Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.161

version 1.41.2.1, 2003/06/12 10:43:20 version 1.161, 2014/09/15 20:41:41
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.161  2014/09/15 20:41:41  brouard
      Summary: Problem with macro SQR on Intel compiler
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.160  2014/09/02 09:24:05  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.159  2014/09/01 10:34:10  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: WIN32
   (if any) in individual health status.  Health expectancies are    Author: Brouard
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.158  2014/08/27 17:11:51  brouard
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.157  2014/08/27 16:26:55  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: Preparing windows Visual studio version
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Author: Brouard
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    In order to compile on Visual studio, time.h is now correct and time_t
   where the markup *Covariates have to be included here again* invites    and tm struct should be used. difftime should be used but sometimes I
   you to do it.  More covariates you add, slower the    just make the differences in raw time format (time(&now).
   convergence.    Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.156  2014/08/25 20:10:10  brouard
   identical for each individual. Also, if a individual missed an    *** empty log message ***
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
   hPijx is the probability to be observed in state i at age x+h    Author: Brouard
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.154  2014/06/20 17:32:08  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Outputs now all graphs of convergence to period prevalence
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.153  2014/06/20 16:45:46  brouard
   and the contribution of each individual to the likelihood is simply    Summary: If 3 live state, convergence to period prevalence on same graph
   hPijx.    Author: Brouard
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.152  2014/06/18 17:54:09  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: open browser, use gnuplot on same dir than imach if not found in the path
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.151  2014/06/18 16:43:30  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.150  2014/06/18 16:42:35  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   software can be distributed freely for non commercial use. Latest version    Author: brouard
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.149  2014/06/18 15:51:14  brouard
      Summary: Some fixes in parameter files errors
 #include <math.h>    Author: Nicolas Brouard
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.148  2014/06/17 17:38:48  brouard
 #include <unistd.h>    Summary: Nothing new
     Author: Brouard
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    Just a new packaging for OS/X version 0.98nS
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.147  2014/06/16 10:33:11  brouard
 /*#define DEBUG*/    *** empty log message ***
   
 /*#define windows*/    Revision 1.146  2014/06/16 10:20:28  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Summary: Merge
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Author: Brouard
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Merge, before building revised version.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.145  2014/06/10 21:23:15  brouard
 #define NINTERVMAX 8    Summary: Debugging with valgrind
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Author: Nicolas Brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Lot of changes in order to output the results with some covariates
 #define MAXN 20000    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define YEARM 12. /* Number of months per year */    improve the code.
 #define AGESUP 130    No more memory valgrind error but a lot has to be done in order to
 #define AGEBASE 40    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
 int erreur; /* Error number */    the source code.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.143  2014/01/26 09:45:38  brouard
 int npar=NPARMAX;    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 int popbased=0;  
     Revision 1.142  2014/01/26 03:57:36  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.141  2014/01/26 02:42:01  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.140  2011/09/02 10:37:54  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Summary: times.h is ok with mingw32 now.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.139  2010/06/14 07:50:17  brouard
 FILE *ficreseij;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   char filerese[FILENAMELENGTH];    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.138  2010/04/30 18:19:40  brouard
  FILE  *ficresvpl;    *** empty log message ***
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.137  2010/04/29 18:11:38  brouard
 #define NR_END 1    (Module): Checking covariates for more complex models
 #define FREE_ARG char*    than V1+V2. A lot of change to be done. Unstable.
 #define FTOL 1.0e-10  
     Revision 1.136  2010/04/26 20:30:53  brouard
 #define NRANSI    (Module): merging some libgsl code. Fixing computation
 #define ITMAX 200    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 #define TOL 2.0e-4    Some cleaning of code and comments added.
   
 #define CGOLD 0.3819660    Revision 1.135  2009/10/29 15:33:14  brouard
 #define ZEPS 1.0e-10    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.134  2009/10/29 13:18:53  brouard
 #define GOLD 1.618034    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.132  2009/07/06 08:22:05  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Many tings
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.131  2009/06/20 16:22:47  brouard
 #define rint(a) floor(a+0.5)    Some dimensions resccaled
   
 static double sqrarg;    Revision 1.130  2009/05/26 06:44:34  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Max Covariate is now set to 20 instead of 8. A
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 int imx;  
 int stepm;    Revision 1.129  2007/08/31 13:49:27  lievre
 /* Stepm, step in month: minimum step interpolation*/    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
 int estepm;    Revision 1.128  2006/06/30 13:02:05  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Clarifications on computing e.j
   
 int m,nb;    Revision 1.127  2006/04/28 18:11:50  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Yes the sum of survivors was wrong since
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    imach-114 because nhstepm was no more computed in the age
 double **pmmij, ***probs, ***mobaverage;    loop. Now we define nhstepma in the age loop.
 double dateintmean=0;    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
 double *weight;    and then all the health expectancies with variances or standard
 int **s; /* Status */    deviation (needs data from the Hessian matrices) which slows the
 double *agedc, **covar, idx;    computation.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
 /**************** split *************************/    imach-114 because nhstepm was no more computed in the age
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    loop. Now we define nhstepma in the age loop.
 {    Version 0.98h
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
    l1 = strlen( path );                 /* length of path */    Forecasting file added.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.124  2006/03/22 17:13:53  lievre
    s = strrchr( path, '\\' );           /* find last / */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #else    The log-likelihood is printed in the log file
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.123  2006/03/20 10:52:43  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    * imach.c (Module): <title> changed, corresponds to .htm file
 #if     defined(__bsd__)                /* get current working directory */    name. <head> headers where missing.
       extern char       *getwd( );  
     * imach.c (Module): Weights can have a decimal point as for
       if ( getwd( dirc ) == NULL ) {    English (a comma might work with a correct LC_NUMERIC environment,
 #else    otherwise the weight is truncated).
       extern char       *getcwd( );    Modification of warning when the covariates values are not 0 or
     1.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Version 0.98g
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.122  2006/03/20 09:45:41  brouard
       }    (Module): Weights can have a decimal point as for
       strcpy( name, path );             /* we've got it */    English (a comma might work with a correct LC_NUMERIC environment,
    } else {                             /* strip direcotry from path */    otherwise the weight is truncated).
       s++;                              /* after this, the filename */    Modification of warning when the covariates values are not 0 or
       l2 = strlen( s );                 /* length of filename */    1.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Version 0.98g
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.121  2006/03/16 17:45:01  lievre
       dirc[l1-l2] = 0;                  /* add zero */    * imach.c (Module): Comments concerning covariates added
    }  
    l1 = strlen( dirc );                 /* length of directory */    * imach.c (Module): refinements in the computation of lli if
 #ifdef windows    status=-2 in order to have more reliable computation if stepm is
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    not 1 month. Version 0.98f
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.120  2006/03/16 15:10:38  lievre
 #endif    (Module): refinements in the computation of lli if
    s = strrchr( name, '.' );            /* find last / */    status=-2 in order to have more reliable computation if stepm is
    s++;    not 1 month. Version 0.98f
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.119  2006/03/15 17:42:26  brouard
    l2= strlen( s)+1;    (Module): Bug if status = -2, the loglikelihood was
    strncpy( finame, name, l1-l2);    computed as likelihood omitting the logarithm. Version O.98e
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.118  2006/03/14 18:20:07  brouard
 }    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 /******************************************/    (Module): Function pstamp added
     (Module): Version 0.98d
 void replace(char *s, char*t)  
 {    Revision 1.117  2006/03/14 17:16:22  brouard
   int i;    (Module): varevsij Comments added explaining the second
   int lg=20;    table of variances if popbased=1 .
   i=0;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   lg=strlen(t);    (Module): Function pstamp added
   for(i=0; i<= lg; i++) {    (Module): Version 0.98d
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.116  2006/03/06 10:29:27  brouard
   }    (Module): Variance-covariance wrong links and
 }    varian-covariance of ej. is needed (Saito).
   
 int nbocc(char *s, char occ)    Revision 1.115  2006/02/27 12:17:45  brouard
 {    (Module): One freematrix added in mlikeli! 0.98c
   int i,j=0;  
   int lg=20;    Revision 1.114  2006/02/26 12:57:58  brouard
   i=0;    (Module): Some improvements in processing parameter
   lg=strlen(s);    filename with strsep.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.113  2006/02/24 14:20:24  brouard
   }    (Module): Memory leaks checks with valgrind and:
   return j;    datafile was not closed, some imatrix were not freed and on matrix
 }    allocation too.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.112  2006/01/30 09:55:26  brouard
 {    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   int i,lg,j,p=0;  
   i=0;    Revision 1.111  2006/01/25 20:38:18  brouard
   for(j=0; j<=strlen(t)-1; j++) {    (Module): Lots of cleaning and bugs added (Gompertz)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Comments can be added in data file. Missing date values
   }    can be a simple dot '.'.
   
   lg=strlen(t);    Revision 1.110  2006/01/25 00:51:50  brouard
   for(j=0; j<p; j++) {    (Module): Lots of cleaning and bugs added (Gompertz)
     (u[j] = t[j]);  
   }    Revision 1.109  2006/01/24 19:37:15  brouard
      u[p]='\0';    (Module): Comments (lines starting with a #) are allowed in data.
   
    for(j=0; j<= lg; j++) {    Revision 1.108  2006/01/19 18:05:42  lievre
     if (j>=(p+1))(v[j-p-1] = t[j]);    Gnuplot problem appeared...
   }    To be fixed
 }  
     Revision 1.107  2006/01/19 16:20:37  brouard
 /********************** nrerror ********************/    Test existence of gnuplot in imach path
   
 void nrerror(char error_text[])    Revision 1.106  2006/01/19 13:24:36  brouard
 {    Some cleaning and links added in html output
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.105  2006/01/05 20:23:19  lievre
   exit(1);    *** empty log message ***
 }  
 /*********************** vector *******************/    Revision 1.104  2005/09/30 16:11:43  lievre
 double *vector(int nl, int nh)    (Module): sump fixed, loop imx fixed, and simplifications.
 {    (Module): If the status is missing at the last wave but we know
   double *v;    that the person is alive, then we can code his/her status as -2
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (instead of missing=-1 in earlier versions) and his/her
   if (!v) nrerror("allocation failure in vector");    contributions to the likelihood is 1 - Prob of dying from last
   return v-nl+NR_END;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 }    the healthy state at last known wave). Version is 0.98
   
 /************************ free vector ******************/    Revision 1.103  2005/09/30 15:54:49  lievre
 void free_vector(double*v, int nl, int nh)    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.102  2004/09/15 17:31:30  brouard
 }    Add the possibility to read data file including tab characters.
   
 /************************ivector *******************************/    Revision 1.101  2004/09/15 10:38:38  brouard
 int *ivector(long nl,long nh)    Fix on curr_time
 {  
   int *v;    Revision 1.100  2004/07/12 18:29:06  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Add version for Mac OS X. Just define UNIX in Makefile
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.99  2004/06/05 08:57:40  brouard
 }    *** empty log message ***
   
 /******************free ivector **************************/    Revision 1.98  2004/05/16 15:05:56  brouard
 void free_ivector(int *v, long nl, long nh)    New version 0.97 . First attempt to estimate force of mortality
 {    directly from the data i.e. without the need of knowing the health
   free((FREE_ARG)(v+nl-NR_END));    state at each age, but using a Gompertz model: log u =a + b*age .
 }    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 /******************* imatrix *******************************/    cross-longitudinal survey is different from the mortality estimated
 int **imatrix(long nrl, long nrh, long ncl, long nch)    from other sources like vital statistic data.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    The same imach parameter file can be used but the option for mle should be -3.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Agnès, who wrote this part of the code, tried to keep most of the
      former routines in order to include the new code within the former code.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    The output is very simple: only an estimate of the intercept and of
   if (!m) nrerror("allocation failure 1 in matrix()");    the slope with 95% confident intervals.
   m += NR_END;  
   m -= nrl;    Current limitations:
      A) Even if you enter covariates, i.e. with the
      model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   /* allocate rows and set pointers to them */    B) There is no computation of Life Expectancy nor Life Table.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.97  2004/02/20 13:25:42  lievre
   m[nrl] += NR_END;    Version 0.96d. Population forecasting command line is (temporarily)
   m[nrl] -= ncl;    suppressed.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   /* return pointer to array of pointers to rows */    rewritten within the same printf. Workaround: many printfs.
   return m;  
 }    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 /****************** free_imatrix *************************/    (Repository): Using imachwizard code to output a more meaningful covariance
 void free_imatrix(m,nrl,nrh,ncl,nch)    matrix (cov(a12,c31) instead of numbers.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.94  2003/06/27 13:00:02  brouard
      /* free an int matrix allocated by imatrix() */    Just cleaning
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.93  2003/06/25 16:33:55  brouard
   free((FREE_ARG) (m+nrl-NR_END));    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.92  2003/06/25 16:30:45  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    exist so I changed back to asctime which exists.
   double **m;  
     Revision 1.91  2003/06/25 15:30:29  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    * imach.c (Repository): Duplicated warning errors corrected.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Repository): Elapsed time after each iteration is now output. It
   m += NR_END;    helps to forecast when convergence will be reached. Elapsed time
   m -= nrl;    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.90  2003/06/24 12:34:15  brouard
   m[nrl] += NR_END;    (Module): Some bugs corrected for windows. Also, when
   m[nrl] -= ncl;    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /*************************free matrix ************************/    of the covariance matrix to be input.
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.88  2003/06/23 17:54:56  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    routine fileappend.
   double ***m;  
     Revision 1.85  2003/06/17 13:12:43  brouard
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    * imach.c (Repository): Check when date of death was earlier that
   if (!m) nrerror("allocation failure 1 in matrix()");    current date of interview. It may happen when the death was just
   m += NR_END;    prior to the death. In this case, dh was negative and likelihood
   m -= nrl;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    interview.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Repository): Because some people have very long ID (first column)
   m[nrl] += NR_END;    we changed int to long in num[] and we added a new lvector for
   m[nrl] -= ncl;    memory allocation. But we also truncated to 8 characters (left
     truncation)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Repository): No more line truncation errors.
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Revision 1.84  2003/06/13 21:44:43  brouard
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    * imach.c (Repository): Replace "freqsummary" at a correct
   m[nrl][ncl] += NR_END;    place. It differs from routine "prevalence" which may be called
   m[nrl][ncl] -= nll;    many times. Probs is memory consuming and must be used with
   for (j=ncl+1; j<=nch; j++)    parcimony.
     m[nrl][j]=m[nrl][j-1]+nlay;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
   for (i=nrl+1; i<=nrh; i++) {    Revision 1.83  2003/06/10 13:39:11  lievre
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    *** empty log message ***
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    Revision 1.82  2003/06/05 15:57:20  brouard
   }    Add log in  imach.c and  fullversion number is now printed.
   return m;  
 }  */
   /*
 /*************************free ma3x ************************/     Interpolated Markov Chain
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    Short summary of the programme:
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    This program computes Healthy Life Expectancies from
   free((FREE_ARG)(m+nrl-NR_END));    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /***************** f1dim *************************/    case of a health survey which is our main interest) -2- at least a
 extern int ncom;    second wave of interviews ("longitudinal") which measure each change
 extern double *pcom,*xicom;    (if any) in individual health status.  Health expectancies are
 extern double (*nrfunc)(double []);    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
 double f1dim(double x)    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
   int j;    probability to be observed in state j at the second wave
   double f;    conditional to be observed in state i at the first wave. Therefore
   double *xt;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
      'age' is age and 'sex' is a covariate. If you want to have a more
   xt=vector(1,ncom);    complex model than "constant and age", you should modify the program
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    where the markup *Covariates have to be included here again* invites
   f=(*nrfunc)(xt);    you to do it.  More covariates you add, slower the
   free_vector(xt,1,ncom);    convergence.
   return f;  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /*****************brent *************************/    identical for each individual. Also, if a individual missed an
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   int iter;  
   double a,b,d,etemp;    hPijx is the probability to be observed in state i at age x+h
   double fu,fv,fw,fx;    conditional to the observed state i at age x. The delay 'h' can be
   double ftemp;    split into an exact number (nh*stepm) of unobserved intermediate
   double p,q,r,tol1,tol2,u,v,w,x,xm;    states. This elementary transition (by month, quarter,
   double e=0.0;    semester or year) is modelled as a multinomial logistic.  The hPx
      matrix is simply the matrix product of nh*stepm elementary matrices
   a=(ax < cx ? ax : cx);    and the contribution of each individual to the likelihood is simply
   b=(ax > cx ? ax : cx);    hPijx.
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    Also this programme outputs the covariance matrix of the parameters but also
   for (iter=1;iter<=ITMAX;iter++) {    of the life expectancies. It also computes the period (stable) prevalence. 
     xm=0.5*(a+b);    
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/             Institut national d'études démographiques, Paris.
     printf(".");fflush(stdout);    This software have been partly granted by Euro-REVES, a concerted action
 #ifdef DEBUG    from the European Union.
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    It is copyrighted identically to a GNU software product, ie programme and
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    software can be distributed freely for non commercial use. Latest version
 #endif    can be accessed at http://euroreves.ined.fr/imach .
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       return fx;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     }    
     ftemp=fu;    **********************************************************************/
     if (fabs(e) > tol1) {  /*
       r=(x-w)*(fx-fv);    main
       q=(x-v)*(fx-fw);    read parameterfile
       p=(x-v)*q-(x-w)*r;    read datafile
       q=2.0*(q-r);    concatwav
       if (q > 0.0) p = -p;    freqsummary
       q=fabs(q);    if (mle >= 1)
       etemp=e;      mlikeli
       e=d;    print results files
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if mle==1 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));       computes hessian
       else {    read end of parameter file: agemin, agemax, bage, fage, estepm
         d=p/q;        begin-prev-date,...
         u=x+d;    open gnuplot file
         if (u-a < tol2 || b-u < tol2)    open html file
           d=SIGN(tol1,xm-x);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     } else {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      freexexit2 possible for memory heap.
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    h Pij x                         | pij_nom  ficrestpij
     fu=(*f)(u);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     if (fu <= fx) {         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       if (u >= x) a=x; else b=x;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
         } else {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
           if (u < x) a=u; else b=u;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
           if (fu <= fw || w == x) {     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
             v=w;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
             w=u;  
             fv=fw;    forecasting if prevfcast==1 prevforecast call prevalence()
             fw=fu;    health expectancies
           } else if (fu <= fv || v == x || v == w) {    Variance-covariance of DFLE
             v=u;    prevalence()
             fv=fu;     movingaverage()
           }    varevsij() 
         }    if popbased==1 varevsij(,popbased)
   }    total life expectancies
   nrerror("Too many iterations in brent");    Variance of period (stable) prevalence
   *xmin=x;   end
   return fx;  */
 }  
   
 /****************** mnbrak ***********************/  
    
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #include <math.h>
             double (*func)(double))  #include <stdio.h>
 {  #include <stdlib.h>
   double ulim,u,r,q, dum;  #include <string.h>
   double fu;  
    #ifdef _WIN32
   *fa=(*func)(*ax);  #include <io.h>
   *fb=(*func)(*bx);  #else
   if (*fb > *fa) {  #include <unistd.h>
     SHFT(dum,*ax,*bx,dum)  #endif
       SHFT(dum,*fb,*fa,dum)  
       }  #include <limits.h>
   *cx=(*bx)+GOLD*(*bx-*ax);  #include <sys/types.h>
   *fc=(*func)(*cx);  #include <sys/stat.h>
   while (*fb > *fc) {  #include <errno.h>
     r=(*bx-*ax)*(*fb-*fc);  /* extern int errno; */
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /* #ifdef LINUX */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  /* #include <time.h> */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /* #include "timeval.h" */
     if ((*bx-u)*(u-*cx) > 0.0) {  /* #else */
       fu=(*func)(u);  /* #include <sys/time.h> */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /* #endif */
       fu=(*func)(u);  
       if (fu < *fc) {  #include <time.h>
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  #ifdef GSL
           }  #include <gsl/gsl_errno.h>
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #include <gsl/gsl_multimin.h>
       u=ulim;  #endif
       fu=(*func)(u);  
     } else {  /* #include <libintl.h> */
       u=(*cx)+GOLD*(*cx-*bx);  /* #define _(String) gettext (String) */
       fu=(*func)(u);  
     }  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  #define GNUPLOTPROGRAM "gnuplot"
       }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /*************** linmin ************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int ncom;  
 double *pcom,*xicom;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 double (*nrfunc)(double []);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   double brent(double ax, double bx, double cx,  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
                double (*f)(double), double tol, double *xmin);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   double f1dim(double x);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define MAXN 20000
               double *fc, double (*func)(double));  #define YEARM 12. /**< Number of months per year */
   int j;  #define AGESUP 130
   double xx,xmin,bx,ax;  #define AGEBASE 40
   double fx,fb,fa;  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
    #ifdef _WIN32
   ncom=n;  #define DIRSEPARATOR '\\'
   pcom=vector(1,n);  #define CHARSEPARATOR "\\"
   xicom=vector(1,n);  #define ODIRSEPARATOR '/'
   nrfunc=func;  #else
   for (j=1;j<=n;j++) {  #define DIRSEPARATOR '/'
     pcom[j]=p[j];  #define CHARSEPARATOR "/"
     xicom[j]=xi[j];  #define ODIRSEPARATOR '\\'
   }  #endif
   ax=0.0;  
   xx=1.0;  /* $Id$ */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* $State$ */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char fullversion[]="$Revision$ $Date$"; 
 #endif  char strstart[80];
   for (j=1;j<=n;j++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     xi[j] *= xmin;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     p[j] += xi[j];  int nvar=0, nforce=0; /* Number of variables, number of forces */
   }  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   free_vector(xicom,1,n);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   free_vector(pcom,1,n);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 /*************** powell ************************/  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int cptcoveff=0; /* Total number of covariates to vary for printing results */
             double (*func)(double []))  int cptcov=0; /* Working variable */
 {  int npar=NPARMAX;
   void linmin(double p[], double xi[], int n, double *fret,  int nlstate=2; /* Number of live states */
               double (*func)(double []));  int ndeath=1; /* Number of dead states */
   int i,ibig,j;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double del,t,*pt,*ptt,*xit;  int popbased=0;
   double fp,fptt;  
   double *xits;  int *wav; /* Number of waves for this individuual 0 is possible */
   pt=vector(1,n);  int maxwav=0; /* Maxim number of waves */
   ptt=vector(1,n);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   xit=vector(1,n);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   xits=vector(1,n);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   *fret=(*func)(p);                     to the likelihood and the sum of weights (done by funcone)*/
   for (j=1;j<=n;j++) pt[j]=p[j];  int mle=1, weightopt=0;
   for (*iter=1;;++(*iter)) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     fp=(*fret);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     ibig=0;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     del=0.0;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double jmean=1; /* Mean space between 2 waves */
     for (i=1;i<=n;i++)  double **matprod2(); /* test */
       printf(" %d %.12f",i, p[i]);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     printf("\n");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     for (i=1;i<=n;i++) {  /*FILE *fic ; */ /* Used in readdata only */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       fptt=(*fret);  FILE *ficlog, *ficrespow;
 #ifdef DEBUG  int globpr=0; /* Global variable for printing or not */
       printf("fret=%lf \n",*fret);  double fretone; /* Only one call to likelihood */
 #endif  long ipmx=0; /* Number of contributions */
       printf("%d",i);fflush(stdout);  double sw; /* Sum of weights */
       linmin(p,xit,n,fret,func);  char filerespow[FILENAMELENGTH];
       if (fabs(fptt-(*fret)) > del) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         del=fabs(fptt-(*fret));  FILE *ficresilk;
         ibig=i;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       }  FILE *ficresprobmorprev;
 #ifdef DEBUG  FILE *fichtm, *fichtmcov; /* Html File */
       printf("%d %.12e",i,(*fret));  FILE *ficreseij;
       for (j=1;j<=n;j++) {  char filerese[FILENAMELENGTH];
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  FILE *ficresstdeij;
         printf(" x(%d)=%.12e",j,xit[j]);  char fileresstde[FILENAMELENGTH];
       }  FILE *ficrescveij;
       for(j=1;j<=n;j++)  char filerescve[FILENAMELENGTH];
         printf(" p=%.12e",p[j]);  FILE  *ficresvij;
       printf("\n");  char fileresv[FILENAMELENGTH];
 #endif  FILE  *ficresvpl;
     }  char fileresvpl[FILENAMELENGTH];
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  char title[MAXLINE];
 #ifdef DEBUG  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       int k[2],l;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       k[0]=1;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       k[1]=-1;  char command[FILENAMELENGTH];
       printf("Max: %.12e",(*func)(p));  int  outcmd=0;
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       printf("\n");  
       for(l=0;l<=1;l++) {  char filelog[FILENAMELENGTH]; /* Log file */
         for (j=1;j<=n;j++) {  char filerest[FILENAMELENGTH];
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  char fileregp[FILENAMELENGTH];
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char popfile[FILENAMELENGTH];
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       }  
 #endif  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   /* struct timezone tzp; */
   /* extern int gettimeofday(); */
       free_vector(xit,1,n);  struct tm tml, *gmtime(), *localtime();
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  extern time_t time();
       free_vector(pt,1,n);  
       return;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     }  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  struct tm tm;
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  char strcurr[80], strfor[80];
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  char *endptr;
     }  long lval;
     fptt=(*func)(ptt);  double dval;
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #define NR_END 1
       if (t < 0.0) {  #define FREE_ARG char*
         linmin(p,xit,n,fret,func);  #define FTOL 1.0e-10
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  #define NRANSI 
           xi[j][n]=xit[j];  #define ITMAX 200 
         }  
 #ifdef DEBUG  #define TOL 2.0e-4 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  #define CGOLD 0.3819660 
           printf(" %.12e",xit[j]);  #define ZEPS 1.0e-10 
         printf("\n");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #endif  
       }  #define GOLD 1.618034 
     }  #define GLIMIT 100.0 
   }  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /**** Prevalence limit ****************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #define rint(a) floor(a+0.5)
      matrix by transitions matrix until convergence is reached */  
   static double sqrarg;
   int i, ii,j,k;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double min, max, maxmin, maxmax,sumnew=0.;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double **matprod2();  int agegomp= AGEGOMP;
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  int imx; 
   double agefin, delaymax=50 ; /* Max number of years to converge */  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  int estepm;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }  
   int m,nb;
    cov[1]=1.;  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  double **pmmij, ***probs;
     newm=savm;  double *ageexmed,*agecens;
     /* Covariates have to be included here again */  double dateintmean=0;
      cov[2]=agefin;  
    double *weight;
       for (k=1; k<=cptcovn;k++) {  int **s; /* Status */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double *agedc;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       }                    * covar=matrix(0,NCOVMAX,1,n); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       for (k=1; k<=cptcovprod;k++)  double  idx; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int *Ndum; /** Freq of modality (tricode */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  double *lsurv, *lpop, *tpop;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     savm=oldm;  double ftolhess; /**< Tolerance for computing hessian */
     oldm=newm;  
     maxmax=0.;  /**************** split *************************/
     for(j=1;j<=nlstate;j++){  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       min=1.;  {
       max=0.;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       for(i=1; i<=nlstate; i++) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         sumnew=0;    */ 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    char  *ss;                            /* pointer */
         prlim[i][j]= newm[i][j]/(1-sumnew);    int   l1, l2;                         /* length counters */
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    l1 = strlen(path );                   /* length of path */
       }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       maxmin=max-min;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       maxmax=FMAX(maxmax,maxmin);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     }      strcpy( name, path );               /* we got the fullname name because no directory */
     if(maxmax < ftolpl){      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       return prlim;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     }      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /*************** transition probabilities ***************/      }
       /* got dirc from getcwd*/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   double s1, s2;      ss++;                               /* after this, the filename */
   /*double t34;*/      l2 = strlen( ss );                  /* length of filename */
   int i,j,j1, nc, ii, jj;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
     for(i=1; i<= nlstate; i++){      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for(j=1; j<i;j++){      dirc[l1-l2] = 0;                    /* add zero */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      printf(" DIRC2 = %s \n",dirc);
         /*s2 += param[i][j][nc]*cov[nc];*/    }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* We add a separator at the end of dirc if not exists */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    l1 = strlen( dirc );                  /* length of directory */
       }    if( dirc[l1-1] != DIRSEPARATOR ){
       ps[i][j]=s2;      dirc[l1] =  DIRSEPARATOR;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      dirc[l1+1] = 0; 
     }      printf(" DIRC3 = %s \n",dirc);
     for(j=i+1; j<=nlstate+ndeath;j++){    }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    ss = strrchr( name, '.' );            /* find last / */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if (ss >0){
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      ss++;
       }      strcpy(ext,ss);                     /* save extension */
       ps[i][j]=s2;      l1= strlen( name);
     }      l2= strlen(ss)+1;
   }      strncpy( finame, name, l1-l2);
     /*ps[3][2]=1;*/      finame[l1-l2]= 0;
     }
   for(i=1; i<= nlstate; i++){  
      s1=0;    return( 0 );                          /* we're done */
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  /******************************************/
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  void replace_back_to_slash(char *s, char*t)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     for(j=i+1; j<=nlstate+ndeath; j++)    int i;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    int lg=0;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    i=0;
   } /* end i */    lg=strlen(t);
     for(i=0; i<= lg; i++) {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      (s[i] = t[i]);
     for(jj=1; jj<= nlstate+ndeath; jj++){      if (t[i]== '\\') s[i]='/';
       ps[ii][jj]=0;    }
       ps[ii][ii]=1;  }
     }  
   }  char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    s=out;
     for(jj=1; jj<= nlstate+ndeath; jj++){    while (*in != '\0'){
      printf("%lf ",ps[ii][jj]);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
    }        in++;
     printf("\n ");      }
     }      *out++ = *in++;
     printf("\n ");printf("%lf ",cov[2]);*/    }
 /*    *out='\0';
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    return s;
   goto end;*/  }
     return ps;  
 }  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
 /**************** Product of 2 matrices ******************/    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
        and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)       gives blocc="abcdef2ghi" and alocc="j".
 {       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    char *s, *t;
   /* in, b, out are matrice of pointers which should have been initialized    t=in;s=in;
      before: only the contents of out is modified. The function returns    while ((*in != occ) && (*in != '\0')){
      a pointer to pointers identical to out */      *alocc++ = *in++;
   long i, j, k;    }
   for(i=nrl; i<= nrh; i++)    if( *in == occ){
     for(k=ncolol; k<=ncoloh; k++)      *(alocc)='\0';
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      s=++in;
         out[i][k] +=in[i][j]*b[j][k];    }
    
   return out;    if (s == t) {/* occ not found */
 }      *(alocc-(in-s))='\0';
       in=s;
     }
 /************* Higher Matrix Product ***************/    while ( *in != '\0'){
       *blocc++ = *in++;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    }
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    *blocc='\0';
      duration (i.e. until    return t;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  char *cutv(char *blocc, char *alocc, char *in, char occ)
      (typically every 2 years instead of every month which is too big).  {
      Model is determined by parameters x and covariates have to be    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
      included manually here.       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
      */       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
   int i, j, d, h, k;    char *s, *t;
   double **out, cov[NCOVMAX];    t=in;s=in;
   double **newm;    while (*in != '\0'){
       while( *in == occ){
   /* Hstepm could be zero and should return the unit matrix */        *blocc++ = *in++;
   for (i=1;i<=nlstate+ndeath;i++)        s=in;
     for (j=1;j<=nlstate+ndeath;j++){      }
       oldm[i][j]=(i==j ? 1.0 : 0.0);      *blocc++ = *in++;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    }
     }    if (s == t) /* occ not found */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      *(blocc-(in-s))='\0';
   for(h=1; h <=nhstepm; h++){    else
     for(d=1; d <=hstepm; d++){      *(blocc-(in-s)-1)='\0';
       newm=savm;    in=s;
       /* Covariates have to be included here again */    while ( *in != '\0'){
       cov[1]=1.;      *alocc++ = *in++;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)    *alocc='\0';
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return s;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   int nbocc(char *s, char occ)
   {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    int i,j=0;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    int lg=20;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    i=0;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    lg=strlen(s);
       savm=oldm;    for(i=0; i<= lg; i++) {
       oldm=newm;    if  (s[i] == occ ) j++;
     }    }
     for(i=1; i<=nlstate+ndeath; i++)    return j;
       for(j=1;j<=nlstate+ndeath;j++) {  }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /* void cutv(char *u,char *v, char*t, char occ) */
          */  /* { */
       }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   } /* end h */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   return po;  /*      gives u="abcdef2ghi" and v="j" *\/ */
 }  /*   int i,lg,j,p=0; */
   /*   i=0; */
   /*   lg=strlen(t); */
 /*************** log-likelihood *************/  /*   for(j=0; j<=lg-1; j++) { */
 double func( double *x)  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 {  /*   } */
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  /*   for(j=0; j<p; j++) { */
   double **out;  /*     (u[j] = t[j]); */
   double sw; /* Sum of weights */  /*   } */
   double lli; /* Individual log likelihood */  /*      u[p]='\0'; */
   long ipmx;  
   /*extern weight */  /*    for(j=0; j<= lg; j++) { */
   /* We are differentiating ll according to initial status */  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*   } */
   /*for(i=1;i<imx;i++)  /* } */
     printf(" %d\n",s[4][i]);  
   */  #ifdef _WIN32
   cov[1]=1.;  char * strsep(char **pp, const char *delim)
   {
   for(k=1; k<=nlstate; k++) ll[k]=0.;    char *p, *q;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){           
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    if ((p = *pp) == NULL)
     for(mi=1; mi<= wav[i]-1; mi++){      return 0;
       for (ii=1;ii<=nlstate+ndeath;ii++)    if ((q = strpbrk (p, delim)) != NULL)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    {
       for(d=0; d<dh[mi][i]; d++){      *pp = q + 1;
         newm=savm;      *q = '\0';
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    }
         for (kk=1; kk<=cptcovage;kk++) {    else
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      *pp = 0;
         }    return p;
          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  /********************** nrerror ********************/
         oldm=newm;  
          void nrerror(char error_text[])
          {
       } /* end mult */    fprintf(stderr,"ERREUR ...\n");
          fprintf(stderr,"%s\n",error_text);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    exit(EXIT_FAILURE);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  }
       ipmx +=1;  /*********************** vector *******************/
       sw += weight[i];  double *vector(int nl, int nh)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  {
     } /* end of wave */    double *v;
   } /* end of individual */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    return v-nl+NR_END;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
     free((FREE_ARG)(v+nl-NR_END));
 /*********** Maximum Likelihood Estimation ***************/  }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   int i,j, iter;  {
   double **xi,*delti;    int *v;
   double fret;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   xi=matrix(1,npar,1,npar);    if (!v) nrerror("allocation failure in ivector");
   for (i=1;i<=npar;i++)    return v-nl+NR_END;
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  /******************free ivector **************************/
   powell(p,xi,npar,ftol,&iter,&fret,func);  void free_ivector(int *v, long nl, long nh)
   {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    free((FREE_ARG)(v+nl-NR_END));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  /************************lvector *******************************/
   long *lvector(long nl,long nh)
 /**** Computes Hessian and covariance matrix ***/  {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    long *v;
 {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double  **a,**y,*x,pd;    if (!v) nrerror("allocation failure in ivector");
   double **hess;    return v-nl+NR_END;
   int i, j,jk;  }
   int *indx;  
   /******************free lvector **************************/
   double hessii(double p[], double delta, int theta, double delti[]);  void free_lvector(long *v, long nl, long nh)
   double hessij(double p[], double delti[], int i, int j);  {
   void lubksb(double **a, int npar, int *indx, double b[]) ;    free((FREE_ARG)(v+nl-NR_END));
   void ludcmp(double **a, int npar, int *indx, double *d) ;  }
   
   hess=matrix(1,npar,1,npar);  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
   printf("\nCalculation of the hessian matrix. Wait...\n");       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (i=1;i<=npar;i++){  { 
     printf("%d",i);fflush(stdout);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    int **m; 
     /*printf(" %f ",p[i]);*/    
     /*printf(" %lf ",hess[i][i]);*/    /* allocate pointers to rows */ 
   }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      if (!m) nrerror("allocation failure 1 in matrix()"); 
   for (i=1;i<=npar;i++) {    m += NR_END; 
     for (j=1;j<=npar;j++)  {    m -= nrl; 
       if (j>i) {    
         printf(".%d%d",i,j);fflush(stdout);    
         hess[i][j]=hessij(p,delti,i,j);    /* allocate rows and set pointers to them */ 
         hess[j][i]=hess[i][j];        m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         /*printf(" %lf ",hess[i][j]);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       }    m[nrl] += NR_END; 
     }    m[nrl] -= ncl; 
   }    
   printf("\n");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    /* return pointer to array of pointers to rows */ 
      return m; 
   a=matrix(1,npar,1,npar);  } 
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /****************** free_imatrix *************************/
   indx=ivector(1,npar);  void free_imatrix(m,nrl,nrh,ncl,nch)
   for (i=1;i<=npar;i++)        int **m;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        long nch,ncl,nrh,nrl; 
   ludcmp(a,npar,indx,&pd);       /* free an int matrix allocated by imatrix() */ 
   { 
   for (j=1;j<=npar;j++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for (i=1;i<=npar;i++) x[i]=0;    free((FREE_ARG) (m+nrl-NR_END)); 
     x[j]=1;  } 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /******************* matrix *******************************/
       matcov[i][j]=x[i];  double **matrix(long nrl, long nrh, long ncl, long nch)
     }  {
   }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=npar;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("%.3e ",hess[i][j]);    m += NR_END;
     }    m -= nrl;
     printf("\n");  
   }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /* Recompute Inverse */    m[nrl] += NR_END;
   for (i=1;i<=npar;i++)    m[nrl] -= ncl;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
   /*  printf("\n#Hessian matrix recomputed#\n");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   for (j=1;j<=npar;j++) {  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     for (i=1;i<=npar;i++) x[i]=0;     */
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /*************************free matrix ************************/
       y[i][j]=x[i];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       printf("%.3e ",y[i][j]);  {
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     printf("\n");    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   */  
   /******************* ma3x *******************************/
   free_matrix(a,1,npar,1,npar);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   free_matrix(y,1,npar,1,npar);  {
   free_vector(x,1,npar);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   free_ivector(indx,1,npar);    double ***m;
   free_matrix(hess,1,npar,1,npar);  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int i;    m[nrl] += NR_END;
   int l=1, lmax=20;    m[nrl] -= ncl;
   double k1,k2;  
   double p2[NPARMAX+1];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double fx;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   int k=0,kmax=10;    m[nrl][ncl] += NR_END;
   double l1;    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
   fx=func(x);      m[nrl][j]=m[nrl][j-1]+nlay;
   for (i=1;i<=npar;i++) p2[i]=x[i];    
   for(l=0 ; l <=lmax; l++){    for (i=nrl+1; i<=nrh; i++) {
     l1=pow(10,l);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     delts=delt;      for (j=ncl+1; j<=nch; j++) 
     for(k=1 ; k <kmax; k=k+1){        m[i][j]=m[i][j-1]+nlay;
       delt = delta*(l1*k);    }
       p2[theta]=x[theta] +delt;    return m; 
       k1=func(p2)-fx;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       p2[theta]=x[theta]-delt;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       k2=func(p2)-fx;    */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        /*************************free ma3x ************************/
 #ifdef DEBUG  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    free((FREE_ARG)(m+nrl-NR_END));
         k=kmax;  }
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  /*************** function subdirf ***********/
         k=kmax; l=lmax*10.;  char *subdirf(char fileres[])
       }  {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    /* Caution optionfilefiname is hidden */
         delts=delt;    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
   }    return tmpout;
   delti[theta]=delts;  }
   return res;  
    /*************** function subdirf2 ***********/
 }  char *subdirf2(char fileres[], char *preop)
   {
 double hessij( double x[], double delti[], int thetai,int thetaj)    
 {    /* Caution optionfilefiname is hidden */
   int i;    strcpy(tmpout,optionfilefiname);
   int l=1, l1, lmax=20;    strcat(tmpout,"/");
   double k1,k2,k3,k4,res,fx;    strcat(tmpout,preop);
   double p2[NPARMAX+1];    strcat(tmpout,fileres);
   int k;    return tmpout;
   }
   fx=func(x);  
   for (k=1; k<=2; k++) {  /*************** function subdirf3 ***********/
     for (i=1;i<=npar;i++) p2[i]=x[i];  char *subdirf3(char fileres[], char *preop, char *preop2)
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    
     k1=func(p2)-fx;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
     p2[thetai]=x[thetai]+delti[thetai]/k;    strcat(tmpout,"/");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    strcat(tmpout,preop);
     k2=func(p2)-fx;    strcat(tmpout,preop2);
      strcat(tmpout,fileres);
     p2[thetai]=x[thetai]-delti[thetai]/k;    return tmpout;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k3=func(p2)-fx;  
    /***************** f1dim *************************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  extern int ncom; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  extern double *pcom,*xicom;
     k4=func(p2)-fx;  extern double (*nrfunc)(double []); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */   
 #ifdef DEBUG  double f1dim(double x) 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  { 
 #endif    int j; 
   }    double f;
   return res;    double *xt; 
 }   
     xt=vector(1,ncom); 
 /************** Inverse of matrix **************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 void ludcmp(double **a, int n, int *indx, double *d)    f=(*nrfunc)(xt); 
 {    free_vector(xt,1,ncom); 
   int i,imax,j,k;    return f; 
   double big,dum,sum,temp;  } 
   double *vv;  
    /*****************brent *************************/
   vv=vector(1,n);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   *d=1.0;  { 
   for (i=1;i<=n;i++) {    int iter; 
     big=0.0;    double a,b,d,etemp;
     for (j=1;j<=n;j++)    double fu=0,fv,fw,fx;
       if ((temp=fabs(a[i][j])) > big) big=temp;    double ftemp;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     vv[i]=1.0/big;    double e=0.0; 
   }   
   for (j=1;j<=n;j++) {    a=(ax < cx ? ax : cx); 
     for (i=1;i<j;i++) {    b=(ax > cx ? ax : cx); 
       sum=a[i][j];    x=w=v=bx; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    fw=fv=fx=(*f)(x); 
       a[i][j]=sum;    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     big=0.0;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (i=j;i<=n;i++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       sum=a[i][j];      printf(".");fflush(stdout);
       for (k=1;k<j;k++)      fprintf(ficlog,".");fflush(ficlog);
         sum -= a[i][k]*a[k][j];  #ifdef DEBUG
       a[i][j]=sum;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       if ( (dum=vv[i]*fabs(sum)) >= big) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         big=dum;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         imax=i;  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
     if (j != imax) {        return fx; 
       for (k=1;k<=n;k++) {      } 
         dum=a[imax][k];      ftemp=fu;
         a[imax][k]=a[j][k];      if (fabs(e) > tol1) { 
         a[j][k]=dum;        r=(x-w)*(fx-fv); 
       }        q=(x-v)*(fx-fw); 
       *d = -(*d);        p=(x-v)*q-(x-w)*r; 
       vv[imax]=vv[j];        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
     indx[j]=imax;        q=fabs(q); 
     if (a[j][j] == 0.0) a[j][j]=TINY;        etemp=e; 
     if (j != n) {        e=d; 
       dum=1.0/(a[j][j]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }        else { 
   }          d=p/q; 
   free_vector(vv,1,n);  /* Doesn't work */          u=x+d; 
 ;          if (u-a < tol2 || b-u < tol2) 
 }            d=SIGN(tol1,xm-x); 
         } 
 void lubksb(double **a, int n, int *indx, double b[])      } else { 
 {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int i,ii=0,ip,j;      } 
   double sum;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
        fu=(*f)(u); 
   for (i=1;i<=n;i++) {      if (fu <= fx) { 
     ip=indx[i];        if (u >= x) a=x; else b=x; 
     sum=b[ip];        SHFT(v,w,x,u) 
     b[ip]=b[i];          SHFT(fv,fw,fx,fu) 
     if (ii)          } else { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            if (u < x) a=u; else b=u; 
     else if (sum) ii=i;            if (fu <= fw || w == x) { 
     b[i]=sum;              v=w; 
   }              w=u; 
   for (i=n;i>=1;i--) {              fv=fw; 
     sum=b[i];              fw=fu; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            } else if (fu <= fv || v == x || v == w) { 
     b[i]=sum/a[i][i];              v=u; 
   }              fv=fu; 
 }            } 
           } 
 /************ Frequencies ********************/    } 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    nrerror("Too many iterations in brent"); 
 {  /* Some frequencies */    *xmin=x; 
      return fx; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  } 
   double ***freq; /* Frequencies */  
   double *pp;  /****************** mnbrak ***********************/
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   char fileresp[FILENAMELENGTH];              double (*func)(double)) 
    { 
   pp=vector(1,nlstate);    double ulim,u,r,q, dum;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double fu; 
   strcpy(fileresp,"p");   
   strcat(fileresp,fileres);    *fa=(*func)(*ax); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    *fb=(*func)(*bx); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    if (*fb > *fa) { 
     exit(0);      SHFT(dum,*ax,*bx,dum) 
   }        SHFT(dum,*fb,*fa,dum) 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } 
   j1=0;    *cx=(*bx)+GOLD*(*bx-*ax); 
      *fc=(*func)(*cx); 
   j=cptcoveff;    while (*fb > *fc) { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      r=(*bx-*ax)*(*fb-*fc); 
        q=(*bx-*cx)*(*fb-*fa); 
   for(k1=1; k1<=j;k1++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(i1=1; i1<=ncodemax[k1];i1++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       j1++;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      if ((*bx-u)*(u-*cx) > 0.0) { 
         scanf("%d", i);*/        fu=(*func)(u); 
       for (i=-1; i<=nlstate+ndeath; i++)        } else if ((*cx-u)*(u-ulim) > 0.0) { 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          fu=(*func)(u); 
           for(m=agemin; m <= agemax+3; m++)        if (fu < *fc) { 
             freq[i][jk][m]=0;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                  SHFT(*fb,*fc,fu,(*func)(u)) 
       dateintsum=0;            } 
       k2cpt=0;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (i=1; i<=imx; i++) {        u=ulim; 
         bool=1;        fu=(*func)(u); 
         if  (cptcovn>0) {      } else { 
           for (z1=1; z1<=cptcoveff; z1++)        u=(*cx)+GOLD*(*cx-*bx); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        fu=(*func)(u); 
               bool=0;      } 
         }      SHFT(*ax,*bx,*cx,u) 
         if (bool==1) {        SHFT(*fa,*fb,*fc,fu) 
           for(m=firstpass; m<=lastpass; m++){        } 
             k2=anint[m][i]+(mint[m][i]/12.);  } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /*************** linmin ************************/
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  int ncom; 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  double *pcom,*xicom;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  double (*nrfunc)(double []); 
               }   
                void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  { 
                 dateintsum=dateintsum+k2;    double brent(double ax, double bx, double cx, 
                 k2cpt++;                 double (*f)(double), double tol, double *xmin); 
               }    double f1dim(double x); 
             }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           }                double *fc, double (*func)(double)); 
         }    int j; 
       }    double xx,xmin,bx,ax; 
            double fx,fb,fa;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   
     ncom=n; 
       if  (cptcovn>0) {    pcom=vector(1,n); 
         fprintf(ficresp, "\n#********** Variable ");    xicom=vector(1,n); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    nrfunc=func; 
         fprintf(ficresp, "**********\n#");    for (j=1;j<=n;j++) { 
       }      pcom[j]=p[j]; 
       for(i=1; i<=nlstate;i++)      xicom[j]=xi[j]; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    } 
       fprintf(ficresp, "\n");    ax=0.0; 
          xx=1.0; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         if(i==(int)agemax+3)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
           printf("Total");  #ifdef DEBUG
         else    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           printf("Age %d", i);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(jk=1; jk <=nlstate ; jk++){  #endif
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for (j=1;j<=n;j++) { 
             pp[jk] += freq[jk][m][i];      xi[j] *= xmin; 
         }      p[j] += xi[j]; 
         for(jk=1; jk <=nlstate ; jk++){    } 
           for(m=-1, pos=0; m <=0 ; m++)    free_vector(xicom,1,n); 
             pos += freq[jk][m][i];    free_vector(pcom,1,n); 
           if(pp[jk]>=1.e-10)  } 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           else  char *asc_diff_time(long time_sec, char ascdiff[])
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
         }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
         for(jk=1; jk <=nlstate ; jk++){    sec_left = (time_sec) % (60*60*24);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    hours = (sec_left) / (60*60) ;
             pp[jk] += freq[jk][m][i];    sec_left = (sec_left) %(60*60);
         }    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
         for(jk=1,pos=0; jk <=nlstate ; jk++)    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
           pos += pp[jk];    return ascdiff;
         for(jk=1; jk <=nlstate ; jk++){  }
           if(pos>=1.e-5)  
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*************** powell ************************/
           else  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              double (*func)(double [])) 
           if( i <= (int) agemax){  { 
             if(pos>=1.e-5){    void linmin(double p[], double xi[], int n, double *fret, 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);                double (*func)(double [])); 
               probs[i][jk][j1]= pp[jk]/pos;    int i,ibig,j; 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double del,t,*pt,*ptt,*xit;
             }    double fp,fptt;
             else    double *xits;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    int niterf, itmp;
           }  
         }    pt=vector(1,n); 
            ptt=vector(1,n); 
         for(jk=-1; jk <=nlstate+ndeath; jk++)    xit=vector(1,n); 
           for(m=-1; m <=nlstate+ndeath; m++)    xits=vector(1,n); 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    *fret=(*func)(p); 
         if(i <= (int) agemax)    for (j=1;j<=n;j++) pt[j]=p[j]; 
           fprintf(ficresp,"\n");      rcurr_time = time(NULL);  
         printf("\n");    for (*iter=1;;++(*iter)) { 
       }      fp=(*fret); 
     }      ibig=0; 
   }      del=0.0; 
   dateintmean=dateintsum/k2cpt;      rlast_time=rcurr_time;
        /* (void) gettimeofday(&curr_time,&tzp); */
   fclose(ficresp);      rcurr_time = time(NULL);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      curr_time = *localtime(&rcurr_time);
   free_vector(pp,1,nlstate);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
        fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /* End of Freq */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 /************ Prevalence ********************/        fprintf(ficlog," %d %.12lf",i, p[i]);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        fprintf(ficrespow," %.12lf", p[i]);
 {  /* Some frequencies */      }
        printf("\n");
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      fprintf(ficlog,"\n");
   double ***freq; /* Frequencies */      fprintf(ficrespow,"\n");fflush(ficrespow);
   double *pp;      if(*iter <=3){
   double pos, k2;        tml = *localtime(&rcurr_time);
         strcpy(strcurr,asctime(&tml));
   pp=vector(1,nlstate);  /*       asctime_r(&tm,strcurr); */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        rforecast_time=rcurr_time; 
          itmp = strlen(strcurr);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   j1=0;          strcurr[itmp-1]='\0';
          printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   j=cptcoveff;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for(niterf=10;niterf<=30;niterf+=10){
            rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
  for(k1=1; k1<=j;k1++){          forecast_time = *localtime(&rforecast_time);
     for(i1=1; i1<=ncodemax[k1];i1++){  /*      asctime_r(&tmf,strfor); */
       j1++;          strcpy(strfor,asctime(&forecast_time));
            itmp = strlen(strfor);
       for (i=-1; i<=nlstate+ndeath; i++)            if(strfor[itmp-1]=='\n')
         for (jk=-1; jk<=nlstate+ndeath; jk++)            strfor[itmp-1]='\0';
           for(m=agemin; m <= agemax+3; m++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
             freq[i][jk][m]=0;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
              }
       for (i=1; i<=imx; i++) {      }
         bool=1;      for (i=1;i<=n;i++) { 
         if  (cptcovn>0) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           for (z1=1; z1<=cptcoveff; z1++)        fptt=(*fret); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  #ifdef DEBUG
               bool=0;        printf("fret=%lf \n",*fret);
         }        fprintf(ficlog,"fret=%lf \n",*fret);
         if (bool==1) {  #endif
           for(m=firstpass; m<=lastpass; m++){        printf("%d",i);fflush(stdout);
             k2=anint[m][i]+(mint[m][i]/12.);        fprintf(ficlog,"%d",i);fflush(ficlog);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        linmin(p,xit,n,fret,func); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        if (fabs(fptt-(*fret)) > del) { 
               if(agev[m][i]==1) agev[m][i]=agemax+2;          del=fabs(fptt-(*fret)); 
               if (m<lastpass)          ibig=i; 
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        } 
               else  #ifdef DEBUG
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        printf("%d %.12e",i,(*fret));
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        fprintf(ficlog,"%d %.12e",i,(*fret));
             }        for (j=1;j<=n;j++) {
           }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         }          printf(" x(%d)=%.12e",j,xit[j]);
       }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         for(i=(int)agemin; i <= (int)agemax+3; i++){        }
           for(jk=1; jk <=nlstate ; jk++){        for(j=1;j<=n;j++) {
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          printf(" p=%.12e",p[j]);
               pp[jk] += freq[jk][m][i];          fprintf(ficlog," p=%.12e",p[j]);
           }        }
           for(jk=1; jk <=nlstate ; jk++){        printf("\n");
             for(m=-1, pos=0; m <=0 ; m++)        fprintf(ficlog,"\n");
             pos += freq[jk][m][i];  #endif
         }      } 
              if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
          for(jk=1; jk <=nlstate ; jk++){  #ifdef DEBUG
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        int k[2],l;
              pp[jk] += freq[jk][m][i];        k[0]=1;
          }        k[1]=-1;
                  printf("Max: %.12e",(*func)(p));
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
          for(jk=1; jk <=nlstate ; jk++){                    printf(" %.12e",p[j]);
            if( i <= (int) agemax){          fprintf(ficlog," %.12e",p[j]);
              if(pos>=1.e-5){        }
                probs[i][jk][j1]= pp[jk]/pos;        printf("\n");
              }        fprintf(ficlog,"\n");
            }        for(l=0;l<=1;l++) {
          }          for (j=1;j<=n;j++) {
                      ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        }
   free_vector(pp,1,nlstate);  #endif
    
 }  /* End of Freq */  
         free_vector(xit,1,n); 
 /************* Waves Concatenation ***************/        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        free_vector(pt,1,n); 
 {        return; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      } 
      Death is a valid wave (if date is known).      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        ptt[j]=2.0*p[j]-pt[j]; 
      and mw[mi+1][i]. dh depends on stepm.        xit[j]=p[j]-pt[j]; 
      */        pt[j]=p[j]; 
       } 
   int i, mi, m;      fptt=(*func)(ptt); 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
      double sum=0., jmean=0.;*/        /* x1 f1=fp x2 f2=*fret x3 f3=fptt, xm fm */
         /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   int j, k=0,jk, ju, jl;        /* Let f"(x2) be the 2nd derivative equal everywhere. Then the parabolic through (x1,f1), (x2,f2) and (x3,f3)
   double sum=0.;           will reach at f3 = fm + h^2/2 f''m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   jmin=1e+5;        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
   jmax=-1;        /* Thus we compare delta(2h) with observed f1-f3 */
   jmean=0.;        /* or best gain on one ancient line 'del' with total gain f1-f2 = f1 - f2 - 'del' with del */ 
   for(i=1; i<=imx; i++){        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     mi=0;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
     m=firstpass;        t= t- del*SQR(fp-fptt);
     while(s[m][i] <= nlstate){        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
       if(s[m][i]>=1)        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         mw[++mi][i]=m;  #ifdef DEBUG
       if(m >=lastpass)        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         break;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       else        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         m++;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     }/* end while */        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     if (s[m][i] > nlstate){        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       mi++;     /* Death is another wave */  #endif
       /* if(mi==0)  never been interviewed correctly before death */        if (t < 0.0) { /* Then we use it for last direction */
          /* Only death is a correct wave */          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
       mw[mi][i]=m;          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
             xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
     wav[i]=mi;          }
     if(mi==0)          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
   }  
   #ifdef DEBUG
   for(i=1; i<=imx; i++){          for(j=1;j<=n;j++){
     for(mi=1; mi<wav[i];mi++){            printf(" %.12e",xit[j]);
       if (stepm <=0)            fprintf(ficlog," %.12e",xit[j]);
         dh[mi][i]=1;          }
       else{          printf("\n");
         if (s[mw[mi+1][i]][i] > nlstate) {          fprintf(ficlog,"\n");
           if (agedc[i] < 2*AGESUP) {  #endif
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        }
           if(j==0) j=1;  /* Survives at least one month after exam */      } 
           k=k+1;    } 
           if (j >= jmax) jmax=j;  } 
           if (j <= jmin) jmin=j;  
           sum=sum+j;  /**** Prevalence limit (stable or period prevalence)  ****************/
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         }  {
         else{    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       matrix by transitions matrix until convergence is reached */
           k=k+1;  
           if (j >= jmax) jmax=j;    int i, ii,j,k;
           else if (j <= jmin)jmin=j;    double min, max, maxmin, maxmax,sumnew=0.;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    /* double **matprod2(); */ /* test */
           sum=sum+j;    double **out, cov[NCOVMAX+1], **pmij();
         }    double **newm;
         jk= j/stepm;    double agefin, delaymax=50 ; /* Max number of years to converge */
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;    for (ii=1;ii<=nlstate+ndeath;ii++)
         if(jl <= -ju)      for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=jk;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         else      }
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)     cov[1]=1.;
           dh[mi][i]=1; /* At least one step */   
       }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
   jmean=sum/k;      /* Covariates have to be included here again */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      cov[2]=agefin;
  }      
 /*********** Tricode ****************************/      for (k=1; k<=cptcovn;k++) {
 void tricode(int *Tvar, int **nbcode, int imx)        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   int Ndum[20],ij=1, k, j, i;      }
   int cptcode=0;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   cptcoveff=0;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
        /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   for (k=0; k<19; k++) Ndum[k]=0;      
   for (k=1; k<=7; k++) ncodemax[k]=0;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for (i=1; i<=imx; i++) {      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       ij=(int)(covar[Tvar[j]][i]);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       Ndum[ij]++;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      
       if (ij > cptcode) cptcode=ij;      savm=oldm;
     }      oldm=newm;
       maxmax=0.;
     for (i=0; i<=cptcode; i++) {      for(j=1;j<=nlstate;j++){
       if(Ndum[i]!=0) ncodemax[j]++;        min=1.;
     }        max=0.;
     ij=1;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for (i=1; i<=ncodemax[j]; i++) {          prlim[i][j]= newm[i][j]/(1-sumnew);
       for (k=0; k<=19; k++) {          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         if (Ndum[k] != 0) {          max=FMAX(max,prlim[i][j]);
           nbcode[Tvar[j]][ij]=k;          min=FMIN(min,prlim[i][j]);
                  }
           ij++;        maxmin=max-min;
         }        maxmax=FMAX(maxmax,maxmin);
         if (ij > ncodemax[j]) break;      }
       }        if(maxmax < ftolpl){
     }        return prlim;
   }        }
     }
  for (k=0; k<19; k++) Ndum[k]=0;  }
   
  for (i=1; i<=ncovmodel-2; i++) {  /*************** transition probabilities ***************/ 
       ij=Tvar[i];  
       Ndum[ij]++;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     }  {
     /* According to parameters values stored in x and the covariate's values stored in cov,
  ij=1;       computes the probability to be observed in state j being in state i by appying the
  for (i=1; i<=10; i++) {       model to the ncovmodel covariates (including constant and age).
    if((Ndum[i]!=0) && (i<=ncovcol)){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
      Tvaraff[ij]=i;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
      ij++;       ncth covariate in the global vector x is given by the formula:
    }       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
  }       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     cptcoveff=ij-1;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 }       Outputs ps[i][j] the probability to be observed in j being in j according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 /*********** Health Expectancies ****************/    */
     double s1, lnpijopii;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    /*double t34;*/
     int i,j,j1, nc, ii, jj;
 {  
   /* Health expectancies */      for(i=1; i<= nlstate; i++){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        for(j=1; j<i;j++){
   double age, agelim, hf;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   double ***p3mat,***varhe;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   double **dnewm,**doldm;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   double *xp;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   double **gp, **gm;          }
   double ***gradg, ***trgradg;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   int theta;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        for(j=i+1; j<=nlstate+ndeath;j++){
   xp=vector(1,npar);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   dnewm=matrix(1,nlstate*2,1,npar);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   doldm=matrix(1,nlstate*2,1,nlstate*2);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
    /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   fprintf(ficreseij,"# Health expectancies\n");          }
   fprintf(ficreseij,"# Age");          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      
   fprintf(ficreseij,"\n");      for(i=1; i<= nlstate; i++){
         s1=0;
   if(estepm < stepm){        for(j=1; j<i; j++){
     printf ("Problem %d lower than %d\n",estepm, stepm);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   else  hstepm=estepm;          }
   /* We compute the life expectancy from trapezoids spaced every estepm months        for(j=i+1; j<=nlstate+ndeath; j++){
    * This is mainly to measure the difference between two models: for example          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
    * if stepm=24 months pijx are given only every 2 years and by summing them          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
    * we are calculating an estimate of the Life Expectancy assuming a linear        }
    * progression inbetween and thus overestimating or underestimating according        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
    * to the curvature of the survival function. If, for the same date, we        ps[i][i]=1./(s1+1.);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        /* Computing other pijs */
    * to compare the new estimate of Life expectancy with the same linear        for(j=1; j<i; j++)
    * hypothesis. A more precise result, taking into account a more precise          ps[i][j]= exp(ps[i][j])*ps[i][i];
    * curvature will be obtained if estepm is as small as stepm. */        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* For example we decided to compute the life expectancy with the smallest unit */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      } /* end i */
      nhstepm is the number of hstepm from age to agelim      
      nstepm is the number of stepm from age to agelin.      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
      Look at hpijx to understand the reason of that which relies in memory size        for(jj=1; jj<= nlstate+ndeath; jj++){
      and note for a fixed period like estepm months */          ps[ii][jj]=0;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          ps[ii][ii]=1;
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if      }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      
      results. So we changed our mind and took the option of the best precision.      
   */      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   agelim=AGESUP;      /*   } */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      /*   printf("\n "); */
     /* nhstepm age range expressed in number of stepm */      /* } */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      /* printf("\n ");printf("%lf ",cov[2]);*/
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      /*
     /* if (stepm >= YEARM) hstepm=1;*/        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        goto end;*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      return ps;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  }
     gp=matrix(0,nhstepm,1,nlstate*2);  
     gm=matrix(0,nhstepm,1,nlstate*2);  /**************** Product of 2 matrices ******************/
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
     /* Computing Variances of health expectancies */    int i, j, k;
     for(i=nrl; i<= nrh; i++)
      for(theta=1; theta <=npar; theta++){      for(k=ncolol; k<=ncoloh; k++){
       for(i=1; i<=npar; i++){        out[i][k]=0.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=ncl; j<=nch; j++)
       }          out[i][k] +=in[i][j]*b[j][k];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
      return out;
       cptj=0;  }
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){  
           cptj=cptj+1;  /************* Higher Matrix Product ***************/
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           }  {
         }    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
             age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             nhstepm*hstepm matrices. 
       for(i=1; i<=npar; i++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       (typically every 2 years instead of every month which is too big 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         for the memory).
             Model is determined by parameters x and covariates have to be 
       cptj=0;       included manually here. 
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){       */
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    int i, j, d, h, k;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double **out, cov[NCOVMAX+1];
           }    double **newm;
         }  
       }    /* Hstepm could be zero and should return the unit matrix */
          for (i=1;i<=nlstate+ndeath;i++)
          for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate*2; j++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm-1; h++){      }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
      }        newm=savm;
            /* Covariates have to be included here again */
 /* End theta */        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      for(h=0; h<=nhstepm-1; h++)        for (k=1; k<=cptcovage;k++)
       for(j=1; j<=nlstate*2;j++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(theta=1; theta <=npar; theta++)        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         trgradg[h][j][theta]=gradg[h][theta][j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   
      for(i=1;i<=nlstate*2;i++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for(j=1;j<=nlstate*2;j++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         varhe[i][j][(int)age] =0.;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(h=0;h<=nhstepm-1;h++){        savm=oldm;
       for(k=0;k<=nhstepm-1;k++){        oldm=newm;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      for(i=1; i<=nlstate+ndeath; i++)
         for(i=1;i<=nlstate*2;i++)        for(j=1;j<=nlstate+ndeath;j++) {
           for(j=1;j<=nlstate*2;j++)          po[i][j][h]=newm[i][j];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       }        }
     }      /*printf("h=%d ",h);*/
     } /* end h */
        /*     printf("\n H=%d \n",h); */
     /* Computing expectancies */    return po;
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  /*************** log-likelihood *************/
            double func( double *x)
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  {
     int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
     fprintf(ficreseij,"%3.0f",age );    double sw; /* Sum of weights */
     cptj=0;    double lli; /* Individual log likelihood */
     for(i=1; i<=nlstate;i++)    int s1, s2;
       for(j=1; j<=nlstate;j++){    double bbh, survp;
         cptj++;    long ipmx;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     fprintf(ficreseij,"\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
        /*for(i=1;i<imx;i++) 
     free_matrix(gm,0,nhstepm,1,nlstate*2);      printf(" %d\n",s[4][i]);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    cov[1]=1.;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   free_vector(xp,1,npar);    if(mle==1){
   free_matrix(dnewm,1,nlstate*2,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        /* Computes the values of the ncovmodel covariates of the model
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
 /************ Variance ******************/         */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 {          cov[2+k]=covar[Tvar[k]][i];
   /* Variance of health expectancies */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   double **newm;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   double **dnewm,**doldm;           has been calculated etc */
   int i, j, nhstepm, hstepm, h, nstepm ;        for(mi=1; mi<= wav[i]-1; mi++){
   int k, cptcode;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *xp;            for (j=1;j<=nlstate+ndeath;j++){
   double **gp, **gm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***gradg, ***trgradg;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;            }
   double age,agelim, hf;          for(d=0; d<dh[mi][i]; d++){
   int theta;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    fprintf(ficresvij,"# Covariances of life expectancies\n");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresvij,"# Age");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   for(i=1; i<=nlstate;i++)            }
     for(j=1; j<=nlstate;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresvij,"\n");            savm=oldm;
             oldm=newm;
   xp=vector(1,npar);          } /* end mult */
   dnewm=matrix(1,nlstate,1,npar);        
   doldm=matrix(1,nlstate,1,nlstate);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias at large stepm.
   if(estepm < stepm){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     printf ("Problem %d lower than %d\n",estepm, stepm);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   else  hstepm=estepm;             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   /* For example we decided to compute the life expectancy with the smallest unit */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.           * probability in order to take into account the bias as a fraction of the way
      nhstepm is the number of hstepm from age to agelim           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
      nstepm is the number of stepm from age to agelin.           * -stepm/2 to stepm/2 .
      Look at hpijx to understand the reason of that which relies in memory size           * For stepm=1 the results are the same as for previous versions of Imach.
      and note for a fixed period like k years */           * For stepm > 1 the results are less biased than in previous versions. 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the           */
      survival function given by stepm (the optimization length). Unfortunately it          s1=s[mw[mi][i]][i];
      means that if the survival funtion is printed only each two years of age and if          s2=s[mw[mi+1][i]][i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          bbh=(double)bh[mi][i]/(double)stepm; 
      results. So we changed our mind and took the option of the best precision.          /* bias bh is positive if real duration
   */           * is higher than the multiple of stepm and negative otherwise.
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           */
   agelim = AGESUP;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if( s2 > nlstate){ 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            /* i.e. if s2 is a death state and if the date of death is known 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */               then the contribution to the likelihood is the probability to 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               die between last step unit time and current  step unit time, 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);               which is also equal to probability to die before dh 
     gp=matrix(0,nhstepm,1,nlstate);               minus probability to die before dh-stepm . 
     gm=matrix(0,nhstepm,1,nlstate);               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
     for(theta=1; theta <=npar; theta++){          health state: the date of the interview describes the actual state
       for(i=1; i<=npar; i++){ /* Computes gradient */          and not the date of a change in health state. The former idea was
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          to consider that at each interview the state was recorded
       }          (healthy, disable or death) and IMaCh was corrected; but when we
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            introduced the exact date of death then we should have modified
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
       if (popbased==1) {          stepm. It is no more the probability to die between last interview
         for(i=1; i<=nlstate;i++)          and month of death but the probability to survive from last
           prlim[i][i]=probs[(int)age][i][ij];          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
            Jackson for correcting this bug.  Former versions increased
       for(j=1; j<= nlstate; j++){          mortality artificially. The bad side is that we add another loop
         for(h=0; h<=nhstepm; h++){          which slows down the processing. The difference can be up to 10%
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          lower mortality.
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            */
         }            lli=log(out[s1][s2] - savm[s1][s2]);
       }  
      
       for(i=1; i<=npar; i++) /* Computes gradient */          } else if  (s2==-2) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (j=1,survp=0. ; j<=nlstate; j++) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            /*survp += out[s1][j]; */
              lli= log(survp);
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)          
           prlim[i][i]=probs[(int)age][i][ij];          else if  (s2==-4) { 
       }            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<= nlstate; j++){            lli= log(survp); 
         for(h=0; h<=nhstepm; h++){          } 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          else if  (s2==-5) { 
         }            for (j=1,survp=0. ; j<=2; j++)  
       }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
       for(j=1; j<= nlstate; j++)          } 
         for(h=0; h<=nhstepm; h++){          
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          else{
         }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     } /* End theta */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
     for(h=0; h<=nhstepm; h++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(j=1; j<=nlstate;j++)          ipmx +=1;
         for(theta=1; theta <=npar; theta++)          sw += weight[i];
           trgradg[h][j][theta]=gradg[h][theta][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      } /* end of individual */
     for(i=1;i<=nlstate;i++)    }  else if(mle==2){
       for(j=1;j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         vareij[i][j][(int)age] =0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for(h=0;h<=nhstepm;h++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(k=0;k<=nhstepm;k++){            for (j=1;j<=nlstate+ndeath;j++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate;i++)            }
           for(j=1;j<=nlstate;j++)          for(d=0; d<=dh[mi][i]; d++){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficresvij,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate;j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            savm=oldm;
       }            oldm=newm;
     fprintf(ficresvij,"\n");          } /* end mult */
     free_matrix(gp,0,nhstepm,1,nlstate);        
     free_matrix(gm,0,nhstepm,1,nlstate);          s1=s[mw[mi][i]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          s2=s[mw[mi+1][i]][i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   } /* End age */          ipmx +=1;
            sw += weight[i];
   free_vector(xp,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(doldm,1,nlstate,1,npar);        } /* end of wave */
   free_matrix(dnewm,1,nlstate,1,nlstate);      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Variance of prevlim ******************/        for(mi=1; mi<= wav[i]-1; mi++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Variance of prevalence limit */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **newm;            }
   double **dnewm,**doldm;          for(d=0; d<dh[mi][i]; d++){
   int i, j, nhstepm, hstepm;            newm=savm;
   int k, cptcode;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double *gp, *gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **gradg, **trgradg;            }
   double age,agelim;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            oldm=newm;
   fprintf(ficresvpl,"# Age");          } /* end mult */
   for(i=1; i<=nlstate;i++)        
       fprintf(ficresvpl," %1d-%1d",i,i);          s1=s[mw[mi][i]][i];
   fprintf(ficresvpl,"\n");          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   xp=vector(1,npar);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   dnewm=matrix(1,nlstate,1,npar);          ipmx +=1;
   doldm=matrix(1,nlstate,1,nlstate);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   hstepm=1*YEARM; /* Every year of age */        } /* end of wave */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      } /* end of individual */
   agelim = AGESUP;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (stepm >= YEARM) hstepm=1;        for(mi=1; mi<= wav[i]-1; mi++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for (ii=1;ii<=nlstate+ndeath;ii++)
     gradg=matrix(1,npar,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     gp=vector(1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=vector(1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(theta=1; theta <=npar; theta++){          for(d=0; d<dh[mi][i]; d++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            newm=savm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1;i<=nlstate;i++)            }
         gp[i] = prlim[i][i];          
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++) /* Computes gradient */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            oldm=newm;
       for(i=1;i<=nlstate;i++)          } /* end mult */
         gm[i] = prlim[i][i];        
           s1=s[mw[mi][i]][i];
       for(i=1;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          if( s2 > nlstate){ 
     } /* End theta */            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
     trgradg =matrix(1,nlstate,1,npar);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
     for(j=1; j<=nlstate;j++)          ipmx +=1;
       for(theta=1; theta <=npar; theta++)          sw += weight[i];
         trgradg[j][theta]=gradg[theta][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=1;i<=nlstate;i++)        } /* end of wave */
       varpl[i][(int)age] =0.;      } /* end of individual */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficresvpl,"%.0f ",age );            for (j=1;j<=nlstate+ndeath;j++){
     for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresvpl,"\n");            }
     free_vector(gp,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
     free_vector(gm,1,nlstate);            newm=savm;
     free_matrix(gradg,1,npar,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_matrix(trgradg,1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   } /* End age */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   free_vector(xp,1,npar);          
   free_matrix(doldm,1,nlstate,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(dnewm,1,nlstate,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************ Variance of one-step probabilities  ******************/        
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   int i, j, i1, k1, j1, z1;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int k=0, cptcode;          ipmx +=1;
   double **dnewm,**doldm;          sw += weight[i];
   double *xp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *gp, *gm;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double **gradg, **trgradg;        } /* end of wave */
   double age,agelim, cov[NCOVMAX];      } /* end of individual */
   int theta;    } /* End of if */
   char fileresprob[FILENAMELENGTH];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   strcpy(fileresprob,"prob");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   strcat(fileresprob,fileres);    return -l;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprob);  
   }  /*************** log-likelihood *************/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  double funcone( double *x)
    {
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    /* Same as likeli but slower because of a lot of printf and if */
   fprintf(ficresprob,"# Age");    int i, ii, j, k, mi, d, kk;
   for(i=1; i<=nlstate;i++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for(j=1; j<=(nlstate+ndeath);j++)    double **out;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    double lli; /* Individual log likelihood */
     double llt;
     int s1, s2;
   fprintf(ficresprob,"\n");    double bbh, survp;
     /*extern weight */
     /* We are differentiating ll according to initial status */
   xp=vector(1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /*for(i=1;i<imx;i++) 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      printf(" %d\n",s[4][i]);
      */
   cov[1]=1;    cov[1]=1.;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for(k=1; k<=nlstate; k++) ll[k]=0.;
   j1=0;  
   for(k1=1; k1<=1;k1++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i1=1; i1<=ncodemax[k1];i1++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     j1++;      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
     if  (cptcovn>0) {          for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresprob, "\n#********** Variable ");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresprob, "**********\n#");          }
     }        for(d=0; d<dh[mi][i]; d++){
              newm=savm;
       for (age=bage; age<=fage; age ++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         cov[2]=age;          for (kk=1; kk<=cptcovage;kk++) {
         for (k=1; k<=cptcovn;k++) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }
                    /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (k=1; k<=cptcovprod;k++)          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                  savm=oldm;
         gradg=matrix(1,npar,1,9);          oldm=newm;
         trgradg=matrix(1,9,1,npar);        } /* end mult */
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
         for(theta=1; theta <=npar; theta++){        bbh=(double)bh[mi][i]/(double)stepm; 
           for(i=1; i<=npar; i++)        /* bias is positive if real duration
             xp[i] = x[i] + (i==theta ?delti[theta]:0);         * is higher than the multiple of stepm and negative otherwise.
                   */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                    lli=log(out[s1][s2] - savm[s1][s2]);
           k=0;        } else if  (s2==-2) {
           for(i=1; i<= (nlstate+ndeath); i++){          for (j=1,survp=0. ; j<=nlstate; j++) 
             for(j=1; j<=(nlstate+ndeath);j++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
               k=k+1;          lli= log(survp);
               gp[k]=pmmij[i][j];        }else if (mle==1){
             }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           }        } else if(mle==2){
                    lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           for(i=1; i<=npar; i++)        } else if(mle==3){  /* exponential inter-extrapolation */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            } else if (mle==4){  /* mle=4 no inter-extrapolation */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          lli=log(out[s1][s2]); /* Original formula */
           k=0;        } else{  /* mle=0 back to 1 */
           for(i=1; i<=(nlstate+ndeath); i++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             for(j=1; j<=(nlstate+ndeath);j++){          /*lli=log(out[s1][s2]); */ /* Original formula */
               k=k+1;        } /* End of if */
               gm[k]=pmmij[i][j];        ipmx +=1;
             }        sw += weight[i];
           }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        if(globpr){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         }   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(theta=1; theta <=npar; theta++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             trgradg[j][theta]=gradg[theta][j];            llt +=ll[k]*gipmx/gsw;
                    fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          fprintf(ficresilk," %10.6f\n", -llt);
                }
         pmij(pmmij,cov,ncovmodel,x,nlstate);      } /* end of wave */
            } /* end of individual */
         k=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(i=1; i<=(nlstate+ndeath); i++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(j=1; j<=(nlstate+ndeath);j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             k=k+1;    if(globpr==0){ /* First time we count the contributions and weights */
             gm[k]=pmmij[i][j];      gipmx=ipmx;
           }      gsw=sw;
         }    }
          return -l;
      /*printf("\n%d ",(int)age);  }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         fprintf(ficresprob,"\n%d ",(int)age);  {
     /* This routine should help understanding what is done with 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)       the selection of individuals/waves and
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));       to check the exact contribution to the likelihood.
         Plotting could be done.
       }     */
     }    int k;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    if(*globpri !=0){ /* Just counts and sums, no printings */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      strcpy(fileresilk,"ilk"); 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      strcat(fileresilk,fileres);
   }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   free_vector(xp,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
   fclose(ficresprob);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
 }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 /******************* Printing html file ***********/      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      for(k=1; k<=nlstate; k++) 
  int lastpass, int stepm, int weightopt, char model[],\        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    }
  char version[], int popforecast, int estepm ){  
   int jj1, k1, i1, cpt;    *fretone=(*funcone)(p);
   FILE *fichtm;    if(*globpri !=0){
   /*char optionfilehtm[FILENAMELENGTH];*/      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   strcpy(optionfilehtm,optionfile);      fflush(fichtm); 
   strcat(optionfilehtm,".htm");    } 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    return;
     printf("Problem with %s \n",optionfilehtm), exit(0);  }
   }  
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  /*********** Maximum Likelihood Estimation ***************/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 Total number of observations=%d <br>\n  {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int i,j, iter;
 <hr  size=\"2\" color=\"#EC5E5E\">    double **xi;
  <ul><li>Outputs files<br>\n    double fret;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double fretone; /* Only one call to likelihood */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    /*  char filerespow[FILENAMELENGTH];*/
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    xi=matrix(1,npar,1,npar);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    for (i=1;i<=npar;i++)
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      for (j=1;j<=npar;j++)
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
  fprintf(fichtm,"\n    strcpy(filerespow,"pow"); 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    strcat(filerespow,fileres);
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    if((ficrespow=fopen(filerespow,"w"))==NULL) {
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      printf("Problem with resultfile: %s\n", filerespow);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
  if(popforecast==1) fprintf(fichtm,"\n    for (i=1;i<=nlstate;i++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      for(j=1;j<=nlstate+ndeath;j++)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         <br>",fileres,fileres,fileres,fileres);    fprintf(ficrespow,"\n");
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    powell(p,xi,npar,ftol,&iter,&fret,func);
 fprintf(fichtm," <li>Graphs</li><p>");  
     free_matrix(xi,1,npar,1,npar);
  m=cptcoveff;    fclose(ficrespow);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  jj1=0;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){  }
        jj1++;  
        if (cptcovn > 0) {  /**** Computes Hessian and covariance matrix ***/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
          for (cpt=1; cpt<=cptcoveff;cpt++)  {
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double  **a,**y,*x,pd;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double **hess;
        }    int i, j,jk;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    int *indx;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
        for(cpt=1; cpt<nlstate;cpt++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    void lubksb(double **a, int npar, int *indx, double b[]) ;
        }    void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(cpt=1; cpt<=nlstate;cpt++) {    double gompertz(double p[]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    hess=matrix(1,npar,1,npar);
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      printf("\nCalculation of the hessian matrix. Wait...\n");
      }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for(cpt=1; cpt<=nlstate;cpt++) {    for (i=1;i<=npar;i++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      printf("%d",i);fflush(stdout);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      fprintf(ficlog,"%d",i);fflush(ficlog);
      }     
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 health expectancies in states (1) and (2): e%s%d.gif<br>      
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      /*  printf(" %f ",p[i]);
 fprintf(fichtm,"\n</body>");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
    }    }
    }    
 fclose(fichtm);    for (i=1;i<=npar;i++) {
 }      for (j=1;j<=npar;j++)  {
         if (j>i) { 
 /******************* Gnuplot file **************/          printf(".%d%d",i,j);fflush(stdout);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          
           hess[j][i]=hess[i][j];    
   strcpy(optionfilegnuplot,optionfilefiname);          /*printf(" %lf ",hess[i][j]);*/
   strcat(optionfilegnuplot,".gp.txt");        }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      }
     printf("Problem with file %s",optionfilegnuplot);    }
   }    printf("\n");
     fprintf(ficlog,"\n");
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 #endif    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 m=pow(2,cptcoveff);    
      a=matrix(1,npar,1,npar);
  /* 1eme*/    y=matrix(1,npar,1,npar);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    x=vector(1,npar);
    for (k1=1; k1<= m ; k1 ++) {    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (j=1;j<=npar;j++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      lubksb(a,npar,indx,x);
     for (i=1; i<= nlstate ; i ++) {      for (i=1;i<=npar;i++){ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        matcov[i][j]=x[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }    }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    printf("\n#Hessian matrix#\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"\n#Hessian matrix#\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=1;i<=npar;i++) { 
 }        for (j=1;j<=npar;j++) { 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }
    }      printf("\n");
   }      fprintf(ficlog,"\n");
   /*2 eme*/    }
   
   for (k1=1; k1<= m ; k1 ++) {    /* Recompute Inverse */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    for (i=1;i<=npar;i++)
          for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     for (i=1; i<= nlstate+1 ; i ++) {    ludcmp(a,npar,indx,&pd);
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /*  printf("\n#Hessian matrix recomputed#\n");
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (j=1;j<=npar;j++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1;i<=npar;i++) x[i]=0;
 }        x[j]=1;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      lubksb(a,npar,indx,x);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for (i=1;i<=npar;i++){ 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        y[i][j]=x[i];
       for (j=1; j<= nlstate+1 ; j ++) {        printf("%.3e ",y[i][j]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficlog,"%.3e ",y[i][j]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }        printf("\n");
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficlog,"\n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(a,1,npar,1,npar);
 }      free_matrix(y,1,npar,1,npar);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    free_vector(x,1,npar);
       else fprintf(ficgp,"\" t\"\" w l 0,");    free_ivector(indx,1,npar);
     }    free_matrix(hess,1,npar,1,npar);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }  
    }
   /*3eme*/  
   /*************** hessian matrix ****************/
   for (k1=1; k1<= m ; k1 ++) {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for (cpt=1; cpt<= nlstate ; cpt ++) {  {
       k=2+nlstate*(2*cpt-2);    int i;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    int l=1, lmax=20;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double k1,k2;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double p2[MAXPARM+1]; /* identical to x */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double res;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double fx;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    int k=0,kmax=10;
     double l1;
 */  
       for (i=1; i< nlstate ; i ++) {    fx=func(x);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       }      l1=pow(10,l);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      delts=delt;
     }      for(k=1 ; k <kmax; k=k+1){
     }        delt = delta*(l1*k);
          p2[theta]=x[theta] +delt;
   /* CV preval stat */        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     for (k1=1; k1<= m ; k1 ++) {        p2[theta]=x[theta]-delt;
     for (cpt=1; cpt<nlstate ; cpt ++) {        k2=func(p2)-fx;
       k=3;        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
       for (i=1; i< nlstate ; i ++)  #ifdef DEBUGHESS
         fprintf(ficgp,"+$%d",k+i+1);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        #endif
       l=3+(nlstate+ndeath)*cpt;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for (i=1; i< nlstate ; i ++) {          k=kmax;
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     }          delts=delt;
   }          }
        }
   /* proba elementaires */    }
    for(i=1,jk=1; i <=nlstate; i++){    delti[theta]=delts;
     for(k=1; k <=(nlstate+ndeath); k++){    return res; 
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){  }
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           jk++;  {
           fprintf(ficgp,"\n");    int i;
         }    int l=1, l1, lmax=20;
       }    double k1,k2,k3,k4,res,fx;
     }    double p2[MAXPARM+1];
     }    int k;
   
     for(jk=1; jk <=m; jk++) {    fx=func(x);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    for (k=1; k<=2; k++) {
    i=1;      for (i=1;i<=npar;i++) p2[i]=x[i];
    for(k2=1; k2<=nlstate; k2++) {      p2[thetai]=x[thetai]+delti[thetai]/k;
      k3=i;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      for(k=1; k<=(nlstate+ndeath); k++) {      k1=func(p2)-fx;
        if (k != k2){    
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      p2[thetai]=x[thetai]+delti[thetai]/k;
 ij=1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(j=3; j <=ncovmodel; j++) {      k2=func(p2)-fx;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      p2[thetai]=x[thetai]-delti[thetai]/k;
             ij++;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           }      k3=func(p2)-fx;
           else    
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      p2[thetai]=x[thetai]-delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           fprintf(ficgp,")/(1");      k4=func(p2)-fx;
              res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         for(k1=1; k1 <=nlstate; k1++){    #ifdef DEBUG
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 ij=1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for(j=3; j <=ncovmodel; j++){  #endif
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    return res;
             ij++;  }
           }  
           else  /************** Inverse of matrix **************/
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  void ludcmp(double **a, int n, int *indx, double *d) 
           }  { 
           fprintf(ficgp,")");    int i,imax,j,k; 
         }    double big,dum,sum,temp; 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double *vv; 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   
         i=i+ncovmodel;    vv=vector(1,n); 
        }    *d=1.0; 
      }    for (i=1;i<=n;i++) { 
    }      big=0.0; 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      for (j=1;j<=n;j++) 
    }        if ((temp=fabs(a[i][j])) > big) big=temp; 
          if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   fclose(ficgp);      vv[i]=1.0/big; 
 }  /* end gnuplot */    } 
     for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
 /*************** Moving average **************/        sum=a[i][j]; 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   int i, cpt, cptcod;      } 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      big=0.0; 
       for (i=1; i<=nlstate;i++)      for (i=j;i<=n;i++) { 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        sum=a[i][j]; 
           mobaverage[(int)agedeb][i][cptcod]=0.;        for (k=1;k<j;k++) 
              sum -= a[i][k]*a[k][j]; 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        a[i][j]=sum; 
       for (i=1; i<=nlstate;i++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          big=dum; 
           for (cpt=0;cpt<=4;cpt++){          imax=i; 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        } 
           }      } 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      if (j != imax) { 
         }        for (k=1;k<=n;k++) { 
       }          dum=a[imax][k]; 
     }          a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
 }        } 
         *d = -(*d); 
         vv[imax]=vv[j]; 
 /************** Forecasting ******************/      } 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      if (j != n) { 
   int *popage;        dum=1.0/(a[j][j]); 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double *popeffectif,*popcount;      } 
   double ***p3mat;    } 
   char fileresf[FILENAMELENGTH];    free_vector(vv,1,n);  /* Doesn't work */
   ;
  agelim=AGESUP;  } 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
   void lubksb(double **a, int n, int *indx, double b[]) 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  { 
      int i,ii=0,ip,j; 
      double sum; 
   strcpy(fileresf,"f");   
   strcat(fileresf,fileres);    for (i=1;i<=n;i++) { 
   if((ficresf=fopen(fileresf,"w"))==NULL) {      ip=indx[i]; 
     printf("Problem with forecast resultfile: %s\n", fileresf);      sum=b[ip]; 
   }      b[ip]=b[i]; 
   printf("Computing forecasting: result on file '%s' \n", fileresf);      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      else if (sum) ii=i; 
       b[i]=sum; 
   if (mobilav==1) {    } 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=n;i>=1;i--) { 
     movingaverage(agedeb, fage, ageminpar, mobaverage);      sum=b[i]; 
   }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;    } 
   if (stepm<=12) stepsize=1;  } 
    
   agelim=AGESUP;  void pstamp(FILE *fichier)
    {
   hstepm=1;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   hstepm=hstepm/stepm;  }
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;  /************ Frequencies ********************/
   yp2=modf((yp1*12),&yp);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   mprojmean=yp;  {  /* Some frequencies */
   yp1=modf((yp2*30.5),&yp);    
   jprojmean=yp;    int i, m, jk, k1,i1, j1, bool, z1,j;
   if(jprojmean==0) jprojmean=1;    int first;
   if(mprojmean==0) jprojmean=1;    double ***freq; /* Frequencies */
      double *pp, **prop;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      char fileresp[FILENAMELENGTH];
   for(cptcov=1;cptcov<=i2;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    pp=vector(1,nlstate);
       k=k+1;    prop=matrix(1,nlstate,iagemin,iagemax+3);
       fprintf(ficresf,"\n#******");    strcpy(fileresp,"p");
       for(j=1;j<=cptcoveff;j++) {    strcat(fileresp,fileres);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficresf,"******\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficresf,"# StartingAge FinalAge");      exit(0);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    }
          freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
          j1=0;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    
         fprintf(ficresf,"\n");    j=cptcoveff;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    first=1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
              /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*    j1++;
           oldm=oldms;savm=savms;  */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
                /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for (h=0; h<=nhstepm; h++){          scanf("%d", i);*/
             if (h==(int) (calagedate+YEARM*cpt)) {        for (i=-5; i<=nlstate+ndeath; i++)  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             }            for(m=iagemin; m <= iagemax+3; m++)
             for(j=1; j<=nlstate+ndeath;j++) {              freq[i][jk][m]=0;
               kk1=0.;kk2=0;        
               for(i=1; i<=nlstate;i++) {                      for (i=1; i<=nlstate; i++)  
                 if (mobilav==1)          for(m=iagemin; m <= iagemax+3; m++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            prop[i][m]=0;
                 else {        
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        dateintsum=0;
                 }        k2cpt=0;
                        for (i=1; i<=imx; i++) {
               }          bool=1;
               if (h==(int)(calagedate+12*cpt)){          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                 fprintf(ficresf," %.3f", kk1);            for (z1=1; z1<=cptcoveff; z1++)       
                                      if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
               }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
             }                bool=0;
           }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
       }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     }              } 
   }          }
           
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
   fclose(ficresf);              k2=anint[m][i]+(mint[m][i]/12.);
 }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 /************** Forecasting ******************/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                if (m<lastpass) {
   int *popage;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double *popeffectif,*popcount;                }
   double ***p3mat,***tabpop,***tabpopprev;                
   char filerespop[FILENAMELENGTH];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  k2cpt++;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                }
   agelim=AGESUP;                /*}*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            }
            }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        } /* end i */
           
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   strcpy(filerespop,"pop");        pstamp(ficresp);
   strcat(filerespop,fileres);        if  (cptcovn>0) {
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          fprintf(ficresp, "\n#********** Variable "); 
     printf("Problem with forecast resultfile: %s\n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresp, "**********\n#");
   printf("Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficlog, "**********\n#");
         }
   if (mobilav==1) {        for(i=1; i<=nlstate;i++) 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     movingaverage(agedeb, fage, ageminpar, mobaverage);        fprintf(ficresp, "\n");
   }        
         for(i=iagemin; i <= iagemax+3; i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          if(i==iagemax+3){
   if (stepm<=12) stepsize=1;            fprintf(ficlog,"Total");
            }else{
   agelim=AGESUP;            if(first==1){
                first=0;
   hstepm=1;              printf("See log file for details...\n");
   hstepm=hstepm/stepm;            }
              fprintf(ficlog,"Age %d", i);
   if (popforecast==1) {          }
     if((ficpop=fopen(popfile,"r"))==NULL) {          for(jk=1; jk <=nlstate ; jk++){
       printf("Problem with population file : %s\n",popfile);exit(0);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     }              pp[jk] += freq[jk][m][i]; 
     popage=ivector(0,AGESUP);          }
     popeffectif=vector(0,AGESUP);          for(jk=1; jk <=nlstate ; jk++){
     popcount=vector(0,AGESUP);            for(m=-1, pos=0; m <=0 ; m++)
                  pos += freq[jk][m][i];
     i=1;              if(pp[jk]>=1.e-10){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              if(first==1){
                    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     imx=i;              }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }            }else{
               if(first==1)
   for(cptcov=1;cptcov<=i2;cptcov++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       k=k+1;            }
       fprintf(ficrespop,"\n#******");          }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(ficrespop,"******\n");              pp[jk] += freq[jk][m][i];
       fprintf(ficrespop,"# Age");          }       
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");            pos += pp[jk];
                  posprop += prop[jk][i];
       for (cpt=0; cpt<=0;cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(jk=1; jk <=nlstate ; jk++){
                    if(pos>=1.e-5){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              if(first==1)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           nhstepm = nhstepm/hstepm;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                      }else{
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(first==1)
           oldm=oldms;savm=savms;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                    }
           for (h=0; h<=nhstepm; h++){            if( i <= iagemax){
             if (h==(int) (calagedate+YEARM*cpt)) {              if(pos>=1.e-5){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             }                /*probs[i][jk][j1]= pp[jk]/pos;*/
             for(j=1; j<=nlstate+ndeath;j++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               kk1=0.;kk2=0;              }
               for(i=1; i<=nlstate;i++) {                            else
                 if (mobilav==1)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }
                 else {          }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          
                 }          for(jk=-1; jk <=nlstate+ndeath; jk++)
               }            for(m=-1; m <=nlstate+ndeath; m++)
               if (h==(int)(calagedate+12*cpt)){              if(freq[jk][m][i] !=0 ) {
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              if(first==1)
                   /*fprintf(ficrespop," %.3f", kk1);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }              }
             }          if(i <= iagemax)
             for(i=1; i<=nlstate;i++){            fprintf(ficresp,"\n");
               kk1=0.;          if(first==1)
                 for(j=1; j<=nlstate;j++){            printf("Others in log...\n");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          fprintf(ficlog,"\n");
                 }        }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        /*}*/
             }    }
     dateintmean=dateintsum/k2cpt; 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)   
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fclose(ficresp);
           }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       }    /* End of Freq */
    }
   /******/  
   /************ Prevalence ********************/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    {  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       in each health status at the date of interview (if between dateprev1 and dateprev2).
           nhstepm = nhstepm/hstepm;       We still use firstpass and lastpass as another selection.
              */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;    int i, m, jk, k1, i1, j1, bool, z1,j;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***freq; /* Frequencies */
           for (h=0; h<=nhstepm; h++){    double *pp, **prop;
             if (h==(int) (calagedate+YEARM*cpt)) {    double pos,posprop; 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double  y2; /* in fractional years */
             }    int iagemin, iagemax;
             for(j=1; j<=nlstate+ndeath;j++) {    int first; /** to stop verbosity which is redirected to log file */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  iagemin= (int) agemin;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        iagemax= (int) agemax;
               }    /*pp=vector(1,nlstate);*/
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           }    j1=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }    /*j=cptcoveff;*/
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    }    
   }    first=1;
      for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
   if (popforecast==1) {        
     free_ivector(popage,0,AGESUP);        for (i=1; i<=nlstate; i++)  
     free_vector(popeffectif,0,AGESUP);          for(m=iagemin; m <= iagemax+3; m++)
     free_vector(popcount,0,AGESUP);            prop[i][m]=0.0;
   }       
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (i=1; i<=imx; i++) { /* Each individual */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          bool=1;
   fclose(ficrespop);          if  (cptcovn>0) {
 }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 /***********************************************/                bool=0;
 /**************** Main Program *****************/          } 
 /***********************************************/          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 int main(int argc, char *argv[])              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double agedeb, agefin,hf;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   double fret;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double **xi,tmp,delta;                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   double dum; /* Dummy variable */              }
   double ***p3mat;            } /* end selection of waves */
   int *indx;          }
   char line[MAXLINE], linepar[MAXLINE];        }
   char title[MAXLINE];        for(i=iagemin; i <= iagemax+3; i++){  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            posprop += prop[jk][i]; 
            } 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          
           for(jk=1; jk <=nlstate ; jk++){     
   char filerest[FILENAMELENGTH];            if( i <=  iagemax){ 
   char fileregp[FILENAMELENGTH];              if(posprop>=1.e-5){ 
   char popfile[FILENAMELENGTH];                probs[i][jk][j1]= prop[jk][i]/posprop;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              } else{
   int firstobs=1, lastobs=10;                if(first==1){
   int sdeb, sfin; /* Status at beginning and end */                  first=0;
   int c,  h , cpt,l;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   int ju,jl, mi;                }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            } 
   int mobilav=0,popforecast=0;          }/* end jk */ 
   int hstepm, nhstepm;        }/* end i */ 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      /*} *//* end i1 */
     } /* end j1 */
   double bage, fage, age, agelim, agebase;    
   double ftolpl=FTOL;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double **prlim;    /*free_vector(pp,1,nlstate);*/
   double *severity;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   double ***param; /* Matrix of parameters */  }  /* End of prevalence */
   double  *p;  
   double **matcov; /* Matrix of covariance */  /************* Waves Concatenation ***************/
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   double ***eij, ***vareij;  {
   double **varpl; /* Variances of prevalence limits by age */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   double *epj, vepp;       Death is a valid wave (if date is known).
   double kk1, kk2;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         and mw[mi+1][i]. dh depends on stepm.
        */
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
   char z[1]="c", occ;    int first;
 #include <sys/time.h>    int j, k=0,jk, ju, jl;
 #include <time.h>    double sum=0.;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    first=0;
      jmin=1e+5;
   /* long total_usecs;    jmax=-1;
   struct timeval start_time, end_time;    jmean=0.;
      for(i=1; i<=imx; i++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      mi=0;
   getcwd(pathcd, size);      m=firstpass;
       while(s[m][i] <= nlstate){
   printf("\n%s",version);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   if(argc <=1){          mw[++mi][i]=m;
     printf("\nEnter the parameter file name: ");        if(m >=lastpass)
     scanf("%s",pathtot);          break;
   }        else
   else{          m++;
     strcpy(pathtot,argv[1]);      }/* end while */
   }      if (s[m][i] > nlstate){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        mi++;     /* Death is another wave */
   /*cygwin_split_path(pathtot,path,optionfile);        /* if(mi==0)  never been interviewed correctly before death */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/           /* Only death is a correct wave */
   /* cutv(path,optionfile,pathtot,'\\');*/        mw[mi][i]=m;
       }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      wav[i]=mi;
   chdir(path);      if(mi==0){
   replace(pathc,path);        nbwarn++;
         if(first==0){
 /*-------- arguments in the command line --------*/          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   strcpy(fileres,"r");        }
   strcat(fileres, optionfilefiname);        if(first==1){
   strcat(fileres,".txt");    /* Other files have txt extension */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
   /*---------arguments file --------*/      } /* end mi==0 */
     } /* End individuals */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    for(i=1; i<=imx; i++){
     goto end;      for(mi=1; mi<wav[i];mi++){
   }        if (stepm <=0)
           dh[mi][i]=1;
   strcpy(filereso,"o");        else{
   strcat(filereso,fileres);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if((ficparo=fopen(filereso,"w"))==NULL) {            if (agedc[i] < 2*AGESUP) {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   }              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   /* Reads comments: lines beginning with '#' */                nberr++;
   while((c=getc(ficpar))=='#' && c!= EOF){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     ungetc(c,ficpar);                j=1; /* Temporary Dangerous patch */
     fgets(line, MAXLINE, ficpar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     puts(line);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fputs(line,ficparo);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }              }
   ungetc(c,ficpar);              k=k+1;
               if (j >= jmax){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                jmax=j;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                ijmax=i;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);              }
 while((c=getc(ficpar))=='#' && c!= EOF){              if (j <= jmin){
     ungetc(c,ficpar);                jmin=j;
     fgets(line, MAXLINE, ficpar);                ijmin=i;
     puts(line);              }
     fputs(line,ficparo);              sum=sum+j;
   }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   ungetc(c,ficpar);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              }
              }
   covar=matrix(0,NCOVMAX,1,n);          else{
   cptcovn=0;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
   ncovmodel=2+cptcovn;            k=k+1;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            if (j >= jmax) {
                jmax=j;
   /* Read guess parameters */              ijmax=i;
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){            else if (j <= jmin){
     ungetc(c,ficpar);              jmin=j;
     fgets(line, MAXLINE, ficpar);              ijmin=i;
     puts(line);            }
     fputs(line,ficparo);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   ungetc(c,ficpar);            if(j<0){
                nberr++;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(i=1; i <=nlstate; i++)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(j=1; j <=nlstate+ndeath-1; j++){            }
       fscanf(ficpar,"%1d%1d",&i1,&j1);            sum=sum+j;
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       printf("%1d%1d",i,j);          jk= j/stepm;
       for(k=1; k<=ncovmodel;k++){          jl= j -jk*stepm;
         fscanf(ficpar," %lf",&param[i][j][k]);          ju= j -(jk+1)*stepm;
         printf(" %lf",param[i][j][k]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         fprintf(ficparo," %lf",param[i][j][k]);            if(jl==0){
       }              dh[mi][i]=jk;
       fscanf(ficpar,"\n");              bh[mi][i]=0;
       printf("\n");            }else{ /* We want a negative bias in order to only have interpolation ie
       fprintf(ficparo,"\n");                    * to avoid the price of an extra matrix product in likelihood */
     }              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            }
           }else{
   p=param[1][1];            if(jl <= -ju){
                dh[mi][i]=jk;
   /* Reads comments: lines beginning with '#' */              bh[mi][i]=jl;       /* bias is positive if real duration
   while((c=getc(ficpar))=='#' && c!= EOF){                                   * is higher than the multiple of stepm and negative otherwise.
     ungetc(c,ficpar);                                   */
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            else{
     fputs(line,ficparo);              dh[mi][i]=jk+1;
   }              bh[mi][i]=ju;
   ungetc(c,ficpar);            }
             if(dh[mi][i]==0){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              dh[mi][i]=1; /* At least one step */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */              bh[mi][i]=ju; /* At least one step */
   for(i=1; i <=nlstate; i++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for(j=1; j <=nlstate+ndeath-1; j++){            }
       fscanf(ficpar,"%1d%1d",&i1,&j1);          } /* end if mle */
       printf("%1d%1d",i,j);        }
       fprintf(ficparo,"%1d%1d",i1,j1);      } /* end wave */
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar,"%le",&delti3[i][j][k]);    jmean=sum/k;
         printf(" %le",delti3[i][j][k]);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       }   }
       fscanf(ficpar,"\n");  
       printf("\n");  /*********** Tricode ****************************/
       fprintf(ficparo,"\n");  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     }  {
   }    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   delti=delti3[1][1];    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      /* Boring subroutine which should only output nbcode[Tvar[j]][k]
   /* Reads comments: lines beginning with '#' */     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   while((c=getc(ficpar))=='#' && c!= EOF){    /* nbcode[Tvar[j]][1]= 
     ungetc(c,ficpar);    */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     fputs(line,ficparo);    int modmaxcovj=0; /* Modality max of covariates j */
   }    int cptcode=0; /* Modality max of covariates j */
   ungetc(c,ficpar);    int modmincovj=0; /* Modality min of covariates j */
    
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){    cptcoveff=0; 
     fscanf(ficpar,"%s",&str);   
     printf("%s",str);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     fprintf(ficparo,"%s",str);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    /* Loop on covariates without age and products */
       printf(" %.5le",matcov[i][j]);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
       fprintf(ficparo," %.5le",matcov[i][j]);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
     }                                 modality of this covariate Vj*/ 
     fscanf(ficpar,"\n");        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     printf("\n");                                      * If product of Vn*Vm, still boolean *:
     fprintf(ficparo,"\n");                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   }                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   for(i=1; i <=npar; i++)        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     for(j=i+1;j<=npar;j++)                                        modality of the nth covariate of individual i. */
       matcov[i][j]=matcov[j][i];        if (ij > modmaxcovj)
              modmaxcovj=ij; 
   printf("\n");        else if (ij < modmincovj) 
           modmincovj=ij; 
         if ((ij < -1) && (ij > NCOVMAX)){
     /*-------- Rewriting paramater file ----------*/          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
      strcpy(rfileres,"r");    /* "Rparameterfile */          exit(1);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }else
      strcat(rfileres,".");    /* */        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     if((ficres =fopen(rfileres,"w"))==NULL) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        /* getting the maximum value of the modality of the covariate
     }           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     fprintf(ficres,"#%s\n",version);           female is 1, then modmaxcovj=1.*/
          }
     /*-------- data file ----------*/      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     if((fic=fopen(datafile,"r"))==NULL)    {      cptcode=modmaxcovj;
       printf("Problem with datafile: %s\n", datafile);goto end;      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     }     /*for (i=0; i<=cptcode; i++) {*/
       for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     n= lastobs;        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     severity = vector(1,maxwav);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     outcome=imatrix(1,maxwav+1,1,n);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     num=ivector(1,n);        }
     moisnais=vector(1,n);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     annais=vector(1,n);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     moisdc=vector(1,n);      } /* Ndum[-1] number of undefined modalities */
     andc=vector(1,n);  
     agedc=vector(1,n);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     cod=ivector(1,n);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     weight=vector(1,n);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */         modmincovj=3; modmaxcovj = 7;
     mint=matrix(1,maxwav,1,n);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     anint=matrix(1,maxwav,1,n);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
     s=imatrix(1,maxwav+1,1,n);         variables V1_1 and V1_2.
     adl=imatrix(1,maxwav+1,1,n);             nbcode[Tvar[j]][ij]=k;
     tab=ivector(1,NCOVMAX);         nbcode[Tvar[j]][1]=0;
     ncodemax=ivector(1,8);         nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
     i=1;      */
     while (fgets(line, MAXLINE, fic) != NULL)    {      ij=1; /* ij is similar to i but can jumps over null modalities */
       if ((i >= firstobs) && (i <=lastobs)) {      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
                for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
         for (j=maxwav;j>=1;j--){          /*recode from 0 */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
           strcpy(line,stra);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                                       k is a modality. If we have model=V1+V1*sex 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         }            ij++;
                  }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          if (ij > ncodemax[j]) break; 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }  /* end of loop on */
       } /* end of loop on modality */ 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    
         for (j=ncovcol;j>=1;j--){    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
         }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
         num[i]=atol(stra);     Ndum[ij]++; 
           } 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   ij=1;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         i=i+1;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
     }       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     /* printf("ii=%d", ij);       Tvaraff[ij]=i; /*For printing (unclear) */
        scanf("%d",i);*/       ij++;
   imx=i-1; /* Number of individuals */     }else
          Tvaraff[ij]=0;
   /* for (i=1; i<=imx; i++){   }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   ij--;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   cptcoveff=ij; /*Number of total covariates*/
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/  }
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  /*********** Health Expectancies ****************/
    
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);  {
   Tprod=ivector(1,15);    /* Health expectancies, no variances */
   Tvaraff=ivector(1,15);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   Tvard=imatrix(1,15,1,2);    int nhstepma, nstepma; /* Decreasing with age */
   Tage=ivector(1,15);          double age, agelim, hf;
        double ***p3mat;
   if (strlen(model) >1){    double eip;
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');    pstamp(ficreseij);
     j1=nbocc(model,'*');    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     cptcovn=j+1;    fprintf(ficreseij,"# Age");
     cptcovprod=j1;    for(i=1; i<=nlstate;i++){
          for(j=1; j<=nlstate;j++){
     strcpy(modelsav,model);        fprintf(ficreseij," e%1d%1d ",i,j);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      }
       printf("Error. Non available option model=%s ",model);      fprintf(ficreseij," e%1d. ",i);
       goto end;    }
     }    fprintf(ficreseij,"\n");
      
     for(i=(j+1); i>=1;i--){    
       cutv(stra,strb,modelsav,'+');    if(estepm < stepm){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      printf ("Problem %d lower than %d\n",estepm, stepm);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    }
       /*scanf("%d",i);*/    else  hstepm=estepm;   
       if (strchr(strb,'*')) {    /* We compute the life expectancy from trapezoids spaced every estepm months
         cutv(strd,strc,strb,'*');     * This is mainly to measure the difference between two models: for example
         if (strcmp(strc,"age")==0) {     * if stepm=24 months pijx are given only every 2 years and by summing them
           cptcovprod--;     * we are calculating an estimate of the Life Expectancy assuming a linear 
           cutv(strb,stre,strd,'V');     * progression in between and thus overestimating or underestimating according
           Tvar[i]=atoi(stre);     * to the curvature of the survival function. If, for the same date, we 
           cptcovage++;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             Tage[cptcovage]=i;     * to compare the new estimate of Life expectancy with the same linear 
             /*printf("stre=%s ", stre);*/     * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;    /* For example we decided to compute the life expectancy with the smallest unit */
           cutv(strb,stre,strc,'V');    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           Tvar[i]=atoi(stre);       nhstepm is the number of hstepm from age to agelim 
           cptcovage++;       nstepm is the number of stepm from age to agelin. 
           Tage[cptcovage]=i;       Look at hpijx to understand the reason of that which relies in memory size
         }       and note for a fixed period like estepm months */
         else {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           cutv(strb,stre,strc,'V');       survival function given by stepm (the optimization length). Unfortunately it
           Tvar[i]=ncovcol+k1;       means that if the survival funtion is printed only each two years of age and if
           cutv(strb,strc,strd,'V');       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           Tprod[k1]=i;       results. So we changed our mind and took the option of the best precision.
           Tvard[k1][1]=atoi(strc);    */
           Tvard[k1][2]=atoi(stre);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    agelim=AGESUP;
           for (k=1; k<=lastobs;k++)    /* If stepm=6 months */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           k1++;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           k2=k2+2;      
         }  /* nhstepm age range expressed in number of stepm */
       }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       else {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /* if (stepm >= YEARM) hstepm=1;*/
        /*  scanf("%d",i);*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       cutv(strd,strc,strb,'V');    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       Tvar[i]=atoi(strc);  
       }    for (age=bage; age<=fage; age ++){ 
       strcpy(modelsav,stra);        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         scanf("%d",i);*/      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 }  
        /* If stepm=6 months */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   printf("cptcovprod=%d ", cptcovprod);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   scanf("%d ",i);*/      
     fclose(fic);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
     /*  if(mle==1){*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     if (weightopt != 1) { /* Maximisation without weights*/      
       for(i=1;i<=n;i++) weight[i]=1.0;      printf("%d|",(int)age);fflush(stdout);
     }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     /*-calculation of age at interview from date of interview and age at death -*/      
     agev=matrix(1,maxwav,1,imx);      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
     for (i=1; i<=imx; i++) {        for(j=1; j<=nlstate;j++)
       for(m=2; (m<= maxwav); m++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
          anint[m][i]=9999;            
          s[m][i]=-1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          }
       }  
     }      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
     for (i=1; i<=imx; i++)  {        eip=0;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for(j=1; j<=nlstate;j++){
       for(m=1; (m<= maxwav); m++){          eip +=eij[i][j][(int)age];
         if(s[m][i] >0){          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           if (s[m][i] >= nlstate+1) {        }
             if(agedc[i]>0)        fprintf(ficreseij,"%9.4f", eip );
               if(moisdc[i]!=99 && andc[i]!=9999)      }
                 agev[m][i]=agedc[i];      fprintf(ficreseij,"\n");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      
            else {    }
               if (andc[i]!=9999){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    printf("\n");
               agev[m][i]=-1;    fprintf(ficlog,"\n");
               }    
             }  }
           }  
           else if(s[m][i] !=9){ /* Should no more exist */  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)  {
               agev[m][i]=1;    /* Covariances of health expectancies eij and of total life expectancies according
             else if(agev[m][i] <agemin){     to initial status i, ei. .
               agemin=agev[m][i];    */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
             }    int nhstepma, nstepma; /* Decreasing with age */
             else if(agev[m][i] >agemax){    double age, agelim, hf;
               agemax=agev[m][i];    double ***p3matp, ***p3matm, ***varhe;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double **dnewm,**doldm;
             }    double *xp, *xm;
             /*agev[m][i]=anint[m][i]-annais[i];*/    double **gp, **gm;
             /*   agev[m][i] = age[i]+2*m;*/    double ***gradg, ***trgradg;
           }    int theta;
           else { /* =9 */  
             agev[m][i]=1;    double eip, vip;
             s[m][i]=-1;  
           }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         }    xp=vector(1,npar);
         else /*= 0 Unknown */    xm=vector(1,npar);
           agev[m][i]=1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
       }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
     }    pstamp(ficresstdeij);
     for (i=1; i<=imx; i++)  {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       for(m=1; (m<= maxwav); m++){    fprintf(ficresstdeij,"# Age");
         if (s[m][i] > (nlstate+ndeath)) {    for(i=1; i<=nlstate;i++){
           printf("Error: Wrong value in nlstate or ndeath\n");        for(j=1; j<=nlstate;j++)
           goto end;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         }      fprintf(ficresstdeij," e%1d. ",i);
       }    }
     }    fprintf(ficresstdeij,"\n");
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     free_vector(severity,1,maxwav);    fprintf(ficrescveij,"# Age");
     free_imatrix(outcome,1,maxwav+1,1,n);    for(i=1; i<=nlstate;i++)
     free_vector(moisnais,1,n);      for(j=1; j<=nlstate;j++){
     free_vector(annais,1,n);        cptj= (j-1)*nlstate+i;
     /* free_matrix(mint,1,maxwav,1,n);        for(i2=1; i2<=nlstate;i2++)
        free_matrix(anint,1,maxwav,1,n);*/          for(j2=1; j2<=nlstate;j2++){
     free_vector(moisdc,1,n);            cptj2= (j2-1)*nlstate+i2;
     free_vector(andc,1,n);            if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
              }
     wav=ivector(1,imx);      }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(ficrescveij,"\n");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    
        if(estepm < stepm){
     /* Concatenates waves */      printf ("Problem %d lower than %d\n",estepm, stepm);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
       Tcode=ivector(1,100);     * This is mainly to measure the difference between two models: for example
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     * if stepm=24 months pijx are given only every 2 years and by summing them
       ncodemax[1]=1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);     * progression in between and thus overestimating or underestimating according
           * to the curvature of the survival function. If, for the same date, we 
    codtab=imatrix(1,100,1,10);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    h=0;     * to compare the new estimate of Life expectancy with the same linear 
    m=pow(2,cptcoveff);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){    /* For example we decided to compute the life expectancy with the smallest unit */
        for(j=1; j <= ncodemax[k]; j++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){       nhstepm is the number of hstepm from age to agelim 
            h++;       nstepm is the number of stepm from age to agelin. 
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;       Look at hpijx to understand the reason of that which relies in memory size
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       and note for a fixed period like estepm months */
          }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        }       survival function given by stepm (the optimization length). Unfortunately it
      }       means that if the survival funtion is printed only each two years of age and if
    }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       results. So we changed our mind and took the option of the best precision.
       codtab[1][2]=1;codtab[2][2]=2; */    */
    /* for(i=1; i <=m ;i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    /* If stepm=6 months */
       }    /* nhstepm age range expressed in number of stepm */
       printf("\n");    agelim=AGESUP;
       }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       scanf("%d",i);*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
    /* Calculates basic frequencies. Computes observed prevalence at single age    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        and prints on file fileres'p'. */    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for (age=bage; age<=fage; age ++){ 
            nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* For Powell, parameters are in a vector p[] starting at p[1]      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      /* if (stepm >= YEARM) hstepm=1;*/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
     if(mle==1){      /* If stepm=6 months */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
          
     /*--------- results files --------------*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
        /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
    jk=1;         decrease memory allocation */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for(theta=1; theta <=npar; theta++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(i=1; i<=npar; i++){ 
    for(i=1,jk=1; i <=nlstate; i++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      for(k=1; k <=(nlstate+ndeath); k++){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
        if (k != i)        }
          {        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
            printf("%d%d ",i,k);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
            fprintf(ficres,"%1d%1d ",i,k);    
            for(j=1; j <=ncovmodel; j++){        for(j=1; j<= nlstate; j++){
              printf("%f ",p[jk]);          for(i=1; i<=nlstate; i++){
              fprintf(ficres,"%f ",p[jk]);            for(h=0; h<=nhstepm-1; h++){
              jk++;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
            }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
            printf("\n");            }
            fprintf(ficres,"\n");          }
          }        }
      }       
    }        for(ij=1; ij<= nlstate*nlstate; ij++)
  if(mle==1){          for(h=0; h<=nhstepm-1; h++){
     /* Computing hessian and covariance matrix */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     ftolhess=ftol; /* Usually correct */          }
     hesscov(matcov, p, npar, delti, ftolhess, func);      }/* End theta */
  }      
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      
     printf("# Scales (for hessian or gradient estimation)\n");      for(h=0; h<=nhstepm-1; h++)
      for(i=1,jk=1; i <=nlstate; i++){        for(j=1; j<=nlstate*nlstate;j++)
       for(j=1; j <=nlstate+ndeath; j++){          for(theta=1; theta <=npar; theta++)
         if (j!=i) {            trgradg[h][j][theta]=gradg[h][theta][j];
           fprintf(ficres,"%1d%1d",i,j);      
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){       for(ij=1;ij<=nlstate*nlstate;ij++)
             printf(" %.5e",delti[jk]);        for(ji=1;ji<=nlstate*nlstate;ji++)
             fprintf(ficres," %.5e",delti[jk]);          varhe[ij][ji][(int)age] =0.;
             jk++;  
           }       printf("%d|",(int)age);fflush(stdout);
           printf("\n");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           fprintf(ficres,"\n");       for(h=0;h<=nhstepm-1;h++){
         }        for(k=0;k<=nhstepm-1;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
      }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
              for(ij=1;ij<=nlstate*nlstate;ij++)
     k=1;            for(ji=1;ji<=nlstate*nlstate;ji++)
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
     for(i=1;i<=npar;i++){      }
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;      /* Computing expectancies */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/      for(i=1; i<=nlstate;i++)
       fprintf(ficres,"%3d",i);        for(j=1; j<=nlstate;j++)
       printf("%3d",i);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(j=1; j<=i;j++){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         fprintf(ficres," %.5e",matcov[i][j]);            
         printf(" %.5e",matcov[i][j]);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       }  
       fprintf(ficres,"\n");          }
       printf("\n");  
       k++;      fprintf(ficresstdeij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
            eip=0.;
     while((c=getc(ficpar))=='#' && c!= EOF){        vip=0.;
       ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
       fgets(line, MAXLINE, ficpar);          eip += eij[i][j][(int)age];
       puts(line);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       fputs(line,ficparo);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     ungetc(c,ficpar);        }
     estepm=0;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      }
     if (estepm==0 || estepm < stepm) estepm=stepm;      fprintf(ficresstdeij,"\n");
     if (fage <= 2) {  
       bage = ageminpar;      fprintf(ficrescveij,"%3.0f",age );
       fage = agemaxpar;      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++){
              cptj= (j-1)*nlstate+i;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          for(i2=1; i2<=nlstate;i2++)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            for(j2=1; j2<=nlstate;j2++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              cptj2= (j2-1)*nlstate+i2;
                if(cptj2 <= cptj)
     while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      fprintf(ficrescveij,"\n");
     fputs(line,ficparo);     
   }    }
   ungetc(c,ficpar);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    printf("\n");
     ungetc(c,ficpar);    fprintf(ficlog,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    free_vector(xm,1,npar);
     fputs(line,ficparo);    free_vector(xp,1,npar);
   }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   ungetc(c,ficpar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   fscanf(ficpar,"pop_based=%d\n",&popbased);  {
   fprintf(ficparo,"pop_based=%d\n",popbased);      /* Variance of health expectancies */
   fprintf(ficres,"pop_based=%d\n",popbased);      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double **dnewmp,**doldmp;
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     puts(line);    int k, cptcode;
     fputs(line,ficparo);    double *xp;
   }    double **gp, **gm;  /* for var eij */
   ungetc(c,ficpar);    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    double *gpp, *gmp; /* for var p point j */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
 while((c=getc(ficpar))=='#' && c!= EOF){    int theta;
     ungetc(c,ficpar);    char digit[4];
     fgets(line, MAXLINE, ficpar);    char digitp[25];
     puts(line);  
     fputs(line,ficparo);    char fileresprobmorprev[FILENAMELENGTH];
   }  
   ungetc(c,ficpar);    if(popbased==1){
       if(mobilav!=0)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        strcpy(digitp,"-populbased-mobilav-");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      else strcpy(digitp,"-populbased-nomobil-");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    }
     else 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      strcpy(digitp,"-stablbased-");
   
 /*------------ gnuplot -------------*/    if (mobilav!=0) {
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 /*------------ free_vector  -------------*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  chdir(path);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
  free_ivector(wav,1,imx);    }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      strcpy(fileresprobmorprev,"prmorprev"); 
  free_ivector(num,1,n);    sprintf(digit,"%-d",ij);
  free_vector(agedc,1,n);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
  fclose(ficparo);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  fclose(ficres);    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 /*--------- index.htm --------*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     
   /*--------------- Prevalence limit --------------*/    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
   strcpy(filerespl,"pl");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   strcat(filerespl,fileres);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fprintf(ficrespl,"#Prevalence limit\n");    }  
   fprintf(ficrespl,"#Age ");    fprintf(ficresprobmorprev,"\n");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficgp,"\n# Routine varevsij");
   fprintf(ficrespl,"\n");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   } */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pstamp(ficresvij);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if(popbased==1)
   k=0;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   agebase=ageminpar;    else
   agelim=agemaxpar;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   ftolpl=1.e-10;    fprintf(ficresvij,"# Age");
   i1=cptcoveff;    for(i=1; i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresvij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    xp=vector(1,npar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    dnewm=matrix(1,nlstate,1,npar);
         fprintf(ficrespl,"\n#******");    doldm=matrix(1,nlstate,1,nlstate);
         for(j=1;j<=cptcoveff;j++)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrespl,"******\n");  
            gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         for (age=agebase; age<=agelim; age++){    gpp=vector(nlstate+1,nlstate+ndeath);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    gmp=vector(nlstate+1,nlstate+ndeath);
           fprintf(ficrespl,"%.0f",age );    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           for(i=1; i<=nlstate;i++)    
           fprintf(ficrespl," %.5f", prlim[i][i]);    if(estepm < stepm){
           fprintf(ficrespl,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
       }    else  hstepm=estepm;   
     }    /* For example we decided to compute the life expectancy with the smallest unit */
   fclose(ficrespl);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   /*------------- h Pij x at various ages ------------*/       nstepm is the number of stepm from age to agelin. 
         Look at function hpijx to understand why (it is linked to memory size questions) */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       survival function given by stepm (the optimization length). Unfortunately it
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;       means that if the survival funtion is printed every two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   printf("Computing pij: result on file '%s' \n", filerespij);       results. So we changed our mind and took the option of the best precision.
      */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*if (stepm<=24) stepsize=2;*/    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   agelim=AGESUP;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   hstepm=stepsize*YEARM; /* Every year of age */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   k=0;      gp=matrix(0,nhstepm,1,nlstate);
   for(cptcov=1;cptcov<=i1;cptcov++){      gm=matrix(0,nhstepm,1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");      for(theta=1; theta <=npar; theta++){
         for(j=1;j<=cptcoveff;j++)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficrespij,"******\n");        }
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if (popbased==1) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if(mobilav ==0){
           oldm=oldms;savm=savms;            for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                prlim[i][i]=probs[(int)age][i][ij];
           fprintf(ficrespij,"# Age");          }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
               fprintf(ficrespij," %1d-%1d",i,j);          }
           fprintf(ficrespij,"\n");        }
            for (h=0; h<=nhstepm; h++){    
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for(j=1; j<= nlstate; j++){
             for(i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
               for(j=1; j<=nlstate+ndeath;j++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             fprintf(ficrespij,"\n");          }
              }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* This for computing probability of death (h=1 means
           fprintf(ficrespij,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
         }           as a weighted average of prlim.
     }        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   fclose(ficrespij);        /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /*---------- Forecasting ------------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if((stepm == 1) && (strcmp(model,".")==0)){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);   
   }        if (popbased==1) {
   else{          if(mobilav ==0){
     erreur=108;            for(i=1; i<=nlstate;i++)
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   /*---------- Health expectancies and variances ------------*/          }
         }
   strcpy(filerest,"t");  
   strcat(filerest,fileres);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   if((ficrest=fopen(filerest,"w"))==NULL) {          for(h=0; h<=nhstepm; h++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          }
         }
         /* This for computing probability of death (h=1 means
   strcpy(filerese,"e");           computed over hstepm matrices product = hstepm*stepm months) 
   strcat(filerese,fileres);           as a weighted average of prlim.
   if((ficreseij=fopen(filerese,"w"))==NULL) {        */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
  strcpy(fileresv,"v");        /* end probability of death */
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        for(j=1; j<= nlstate; j++) /* vareij */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          for(h=0; h<=nhstepm; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          }
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } /* End theta */
       k=k+1;  
       fprintf(ficrest,"\n#****** ");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(h=0; h<=nhstepm; h++) /* veij */
       fprintf(ficrest,"******\n");        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
       fprintf(ficreseij,"\n#****** ");            trgradg[h][j][theta]=gradg[h][theta][j];
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       fprintf(ficreseij,"******\n");        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
       fprintf(ficresvij,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficresvij,"******\n");      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          vareij[i][j][(int)age] =0.;
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       oldm=oldms;savm=savms;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    
       fprintf(ficrest,"\n");      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       epj=vector(1,nlstate+1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(age=bage; age <=fage ;age++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         if (popbased==1) {          varppt[j][i]=doldmp[j][i];
           for(i=1; i<=nlstate;i++)      /* end ppptj */
             prlim[i][i]=probs[(int)age][i][k];      /*  x centered again */
         }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
              prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         fprintf(ficrest," %4.0f",age);   
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      if (popbased==1) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        if(mobilav ==0){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for(i=1; i<=nlstate;i++)
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            prlim[i][i]=probs[(int)age][i][ij];
           }        }else{ /* mobilav */ 
           epj[nlstate+1] +=epj[j];          for(i=1; i<=nlstate;i++)
         }            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
         for(i=1, vepp=0.;i <=nlstate;i++)      }
           for(j=1;j <=nlstate;j++)               
             vepp += vareij[i][j][(int)age];      /* This for computing probability of death (h=1 means
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         for(j=1;j <=nlstate;j++){         as a weighted average of prlim.
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      */
         }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficrest,"\n");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
   }      /* end probability of death */
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     free_vector(weight,1,n);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fclose(ficreseij);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   fclose(ficresvij);        for(i=1; i<=nlstate;i++){
   fclose(ficrest);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   fclose(ficpar);        }
   free_vector(epj,1,nlstate+1);      } 
        fprintf(ficresprobmorprev,"\n");
   /*------- Variance limit prevalence------*/    
       fprintf(ficresvij,"%.0f ",age );
   strcpy(fileresvpl,"vpl");      for(i=1; i<=nlstate;i++)
   strcat(fileresvpl,fileres);        for(j=1; j<=nlstate;j++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        }
     exit(0);      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   k=0;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    } /* End age */
       k=k+1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
       fprintf(ficresvpl,"\n#****** ");    free_vector(gmp,nlstate+1,nlstate+ndeath);
       for(j=1;j<=cptcoveff;j++)    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficresvpl,"******\n");    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
          /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       oldm=oldms;savm=savms;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
  }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   fclose(ficresvpl);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /*---------- End : free ----------------*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    
      free_vector(xp,1,npar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(doldm,1,nlstate,1,nlstate);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(dnewm,1,nlstate,1,npar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_matrix(matcov,1,npar,1,npar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_vector(delti,1,npar);    fclose(ficresprobmorprev);
   free_matrix(agev,1,maxwav,1,imx);    fflush(ficgp);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fflush(fichtm); 
   }  /* end varevsij */
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);  /************ Variance of prevlim ******************/
   else   printf("End of Imach\n");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  {
      /* Variance of prevalence limit */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /*printf("Total time was %d uSec.\n", total_usecs);*/    double **newm;
   /*------ End -----------*/    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
  end:    double *xp;
   /* chdir(pathcd);*/    double *gp, *gm;
  /*system("wgnuplot graph.plt");*/    double **gradg, **trgradg;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    double age,agelim;
  /*system("cd ../gp37mgw");*/    int theta;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    
  strcpy(plotcmd,GNUPLOTPROGRAM);    pstamp(ficresvpl);
  strcat(plotcmd," ");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
  strcat(plotcmd,optionfilegnuplot);    fprintf(ficresvpl,"# Age");
  system(plotcmd);    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
  /*#ifdef windows*/    fprintf(ficresvpl,"\n");
   while (z[0] != 'q') {  
     /* chdir(path); */    xp=vector(1,npar);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    dnewm=matrix(1,nlstate,1,npar);
     scanf("%s",z);    doldm=matrix(1,nlstate,1,nlstate);
     if (z[0] == 'c') system("./imach");    
     else if (z[0] == 'e') system(optionfilehtm);    hstepm=1*YEARM; /* Every year of age */
     else if (z[0] == 'g') system(plotcmd);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     else if (z[0] == 'q') exit(0);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /*#endif */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 }      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.41.2.1  
changed lines
  Added in v.1.161


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>