i+1; j<=nlstate+ndeath; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     wav[i]=mi;      } /* end i */
     if(mi==0){      
       if(first==0){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        for(jj=1; jj<= nlstate+ndeath; jj++){
         first=1;          ps[ii][jj]=0;
       }          ps[ii][ii]=1;
       if(first==1){        }
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);      }
       }      
     } /* end mi==0 */      
   }      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   for(i=1; i<=imx; i++){      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     for(mi=1; mi<wav[i];mi++){      /*   } */
       if (stepm <=0)      /*   printf("\n "); */
         dh[mi][i]=1;      /* } */
       else{      /* printf("\n ");printf("%lf ",cov[2]);*/
         if (s[mw[mi+1][i]][i] > nlstate) {      /*
           if (agedc[i] < 2*AGESUP) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        goto end;*/
           if(j==0) j=1;  /* Survives at least one month after exam */      return ps;
           k=k+1;  }
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;  /**************** Product of 2 matrices ******************/
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
           }  {
         }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         else{       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* in, b, out are matrice of pointers which should have been initialized 
           k=k+1;       before: only the contents of out is modified. The function returns
           if (j >= jmax) jmax=j;       a pointer to pointers identical to out */
           else if (j <= jmin)jmin=j;    int i, j, k;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    for(i=nrl; i<= nrh; i++)
           sum=sum+j;      for(k=ncolol; k<=ncoloh; k++){
         }        out[i][k]=0.;
         jk= j/stepm;        for(j=ncl; j<=nch; j++)
         jl= j -jk*stepm;          out[i][k] +=in[i][j]*b[j][k];
         ju= j -(jk+1)*stepm;      }
         if(jl <= -ju)    return out;
           dh[mi][i]=jk;  }
         else  
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)  /************* Higher Matrix Product ***************/
           dh[mi][i]=1; /* At least one step */  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
   }    /* Computes the transition matrix starting at age 'age' over 
   jmean=sum/k;       'nhstepm*hstepm*stepm' months (i.e. until
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);       nhstepm*hstepm matrices. 
  }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 /*********** Tricode ****************************/       for the memory).
 void tricode(int *Tvar, int **nbcode, int imx)       Model is determined by parameters x and covariates have to be 
 {       included manually here. 
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;       */
   cptcoveff=0;  
      int i, j, d, h, k;
   for (k=0; k<19; k++) Ndum[k]=0;    double **out, cov[NCOVMAX+1];
   for (k=1; k<=7; k++) ncodemax[k]=0;    double **newm;
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* Hstepm could be zero and should return the unit matrix */
     for (i=1; i<=imx; i++) {    for (i=1;i<=nlstate+ndeath;i++)
       ij=(int)(covar[Tvar[j]][i]);      for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;        oldm[i][j]=(i==j ? 1.0 : 0.0);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
     for (i=0; i<=cptcode; i++) {      for(d=1; d <=hstepm; d++){
       if(Ndum[i]!=0) ncodemax[j]++;        newm=savm;
     }        /* Covariates have to be included here again */
     ij=1;        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) 
     for (i=1; i<=ncodemax[j]; i++) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=0; k<=19; k++) {        for (k=1; k<=cptcovage;k++)
         if (Ndum[k] != 0) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           nbcode[Tvar[j]][ij]=k;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
                    cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           ij++;  
         }  
         if (ij > ncodemax[j]) break;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       }          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   }                       pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
  for (k=0; k<19; k++) Ndum[k]=0;        oldm=newm;
       }
  for (i=1; i<=ncovmodel-2; i++) {      for(i=1; i<=nlstate+ndeath; i++)
    ij=Tvar[i];        for(j=1;j<=nlstate+ndeath;j++) {
    Ndum[ij]++;          po[i][j][h]=newm[i][j];
  }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
  ij=1;      /*printf("h=%d ",h);*/
  for (i=1; i<=10; i++) {    } /* end h */
    if((Ndum[i]!=0) && (i<=ncovcol)){  /*     printf("\n H=%d \n",h); */
      Tvaraff[ij]=i;    return po;
      ij++;  }
    }  
  }  
    /*************** log-likelihood *************/
  cptcoveff=ij-1;  double func( double *x)
 }  {
     int i, ii, j, k, mi, d, kk;
 /*********** Health Expectancies ****************/    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
 {    int s1, s2;
   /* Health expectancies */    double bbh, survp;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    long ipmx;
   double age, agelim, hf;    /*extern weight */
   double ***p3mat,***varhe;    /* We are differentiating ll according to initial status */
   double **dnewm,**doldm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double *xp;    /*for(i=1;i<imx;i++) 
   double **gp, **gm;      printf(" %d\n",s[4][i]);
   double ***gradg, ***trgradg;    */
   int theta;    cov[1]=1.;
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);    if(mle==1){
   doldm=matrix(1,nlstate*2,1,nlstate*2);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          /* Computes the values of the ncovmodel covariates of the model
   fprintf(ficreseij,"# Health expectancies\n");           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   fprintf(ficreseij,"# Age");           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   for(i=1; i<=nlstate;i++)           to be observed in j being in i according to the model.
     for(j=1; j<=nlstate;j++)         */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   fprintf(ficreseij,"\n");          cov[2+k]=covar[Tvar[k]][i];
         }
   if(estepm < stepm){        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
     printf ("Problem %d lower than %d\n",estepm, stepm);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   }           has been calculated etc */
   else  hstepm=estepm;          for(mi=1; mi<= wav[i]-1; mi++){
   /* We compute the life expectancy from trapezoids spaced every estepm months          for (ii=1;ii<=nlstate+ndeath;ii++)
    * This is mainly to measure the difference between two models: for example            for (j=1;j<=nlstate+ndeath;j++){
    * if stepm=24 months pijx are given only every 2 years and by summing them              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * we are calculating an estimate of the Life Expectancy assuming a linear              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * progression inbetween and thus overestimating or underestimating according            }
    * to the curvature of the survival function. If, for the same date, we          for(d=0; d<dh[mi][i]; d++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            newm=savm;
    * to compare the new estimate of Life expectancy with the same linear            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * hypothesis. A more precise result, taking into account a more precise            for (kk=1; kk<=cptcovage;kk++) {
    * curvature will be obtained if estepm is as small as stepm. */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
   /* For example we decided to compute the life expectancy with the smallest unit */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      nhstepm is the number of hstepm from age to agelim            savm=oldm;
      nstepm is the number of stepm from age to agelin.            oldm=newm;
      Look at hpijx to understand the reason of that which relies in memory size          } /* end mult */
      and note for a fixed period like estepm months */        
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
      survival function given by stepm (the optimization length). Unfortunately it          /* But now since version 0.9 we anticipate for bias at large stepm.
      means that if the survival funtion is printed only each two years of age and if           * If stepm is larger than one month (smallest stepm) and if the exact delay 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same           * (in months) between two waves is not a multiple of stepm, we rounded to 
      results. So we changed our mind and took the option of the best precision.           * the nearest (and in case of equal distance, to the lowest) interval but now
   */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   agelim=AGESUP;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           * -stepm/2 to stepm/2 .
     /* nhstepm age range expressed in number of stepm */           * For stepm=1 the results are the same as for previous versions of Imach.
     nstepm=(int) rint((agelim-age)*YEARM/stepm);           * For stepm > 1 the results are less biased than in previous versions. 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */           */
     /* if (stepm >= YEARM) hstepm=1;*/          s1=s[mw[mi][i]][i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          s2=s[mw[mi+1][i]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          bbh=(double)bh[mi][i]/(double)stepm; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          /* bias bh is positive if real duration
     gp=matrix(0,nhstepm,1,nlstate*2);           * is higher than the multiple of stepm and negative otherwise.
     gm=matrix(0,nhstepm,1,nlstate*2);           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          if( s2 > nlstate){ 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            /* i.e. if s2 is a death state and if the date of death is known 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                 then the contribution to the likelihood is the probability to 
                 die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
     /* Computing Variances of health expectancies */          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
      for(theta=1; theta <=npar; theta++){          and not the date of a change in health state. The former idea was
       for(i=1; i<=npar; i++){          to consider that at each interview the state was recorded
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
       cptj=0;          stepm. It is no more the probability to die between last interview
       for(j=1; j<= nlstate; j++){          and month of death but the probability to survive from last
         for(i=1; i<=nlstate; i++){          interview up to one month before death multiplied by the
           cptj=cptj+1;          probability to die within a month. Thanks to Chris
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          Jackson for correcting this bug.  Former versions increased
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          mortality artificially. The bad side is that we add another loop
           }          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
       }            */
                  lli=log(out[s1][s2] - savm[s1][s2]);
        
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          } else if  (s2==-2) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for (j=1,survp=0. ; j<=nlstate; j++) 
                    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       cptj=0;            /*survp += out[s1][j]; */
       for(j=1; j<= nlstate; j++){            lli= log(survp);
         for(i=1;i<=nlstate;i++){          }
           cptj=cptj+1;          
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          else if  (s2==-4) { 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            for (j=3,survp=0. ; j<=nlstate; j++)  
           }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
       }          } 
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){          else if  (s2==-5) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for (j=1,survp=0. ; j<=2; j++)  
         }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      }            lli= log(survp); 
              } 
 /* End theta */          
           else{
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      for(h=0; h<=nhstepm-1; h++)          } 
       for(j=1; j<=nlstate*2;j++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         for(theta=1; theta <=npar; theta++)          /*if(lli ==000.0)*/
           trgradg[h][j][theta]=gradg[h][theta][j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                ipmx +=1;
           sw += weight[i];
      for(i=1;i<=nlstate*2;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1;j<=nlstate*2;j++)        } /* end of wave */
         varhe[i][j][(int)age] =0.;      } /* end of individual */
     }  else if(mle==2){
      printf("%d|",(int)age);fflush(stdout);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      for(h=0;h<=nhstepm-1;h++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(k=0;k<=nhstepm-1;k++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            for (j=1;j<=nlstate+ndeath;j++){
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate*2;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(j=1;j<=nlstate*2;j++)            }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          for(d=0; d<=dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* Computing expectancies */            for (kk=1; kk<=cptcovage;kk++) {
     for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<=nlstate;j++)            }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                      savm=oldm;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            oldm=newm;
           } /* end mult */
         }        
           s1=s[mw[mi][i]][i];
     fprintf(ficreseij,"%3.0f",age );          s2=s[mw[mi+1][i]][i];
     cptj=0;          bbh=(double)bh[mi][i]/(double)stepm; 
     for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(j=1; j<=nlstate;j++){          ipmx +=1;
         cptj++;          sw += weight[i];
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     fprintf(ficreseij,"\n");      } /* end of individual */
        }  else if(mle==3){  /* exponential inter-extrapolation */
     free_matrix(gm,0,nhstepm,1,nlstate*2);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_matrix(gp,0,nhstepm,1,nlstate*2);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        for(mi=1; mi<= wav[i]-1; mi++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficlog,"\n");            }
           for(d=0; d<dh[mi][i]; d++){
   free_vector(xp,1,npar);            newm=savm;
   free_matrix(dnewm,1,nlstate*2,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            for (kk=1; kk<=cptcovage;kk++) {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Variance ******************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)            savm=oldm;
 {            oldm=newm;
   /* Variance of health expectancies */          } /* end mult */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   /* double **newm;*/          s1=s[mw[mi][i]][i];
   double **dnewm,**doldm;          s2=s[mw[mi+1][i]][i];
   double **dnewmp,**doldmp;          bbh=(double)bh[mi][i]/(double)stepm; 
   int i, j, nhstepm, hstepm, h, nstepm ;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int k, cptcode;          ipmx +=1;
   double *xp;          sw += weight[i];
   double **gp, **gm;  /* for var eij */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***gradg, ***trgradg; /*for var eij */        } /* end of wave */
   double **gradgp, **trgradgp; /* for var p point j */      } /* end of individual */
   double *gpp, *gmp; /* for var p point j */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***p3mat;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double age,agelim, hf;        for(mi=1; mi<= wav[i]-1; mi++){
   int theta;          for (ii=1;ii<=nlstate+ndeath;ii++)
   char digit[4];            for (j=1;j<=nlstate+ndeath;j++){
   char digitp[16];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileresprobmorprev[FILENAMELENGTH];            }
           for(d=0; d<dh[mi][i]; d++){
   if(popbased==1)            newm=savm;
     strcpy(digitp,"-populbased-");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   else            for (kk=1; kk<=cptcovage;kk++) {
     strcpy(digitp,"-stablbased-");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   strcpy(fileresprobmorprev,"prmorprev");          
   sprintf(digit,"%-d",ij);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcat(fileresprobmorprev,digit); /* Tvar to be done */            savm=oldm;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */            oldm=newm;
   strcat(fileresprobmorprev,fileres);          } /* end mult */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          s1=s[mw[mi][i]][i];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          s2=s[mw[mi+1][i]][i];
   }          if( s2 > nlstate){ 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          }else{
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);          }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          ipmx +=1;
     fprintf(ficresprobmorprev," p.%-d SE",j);          sw += weight[i];
     for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }          } /* end of wave */
   fprintf(ficresprobmorprev,"\n");      } /* end of individual */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     exit(0);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   else{            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficgp,"\n# Routine varevsij");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            }
     printf("Problem with html file: %s\n", optionfilehtm);          for(d=0; d<dh[mi][i]; d++){
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);            newm=savm;
     exit(0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   else{              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");            }
   }          
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");            savm=oldm;
   fprintf(ficresvij,"# Age");            oldm=newm;
   for(i=1; i<=nlstate;i++)          } /* end mult */
     for(j=1; j<=nlstate;j++)        
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          s1=s[mw[mi][i]][i];
   fprintf(ficresvij,"\n");          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   xp=vector(1,npar);          ipmx +=1;
   dnewm=matrix(1,nlstate,1,npar);          sw += weight[i];
   doldm=matrix(1,nlstate,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        } /* end of wave */
       } /* end of individual */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    } /* End of if */
   gpp=vector(nlstate+1,nlstate+ndeath);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   gmp=vector(nlstate+1,nlstate+ndeath);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
   if(estepm < stepm){  }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  /*************** log-likelihood *************/
   else  hstepm=estepm;    double funcone( double *x)
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /* Same as likeli but slower because of a lot of printf and if */
      nhstepm is the number of hstepm from age to agelim    int i, ii, j, k, mi, d, kk;
      nstepm is the number of stepm from age to agelin.    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      Look at hpijx to understand the reason of that which relies in memory size    double **out;
      and note for a fixed period like k years */    double lli; /* Individual log likelihood */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double llt;
      survival function given by stepm (the optimization length). Unfortunately it    int s1, s2;
      means that if the survival funtion is printed only each two years of age and if    double bbh, survp;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /*extern weight */
      results. So we changed our mind and took the option of the best precision.    /* We are differentiating ll according to initial status */
   */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /*for(i=1;i<imx;i++) 
   agelim = AGESUP;      printf(" %d\n",s[4][i]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    cov[1]=1.;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gm=matrix(0,nhstepm,1,nlstate);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
     for(theta=1; theta <=npar; theta++){          for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(d=0; d<dh[mi][i]; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (popbased==1) {          for (kk=1; kk<=cptcovage;kk++) {
         for(i=1; i<=nlstate;i++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           prlim[i][i]=probs[(int)age][i][ij];          }
       }          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<= nlstate; j++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(h=0; h<=nhstepm; h++){          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          savm=oldm;
         }          oldm=newm;
       }        } /* end mult */
       /* This for computing forces of mortality (h=1)as a weighted average */        
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        s1=s[mw[mi][i]][i];
         for(i=1; i<= nlstate; i++)        s2=s[mw[mi+1][i]][i];
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        bbh=(double)bh[mi][i]/(double)stepm; 
       }            /* bias is positive if real duration
       /* end force of mortality */         * is higher than the multiple of stepm and negative otherwise.
          */
       for(i=1; i<=npar; i++) /* Computes gradient */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          lli=log(out[s1][s2] - savm[s1][s2]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } else if  (s2==-2) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (j=1,survp=0. ; j<=nlstate; j++) 
              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if (popbased==1) {          lli= log(survp);
         for(i=1; i<=nlstate;i++)        }else if (mle==1){
           prlim[i][i]=probs[(int)age][i][ij];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(j=1; j<= nlstate; j++){        } else if(mle==3){  /* exponential inter-extrapolation */
         for(h=0; h<=nhstepm; h++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* mle=0 back to 1 */
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       /* This for computing force of mortality (h=1)as a weighted average */          /*lli=log(out[s1][s2]); */ /* Original formula */
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        } /* End of if */
         for(i=1; i<= nlstate; i++)        ipmx +=1;
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        sw += weight[i];
       }            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /* end force of mortality */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
       for(j=1; j<= nlstate; j++) /* vareij */          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         for(h=0; h<=nhstepm; h++){   %11.6f %11.6f %11.6f ", \
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     } /* End theta */          fprintf(ficresilk," %10.6f\n", -llt);
         }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      } /* end of wave */
     } /* end of individual */
     for(h=0; h<=nhstepm; h++) /* veij */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<=nlstate;j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(theta=1; theta <=npar; theta++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           trgradg[h][j][theta]=gradg[h][theta][j];    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      gsw=sw;
       for(theta=1; theta <=npar; theta++)    }
         trgradgp[j][theta]=gradgp[theta][j];    return -l;
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)  /*************** function likelione ***********/
         vareij[i][j][(int)age] =0.;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     for(h=0;h<=nhstepm;h++){    /* This routine should help understanding what is done with 
       for(k=0;k<=nhstepm;k++){       the selection of individuals/waves and
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);       to check the exact contribution to the likelihood.
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);       Plotting could be done.
         for(i=1;i<=nlstate;i++)     */
           for(j=1;j<=nlstate;j++)    int k;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }    if(*globpri !=0){ /* Just counts and sums, no printings */
     }      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
     /* pptj */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        printf("Problem with resultfile: %s\n", fileresilk);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      }
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         varppt[j][i]=doldmp[j][i];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     /* end ppptj */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        for(k=1; k<=nlstate; k++) 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
        fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     if (popbased==1) {    }
       for(i=1; i<=nlstate;i++)  
         prlim[i][i]=probs[(int)age][i][ij];    *fretone=(*funcone)(p);
     }    if(*globpri !=0){
          fclose(ficresilk);
     /* This for computing force of mortality (h=1)as a weighted average */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      fflush(fichtm); 
       for(i=1; i<= nlstate; i++)    } 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    return;
     }      }
     /* end force of mortality */  
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  /*********** Maximum Likelihood Estimation ***************/
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(i=1; i<=nlstate;i++){  {
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    int i,j, iter;
       }    double **xi;
     }    double fret;
     fprintf(ficresprobmorprev,"\n");    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
     fprintf(ficresvij,"%.0f ",age );    xi=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++){      for (j=1;j<=npar;j++)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     fprintf(ficresvij,"\n");    strcpy(filerespow,"pow"); 
     free_matrix(gp,0,nhstepm,1,nlstate);    strcat(filerespow,fileres);
     free_matrix(gm,0,nhstepm,1,nlstate);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      printf("Problem with resultfile: %s\n", filerespow);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   } /* End age */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   free_vector(gpp,nlstate+1,nlstate+ndeath);    for (i=1;i<=nlstate;i++)
   free_vector(gmp,nlstate+1,nlstate+ndeath);      for(j=1;j<=nlstate+ndeath;j++)
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    fprintf(ficrespow,"\n");
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");  
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    free_matrix(xi,1,npar,1,npar);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    fclose(ficrespow);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);  
   }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);  /**** Computes Hessian and covariance matrix ***/
   free_matrix(dnewm,1,nlstate,1,npar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  {
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    double  **a,**y,*x,pd;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double **hess;
   fclose(ficresprobmorprev);    int i, j,jk;
   fclose(ficgp);    int *indx;
   fclose(fichtm);  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
 /************ Variance of prevlim ******************/    void ludcmp(double **a, int npar, int *indx, double *d) ;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double gompertz(double p[]);
 {    hess=matrix(1,npar,1,npar);
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    printf("\nCalculation of the hessian matrix. Wait...\n");
   double **newm;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double **dnewm,**doldm;    for (i=1;i<=npar;i++){
   int i, j, nhstepm, hstepm;      printf("%d",i);fflush(stdout);
   int k, cptcode;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double *xp;     
   double *gp, *gm;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double **gradg, **trgradg;      
   double age,agelim;      /*  printf(" %f ",p[i]);
   int theta;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
        }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    
   fprintf(ficresvpl,"# Age");    for (i=1;i<=npar;i++) {
   for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++)  {
       fprintf(ficresvpl," %1d-%1d",i,i);        if (j>i) { 
   fprintf(ficresvpl,"\n");          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   xp=vector(1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   dnewm=matrix(1,nlstate,1,npar);          
   doldm=matrix(1,nlstate,1,nlstate);          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
   hstepm=1*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    printf("\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficlog,"\n");
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     gp=vector(1,nlstate);    
     gm=vector(1,nlstate);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     for(theta=1; theta <=npar; theta++){    x=vector(1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    indx=ivector(1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    ludcmp(a,npar,indx,&pd);
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    for (j=1;j<=npar;j++) {
          for (i=1;i<=npar;i++) x[i]=0;
       for(i=1; i<=npar; i++) /* Computes gradient */      x[j]=1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      lubksb(a,npar,indx,x);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1;i<=npar;i++){ 
       for(i=1;i<=nlstate;i++)        matcov[i][j]=x[i];
         gm[i] = prlim[i][i];      }
     }
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    printf("\n#Hessian matrix#\n");
     } /* End theta */    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
     trgradg =matrix(1,nlstate,1,npar);      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
     for(j=1; j<=nlstate;j++)        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(theta=1; theta <=npar; theta++)      }
         trgradg[j][theta]=gradg[theta][j];      printf("\n");
       fprintf(ficlog,"\n");
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    /* Recompute Inverse */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    for (i=1;i<=npar;i++)
     for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    ludcmp(a,npar,indx,&pd);
   
     fprintf(ficresvpl,"%.0f ",age );    /*  printf("\n#Hessian matrix recomputed#\n");
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for (j=1;j<=npar;j++) {
     fprintf(ficresvpl,"\n");      for (i=1;i<=npar;i++) x[i]=0;
     free_vector(gp,1,nlstate);      x[j]=1;
     free_vector(gm,1,nlstate);      lubksb(a,npar,indx,x);
     free_matrix(gradg,1,npar,1,nlstate);      for (i=1;i<=npar;i++){ 
     free_matrix(trgradg,1,nlstate,1,npar);        y[i][j]=x[i];
   } /* End age */        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,npar);      printf("\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);      fprintf(ficlog,"\n");
     }
 }    */
   
 /************ Variance of one-step probabilities  ******************/    free_matrix(a,1,npar,1,npar);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    free_matrix(y,1,npar,1,npar);
 {    free_vector(x,1,npar);
   int i, j=0,  i1, k1, l1, t, tj;    free_ivector(indx,1,npar);
   int k2, l2, j1,  z1;    free_matrix(hess,1,npar,1,npar);
   int k=0,l, cptcode;  
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  }
   double **dnewm,**doldm;  
   double *xp;  /*************** hessian matrix ****************/
   double *gp, *gm;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double **gradg, **trgradg;  {
   double **mu;    int i;
   double age,agelim, cov[NCOVMAX];    int l=1, lmax=20;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    double k1,k2;
   int theta;    double p2[MAXPARM+1]; /* identical to x */
   char fileresprob[FILENAMELENGTH];    double res;
   char fileresprobcov[FILENAMELENGTH];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   char fileresprobcor[FILENAMELENGTH];    double fx;
     int k=0,kmax=10;
   double ***varpij;    double l1;
   
   strcpy(fileresprob,"prob");    fx=func(x);
   strcat(fileresprob,fileres);    for (i=1;i<=npar;i++) p2[i]=x[i];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     printf("Problem with resultfile: %s\n", fileresprob);      l1=pow(10,l);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
   strcpy(fileresprobcov,"probcov");        delt = delta*(l1*k);
   strcat(fileresprobcov,fileres);        p2[theta]=x[theta] +delt;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     printf("Problem with resultfile: %s\n", fileresprobcov);        p2[theta]=x[theta]-delt;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        k2=func(p2)-fx;
   }        /*res= (k1-2.0*fx+k2)/delt/delt; */
   strcpy(fileresprobcor,"probcor");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   strcat(fileresprobcor,fileres);        
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  #ifdef DEBUGHESS
     printf("Problem with resultfile: %s\n", fileresprobcor);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   }  #endif
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          k=kmax;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          k=kmax; l=lmax*10.;
          }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   fprintf(ficresprob,"# Age");          delts=delt;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        }
   fprintf(ficresprobcov,"# Age");      }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    }
   fprintf(ficresprobcov,"# Age");    delti[theta]=delts;
     return res; 
     
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  {
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    int i;
     }      int l=1, l1, lmax=20;
   fprintf(ficresprob,"\n");    double k1,k2,k3,k4,res,fx;
   fprintf(ficresprobcov,"\n");    double p2[MAXPARM+1];
   fprintf(ficresprobcor,"\n");    int k;
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    fx=func(x);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    for (k=1; k<=2; k++) {
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      for (i=1;i<=npar;i++) p2[i]=x[i];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      p2[thetai]=x[thetai]+delti[thetai]/k;
   first=1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      k1=func(p2)-fx;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      p2[thetai]=x[thetai]+delti[thetai]/k;
     exit(0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k2=func(p2)-fx;
   else{    
     fprintf(ficgp,"\n# Routine varprob");      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      k3=func(p2)-fx;
     printf("Problem with html file: %s\n", optionfilehtm);    
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      p2[thetai]=x[thetai]-delti[thetai]/k;
     exit(0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   else{      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");  #ifdef DEBUG
     fprintf(fichtm,"\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");  #endif
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    return res;
   }
   }  
   /************** Inverse of matrix **************/
    void ludcmp(double **a, int n, int *indx, double *d) 
   cov[1]=1;  { 
   tj=cptcoveff;    int i,imax,j,k; 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    double big,dum,sum,temp; 
   j1=0;    double *vv; 
   for(t=1; t<=tj;t++){   
     for(i1=1; i1<=ncodemax[t];i1++){    vv=vector(1,n); 
       j1++;    *d=1.0; 
          for (i=1;i<=n;i++) { 
       if  (cptcovn>0) {      big=0.0; 
         fprintf(ficresprob, "\n#********** Variable ");      for (j=1;j<=n;j++) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if ((temp=fabs(a[i][j])) > big) big=temp; 
         fprintf(ficresprob, "**********\n#");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         fprintf(ficresprobcov, "\n#********** Variable ");      vv[i]=1.0/big; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } 
         fprintf(ficresprobcov, "**********\n#");    for (j=1;j<=n;j++) { 
              for (i=1;i<j;i++) { 
         fprintf(ficgp, "\n#********** Variable ");        sum=a[i][j]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         fprintf(ficgp, "**********\n#");        a[i][j]=sum; 
              } 
              big=0.0; 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      for (i=j;i<=n;i++) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        sum=a[i][j]; 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        for (k=1;k<j;k++) 
                  sum -= a[i][k]*a[k][j]; 
         fprintf(ficresprobcor, "\n#********** Variable ");            a[i][j]=sum; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         fprintf(ficgp, "**********\n#");              big=dum; 
       }          imax=i; 
              } 
       for (age=bage; age<=fage; age ++){      } 
         cov[2]=age;      if (j != imax) { 
         for (k=1; k<=cptcovn;k++) {        for (k=1;k<=n;k++) { 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          a[j][k]=dum; 
         for (k=1; k<=cptcovprod;k++)        } 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        *d = -(*d); 
                vv[imax]=vv[j]; 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      } 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      indx[j]=imax; 
         gp=vector(1,(nlstate)*(nlstate+ndeath));      if (a[j][j] == 0.0) a[j][j]=TINY; 
         gm=vector(1,(nlstate)*(nlstate+ndeath));      if (j != n) { 
            dum=1.0/(a[j][j]); 
         for(theta=1; theta <=npar; theta++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           for(i=1; i<=npar; i++)      } 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    } 
              free_vector(vv,1,n);  /* Doesn't work */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  ;
            } 
           k=0;  
           for(i=1; i<= (nlstate); i++){  void lubksb(double **a, int n, int *indx, double b[]) 
             for(j=1; j<=(nlstate+ndeath);j++){  { 
               k=k+1;    int i,ii=0,ip,j; 
               gp[k]=pmmij[i][j];    double sum; 
             }   
           }    for (i=1;i<=n;i++) { 
                ip=indx[i]; 
           for(i=1; i<=npar; i++)      sum=b[ip]; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      b[ip]=b[i]; 
          if (ii) 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           k=0;      else if (sum) ii=i; 
           for(i=1; i<=(nlstate); i++){      b[i]=sum; 
             for(j=1; j<=(nlstate+ndeath);j++){    } 
               k=k+1;    for (i=n;i>=1;i--) { 
               gm[k]=pmmij[i][j];      sum=b[i]; 
             }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           }      b[i]=sum/a[i][i]; 
          } 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  } 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
         }  void pstamp(FILE *fichier)
   {
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           for(theta=1; theta <=npar; theta++)  }
             trgradg[j][theta]=gradg[theta][j];  
          /************ Frequencies ********************/
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  {  /* Some frequencies */
            
         pmij(pmmij,cov,ncovmodel,x,nlstate);    int i, m, jk, k1,i1, j1, bool, z1,j;
            int first;
         k=0;    double ***freq; /* Frequencies */
         for(i=1; i<=(nlstate); i++){    double *pp, **prop;
           for(j=1; j<=(nlstate+ndeath);j++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             k=k+1;    char fileresp[FILENAMELENGTH];
             mu[k][(int) age]=pmmij[i][j];    
           }    pp=vector(1,nlstate);
         }    prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    strcpy(fileresp,"p");
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    strcat(fileresp,fileres);
             varpij[i][j][(int)age] = doldm[i][j];    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
         /*printf("\n%d ",(int)age);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      exit(0);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      }*/    j1=0;
     
         fprintf(ficresprob,"\n%d ",(int)age);    j=cptcoveff;
         fprintf(ficresprobcov,"\n%d ",(int)age);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         fprintf(ficresprobcor,"\n%d ",(int)age);  
     first=1;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    /*    j1++;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  */
         }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         i=0;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         for (k=1; k<=(nlstate);k++){          scanf("%d", i);*/
           for (l=1; l<=(nlstate+ndeath);l++){        for (i=-5; i<=nlstate+ndeath; i++)  
             i=i++;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            for(m=iagemin; m <= iagemax+3; m++)
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              freq[i][jk][m]=0;
             for (j=1; j<=i;j++){        
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        for (i=1; i<=nlstate; i++)  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          for(m=iagemin; m <= iagemax+3; m++)
             }            prop[i][m]=0;
           }        
         }/* end of loop for state */        dateintsum=0;
       } /* end of loop for age */        k2cpt=0;
         for (i=1; i<=imx; i++) {
       /* Confidence intervalle of pij  */          bool=1;
       /*          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
       fprintf(ficgp,"\nset noparametric;unset label");            for (z1=1; z1<=cptcoveff; z1++)       
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);                bool=0;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
       */                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
               } 
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          }
       first1=1;   
       for (k2=1; k2<=(nlstate);k2++){          if (bool==1){
         for (l2=1; l2<=(nlstate+ndeath);l2++){            for(m=firstpass; m<=lastpass; m++){
           if(l2==k2) continue;              k2=anint[m][i]+(mint[m][i]/12.);
           j=(k2-1)*(nlstate+ndeath)+l2;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           for (k1=1; k1<=(nlstate);k1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             for (l1=1; l1<=(nlstate+ndeath);l1++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if(l1==k1) continue;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               i=(k1-1)*(nlstate+ndeath)+l1;                if (m<lastpass) {
               if(i<=j) continue;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
               for (age=bage; age<=fage; age ++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 if ((int)age %5==0){                }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                  dateintsum=dateintsum+k2;
                   mu1=mu[i][(int) age]/stepm*YEARM ;                  k2cpt++;
                   mu2=mu[j][(int) age]/stepm*YEARM;                }
                   c12=cv12/sqrt(v1*v2);                /*}*/
                   /* Computing eigen value of matrix of covariance */            }
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          }
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        } /* end i */
                   /* Eigen vectors */         
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   /*v21=sqrt(1.-v11*v11); *//* error */        pstamp(ficresp);
                   v21=(lc1-v1)/cv12*v11;        if  (cptcovn>0) {
                   v12=-v21;          fprintf(ficresp, "\n#********** Variable "); 
                   v22=v11;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   tnalp=v21/v11;          fprintf(ficresp, "**********\n#");
                   if(first1==1){          fprintf(ficlog, "\n#********** Variable "); 
                     first1=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          fprintf(ficlog, "**********\n#");
                   }        }
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        for(i=1; i<=nlstate;i++) 
                   /*printf(fignu*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        fprintf(ficresp, "\n");
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */        
                   if(first==1){        for(i=iagemin; i <= iagemax+3; i++){
                     first=0;          if(i==iagemax+3){
                     fprintf(ficgp,"\nset parametric;unset label");            fprintf(ficlog,"Total");
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);          }else{
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            if(first==1){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);              first=0;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);              printf("See log file for details...\n");
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            fprintf(ficlog,"Age %d", i);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(jk=1; jk <=nlstate ; jk++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              pp[jk] += freq[jk][m][i]; 
                   }else{          }
                     first=0;          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            for(m=-1, pos=0; m <=0 ; m++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              pos += freq[jk][m][i];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            if(pp[jk]>=1.e-10){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\              if(first==1){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   }/* if first */              }
                 } /* age mod 5 */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               } /* end loop age */            }else{
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);              if(first==1)
               first=1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             } /*l12 */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           } /* k12 */            }
         } /*l1 */          }
       }/* k1 */  
     } /* loop covariates */          for(jk=1; jk <=nlstate ; jk++){
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              pp[jk] += freq[jk][m][i];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          }       
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            pos += pp[jk];
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            posprop += prop[jk][i];
   }          }
   free_vector(xp,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   fclose(ficresprob);            if(pos>=1.e-5){
   fclose(ficresprobcov);              if(first==1)
   fclose(ficresprobcor);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fclose(ficgp);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fclose(fichtm);            }else{
 }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 /******************* Printing html file ***********/            }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            if( i <= iagemax){
                   int lastpass, int stepm, int weightopt, char model[],\              if(pos>=1.e-5){
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   int popforecast, int estepm ,\                /*probs[i][jk][j1]= pp[jk]/pos;*/
                   double jprev1, double mprev1,double anprev1, \                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   double jprev2, double mprev2,double anprev2){              }
   int jj1, k1, i1, cpt;              else
   /*char optionfilehtm[FILENAMELENGTH];*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            }
     printf("Problem with %s \n",optionfilehtm), exit(0);          }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          
   }          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n              if(freq[jk][m][i] !=0 ) {
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              if(first==1)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Life expectancies by age and initial health status (estepm=%2d months):              }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          if(i <= iagemax)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            fprintf(ficresp,"\n");
           if(first==1)
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");            printf("Others in log...\n");
           fprintf(ficlog,"\n");
  m=cptcoveff;        }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        /*}*/
     }
  jj1=0;    dateintmean=dateintsum/k2cpt; 
  for(k1=1; k1<=m;k1++){   
    for(i1=1; i1<=ncodemax[k1];i1++){    fclose(ficresp);
      jj1++;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      if (cptcovn > 0) {    free_vector(pp,1,nlstate);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        for (cpt=1; cpt<=cptcoveff;cpt++)    /* End of Freq */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  /************ Prevalence ********************/
      /* Pij */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  {  
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      /* Quasi-incidences */       in each health status at the date of interview (if between dateprev1 and dateprev2).
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>       We still use firstpass and lastpass as another selection.
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    */
        /* Stable prevalence in each health state */   
        for(cpt=1; cpt<nlstate;cpt++){    int i, m, jk, k1, i1, j1, bool, z1,j;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    double ***freq; /* Frequencies */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double *pp, **prop;
        }    double pos,posprop; 
      for(cpt=1; cpt<=nlstate;cpt++) {    double  y2; /* in fractional years */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    int iagemin, iagemax;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int first; /** to stop verbosity which is redirected to log file */
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    iagemin= (int) agemin;
 health expectancies in states (1) and (2): e%s%d.png<br>    iagemax= (int) agemax;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /*pp=vector(1,nlstate);*/
    } /* end i1 */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  }/* End k1 */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  fprintf(fichtm,"</ul>");    j1=0;
     
     /*j=cptcoveff;*/
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    first=1;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      /*for(i1=1; i1<=ncodemax[k1];i1++){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        j1++;*/
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
  if(popforecast==1) fprintf(fichtm,"\n            prop[i][m]=0.0;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        for (i=1; i<=imx; i++) { /* Each individual */
         <br>",fileres,fileres,fileres,fileres);          bool=1;
  else          if  (cptcovn>0) {
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            for (z1=1; z1<=cptcoveff; z1++) 
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
  m=cptcoveff;          } 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  jj1=0;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  for(k1=1; k1<=m;k1++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    for(i1=1; i1<=ncodemax[k1];i1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      jj1++;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      if (cptcovn > 0) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
        for (cpt=1; cpt<=cptcoveff;cpt++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                  prop[s[m][i]][iagemax+3] += weight[i]; 
      }                } 
      for(cpt=1; cpt<=nlstate;cpt++) {              }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            } /* end selection of waves */
 interval) in state (%d): v%s%d%d.png <br>          }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
      }        for(i=iagemin; i <= iagemax+3; i++){  
    } /* end i1 */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
  }/* End k1 */            posprop += prop[jk][i]; 
  fprintf(fichtm,"</ul>");          } 
 fclose(fichtm);          
 }          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
 /******************* Gnuplot file **************/              if(posprop>=1.e-5){ 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                probs[i][jk][j1]= prop[jk][i]/posprop;
               } else{
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                if(first==1){
   int ng;                  first=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     printf("Problem with file %s",optionfilegnuplot);                }
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);              }
   }            } 
           }/* end jk */ 
 #ifdef windows        }/* end i */ 
     fprintf(ficgp,"cd \"%s\" \n",pathc);      /*} *//* end i1 */
 #endif    } /* end j1 */
 m=pow(2,cptcoveff);    
      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  /* 1eme*/    /*free_vector(pp,1,nlstate);*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    for (k1=1; k1<= m ; k1 ++) {  }  /* End of prevalence */
   
 #ifdef windows  /************* Waves Concatenation ***************/
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 #endif  {
 #ifdef unix    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       Death is a valid wave (if date is known).
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 #endif       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
 for (i=1; i<= nlstate ; i ++) {       */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int i, mi, m;
 }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       double sum=0., jmean=0.;*/
     for (i=1; i<= nlstate ; i ++) {    int first;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int j, k=0,jk, ju, jl;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double sum=0.;
 }    first=0;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    jmin=1e+5;
      for (i=1; i<= nlstate ; i ++) {    jmax=-1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    jmean=0.;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=imx; i++){
 }        mi=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      m=firstpass;
 #ifdef unix      while(s[m][i] <= nlstate){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 #endif          mw[++mi][i]=m;
    }        if(m >=lastpass)
   }          break;
   /*2 eme*/        else
           m++;
   for (k1=1; k1<= m ; k1 ++) {      }/* end while */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      if (s[m][i] > nlstate){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        mi++;     /* Death is another wave */
            /* if(mi==0)  never been interviewed correctly before death */
     for (i=1; i<= nlstate+1 ; i ++) {           /* Only death is a correct wave */
       k=2*i;        mw[mi][i]=m;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      wav[i]=mi;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if(mi==0){
 }          nbwarn++;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        if(first==0){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          first=1;
       for (j=1; j<= nlstate+1 ; j ++) {        }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if(first==1){
         else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 }          }
       fprintf(ficgp,"\" t\"\" w l 0,");      } /* end mi==0 */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    } /* End individuals */
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=imx; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(mi=1; mi<wav[i];mi++){
 }          if (stepm <=0)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          dh[mi][i]=1;
       else fprintf(ficgp,"\" t\"\" w l 0,");        else{
     }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   /*3eme*/              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   for (k1=1; k1<= m ; k1 ++) {                nberr++;
     for (cpt=1; cpt<= nlstate ; cpt ++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=2+nlstate*(2*cpt-2);                j=1; /* Temporary Dangerous patch */
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              k=k+1;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              if (j >= jmax){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                jmax=j;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                ijmax=i;
               }
 */              if (j <= jmin){
       for (i=1; i< nlstate ; i ++) {                jmin=j;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                ijmin=i;
               }
       }              sum=sum+j;
     }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              }
   /* CV preval stat */          }
     for (k1=1; k1<= m ; k1 ++) {          else{
     for (cpt=1; cpt<nlstate ; cpt ++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       k=3;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            k=k+1;
             if (j >= jmax) {
       for (i=1; i< nlstate ; i ++)              jmax=j;
         fprintf(ficgp,"+$%d",k+i+1);              ijmax=i;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            }
                  else if (j <= jmin){
       l=3+(nlstate+ndeath)*cpt;              jmin=j;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              ijmin=i;
       for (i=1; i< nlstate ; i ++) {            }
         l=3+(nlstate+ndeath)*cpt;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         fprintf(ficgp,"+$%d",l+i+1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       }            if(j<0){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                nberr++;
     }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
   /* proba elementaires */            sum=sum+j;
    for(i=1,jk=1; i <=nlstate; i++){          }
     for(k=1; k <=(nlstate+ndeath); k++){          jk= j/stepm;
       if (k != i) {          jl= j -jk*stepm;
         for(j=1; j <=ncovmodel; j++){          ju= j -(jk+1)*stepm;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           jk++;            if(jl==0){
           fprintf(ficgp,"\n");              dh[mi][i]=jk;
         }              bh[mi][i]=0;
       }            }else{ /* We want a negative bias in order to only have interpolation ie
     }                    * to avoid the price of an extra matrix product in likelihood */
    }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            }
      for(jk=1; jk <=m; jk++) {          }else{
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            if(jl <= -ju){
        if (ng==2)              dh[mi][i]=jk;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");              bh[mi][i]=jl;       /* bias is positive if real duration
        else                                   * is higher than the multiple of stepm and negative otherwise.
          fprintf(ficgp,"\nset title \"Probability\"\n");                                   */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            }
        i=1;            else{
        for(k2=1; k2<=nlstate; k2++) {              dh[mi][i]=jk+1;
          k3=i;              bh[mi][i]=ju;
          for(k=1; k<=(nlstate+ndeath); k++) {            }
            if (k != k2){            if(dh[mi][i]==0){
              if(ng==2)              dh[mi][i]=1; /* At least one step */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              bh[mi][i]=ju; /* At least one step */
              else              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            }
              ij=1;          } /* end if mle */
              for(j=3; j <=ncovmodel; j++) {        }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      } /* end wave */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    }
                  ij++;    jmean=sum/k;
                }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                else    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   }
              }  
              fprintf(ficgp,")/(1");  /*********** Tricode ****************************/
                void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
              for(k1=1; k1 <=nlstate; k1++){    {
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                ij=1;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                for(j=3; j <=ncovmodel; j++){    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* nbcode[Tvar[j]][1]= 
                    ij++;    */
                  }  
                  else    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int modmaxcovj=0; /* Modality max of covariates j */
                }    int cptcode=0; /* Modality max of covariates j */
                fprintf(ficgp,")");    int modmincovj=0; /* Modality min of covariates j */
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    cptcoveff=0; 
              i=i+ncovmodel;   
            }    for (k=-1; k < maxncov; k++) Ndum[k]=0;
          } /* end k */    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
        } /* end k2 */  
      } /* end jk */    /* Loop on covariates without age and products */
    } /* end ng */    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
    fclose(ficgp);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 }  /* end gnuplot */                                 modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
 /*************** Moving average **************/                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   int i, cpt, cptcod;                                        modality of the nth covariate of individual i. */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        if (ij > modmaxcovj)
       for (i=1; i<=nlstate;i++)          modmaxcovj=ij; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        else if (ij < modmincovj) 
           mobaverage[(int)agedeb][i][cptcod]=0.;          modmincovj=ij; 
            if ((ij < -1) && (ij > NCOVMAX)){
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
       for (i=1; i<=nlstate;i++){          exit(1);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }else
           for (cpt=0;cpt<=4;cpt++){        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
           }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        /* getting the maximum value of the modality of the covariate
         }           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
       }           female is 1, then modmaxcovj=1.*/
     }      }
          printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 }      cptcode=modmaxcovj;
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
 /************** Forecasting ******************/      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
          if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   int *popage;        }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   double *popeffectif,*popcount;           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   double ***p3mat;      } /* Ndum[-1] number of undefined modalities */
   char fileresf[FILENAMELENGTH];  
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
  agelim=AGESUP;      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
           which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
           variables V1_1 and V1_2.
   strcpy(fileresf,"f");         nbcode[Tvar[j]][ij]=k;
   strcat(fileresf,fileres);         nbcode[Tvar[j]][1]=0;
   if((ficresf=fopen(fileresf,"w"))==NULL) {         nbcode[Tvar[j]][2]=1;
     printf("Problem with forecast resultfile: %s\n", fileresf);         nbcode[Tvar[j]][3]=2;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      */
   }      ij=1; /* ij is similar to i but can jumps over null modalities */
   printf("Computing forecasting: result on file '%s' \n", fileresf);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           /*recode from 0 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   if (mobilav==1) {                                       k is a modality. If we have model=V1+V1*sex 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     movingaverage(agedeb, fage, ageminpar, mobaverage);            ij++;
   }          }
           if (ij > ncodemax[j]) break; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }  /* end of loop on */
   if (stepm<=12) stepsize=1;      } /* end of loop on modality */ 
      } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   agelim=AGESUP;    
     for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   hstepm=1;    
   hstepm=hstepm/stepm;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   yp1=modf(dateintmean,&yp);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   anprojmean=yp;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   yp2=modf((yp1*12),&yp);     Ndum[ij]++; 
   mprojmean=yp;   } 
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;   ij=1;
   if(jprojmean==0) jprojmean=1;   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   if(mprojmean==0) jprojmean=1;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       if((Ndum[i]!=0) && (i<=ncovcol)){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         Tvaraff[ij]=i; /*For printing (unclear) */
   for(cptcov=1;cptcov<=i2;cptcov++){       ij++;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     }else
       k=k+1;         Tvaraff[ij]=0;
       fprintf(ficresf,"\n#******");   }
       for(j=1;j<=cptcoveff;j++) {   ij--;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   cptcoveff=ij; /*Number of total covariates*/
       }  
       fprintf(ficresf,"******\n");  }
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
        /*********** Health Expectancies ****************/
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    {
     /* Health expectancies, no variances */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int nhstepma, nstepma; /* Decreasing with age */
           nhstepm = nhstepm/hstepm;    double age, agelim, hf;
              double ***p3mat;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double eip;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      pstamp(ficreseij);
            fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           for (h=0; h<=nhstepm; h++){    fprintf(ficreseij,"# Age");
             if (h==(int) (calagedate+YEARM*cpt)) {    for(i=1; i<=nlstate;i++){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      for(j=1; j<=nlstate;j++){
             }        fprintf(ficreseij," e%1d%1d ",i,j);
             for(j=1; j<=nlstate+ndeath;j++) {      }
               kk1=0.;kk2=0;      fprintf(ficreseij," e%1d. ",i);
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    fprintf(ficreseij,"\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if(estepm < stepm){
                 }      printf ("Problem %d lower than %d\n",estepm, stepm);
                    }
               }    else  hstepm=estepm;   
               if (h==(int)(calagedate+12*cpt)){    /* We compute the life expectancy from trapezoids spaced every estepm months
                 fprintf(ficresf," %.3f", kk1);     * This is mainly to measure the difference between two models: for example
                             * if stepm=24 months pijx are given only every 2 years and by summing them
               }     * we are calculating an estimate of the Life Expectancy assuming a linear 
             }     * progression in between and thus overestimating or underestimating according
           }     * to the curvature of the survival function. If, for the same date, we 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         }     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
   }  
            /* For example we decided to compute the life expectancy with the smallest unit */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   fclose(ficresf);       nstepm is the number of stepm from age to agelin. 
 }       Look at hpijx to understand the reason of that which relies in memory size
 /************** Forecasting ******************/       and note for a fixed period like estepm months */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       means that if the survival funtion is printed only each two years of age and if
   int *popage;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       results. So we changed our mind and took the option of the best precision.
   double *popeffectif,*popcount;    */
   double ***p3mat,***tabpop,***tabpopprev;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   char filerespop[FILENAMELENGTH];  
     agelim=AGESUP;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* If stepm=6 months */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   agelim=AGESUP;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      
    /* nhstepm age range expressed in number of stepm */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
   strcpy(filerespop,"pop");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(filerespop,fileres);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);    for (age=bage; age<=fage; age ++){ 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("Computing forecasting: result on file '%s' \n", filerespop);      /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   if (mobilav==1) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
     movingaverage(agedeb, fage, ageminpar, mobaverage);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      
   if (stepm<=12) stepsize=1;      printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   agelim=AGESUP;      
        /* Computing expectancies */
   hstepm=1;      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm;        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   if (popforecast==1) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     if((ficpop=fopen(popfile,"r"))==NULL) {            
       printf("Problem with population file : %s\n",popfile);exit(0);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }          }
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);      fprintf(ficreseij,"%3.0f",age );
     popcount=vector(0,AGESUP);      for(i=1; i<=nlstate;i++){
            eip=0;
     i=1;          for(j=1; j<=nlstate;j++){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          eip +=eij[i][j][(int)age];
              fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     imx=i;        }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        fprintf(ficreseij,"%9.4f", eip );
   }      }
       fprintf(ficreseij,"\n");
   for(cptcov=1;cptcov<=i2;cptcov++){      
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrespop,"\n#******");    printf("\n");
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficlog,"\n");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       }  }
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");  {
          /* Covariances of health expectancies eij and of total life expectancies according
       for (cpt=0; cpt<=0;cpt++) {     to initial status i, ei. .
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      */
            int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int nhstepma, nstepma; /* Decreasing with age */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double age, agelim, hf;
           nhstepm = nhstepm/hstepm;    double ***p3matp, ***p3matm, ***varhe;
              double **dnewm,**doldm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *xp, *xm;
           oldm=oldms;savm=savms;    double **gp, **gm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***gradg, ***trgradg;
            int theta;
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    double eip, vip;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             for(j=1; j<=nlstate+ndeath;j++) {    xp=vector(1,npar);
               kk1=0.;kk2=0;    xm=vector(1,npar);
               for(i=1; i<=nlstate;i++) {                  dnewm=matrix(1,nlstate*nlstate,1,npar);
                 if (mobilav==1)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    
                 else {    pstamp(ficresstdeij);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                 }    fprintf(ficresstdeij,"# Age");
               }    for(i=1; i<=nlstate;i++){
               if (h==(int)(calagedate+12*cpt)){      for(j=1; j<=nlstate;j++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   /*fprintf(ficrespop," %.3f", kk1);      fprintf(ficresstdeij," e%1d. ",i);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    }
               }    fprintf(ficresstdeij,"\n");
             }  
             for(i=1; i<=nlstate;i++){    pstamp(ficrescveij);
               kk1=0.;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                 for(j=1; j<=nlstate;j++){    fprintf(ficrescveij,"# Age");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    for(i=1; i<=nlstate;i++)
                 }      for(j=1; j<=nlstate;j++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        cptj= (j-1)*nlstate+i;
             }        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            cptj2= (j2-1)*nlstate+i2;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            if(cptj2 <= cptj)
           }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         }      }
       }    fprintf(ficrescveij,"\n");
      
   /******/    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      else  hstepm=estepm;   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* We compute the life expectancy from trapezoids spaced every estepm months
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * This is mainly to measure the difference between two models: for example
           nhstepm = nhstepm/hstepm;     * if stepm=24 months pijx are given only every 2 years and by summing them
               * we are calculating an estimate of the Life Expectancy assuming a linear 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * progression in between and thus overestimating or underestimating according
           oldm=oldms;savm=savms;     * to the curvature of the survival function. If, for the same date, we 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
           for (h=0; h<=nhstepm; h++){     * to compare the new estimate of Life expectancy with the same linear 
             if (h==(int) (calagedate+YEARM*cpt)) {     * hypothesis. A more precise result, taking into account a more precise
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * curvature will be obtained if estepm is as small as stepm. */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    /* For example we decided to compute the life expectancy with the smallest unit */
               kk1=0.;kk2=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               for(i=1; i<=nlstate;i++) {                     nhstepm is the number of hstepm from age to agelim 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           nstepm is the number of stepm from age to agelin. 
               }       Look at hpijx to understand the reason of that which relies in memory size
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
    }    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
   if (popforecast==1) {    agelim=AGESUP;
     free_ivector(popage,0,AGESUP);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     free_vector(popeffectif,0,AGESUP);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(popcount,0,AGESUP);    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrespop);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 /***********************************************/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
 /**************** Main Program *****************/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
 /***********************************************/  
     for (age=bage; age<=fage; age ++){ 
 int main(int argc, char *argv[])      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   double fret;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   double **xi,tmp,delta;      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double dum; /* Dummy variable */  
   double ***p3mat;      /* Computing  Variances of health expectancies */
   int *indx;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   char line[MAXLINE], linepar[MAXLINE];         decrease memory allocation */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];      for(theta=1; theta <=npar; theta++){
   int firstobs=1, lastobs=10;        for(i=1; i<=npar; i++){ 
   int sdeb, sfin; /* Status at beginning and end */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int c,  h , cpt,l;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   int ju,jl, mi;        }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   int mobilav=0,popforecast=0;    
   int hstepm, nhstepm;        for(j=1; j<= nlstate; j++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   double bage, fage, age, agelim, agebase;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   double ftolpl=FTOL;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   double **prlim;            }
   double *severity;          }
   double ***param; /* Matrix of parameters */        }
   double  *p;       
   double **matcov; /* Matrix of covariance */        for(ij=1; ij<= nlstate*nlstate; ij++)
   double ***delti3; /* Scale */          for(h=0; h<=nhstepm-1; h++){
   double *delti; /* Scale */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   double ***eij, ***vareij;          }
   double **varpl; /* Variances of prevalence limits by age */      }/* End theta */
   double *epj, vepp;      
   double kk1, kk2;      
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];            trgradg[h][j][theta]=gradg[h][theta][j];
       
   
   char z[1]="c", occ;       for(ij=1;ij<=nlstate*nlstate;ij++)
 #include <sys/time.h>        for(ji=1;ji<=nlstate*nlstate;ji++)
 #include <time.h>          varhe[ij][ji][(int)age] =0.;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
         printf("%d|",(int)age);fflush(stdout);
   /* long total_usecs;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   struct timeval start_time, end_time;       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   getcwd(pathcd, size);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
   printf("\n%s",version);            for(ji=1;ji<=nlstate*nlstate;ji++)
   if(argc <=1){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     printf("\nEnter the parameter file name: ");        }
     scanf("%s",pathtot);      }
   }  
   else{      /* Computing expectancies */
     strcpy(pathtot,argv[1]);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }      for(i=1; i<=nlstate;i++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        for(j=1; j<=nlstate;j++)
   /*cygwin_split_path(pathtot,path,optionfile);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   /* cutv(path,optionfile,pathtot,'\\');*/            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          }
   chdir(path);  
   replace(pathc,path);      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
 /*-------- arguments in the command line --------*/        eip=0.;
         vip=0.;
   /* Log file */        for(j=1; j<=nlstate;j++){
   strcat(filelog, optionfilefiname);          eip += eij[i][j][(int)age];
   strcat(filelog,".log");    /* */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   if((ficlog=fopen(filelog,"w"))==NULL)    {            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     printf("Problem with logfile %s\n",filelog);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     goto end;        }
   }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   fprintf(ficlog,"Log filename:%s\n",filelog);      }
   fprintf(ficlog,"\n%s",version);      fprintf(ficresstdeij,"\n");
   fprintf(ficlog,"\nEnter the parameter file name: ");  
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficrescveij,"%3.0f",age );
   fflush(ficlog);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   /* */          cptj= (j-1)*nlstate+i;
   strcpy(fileres,"r");          for(i2=1; i2<=nlstate;i2++)
   strcat(fileres, optionfilefiname);            for(j2=1; j2<=nlstate;j2++){
   strcat(fileres,".txt");    /* Other files have txt extension */              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   /*---------arguments file --------*/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        }
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficrescveij,"\n");
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);     
     goto end;    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   strcpy(filereso,"o");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   strcat(filereso,fileres);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   if((ficparo=fopen(filereso,"w"))==NULL) {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with Output resultfile: %s\n", filereso);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    printf("\n");
     goto end;    fprintf(ficlog,"\n");
   }  
     free_vector(xm,1,npar);
   /* Reads comments: lines beginning with '#' */    free_vector(xp,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     ungetc(c,ficpar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     puts(line);  }
     fputs(line,ficparo);  
   }  /************ Variance ******************/
   ungetc(c,ficpar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /* Variance of health expectancies */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    /* double **newm;*/
 while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double **dnewmp,**doldmp;
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     puts(line);    int k, cptcode;
     fputs(line,ficparo);    double *xp;
   }    double **gp, **gm;  /* for var eij */
   ungetc(c,ficpar);    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
        double *gpp, *gmp; /* for var p point j */
   covar=matrix(0,NCOVMAX,1,n);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   cptcovn=0;    double ***p3mat;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    double age,agelim, hf;
     double ***mobaverage;
   ncovmodel=2+cptcovn;    int theta;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    char digit[4];
      char digitp[25];
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */    char fileresprobmorprev[FILENAMELENGTH];
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    if(popbased==1){
     fgets(line, MAXLINE, ficpar);      if(mobilav!=0)
     puts(line);        strcpy(digitp,"-populbased-mobilav-");
     fputs(line,ficparo);      else strcpy(digitp,"-populbased-nomobil-");
   }    }
   ungetc(c,ficpar);    else 
        strcpy(digitp,"-stablbased-");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    if (mobilav!=0) {
     for(j=1; j <=nlstate+ndeath-1; j++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       if(mle==1)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         printf("%1d%1d",i,j);      }
       fprintf(ficlog,"%1d%1d",i,j);    }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    strcpy(fileresprobmorprev,"prmorprev"); 
         if(mle==1){    sprintf(digit,"%-d",ij);
           printf(" %lf",param[i][j][k]);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           fprintf(ficlog," %lf",param[i][j][k]);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         else    strcat(fileresprobmorprev,fileres);
           fprintf(ficlog," %lf",param[i][j][k]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         fprintf(ficparo," %lf",param[i][j][k]);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fscanf(ficpar,"\n");    }
       if(mle==1)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         printf("\n");   
       fprintf(ficlog,"\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficparo,"\n");    pstamp(ficresprobmorprev);
     }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   p=param[1][1];      for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   /* Reads comments: lines beginning with '#' */    }  
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobmorprev,"\n");
     ungetc(c,ficpar);    fprintf(ficgp,"\n# Routine varevsij");
     fgets(line, MAXLINE, ficpar);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     puts(line);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fputs(line,ficparo);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   }  /*   } */
   ungetc(c,ficpar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    if(popbased==1)
   for(i=1; i <=nlstate; i++){      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     for(j=1; j <=nlstate+ndeath-1; j++){    else
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       printf("%1d%1d",i,j);    fprintf(ficresvij,"# Age");
       fprintf(ficparo,"%1d%1d",i1,j1);    for(i=1; i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){      for(j=1; j<=nlstate;j++)
         fscanf(ficpar,"%le",&delti3[i][j][k]);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         printf(" %le",delti3[i][j][k]);    fprintf(ficresvij,"\n");
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    xp=vector(1,npar);
       fscanf(ficpar,"\n");    dnewm=matrix(1,nlstate,1,npar);
       printf("\n");    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficparo,"\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   delti=delti3[1][1];    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   /* Reads comments: lines beginning with '#' */    gmp=vector(nlstate+1,nlstate+ndeath);
   while((c=getc(ficpar))=='#' && c!= EOF){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    if(estepm < stepm){
     puts(line);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fputs(line,ficparo);    }
   }    else  hstepm=estepm;   
   ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   matcov=matrix(1,npar,1,npar);       nhstepm is the number of hstepm from age to agelim 
   for(i=1; i <=npar; i++){       nstepm is the number of stepm from age to agelin. 
     fscanf(ficpar,"%s",&str);       Look at function hpijx to understand why (it is linked to memory size questions) */
     if(mle==1)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       printf("%s",str);       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficlog,"%s",str);       means that if the survival funtion is printed every two years of age and if
     fprintf(ficparo,"%s",str);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(j=1; j <=i; j++){       results. So we changed our mind and took the option of the best precision.
       fscanf(ficpar," %le",&matcov[i][j]);    */
       if(mle==1){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         printf(" %.5le",matcov[i][j]);    agelim = AGESUP;
         fprintf(ficlog," %.5le",matcov[i][j]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       else      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficlog," %.5le",matcov[i][j]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficparo," %.5le",matcov[i][j]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     }      gp=matrix(0,nhstepm,1,nlstate);
     fscanf(ficpar,"\n");      gm=matrix(0,nhstepm,1,nlstate);
     if(mle==1)  
       printf("\n");  
     fprintf(ficlog,"\n");      for(theta=1; theta <=npar; theta++){
     fprintf(ficparo,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for(i=1; i <=npar; i++)        }
     for(j=i+1;j<=npar;j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       matcov[i][j]=matcov[j][i];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      
   if(mle==1)        if (popbased==1) {
     printf("\n");          if(mobilav ==0){
   fprintf(ficlog,"\n");            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
     /*-------- Rewriting paramater file ----------*/            for(i=1; i<=nlstate;i++)
      strcpy(rfileres,"r");    /* "Rparameterfile */              prlim[i][i]=mobaverage[(int)age][i][ij];
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          }
      strcat(rfileres,".");    /* */        }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    
     if((ficres =fopen(rfileres,"w"))==NULL) {        for(j=1; j<= nlstate; j++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          for(h=0; h<=nhstepm; h++){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficres,"#%s\n",version);          }
            }
     /*-------- data file ----------*/        /* This for computing probability of death (h=1 means
     if((fic=fopen(datafile,"r"))==NULL)    {           computed over hstepm matrices product = hstepm*stepm months) 
       printf("Problem with datafile: %s\n", datafile);goto end;           as a weighted average of prlim.
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
     n= lastobs;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     severity = vector(1,maxwav);        }    
     outcome=imatrix(1,maxwav+1,1,n);        /* end probability of death */
     num=ivector(1,n);  
     moisnais=vector(1,n);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     annais=vector(1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     moisdc=vector(1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     andc=vector(1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     agedc=vector(1,n);   
     cod=ivector(1,n);        if (popbased==1) {
     weight=vector(1,n);          if(mobilav ==0){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            for(i=1; i<=nlstate;i++)
     mint=matrix(1,maxwav,1,n);              prlim[i][i]=probs[(int)age][i][ij];
     anint=matrix(1,maxwav,1,n);          }else{ /* mobilav */ 
     s=imatrix(1,maxwav+1,1,n);            for(i=1; i<=nlstate;i++)
     adl=imatrix(1,maxwav+1,1,n);                  prlim[i][i]=mobaverage[(int)age][i][ij];
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);        }
   
     i=1;        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     while (fgets(line, MAXLINE, fic) != NULL)    {          for(h=0; h<=nhstepm; h++){
       if ((i >= firstobs) && (i <=lastobs)) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                      gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         for (j=maxwav;j>=1;j--){          }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        }
           strcpy(line,stra);        /* This for computing probability of death (h=1 means
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           as a weighted average of prlim.
         }        */
                for(j=nlstate+1;j<=nlstate+ndeath;j++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        /* end probability of death */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for(j=1; j<= nlstate; j++) /* vareij */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for(h=0; h<=nhstepm; h++){
         for (j=ncovcol;j>=1;j--){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }  
         num[i]=atol(stra);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                  gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
       } /* End theta */
         i=i+1;  
       }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     }  
     /* printf("ii=%d", ij);      for(h=0; h<=nhstepm; h++) /* veij */
        scanf("%d",i);*/        for(j=1; j<=nlstate;j++)
   imx=i-1; /* Number of individuals */          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(theta=1; theta <=npar; theta++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          trgradgp[j][theta]=gradgp[theta][j];
     }*/    
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      for(h=0;h<=nhstepm;h++){
   Tprod=ivector(1,15);        for(k=0;k<=nhstepm;k++){
   Tvaraff=ivector(1,15);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   Tvard=imatrix(1,15,1,2);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   Tage=ivector(1,15);                for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
   if (strlen(model) >1){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     j=0, j1=0, k1=1, k2=1;        }
     j=nbocc(model,'+');      }
     j1=nbocc(model,'*');    
     cptcovn=j+1;      /* pptj */
     cptcovprod=j1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
          matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     strcpy(modelsav,model);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       printf("Error. Non available option model=%s ",model);          varppt[j][i]=doldmp[j][i];
       fprintf(ficlog,"Error. Non available option model=%s ",model);      /* end ppptj */
       goto end;      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     for(i=(j+1); i>=1;i--){   
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      if (popbased==1) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        if(mobilav ==0){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          for(i=1; i<=nlstate;i++)
       /*scanf("%d",i);*/            prlim[i][i]=probs[(int)age][i][ij];
       if (strchr(strb,'*')) {  /* Model includes a product */        }else{ /* mobilav */ 
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          for(i=1; i<=nlstate;i++)
         if (strcmp(strc,"age")==0) { /* Vn*age */            prlim[i][i]=mobaverage[(int)age][i][ij];
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');      }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/               
           cptcovage++;      /* This for computing probability of death (h=1 means
             Tage[cptcovage]=i;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             /*printf("stre=%s ", stre);*/         as a weighted average of prlim.
         }      */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cptcovprod--;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           cutv(strb,stre,strc,'V');          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           Tvar[i]=atoi(stre);      }    
           cptcovage++;      /* end probability of death */
           Tage[cptcovage]=i;  
         }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         else {  /* Age is not in the model */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           Tvar[i]=ncovcol+k1;        for(i=1; i<=nlstate;i++){
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc); /* m*/      } 
           Tvard[k1][2]=atoi(stre); /* n */      fprintf(ficresprobmorprev,"\n");
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(ficresvij,"%.0f ",age );
           for (k=1; k<=lastobs;k++)      for(i=1; i<=nlstate;i++)
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(j=1; j<=nlstate;j++){
           k1++;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           k2=k2+2;        }
         }      fprintf(ficresvij,"\n");
       }      free_matrix(gp,0,nhstepm,1,nlstate);
       else { /* no more sum */      free_matrix(gm,0,nhstepm,1,nlstate);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        /*  scanf("%d",i);*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       cutv(strd,strc,strb,'V');      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       Tvar[i]=atoi(strc);    } /* End age */
       }    free_vector(gpp,nlstate+1,nlstate+ndeath);
       strcpy(modelsav,stra);      free_vector(gmp,nlstate+1,nlstate+ndeath);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         scanf("%d",i);*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     } /* end of loop + */    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
   } /* end model */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   printf("cptcovprod=%d ", cptcovprod);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   scanf("%d ",i);*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fclose(fic);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     /*  if(mle==1){*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for(i=1;i<=n;i++) weight[i]=1.0;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     }  */
     /*-calculation of age at interview from date of interview and age at death -*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     agev=matrix(1,maxwav,1,imx);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     for (i=1; i<=imx; i++) {    free_vector(xp,1,npar);
       for(m=2; (m<= maxwav); m++) {    free_matrix(doldm,1,nlstate,1,nlstate);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_matrix(dnewm,1,nlstate,1,npar);
          anint[m][i]=9999;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          s[m][i]=-1;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
        }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    fclose(ficresprobmorprev);
     }    fflush(ficgp);
     fflush(fichtm); 
     for (i=1; i<=imx; i++)  {  }  /* end varevsij */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){  /************ Variance of prevlim ******************/
         if(s[m][i] >0){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           if (s[m][i] >= nlstate+1) {  {
             if(agedc[i]>0)    /* Variance of prevalence limit */
               if(moisdc[i]!=99 && andc[i]!=9999)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                 agev[m][i]=agedc[i];    double **newm;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double **dnewm,**doldm;
            else {    int i, j, nhstepm, hstepm;
               if (andc[i]!=9999){    int k, cptcode;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double *xp;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    double *gp, *gm;
               agev[m][i]=-1;    double **gradg, **trgradg;
               }    double age,agelim;
             }    int theta;
           }    
           else if(s[m][i] !=9){ /* Should no more exist */    pstamp(ficresvpl);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficresvpl,"# Age");
               agev[m][i]=1;    for(i=1; i<=nlstate;i++)
             else if(agev[m][i] <agemin){        fprintf(ficresvpl," %1d-%1d",i,i);
               agemin=agev[m][i];    fprintf(ficresvpl,"\n");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }    xp=vector(1,npar);
             else if(agev[m][i] >agemax){    dnewm=matrix(1,nlstate,1,npar);
               agemax=agev[m][i];    doldm=matrix(1,nlstate,1,nlstate);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    
             }    hstepm=1*YEARM; /* Every year of age */
             /*agev[m][i]=anint[m][i]-annais[i];*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
             /*   agev[m][i] = age[i]+2*m;*/    agelim = AGESUP;
           }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           else { /* =9 */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             agev[m][i]=1;      if (stepm >= YEARM) hstepm=1;
             s[m][i]=-1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           }      gradg=matrix(1,npar,1,nlstate);
         }      gp=vector(1,nlstate);
         else /*= 0 Unknown */      gm=vector(1,nlstate);
           agev[m][i]=1;  
       }      for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ /* Computes gradient */
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (i=1; i<=imx; i++)  {        }
       for(m=1; (m<= maxwav); m++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         if (s[m][i] > (nlstate+ndeath)) {        for(i=1;i<=nlstate;i++)
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            gp[i] = prlim[i][i];
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        
           goto end;        for(i=1; i<=npar; i++) /* Computes gradient */
         }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     free_vector(severity,1,maxwav);      } /* End theta */
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);      trgradg =matrix(1,nlstate,1,npar);
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);      for(j=1; j<=nlstate;j++)
        free_matrix(anint,1,maxwav,1,n);*/        for(theta=1; theta <=npar; theta++)
     free_vector(moisdc,1,n);          trgradg[j][theta]=gradg[theta][j];
     free_vector(andc,1,n);  
       for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] =0.;
     wav=ivector(1,imx);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       Tcode=ivector(1,100);      fprintf(ficresvpl,"\n");
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      free_vector(gp,1,nlstate);
       ncodemax[1]=1;      free_vector(gm,1,nlstate);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      free_matrix(gradg,1,npar,1,nlstate);
            free_matrix(trgradg,1,nlstate,1,npar);
    codtab=imatrix(1,100,1,10);    } /* End age */
    h=0;  
    m=pow(2,cptcoveff);    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
    for(k=1;k<=cptcoveff; k++){    free_matrix(dnewm,1,nlstate,1,nlstate);
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){  }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;  /************ Variance of one-step probabilities  ******************/
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  {
          }    int i, j=0,  i1, k1, l1, t, tj;
        }    int k2, l2, j1,  z1;
      }    int k=0,l, cptcode;
    }    int first=1, first1, first2;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       codtab[1][2]=1;codtab[2][2]=2; */    double **dnewm,**doldm;
    /* for(i=1; i <=m ;i++){    double *xp;
       for(k=1; k <=cptcovn; k++){    double *gp, *gm;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    double **gradg, **trgradg;
       }    double **mu;
       printf("\n");    double age,agelim, cov[NCOVMAX+1];
       }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       scanf("%d",i);*/    int theta;
        char fileresprob[FILENAMELENGTH];
    /* Calculates basic frequencies. Computes observed prevalence at single age    char fileresprobcov[FILENAMELENGTH];
        and prints on file fileres'p'. */    char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
      
        strcpy(fileresprob,"prob"); 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(fileresprob,fileres);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with resultfile: %s\n", fileresprob);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }
          strcpy(fileresprobcov,"probcov"); 
     /* For Powell, parameters are in a vector p[] starting at p[1]    strcat(fileresprobcov,fileres);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     if(mle==1){    }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    strcpy(fileresprobcor,"probcor"); 
     }    strcat(fileresprobcor,fileres);
        if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     /*--------- results files --------------*/      printf("Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    jk=1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      for(k=1; k <=(nlstate+ndeath); k++){    pstamp(ficresprob);
        if (k != i)    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
          {    fprintf(ficresprob,"# Age");
            printf("%d%d ",i,k);    pstamp(ficresprobcov);
            fprintf(ficlog,"%d%d ",i,k);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficresprobcov,"# Age");
            for(j=1; j <=ncovmodel; j++){    pstamp(ficresprobcor);
              printf("%f ",p[jk]);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
              fprintf(ficlog,"%f ",p[jk]);    fprintf(ficresprobcor,"# Age");
              fprintf(ficres,"%f ",p[jk]);  
              jk++;  
            }    for(i=1; i<=nlstate;i++)
            printf("\n");      for(j=1; j<=(nlstate+ndeath);j++){
            fprintf(ficlog,"\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
            fprintf(ficres,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
      }      }  
    }   /* fprintf(ficresprob,"\n");
    if(mle==1){    fprintf(ficresprobcov,"\n");
      /* Computing hessian and covariance matrix */    fprintf(ficresprobcor,"\n");
      ftolhess=ftol; /* Usually correct */   */
      hesscov(matcov, p, npar, delti, ftolhess, func);    xp=vector(1,npar);
    }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    printf("# Scales (for hessian or gradient estimation)\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    for(i=1,jk=1; i <=nlstate; i++){    first=1;
      for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficgp,"\n# Routine varprob");
        if (j!=i) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
          fprintf(ficres,"%1d%1d",i,j);    fprintf(fichtm,"\n");
          printf("%1d%1d",i,j);  
          fprintf(ficlog,"%1d%1d",i,j);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
          for(k=1; k<=ncovmodel;k++){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
            printf(" %.5e",delti[jk]);    file %s<br>\n",optionfilehtmcov);
            fprintf(ficlog," %.5e",delti[jk]);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
            fprintf(ficres," %.5e",delti[jk]);  and drawn. It helps understanding how is the covariance between two incidences.\
            jk++;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
          }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
          printf("\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
          fprintf(ficlog,"\n");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
          fprintf(ficres,"\n");  standard deviations wide on each axis. <br>\
        }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
      }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
    }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      
    k=1;    cov[1]=1;
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /* tj=cptcoveff; */
    if(mle==1)    tj = (int) pow(2,cptcoveff);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    j1=0;
    for(i=1;i<=npar;i++){    for(j1=1; j1<=tj;j1++){
      /*  if (k>nlstate) k=1;      /*for(i1=1; i1<=ncodemax[t];i1++){ */
          i1=(i-1)/(ncovmodel*nlstate)+1;      /*j1++;*/
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        if  (cptcovn>0) {
          printf("%s%d%d",alph[k],i1,tab[i]);*/          fprintf(ficresprob, "\n#********** Variable "); 
      fprintf(ficres,"%3d",i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      if(mle==1)          fprintf(ficresprob, "**********\n#\n");
        printf("%3d",i);          fprintf(ficresprobcov, "\n#********** Variable "); 
      fprintf(ficlog,"%3d",i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      for(j=1; j<=i;j++){          fprintf(ficresprobcov, "**********\n#\n");
        fprintf(ficres," %.5e",matcov[i][j]);          
        if(mle==1)          fprintf(ficgp, "\n#********** Variable "); 
          printf(" %.5e",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        fprintf(ficlog," %.5e",matcov[i][j]);          fprintf(ficgp, "**********\n#\n");
      }          
      fprintf(ficres,"\n");          
      if(mle==1)          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
        printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fprintf(ficlog,"\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
      k++;          
    }          fprintf(ficresprobcor, "\n#********** Variable ");    
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcor, "**********\n#");    
      ungetc(c,ficpar);        }
      fgets(line, MAXLINE, ficpar);        
      puts(line);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      fputs(line,ficparo);        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    }        gp=vector(1,(nlstate)*(nlstate+ndeath));
    ungetc(c,ficpar);        gm=vector(1,(nlstate)*(nlstate+ndeath));
    estepm=0;        for (age=bage; age<=fage; age ++){ 
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          cov[2]=age;
    if (estepm==0 || estepm < stepm) estepm=stepm;          for (k=1; k<=cptcovn;k++) {
    if (fage <= 2) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
      bage = ageminpar;                                                           * 1  1 1 1 1
      fage = agemaxpar;                                                           * 2  2 1 1 1
    }                                                           * 3  1 2 1 1
                                                               */
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          }
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
    while((c=getc(ficpar))=='#' && c!= EOF){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      ungetc(c,ficpar);          
      fgets(line, MAXLINE, ficpar);      
      puts(line);          for(theta=1; theta <=npar; theta++){
      fputs(line,ficparo);            for(i=1; i<=npar; i++)
    }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    ungetc(c,ficpar);            
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            k=0;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(i=1; i<= (nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
    while((c=getc(ficpar))=='#' && c!= EOF){                k=k+1;
      ungetc(c,ficpar);                gp[k]=pmmij[i][j];
      fgets(line, MAXLINE, ficpar);              }
      puts(line);            }
      fputs(line,ficparo);            
    }            for(i=1; i<=npar; i++)
    ungetc(c,ficpar);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            k=0;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);                k=k+1;
   fprintf(ficparo,"pop_based=%d\n",popbased);                  gm[k]=pmmij[i][j];
   fprintf(ficres,"pop_based=%d\n",popbased);                }
              }
   while((c=getc(ficpar))=='#' && c!= EOF){       
     ungetc(c,ficpar);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     fgets(line, MAXLINE, ficpar);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     puts(line);          }
     fputs(line,ficparo);  
   }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   ungetc(c,ficpar);            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
 while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          k=0;
     fgets(line, MAXLINE, ficpar);          for(i=1; i<=(nlstate); i++){
     puts(line);            for(j=1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);              k=k+1;
   }              mu[k][(int) age]=pmmij[i][j];
   ungetc(c,ficpar);            }
           }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              varpij[i][j][(int)age] = doldm[i][j];
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 /*------------ gnuplot -------------*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcpy(optionfilegnuplot,optionfilefiname);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcat(optionfilegnuplot,".gp");            }*/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficresprob,"\n%d ",(int)age);
   }          fprintf(ficresprobcov,"\n%d ",(int)age);
   fclose(ficgp);          fprintf(ficresprobcor,"\n%d ",(int)age);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  
 /*--------- index.htm --------*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   strcpy(optionfilehtm,optionfile);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcat(optionfilehtm,".htm");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     printf("Problem with %s \n",optionfilehtm), exit(0);          }
   }          i=0;
           for (k=1; k<=(nlstate);k++){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            for (l=1; l<=(nlstate+ndeath);l++){ 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              i++;
 \n              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 Total number of observations=%d <br>\n              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n              for (j=1; j<=i;j++){
 <hr  size=\"2\" color=\"#EC5E5E\">                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
  <ul><li><h4>Parameter files</h4>\n                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  - Log file of the run: <a href=\"%s\">%s</a><br>\n              }
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);            }
   fclose(fichtm);          }/* end of loop for state */
         } /* end of loop for age */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 /*------------ free_vector  -------------*/        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  chdir(path);        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
          
  free_ivector(wav,1,imx);        /* Confidence intervalle of pij  */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        /*
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficgp,"\nunset parametric;unset label");
  free_ivector(num,1,n);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
  free_vector(agedc,1,n);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
  fclose(ficparo);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  fclose(ficres);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   /*--------------- Prevalence limit --------------*/  
          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   strcpy(filerespl,"pl");        first1=1;first2=2;
   strcat(filerespl,fileres);        for (k2=1; k2<=(nlstate);k2++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            if(l2==k2) continue;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;            j=(k2-1)*(nlstate+ndeath)+l2;
   }            for (k1=1; k1<=(nlstate);k1++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                if(l1==k1) continue;
   fprintf(ficrespl,"#Prevalence limit\n");                i=(k1-1)*(nlstate+ndeath)+l1;
   fprintf(ficrespl,"#Age ");                if(i<=j) continue;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                for (age=bage; age<=fage; age ++){ 
   fprintf(ficrespl,"\n");                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   prlim=matrix(1,nlstate,1,nlstate);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    mu1=mu[i][(int) age]/stepm*YEARM ;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    mu2=mu[j][(int) age]/stepm*YEARM;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    c12=cv12/sqrt(v1*v2);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    /* Computing eigen value of matrix of covariance */
   k=0;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   agebase=ageminpar;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   agelim=agemaxpar;                    if ((lc2 <0) || (lc1 <0) ){
   ftolpl=1.e-10;                      if(first2==1){
   i1=cptcoveff;                        first1=0;
   if (cptcovn < 1){i1=1;}                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
         k=k+1;                      /* lc2=fabs(lc2); */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    }
         fprintf(ficrespl,"\n#******");  
         printf("\n#******");                    /* Eigen vectors */
         fprintf(ficlog,"\n#******");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         for(j=1;j<=cptcoveff;j++) {                    /*v21=sqrt(1.-v11*v11); *//* error */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v21=(lc1-v1)/cv12*v11;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v12=-v21;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v22=v11;
         }                    tnalp=v21/v11;
         fprintf(ficrespl,"******\n");                    if(first1==1){
         printf("******\n");                      first1=0;
         fprintf(ficlog,"******\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                            }
         for (age=agebase; age<=agelim; age++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    /*printf(fignu*/
           fprintf(ficrespl,"%.0f",age );                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           for(i=1; i<=nlstate;i++)                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           fprintf(ficrespl," %.5f", prlim[i][i]);                    if(first==1){
           fprintf(ficrespl,"\n");                      first=0;
         }                      fprintf(ficgp,"\nset parametric;unset label");
       }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset ter png small size 320, 240");
   fclose(ficrespl);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   /*------------- h Pij x at various ages ------------*/  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   printf("Computing pij: result on file '%s' \n", filerespij);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   stepsize=(int) (stepm+YEARM-1)/YEARM;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /*if (stepm<=24) stepsize=2;*/                    }else{
                       first=0;
   agelim=AGESUP;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   hstepm=stepsize*YEARM; /* Every year of age */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* hstepm=1;   aff par mois*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   k=0;                    }/* if first */
   for(cptcov=1;cptcov<=i1;cptcov++){                  } /* age mod 5 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                } /* end loop age */
       k=k+1;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficrespij,"\n#****** ");                first=1;
         for(j=1;j<=cptcoveff;j++)              } /*l12 */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            } /* k12 */
         fprintf(ficrespij,"******\n");          } /*l1 */
                }/* k1 */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        /* } /* loop covariates */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(xp,1,npar);
           oldm=oldms;savm=savms;    fclose(ficresprob);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fclose(ficresprobcov);
           fprintf(ficrespij,"# Age");    fclose(ficresprobcor);
           for(i=1; i<=nlstate;i++)    fflush(ficgp);
             for(j=1; j<=nlstate+ndeath;j++)    fflush(fichtmcov);
               fprintf(ficrespij," %1d-%1d",i,j);  }
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /******************* Printing html file ***********/
             for(i=1; i<=nlstate;i++)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               for(j=1; j<=nlstate+ndeath;j++)                    int lastpass, int stepm, int weightopt, char model[],\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             fprintf(ficrespij,"\n");                    int popforecast, int estepm ,\
              }                    double jprev1, double mprev1,double anprev1, \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    double jprev2, double mprev2,double anprev2){
           fprintf(ficrespij,"\n");    int jj1, k1, i1, cpt;
         }  
     }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   fclose(ficrespij);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   /*---------- Forecasting ------------------*/             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   if((stepm == 1) && (strcmp(model,".")==0)){     fprintf(fichtm,"\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }     fprintf(fichtm,"\
   else{   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     erreur=108;     <a href=\"%s\">%s</a> <br>\n",
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);     fprintf(fichtm,"\
   }   - Population projections by age and states: \
       <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   /*---------- Health expectancies and variances ------------*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
   strcpy(filerest,"t");   m=pow(2,cptcoveff);
   strcat(filerest,fileres);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   jj1=0;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;   for(k1=1; k1<=m;k1++){
   }     for(i1=1; i1<=ncodemax[k1];i1++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       jj1++;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   strcpy(filerese,"e");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcat(filerese,fileres);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   if((ficreseij=fopen(filerese,"w"))==NULL) {       }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       /* Pij */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   }  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       /* Quasi-incidences */
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   strcpy(fileresv,"v");  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   strcat(fileresv,fileres);         /* Period (stable) prevalence in each health state */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {         for(cpt=1; cpt<=nlstate;cpt++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);           fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   }         }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       for(cpt=1; cpt<=nlstate;cpt++) {
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   calagedate=-1;  <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       }
      } /* end i1 */
   k=0;   }/* End k1 */
   for(cptcov=1;cptcov<=i1;cptcov++){   fprintf(fichtm,"</ul>");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  
       fprintf(ficrest,"\n#****** ");   fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       fprintf(ficrest,"******\n");  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficreseij,"\n#****** ");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficreseij,"******\n");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
       fprintf(ficresvij,"\n#****** ");   fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       fprintf(ficresvij,"******\n");   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     <a href=\"%s\">%s</a> <br>\n</li>",
       oldm=oldms;savm=savms;             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     fprintf(fichtm,"\
     - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     <a href=\"%s\">%s</a> <br>\n</li>",
       oldm=oldms;savm=savms;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);   fprintf(fichtm,"\
       if(popbased==1){   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
        }   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
             estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   fprintf(fichtm,"\
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficrest,"\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
       epj=vector(1,nlstate+1);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       for(age=bage; age <=fage ;age++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         if (popbased==1) {  /*      <br>",fileres,fileres,fileres,fileres); */
           for(i=1; i<=nlstate;i++)  /*  else  */
             prlim[i][i]=probs[(int)age][i][k];  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         }   fflush(fichtm);
           fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   m=pow(2,cptcoveff);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/   jj1=0;
           }   for(k1=1; k1<=m;k1++){
           epj[nlstate+1] +=epj[j];     for(i1=1; i1<=ncodemax[k1];i1++){
         }       jj1++;
        if (cptcovn > 0) {
         for(i=1, vepp=0.;i <=nlstate;i++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for(j=1;j <=nlstate;j++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
             vepp += vareij[i][j][(int)age];           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         for(j=1;j <=nlstate;j++){       }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       for(cpt=1; cpt<=nlstate;cpt++) {
         }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         fprintf(ficrest,"\n");  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
       }  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     }       }
   }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 free_matrix(mint,1,maxwav,1,n);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  true period expectancies (those weighted with period prevalences are also\
     free_vector(weight,1,n);   drawn in addition to the population based expectancies computed using\
   fclose(ficreseij);   observed and cahotic prevalences: %s%d.png<br>\
   fclose(ficresvij);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   fclose(ficrest);     } /* end i1 */
   fclose(ficpar);   }/* End k1 */
   free_vector(epj,1,nlstate+1);   fprintf(fichtm,"</ul>");
     fflush(fichtm);
   /*------- Variance limit prevalence------*/    }
   
   strcpy(fileresvpl,"vpl");  /******************* Gnuplot file **************/
   strcat(fileresvpl,fileres);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    char dirfileres[132],optfileres[132];
     exit(0);    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
   }    int ng=0;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   k=0;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   } */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    /*#ifdef windows */
       fprintf(ficresvpl,"\n#****** ");    fprintf(ficgp,"cd \"%s\" \n",pathc);
       for(j=1;j<=cptcoveff;j++)      /*#endif */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    m=pow(2,cptcoveff);
       fprintf(ficresvpl,"******\n");  
          strcpy(dirfileres,optionfilefiname);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    strcpy(optfileres,"vpl");
       oldm=oldms;savm=savms;   /* 1eme*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     }    for (cpt=1; cpt<= nlstate ; cpt ++) {
  }      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   fclose(ficresvpl);       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   /*---------- End : free ----------------*/  set ylabel \"Probability\" \n\
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  set ter png small size 320, 240\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else        fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       for (i=1; i<= nlstate ; i ++) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(matcov,1,npar,1,npar);       } 
   free_vector(delti,1,npar);       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   free_matrix(agev,1,maxwav,1,imx);       for (i=1; i<= nlstate ; i ++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(fichtm,"\n</body>");       }  
   fclose(fichtm);       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fclose(ficgp);     }
      }
     /*2 eme*/
   if(erreur >0){    fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     printf("End of Imach with error or warning %d\n",erreur);    for (k1=1; k1<= m ; k1 ++) { 
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   }else{      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
    printf("End of Imach\n");      
    fprintf(ficlog,"End of Imach\n");      for (i=1; i<= nlstate+1 ; i ++) {
   }        k=2*i;
   printf("See log file on %s\n",filelog);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fclose(ficlog);        for (j=1; j<= nlstate+1 ; j ++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        }   
   /*printf("Total time was %d uSec.\n", total_usecs);*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   /*------ End -----------*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
  end:          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 #ifdef windows          else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* chdir(pathcd);*/        }   
 #endif        fprintf(ficgp,"\" t\"\" w l lt 0,");
  /*system("wgnuplot graph.plt");*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        for (j=1; j<= nlstate+1 ; j ++) {
  /*system("cd ../gp37mgw");*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  strcpy(plotcmd,GNUPLOTPROGRAM);        }   
  strcat(plotcmd," ");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
  strcat(plotcmd,optionfilegnuplot);        else fprintf(ficgp,"\" t\"\" w l lt 0,");
  system(plotcmd);      }
     }
 #ifdef windows    
   while (z[0] != 'q') {    /*3eme*/
     /* chdir(path); */    
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    for (k1=1; k1<= m ; k1 ++) { 
     scanf("%s",z);      for (cpt=1; cpt<= nlstate ; cpt ++) {
     if (z[0] == 'c') system("./imach");        /*       k=2+nlstate*(2*cpt-2); */
     else if (z[0] == 'e') system(optionfilehtm);        k=2+(nlstate+1)*(cpt-1);
     else if (z[0] == 'g') system(plotcmd);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     else if (z[0] == 'q') exit(0);        fprintf(ficgp,"set ter png small size 320, 240\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 #endif        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: %s, err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successul, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef _APPLE_
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.157


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>