Diff for /imach/src/imach.c between versions 1.47 and 1.161

version 1.47, 2002/06/10 13:12:01 version 1.161, 2014/09/15 20:41:41
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.161  2014/09/15 20:41:41  brouard
      Summary: Problem with macro SQR on Intel compiler
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.160  2014/09/02 09:24:05  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.159  2014/09/01 10:34:10  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: WIN32
   (if any) in individual health status.  Health expectancies are    Author: Brouard
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.158  2014/08/27 17:11:51  brouard
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.157  2014/08/27 16:26:55  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: Preparing windows Visual studio version
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Author: Brouard
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    In order to compile on Visual studio, time.h is now correct and time_t
   where the markup *Covariates have to be included here again* invites    and tm struct should be used. difftime should be used but sometimes I
   you to do it.  More covariates you add, slower the    just make the differences in raw time format (time(&now).
   convergence.    Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.156  2014/08/25 20:10:10  brouard
   identical for each individual. Also, if a individual missed an    *** empty log message ***
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
   hPijx is the probability to be observed in state i at age x+h    Author: Brouard
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.154  2014/06/20 17:32:08  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Outputs now all graphs of convergence to period prevalence
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.153  2014/06/20 16:45:46  brouard
   and the contribution of each individual to the likelihood is simply    Summary: If 3 live state, convergence to period prevalence on same graph
   hPijx.    Author: Brouard
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.152  2014/06/18 17:54:09  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: open browser, use gnuplot on same dir than imach if not found in the path
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.151  2014/06/18 16:43:30  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.150  2014/06/18 16:42:35  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   software can be distributed freely for non commercial use. Latest version    Author: brouard
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.149  2014/06/18 15:51:14  brouard
      Summary: Some fixes in parameter files errors
 #include <math.h>    Author: Nicolas Brouard
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.148  2014/06/17 17:38:48  brouard
 #include <unistd.h>    Summary: Nothing new
     Author: Brouard
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Just a new packaging for OS/X version 0.98nS
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.147  2014/06/16 10:33:11  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.146  2014/06/16 10:20:28  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Merge
     Author: Brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Merge, before building revised version.
   
 #define NINTERVMAX 8    Revision 1.145  2014/06/10 21:23:15  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: Debugging with valgrind
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Author: Nicolas Brouard
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Lot of changes in order to output the results with some covariates
 #define YEARM 12. /* Number of months per year */    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define AGESUP 130    improve the code.
 #define AGEBASE 40    No more memory valgrind error but a lot has to be done in order to
 #ifdef windows    continue the work of splitting the code into subroutines.
 #define DIRSEPARATOR '\\'    Also, decodemodel has been improved. Tricode is still not
 #else    optimal. nbcode should be improved. Documentation has been added in
 #define DIRSEPARATOR '/'    the source code.
 #endif  
     Revision 1.143  2014/01/26 09:45:38  brouard
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 int erreur; /* Error number */  
 int nvar;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.142  2014/01/26 03:57:36  brouard
 int ndeath=1; /* Number of dead states */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.141  2014/01/26 02:42:01  brouard
 int maxwav; /* Maxim number of waves */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.140  2011/09/02 10:37:54  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Summary: times.h is ok with mingw32 now.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.139  2010/06/14 07:50:17  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.138  2010/04/30 18:19:40  brouard
 FILE *fichtm; /* Html File */    *** empty log message ***
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.137  2010/04/29 18:11:38  brouard
 FILE  *ficresvij;    (Module): Checking covariates for more complex models
 char fileresv[FILENAMELENGTH];    than V1+V2. A lot of change to be done. Unstable.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.136  2010/04/26 20:30:53  brouard
 char title[MAXLINE];    (Module): merging some libgsl code. Fixing computation
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    of likelione (using inter/intrapolation if mle = 0) in order to
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     Revision 1.135  2009/10/29 15:33:14  brouard
 char filerest[FILENAMELENGTH];    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.133  2009/07/06 10:21:25  brouard
 #define NR_END 1    just nforces
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
 #define NRANSI  
 #define ITMAX 200    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
 #define TOL 2.0e-4  
     Revision 1.130  2009/05/26 06:44:34  brouard
 #define CGOLD 0.3819660    (Module): Max Covariate is now set to 20 instead of 8. A
 #define ZEPS 1.0e-10    lot of cleaning with variables initialized to 0. Trying to make
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
 #define GOLD 1.618034    Revision 1.129  2007/08/31 13:49:27  lievre
 #define GLIMIT 100.0    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define TINY 1.0e-20  
     Revision 1.128  2006/06/30 13:02:05  brouard
 static double maxarg1,maxarg2;    (Module): Clarifications on computing e.j
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.127  2006/04/28 18:11:50  brouard
      (Module): Yes the sum of survivors was wrong since
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    imach-114 because nhstepm was no more computed in the age
 #define rint(a) floor(a+0.5)    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 static double sqrarg;    compute health expectancies (without variances) in a first step
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    and then all the health expectancies with variances or standard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    deviation (needs data from the Hessian matrices) which slows the
     computation.
 int imx;    In the future we should be able to stop the program is only health
 int stepm;    expectancies and graph are needed without standard deviations.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.126  2006/04/28 17:23:28  brouard
 int estepm;    (Module): Yes the sum of survivors was wrong since
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 int m,nb;    Version 0.98h
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.125  2006/04/04 15:20:31  lievre
 double **pmmij, ***probs, ***mobaverage;    Errors in calculation of health expectancies. Age was not initialized.
 double dateintmean=0;    Forecasting file added.
   
 double *weight;    Revision 1.124  2006/03/22 17:13:53  lievre
 int **s; /* Status */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 double *agedc, **covar, idx;    The log-likelihood is printed in the log file
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.123  2006/03/20 10:52:43  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    * imach.c (Module): <title> changed, corresponds to .htm file
 double ftolhess; /* Tolerance for computing hessian */    name. <head> headers where missing.
   
 /**************** split *************************/    * imach.c (Module): Weights can have a decimal point as for
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
    char *s;                             /* pointer */    Modification of warning when the covariates values are not 0 or
    int  l1, l2;                         /* length counters */    1.
     Version 0.98g
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.122  2006/03/20 09:45:41  brouard
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    (Module): Weights can have a decimal point as for
    if ( s == NULL ) {                   /* no directory, so use current */    English (a comma might work with a correct LC_NUMERIC environment,
 #if     defined(__bsd__)                /* get current working directory */    otherwise the weight is truncated).
       extern char       *getwd( );    Modification of warning when the covariates values are not 0 or
     1.
       if ( getwd( dirc ) == NULL ) {    Version 0.98g
 #else  
       extern char       *getcwd( );    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    * imach.c (Module): refinements in the computation of lli if
          return( GLOCK_ERROR_GETCWD );    status=-2 in order to have more reliable computation if stepm is
       }    not 1 month. Version 0.98f
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.120  2006/03/16 15:10:38  lievre
       s++;                              /* after this, the filename */    (Module): refinements in the computation of lli if
       l2 = strlen( s );                 /* length of filename */    status=-2 in order to have more reliable computation if stepm is
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    not 1 month. Version 0.98f
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.119  2006/03/15 17:42:26  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Bug if status = -2, the loglikelihood was
    }    computed as likelihood omitting the logarithm. Version O.98e
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.118  2006/03/14 18:20:07  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): varevsij Comments added explaining the second
 #else    table of variances if popbased=1 .
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #endif    (Module): Function pstamp added
    s = strrchr( name, '.' );            /* find last / */    (Module): Version 0.98d
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.117  2006/03/14 17:16:22  brouard
    l1= strlen( name);    (Module): varevsij Comments added explaining the second
    l2= strlen( s)+1;    table of variances if popbased=1 .
    strncpy( finame, name, l1-l2);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    finame[l1-l2]= 0;    (Module): Function pstamp added
    return( 0 );                         /* we're done */    (Module): Version 0.98d
 }  
     Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 /******************************************/    varian-covariance of ej. is needed (Saito).
   
 void replace(char *s, char*t)    Revision 1.115  2006/02/27 12:17:45  brouard
 {    (Module): One freematrix added in mlikeli! 0.98c
   int i;  
   int lg=20;    Revision 1.114  2006/02/26 12:57:58  brouard
   i=0;    (Module): Some improvements in processing parameter
   lg=strlen(t);    filename with strsep.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.113  2006/02/24 14:20:24  brouard
     if (t[i]== '\\') s[i]='/';    (Module): Memory leaks checks with valgrind and:
   }    datafile was not closed, some imatrix were not freed and on matrix
 }    allocation too.
   
 int nbocc(char *s, char occ)    Revision 1.112  2006/01/30 09:55:26  brouard
 {    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   int i,j=0;  
   int lg=20;    Revision 1.111  2006/01/25 20:38:18  brouard
   i=0;    (Module): Lots of cleaning and bugs added (Gompertz)
   lg=strlen(s);    (Module): Comments can be added in data file. Missing date values
   for(i=0; i<= lg; i++) {    can be a simple dot '.'.
   if  (s[i] == occ ) j++;  
   }    Revision 1.110  2006/01/25 00:51:50  brouard
   return j;    (Module): Lots of cleaning and bugs added (Gompertz)
 }  
     Revision 1.109  2006/01/24 19:37:15  brouard
 void cutv(char *u,char *v, char*t, char occ)    (Module): Comments (lines starting with a #) are allowed in data.
 {  
   int i,lg,j,p=0;    Revision 1.108  2006/01/19 18:05:42  lievre
   i=0;    Gnuplot problem appeared...
   for(j=0; j<=strlen(t)-1; j++) {    To be fixed
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.106  2006/01/19 13:24:36  brouard
     (u[j] = t[j]);    Some cleaning and links added in html output
   }  
      u[p]='\0';    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.104  2005/09/30 16:11:43  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
 }    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 /********************** nrerror ********************/    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 void nrerror(char error_text[])    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 {    the healthy state at last known wave). Version is 0.98
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.103  2005/09/30 15:54:49  lievre
   exit(1);    (Module): sump fixed, loop imx fixed, and simplifications.
 }  
 /*********************** vector *******************/    Revision 1.102  2004/09/15 17:31:30  brouard
 double *vector(int nl, int nh)    Add the possibility to read data file including tab characters.
 {  
   double *v;    Revision 1.101  2004/09/15 10:38:38  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Fix on curr_time
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.100  2004/07/12 18:29:06  brouard
 }    Add version for Mac OS X. Just define UNIX in Makefile
   
 /************************ free vector ******************/    Revision 1.99  2004/06/05 08:57:40  brouard
 void free_vector(double*v, int nl, int nh)    *** empty log message ***
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.98  2004/05/16 15:05:56  brouard
 }    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 /************************ivector *******************************/    state at each age, but using a Gompertz model: log u =a + b*age .
 int *ivector(long nl,long nh)    This is the basic analysis of mortality and should be done before any
 {    other analysis, in order to test if the mortality estimated from the
   int *v;    cross-longitudinal survey is different from the mortality estimated
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    from other sources like vital statistic data.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
 /******************free ivector **************************/    former routines in order to include the new code within the former code.
 void free_ivector(int *v, long nl, long nh)  
 {    The output is very simple: only an estimate of the intercept and of
   free((FREE_ARG)(v+nl-NR_END));    the slope with 95% confident intervals.
 }  
     Current limitations:
 /******************* imatrix *******************************/    A) Even if you enter covariates, i.e. with the
 int **imatrix(long nrl, long nrh, long ncl, long nch)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    B) There is no computation of Life Expectancy nor Life Table.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.97  2004/02/20 13:25:42  lievre
   int **m;    Version 0.96d. Population forecasting command line is (temporarily)
      suppressed.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.96  2003/07/15 15:38:55  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   m += NR_END;    rewritten within the same printf. Workaround: many printfs.
   m -= nrl;  
      Revision 1.95  2003/07/08 07:54:34  brouard
      * imach.c (Repository):
   /* allocate rows and set pointers to them */    (Repository): Using imachwizard code to output a more meaningful covariance
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    matrix (cov(a12,c31) instead of numbers.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.94  2003/06/27 13:00:02  brouard
   m[nrl] -= ncl;    Just cleaning
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   /* return pointer to array of pointers to rows */    exist so I changed back to asctime which exists.
   return m;    (Module): Version 0.96b
 }  
     Revision 1.92  2003/06/25 16:30:45  brouard
 /****************** free_imatrix *************************/    (Module): On windows (cygwin) function asctime_r doesn't
 void free_imatrix(m,nrl,nrh,ncl,nch)    exist so I changed back to asctime which exists.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.91  2003/06/25 15:30:29  brouard
      /* free an int matrix allocated by imatrix() */    * imach.c (Repository): Duplicated warning errors corrected.
 {    (Repository): Elapsed time after each iteration is now output. It
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    helps to forecast when convergence will be reached. Elapsed time
   free((FREE_ARG) (m+nrl-NR_END));    is stamped in powell.  We created a new html file for the graphs
 }    concerning matrix of covariance. It has extension -cov.htm.
   
 /******************* matrix *******************************/    Revision 1.90  2003/06/24 12:34:15  brouard
 double **matrix(long nrl, long nrh, long ncl, long nch)    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    of the covariance matrix to be input.
   double **m;  
     Revision 1.89  2003/06/24 12:30:52  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Some bugs corrected for windows. Also, when
   if (!m) nrerror("allocation failure 1 in matrix()");    mle=-1 a template is output in file "or"mypar.txt with the design
   m += NR_END;    of the covariance matrix to be input.
   m -= nrl;  
     Revision 1.88  2003/06/23 17:54:56  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.87  2003/06/18 12:26:01  brouard
   m[nrl] -= ncl;    Version 0.96
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.86  2003/06/17 20:04:08  brouard
   return m;    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
   
 /*************************free matrix ************************/    Revision 1.85  2003/06/17 13:12:43  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    * imach.c (Repository): Check when date of death was earlier that
 {    current date of interview. It may happen when the death was just
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    prior to the death. In this case, dh was negative and likelihood
   free((FREE_ARG)(m+nrl-NR_END));    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /******************* ma3x *******************************/    (Repository): Because some people have very long ID (first column)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    truncation)
   double ***m;    (Repository): No more line truncation errors.
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.84  2003/06/13 21:44:43  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    * imach.c (Repository): Replace "freqsummary" at a correct
   m += NR_END;    place. It differs from routine "prevalence" which may be called
   m -= nrl;    many times. Probs is memory consuming and must be used with
     parcimony.
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.83  2003/06/10 13:39:11  lievre
   m[nrl] -= ncl;    *** empty log message ***
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  */
   m[nrl][ncl] += NR_END;  /*
   m[nrl][ncl] -= nll;     Interpolated Markov Chain
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Short summary of the programme:
      
   for (i=nrl+1; i<=nrh; i++) {    This program computes Healthy Life Expectancies from
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     for (j=ncl+1; j<=nch; j++)    first survey ("cross") where individuals from different ages are
       m[i][j]=m[i][j-1]+nlay;    interviewed on their health status or degree of disability (in the
   }    case of a health survey which is our main interest) -2- at least a
   return m;    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 /*************************free ma3x ************************/    model. More health states you consider, more time is necessary to reach the
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    probability to be observed in state j at the second wave
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    conditional to be observed in state i at the first wave. Therefore
   free((FREE_ARG)(m+nrl-NR_END));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /***************** f1dim *************************/    where the markup *Covariates have to be included here again* invites
 extern int ncom;    you to do it.  More covariates you add, slower the
 extern double *pcom,*xicom;    convergence.
 extern double (*nrfunc)(double []);  
      The advantage of this computer programme, compared to a simple
 double f1dim(double x)    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   int j;    intermediate interview, the information is lost, but taken into
   double f;    account using an interpolation or extrapolation.  
   double *xt;  
      hPijx is the probability to be observed in state i at age x+h
   xt=vector(1,ncom);    conditional to the observed state i at age x. The delay 'h' can be
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    split into an exact number (nh*stepm) of unobserved intermediate
   f=(*nrfunc)(xt);    states. This elementary transition (by month, quarter,
   free_vector(xt,1,ncom);    semester or year) is modelled as a multinomial logistic.  The hPx
   return f;    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the period (stable) prevalence. 
   int iter;    
   double a,b,d,etemp;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   double fu,fv,fw,fx;             Institut national d'études démographiques, Paris.
   double ftemp;    This software have been partly granted by Euro-REVES, a concerted action
   double p,q,r,tol1,tol2,u,v,w,x,xm;    from the European Union.
   double e=0.0;    It is copyrighted identically to a GNU software product, ie programme and
      software can be distributed freely for non commercial use. Latest version
   a=(ax < cx ? ax : cx);    can be accessed at http://euroreves.ined.fr/imach .
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   fw=fv=fx=(*f)(x);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for (iter=1;iter<=ITMAX;iter++) {    
     xm=0.5*(a+b);    **********************************************************************/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /*
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    main
     printf(".");fflush(stdout);    read parameterfile
 #ifdef DEBUG    read datafile
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    concatwav
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    freqsummary
 #endif    if (mle >= 1)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      mlikeli
       *xmin=x;    print results files
       return fx;    if mle==1 
     }       computes hessian
     ftemp=fu;    read end of parameter file: agemin, agemax, bage, fage, estepm
     if (fabs(e) > tol1) {        begin-prev-date,...
       r=(x-w)*(fx-fv);    open gnuplot file
       q=(x-v)*(fx-fw);    open html file
       p=(x-v)*q-(x-w)*r;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       q=2.0*(q-r);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
       if (q > 0.0) p = -p;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       q=fabs(q);      freexexit2 possible for memory heap.
       etemp=e;  
       e=d;    h Pij x                         | pij_nom  ficrestpij
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
         d=CGOLD*(e=(x >= xm ? a-x : b-x));         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       else {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
         d=p/q;  
         u=x+d;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
         if (u-a < tol2 || b-u < tol2)         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
           d=SIGN(tol1,xm-x);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       }     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     } else {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    forecasting if prevfcast==1 prevforecast call prevalence()
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    health expectancies
     fu=(*f)(u);    Variance-covariance of DFLE
     if (fu <= fx) {    prevalence()
       if (u >= x) a=x; else b=x;     movingaverage()
       SHFT(v,w,x,u)    varevsij() 
         SHFT(fv,fw,fx,fu)    if popbased==1 varevsij(,popbased)
         } else {    total life expectancies
           if (u < x) a=u; else b=u;    Variance of period (stable) prevalence
           if (fu <= fw || w == x) {   end
             v=w;  */
             w=u;  
             fv=fw;  
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {   
             v=u;  #include <math.h>
             fv=fu;  #include <stdio.h>
           }  #include <stdlib.h>
         }  #include <string.h>
   }  
   nrerror("Too many iterations in brent");  #ifdef _WIN32
   *xmin=x;  #include <io.h>
   return fx;  #else
 }  #include <unistd.h>
   #endif
 /****************** mnbrak ***********************/  
   #include <limits.h>
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #include <sys/types.h>
             double (*func)(double))  #include <sys/stat.h>
 {  #include <errno.h>
   double ulim,u,r,q, dum;  /* extern int errno; */
   double fu;  
    /* #ifdef LINUX */
   *fa=(*func)(*ax);  /* #include <time.h> */
   *fb=(*func)(*bx);  /* #include "timeval.h" */
   if (*fb > *fa) {  /* #else */
     SHFT(dum,*ax,*bx,dum)  /* #include <sys/time.h> */
       SHFT(dum,*fb,*fa,dum)  /* #endif */
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  #include <time.h>
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  #ifdef GSL
     r=(*bx-*ax)*(*fb-*fc);  #include <gsl/gsl_errno.h>
     q=(*bx-*cx)*(*fb-*fa);  #include <gsl/gsl_multimin.h>
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #endif
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /* #include <libintl.h> */
     if ((*bx-u)*(u-*cx) > 0.0) {  /* #define _(String) gettext (String) */
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       fu=(*func)(u);  
       if (fu < *fc) {  #define GNUPLOTPROGRAM "gnuplot"
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
           SHFT(*fb,*fc,fu,(*func)(u))  #define FILENAMELENGTH 132
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       u=ulim;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       fu=(*func)(u);  
     } else {  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       u=(*cx)+GOLD*(*cx-*bx);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       fu=(*func)(u);  
     }  #define NINTERVMAX 8
     SHFT(*ax,*bx,*cx,u)  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       SHFT(*fa,*fb,*fc,fu)  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 }  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   #define MAXN 20000
 /*************** linmin ************************/  #define YEARM 12. /**< Number of months per year */
   #define AGESUP 130
 int ncom;  #define AGEBASE 40
 double *pcom,*xicom;  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
 double (*nrfunc)(double []);  #ifdef _WIN32
    #define DIRSEPARATOR '\\'
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define CHARSEPARATOR "\\"
 {  #define ODIRSEPARATOR '/'
   double brent(double ax, double bx, double cx,  #else
                double (*f)(double), double tol, double *xmin);  #define DIRSEPARATOR '/'
   double f1dim(double x);  #define CHARSEPARATOR "/"
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define ODIRSEPARATOR '\\'
               double *fc, double (*func)(double));  #endif
   int j;  
   double xx,xmin,bx,ax;  /* $Id$ */
   double fx,fb,fa;  /* $State$ */
    
   ncom=n;  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   pcom=vector(1,n);  char fullversion[]="$Revision$ $Date$"; 
   xicom=vector(1,n);  char strstart[80];
   nrfunc=func;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   for (j=1;j<=n;j++) {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     pcom[j]=p[j];  int nvar=0, nforce=0; /* Number of variables, number of forces */
     xicom[j]=xi[j];  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   ax=0.0;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   xx=1.0;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 #ifdef DEBUG  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int cptcov=0; /* Working variable */
 #endif  int npar=NPARMAX;
   for (j=1;j<=n;j++) {  int nlstate=2; /* Number of live states */
     xi[j] *= xmin;  int ndeath=1; /* Number of dead states */
     p[j] += xi[j];  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   }  int popbased=0;
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav=0; /* Maxim number of waves */
   int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 /*************** powell ************************/  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
             double (*func)(double []))                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle=1, weightopt=0;
   void linmin(double p[], double xi[], int n, double *fret,  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
               double (*func)(double []));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int i,ibig,j;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double del,t,*pt,*ptt,*xit;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double fp,fptt;  double jmean=1; /* Mean space between 2 waves */
   double *xits;  double **matprod2(); /* test */
   pt=vector(1,n);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   ptt=vector(1,n);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   xit=vector(1,n);  /*FILE *fic ; */ /* Used in readdata only */
   xits=vector(1,n);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   *fret=(*func)(p);  FILE *ficlog, *ficrespow;
   for (j=1;j<=n;j++) pt[j]=p[j];  int globpr=0; /* Global variable for printing or not */
   for (*iter=1;;++(*iter)) {  double fretone; /* Only one call to likelihood */
     fp=(*fret);  long ipmx=0; /* Number of contributions */
     ibig=0;  double sw; /* Sum of weights */
     del=0.0;  char filerespow[FILENAMELENGTH];
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     for (i=1;i<=n;i++)  FILE *ficresilk;
       printf(" %d %.12f",i, p[i]);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     printf("\n");  FILE *ficresprobmorprev;
     for (i=1;i<=n;i++) {  FILE *fichtm, *fichtmcov; /* Html File */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  FILE *ficreseij;
       fptt=(*fret);  char filerese[FILENAMELENGTH];
 #ifdef DEBUG  FILE *ficresstdeij;
       printf("fret=%lf \n",*fret);  char fileresstde[FILENAMELENGTH];
 #endif  FILE *ficrescveij;
       printf("%d",i);fflush(stdout);  char filerescve[FILENAMELENGTH];
       linmin(p,xit,n,fret,func);  FILE  *ficresvij;
       if (fabs(fptt-(*fret)) > del) {  char fileresv[FILENAMELENGTH];
         del=fabs(fptt-(*fret));  FILE  *ficresvpl;
         ibig=i;  char fileresvpl[FILENAMELENGTH];
       }  char title[MAXLINE];
 #ifdef DEBUG  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       printf("%d %.12e",i,(*fret));  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       for (j=1;j<=n;j++) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  char command[FILENAMELENGTH];
         printf(" x(%d)=%.12e",j,xit[j]);  int  outcmd=0;
       }  
       for(j=1;j<=n;j++)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         printf(" p=%.12e",p[j]);  
       printf("\n");  char filelog[FILENAMELENGTH]; /* Log file */
 #endif  char filerest[FILENAMELENGTH];
     }  char fileregp[FILENAMELENGTH];
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  char popfile[FILENAMELENGTH];
 #ifdef DEBUG  
       int k[2],l;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       k[0]=1;  
       k[1]=-1;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       printf("Max: %.12e",(*func)(p));  /* struct timezone tzp; */
       for (j=1;j<=n;j++)  /* extern int gettimeofday(); */
         printf(" %.12e",p[j]);  struct tm tml, *gmtime(), *localtime();
       printf("\n");  
       for(l=0;l<=1;l++) {  extern time_t time();
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  struct tm start_time, end_time, curr_time, last_time, forecast_time;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
         }  struct tm tm;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  char strcurr[80], strfor[80];
 #endif  
   char *endptr;
   long lval;
       free_vector(xit,1,n);  double dval;
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  #define NR_END 1
       free_vector(pt,1,n);  #define FREE_ARG char*
       return;  #define FTOL 1.0e-10
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define NRANSI 
     for (j=1;j<=n;j++) {  #define ITMAX 200 
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  #define TOL 2.0e-4 
       pt[j]=p[j];  
     }  #define CGOLD 0.3819660 
     fptt=(*func)(ptt);  #define ZEPS 1.0e-10 
     if (fptt < fp) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  #define GOLD 1.618034 
         linmin(p,xit,n,fret,func);  #define GLIMIT 100.0 
         for (j=1;j<=n;j++) {  #define TINY 1.0e-20 
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  static double maxarg1,maxarg2;
         }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #ifdef DEBUG  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    
         for(j=1;j<=n;j++)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
           printf(" %.12e",xit[j]);  #define rint(a) floor(a+0.5)
         printf("\n");  
 #endif  static double sqrarg;
       }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   }  int agegomp= AGEGOMP;
 }  
   int imx; 
 /**** Prevalence limit ****************/  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  int estepm;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
      matrix by transitions matrix until convergence is reached */  
   int m,nb;
   int i, ii,j,k;  long *num;
   double min, max, maxmin, maxmax,sumnew=0.;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **matprod2();  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **out, cov[NCOVMAX], **pmij();  double **pmmij, ***probs;
   double **newm;  double *ageexmed,*agecens;
   double agefin, delaymax=50 ; /* Max number of years to converge */  double dateintmean=0;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  double *weight;
     for (j=1;j<=nlstate+ndeath;j++){  int **s; /* Status */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double *agedc;
     }  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
                     * covar=matrix(0,NCOVMAX,1,n); 
    cov[1]=1.;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
    double  idx; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  int *Ndum; /** Freq of modality (tricode */
     newm=savm;  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     /* Covariates have to be included here again */  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
      cov[2]=agefin;  double *lsurv, *lpop, *tpop;
    
       for (k=1; k<=cptcovn;k++) {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double ftolhess; /**< Tolerance for computing hessian */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /**************** split *************************/
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    */ 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    char  *ss;                            /* pointer */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    int   l1, l2;                         /* length counters */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
     l1 = strlen(path );                   /* length of path */
     savm=oldm;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     oldm=newm;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     maxmax=0.;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     for(j=1;j<=nlstate;j++){      strcpy( name, path );               /* we got the fullname name because no directory */
       min=1.;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       max=0.;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       for(i=1; i<=nlstate; i++) {      /* get current working directory */
         sumnew=0;      /*    extern  char* getcwd ( char *buf , int len);*/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         prlim[i][j]= newm[i][j]/(1-sumnew);        return( GLOCK_ERROR_GETCWD );
         max=FMAX(max,prlim[i][j]);      }
         min=FMIN(min,prlim[i][j]);      /* got dirc from getcwd*/
       }      printf(" DIRC = %s \n",dirc);
       maxmin=max-min;    } else {                              /* strip direcotry from path */
       maxmax=FMAX(maxmax,maxmin);      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
     if(maxmax < ftolpl){      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       return prlim;      strcpy( name, ss );         /* save file name */
     }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
 }      printf(" DIRC2 = %s \n",dirc);
     }
 /*************** transition probabilities ***************/    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    if( dirc[l1-1] != DIRSEPARATOR ){
 {      dirc[l1] =  DIRSEPARATOR;
   double s1, s2;      dirc[l1+1] = 0; 
   /*double t34;*/      printf(" DIRC3 = %s \n",dirc);
   int i,j,j1, nc, ii, jj;    }
     ss = strrchr( name, '.' );            /* find last / */
     for(i=1; i<= nlstate; i++){    if (ss >0){
     for(j=1; j<i;j++){      ss++;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      strcpy(ext,ss);                     /* save extension */
         /*s2 += param[i][j][nc]*cov[nc];*/      l1= strlen( name);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      l2= strlen(ss)+1;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      strncpy( finame, name, l1-l2);
       }      finame[l1-l2]= 0;
       ps[i][j]=s2;    }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }    return( 0 );                          /* we're done */
     for(j=i+1; j<=nlstate+ndeath;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /******************************************/
       }  
       ps[i][j]=s2;  void replace_back_to_slash(char *s, char*t)
     }  {
   }    int i;
     /*ps[3][2]=1;*/    int lg=0;
     i=0;
   for(i=1; i<= nlstate; i++){    lg=strlen(t);
      s1=0;    for(i=0; i<= lg; i++) {
     for(j=1; j<i; j++)      (s[i] = t[i]);
       s1+=exp(ps[i][j]);      if (t[i]== '\\') s[i]='/';
     for(j=i+1; j<=nlstate+ndeath; j++)    }
       s1+=exp(ps[i][j]);  }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  char *trimbb(char *out, char *in)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     for(j=i+1; j<=nlstate+ndeath; j++)    char *s;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    s=out;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    while (*in != '\0'){
   } /* end i */      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      }
     for(jj=1; jj<= nlstate+ndeath; jj++){      *out++ = *in++;
       ps[ii][jj]=0;    }
       ps[ii][ii]=1;    *out='\0';
     }    return s;
   }  }
   
   char *cutl(char *blocc, char *alocc, char *in, char occ)
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
      printf("%lf ",ps[ii][jj]);       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
    }       gives blocc="abcdef2ghi" and alocc="j".
     printf("\n ");       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     }    */
     printf("\n ");printf("%lf ",cov[2]);*/    char *s, *t;
 /*    t=in;s=in;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    while ((*in != occ) && (*in != '\0')){
   goto end;*/      *alocc++ = *in++;
     return ps;    }
 }    if( *in == occ){
       *(alocc)='\0';
 /**************** Product of 2 matrices ******************/      s=++in;
     }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)   
 {    if (s == t) {/* occ not found */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      *(alocc-(in-s))='\0';
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      in=s;
   /* in, b, out are matrice of pointers which should have been initialized    }
      before: only the contents of out is modified. The function returns    while ( *in != '\0'){
      a pointer to pointers identical to out */      *blocc++ = *in++;
   long i, j, k;    }
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    *blocc='\0';
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    return t;
         out[i][k] +=in[i][j]*b[j][k];  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
   return out;  {
 }    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
        and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
 /************* Higher Matrix Product ***************/       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    char *s, *t;
 {    t=in;s=in;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    while (*in != '\0'){
      duration (i.e. until      while( *in == occ){
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        *blocc++ = *in++;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        s=in;
      (typically every 2 years instead of every month which is too big).      }
      Model is determined by parameters x and covariates have to be      *blocc++ = *in++;
      included manually here.    }
     if (s == t) /* occ not found */
      */      *(blocc-(in-s))='\0';
     else
   int i, j, d, h, k;      *(blocc-(in-s)-1)='\0';
   double **out, cov[NCOVMAX];    in=s;
   double **newm;    while ( *in != '\0'){
       *alocc++ = *in++;
   /* Hstepm could be zero and should return the unit matrix */    }
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){    *alocc='\0';
       oldm[i][j]=(i==j ? 1.0 : 0.0);    return s;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int nbocc(char *s, char occ)
   for(h=1; h <=nhstepm; h++){  {
     for(d=1; d <=hstepm; d++){    int i,j=0;
       newm=savm;    int lg=20;
       /* Covariates have to be included here again */    i=0;
       cov[1]=1.;    lg=strlen(s);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for(i=0; i<= lg; i++) {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    if  (s[i] == occ ) j++;
       for (k=1; k<=cptcovage;k++)    }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return j;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*      gives u="abcdef2ghi" and v="j" *\/ */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*   int i,lg,j,p=0; */
       savm=oldm;  /*   i=0; */
       oldm=newm;  /*   lg=strlen(t); */
     }  /*   for(j=0; j<=lg-1; j++) { */
     for(i=1; i<=nlstate+ndeath; i++)  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       for(j=1;j<=nlstate+ndeath;j++) {  /*   } */
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /*   for(j=0; j<p; j++) { */
          */  /*     (u[j] = t[j]); */
       }  /*   } */
   } /* end h */  /*      u[p]='\0'; */
   return po;  
 }  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*   } */
 /*************** log-likelihood *************/  /* } */
 double func( double *x)  
 {  #ifdef _WIN32
   int i, ii, j, k, mi, d, kk;  char * strsep(char **pp, const char *delim)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    char *p, *q;
   double sw; /* Sum of weights */           
   double lli; /* Individual log likelihood */    if ((p = *pp) == NULL)
   long ipmx;      return 0;
   /*extern weight */    if ((q = strpbrk (p, delim)) != NULL)
   /* We are differentiating ll according to initial status */    {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      *pp = q + 1;
   /*for(i=1;i<imx;i++)      *q = '\0';
     printf(" %d\n",s[4][i]);    }
   */    else
   cov[1]=1.;      *pp = 0;
     return p;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #endif
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /********************** nrerror ********************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void nrerror(char error_text[])
       for(d=0; d<dh[mi][i]; d++){  {
         newm=savm;    fprintf(stderr,"ERREUR ...\n");
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    fprintf(stderr,"%s\n",error_text);
         for (kk=1; kk<=cptcovage;kk++) {    exit(EXIT_FAILURE);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  }
         }  /*********************** vector *******************/
          double *vector(int nl, int nh)
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double *v;
         savm=oldm;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         oldm=newm;    if (!v) nrerror("allocation failure in vector");
            return v-nl+NR_END;
          }
       } /* end mult */  
        /************************ free vector ******************/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  void free_vector(double*v, int nl, int nh)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  {
       ipmx +=1;    free((FREE_ARG)(v+nl-NR_END));
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /************************ivector *******************************/
   } /* end of individual */  int *ivector(long nl,long nh)
   {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    int *v;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    if (!v) nrerror("allocation failure in ivector");
   return -l;    return v-nl+NR_END;
 }  }
   
   /******************free ivector **************************/
 /*********** Maximum Likelihood Estimation ***************/  void free_ivector(int *v, long nl, long nh)
   {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   int i,j, iter;  
   double **xi,*delti;  /************************lvector *******************************/
   double fret;  long *lvector(long nl,long nh)
   xi=matrix(1,npar,1,npar);  {
   for (i=1;i<=npar;i++)    long *v;
     for (j=1;j<=npar;j++)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       xi[i][j]=(i==j ? 1.0 : 0.0);    if (!v) nrerror("allocation failure in ivector");
   printf("Powell\n");    return v-nl+NR_END;
   powell(p,xi,npar,ftol,&iter,&fret,func);  }
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /******************free lvector **************************/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  void free_lvector(long *v, long nl, long nh)
   {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /******************* imatrix *******************************/
 {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double  **a,**y,*x,pd;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double **hess;  { 
   int i, j,jk;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int *indx;    int **m; 
     
   double hessii(double p[], double delta, int theta, double delti[]);    /* allocate pointers to rows */ 
   double hessij(double p[], double delti[], int i, int j);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    m += NR_END; 
     m -= nrl; 
   hess=matrix(1,npar,1,npar);    
     
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* allocate rows and set pointers to them */ 
   for (i=1;i<=npar;i++){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     printf("%d",i);fflush(stdout);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    m[nrl] += NR_END; 
     /*printf(" %f ",p[i]);*/    m[nrl] -= ncl; 
     /*printf(" %lf ",hess[i][i]);*/    
   }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
   for (i=1;i<=npar;i++) {    /* return pointer to array of pointers to rows */ 
     for (j=1;j<=npar;j++)  {    return m; 
       if (j>i) {  } 
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);  /****************** free_imatrix *************************/
         hess[j][i]=hess[i][j];      void free_imatrix(m,nrl,nrh,ncl,nch)
         /*printf(" %lf ",hess[i][j]);*/        int **m;
       }        long nch,ncl,nrh,nrl; 
     }       /* free an int matrix allocated by imatrix() */ 
   }  { 
   printf("\n");    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  } 
    
   a=matrix(1,npar,1,npar);  /******************* matrix *******************************/
   y=matrix(1,npar,1,npar);  double **matrix(long nrl, long nrh, long ncl, long nch)
   x=vector(1,npar);  {
   indx=ivector(1,npar);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (i=1;i<=npar;i++)    double **m;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for (j=1;j<=npar;j++) {    m += NR_END;
     for (i=1;i<=npar;i++) x[i]=0;    m -= nrl;
     x[j]=1;  
     lubksb(a,npar,indx,x);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (i=1;i<=npar;i++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       matcov[i][j]=x[i];    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   printf("\n#Hessian matrix#\n");    return m;
   for (i=1;i<=npar;i++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     for (j=1;j<=npar;j++) {  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       printf("%.3e ",hess[i][j]);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     }     */
     printf("\n");  }
   }  
   /*************************free matrix ************************/
   /* Recompute Inverse */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   ludcmp(a,npar,indx,&pd);    free((FREE_ARG)(m+nrl-NR_END));
   }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   /******************* ma3x *******************************/
   for (j=1;j<=npar;j++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     lubksb(a,npar,indx,x);    double ***m;
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("%.3e ",y[i][j]);    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     printf("\n");    m -= nrl;
   }  
   */    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   free_matrix(a,1,npar,1,npar);    m[nrl] += NR_END;
   free_matrix(y,1,npar,1,npar);    m[nrl] -= ncl;
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   free_matrix(hess,1,npar,1,npar);  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 }    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
 /*************** hessian matrix ****************/    for (j=ncl+1; j<=nch; j++) 
 double hessii( double x[], double delta, int theta, double delti[])      m[nrl][j]=m[nrl][j-1]+nlay;
 {    
   int i;    for (i=nrl+1; i<=nrh; i++) {
   int l=1, lmax=20;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double k1,k2;      for (j=ncl+1; j<=nch; j++) 
   double p2[NPARMAX+1];        m[i][j]=m[i][j-1]+nlay;
   double res;    }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    return m; 
   double fx;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   int k=0,kmax=10;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double l1;    */
   }
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*************************free ma3x ************************/
   for(l=0 ; l <=lmax; l++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     l1=pow(10,l);  {
     delts=delt;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for(k=1 ; k <kmax; k=k+1){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       delt = delta*(l1*k);    free((FREE_ARG)(m+nrl-NR_END));
       p2[theta]=x[theta] +delt;  }
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /*************** function subdirf ***********/
       k2=func(p2)-fx;  char *subdirf(char fileres[])
       /*res= (k1-2.0*fx+k2)/delt/delt; */  {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    /* Caution optionfilefiname is hidden */
          strcpy(tmpout,optionfilefiname);
 #ifdef DEBUG    strcat(tmpout,"/"); /* Add to the right */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    strcat(tmpout,fileres);
 #endif    return tmpout;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  {
         k=kmax; l=lmax*10.;    
       }    /* Caution optionfilefiname is hidden */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    strcpy(tmpout,optionfilefiname);
         delts=delt;    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
   }    return tmpout;
   delti[theta]=delts;  }
   return res;  
    /*************** function subdirf3 ***********/
 }  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 double hessij( double x[], double delti[], int thetai,int thetaj)    
 {    /* Caution optionfilefiname is hidden */
   int i;    strcpy(tmpout,optionfilefiname);
   int l=1, l1, lmax=20;    strcat(tmpout,"/");
   double k1,k2,k3,k4,res,fx;    strcat(tmpout,preop);
   double p2[NPARMAX+1];    strcat(tmpout,preop2);
   int k;    strcat(tmpout,fileres);
     return tmpout;
   fx=func(x);  }
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /***************** f1dim *************************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  extern int ncom; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  extern double *pcom,*xicom;
     k1=func(p2)-fx;  extern double (*nrfunc)(double []); 
     
     p2[thetai]=x[thetai]+delti[thetai]/k;  double f1dim(double x) 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  { 
     k2=func(p2)-fx;    int j; 
      double f;
     p2[thetai]=x[thetai]-delti[thetai]/k;    double *xt; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;   
     k3=func(p2)-fx;    xt=vector(1,ncom); 
      for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    f=(*nrfunc)(xt); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    free_vector(xt,1,ncom); 
     k4=func(p2)-fx;    return f; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  } 
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*****************brent *************************/
 #endif  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
   return res;    int iter; 
 }    double a,b,d,etemp;
     double fu=0,fv,fw,fx;
 /************** Inverse of matrix **************/    double ftemp;
 void ludcmp(double **a, int n, int *indx, double *d)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 {    double e=0.0; 
   int i,imax,j,k;   
   double big,dum,sum,temp;    a=(ax < cx ? ax : cx); 
   double *vv;    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
   vv=vector(1,n);    fw=fv=fx=(*f)(x); 
   *d=1.0;    for (iter=1;iter<=ITMAX;iter++) { 
   for (i=1;i<=n;i++) {      xm=0.5*(a+b); 
     big=0.0;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (j=1;j<=n;j++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       if ((temp=fabs(a[i][j])) > big) big=temp;      printf(".");fflush(stdout);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      fprintf(ficlog,".");fflush(ficlog);
     vv[i]=1.0/big;  #ifdef DEBUG
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (j=1;j<=n;j++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (i=1;i<j;i++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       sum=a[i][j];  #endif
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       a[i][j]=sum;        *xmin=x; 
     }        return fx; 
     big=0.0;      } 
     for (i=j;i<=n;i++) {      ftemp=fu;
       sum=a[i][j];      if (fabs(e) > tol1) { 
       for (k=1;k<j;k++)        r=(x-w)*(fx-fv); 
         sum -= a[i][k]*a[k][j];        q=(x-v)*(fx-fw); 
       a[i][j]=sum;        p=(x-v)*q-(x-w)*r; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        q=2.0*(q-r); 
         big=dum;        if (q > 0.0) p = -p; 
         imax=i;        q=fabs(q); 
       }        etemp=e; 
     }        e=d; 
     if (j != imax) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (k=1;k<=n;k++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         dum=a[imax][k];        else { 
         a[imax][k]=a[j][k];          d=p/q; 
         a[j][k]=dum;          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
       *d = -(*d);            d=SIGN(tol1,xm-x); 
       vv[imax]=vv[j];        } 
     }      } else { 
     indx[j]=imax;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (a[j][j] == 0.0) a[j][j]=TINY;      } 
     if (j != n) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       dum=1.0/(a[j][j]);      fu=(*f)(u); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
   }        SHFT(v,w,x,u) 
   free_vector(vv,1,n);  /* Doesn't work */          SHFT(fv,fw,fx,fu) 
 ;          } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 void lubksb(double **a, int n, int *indx, double b[])              v=w; 
 {              w=u; 
   int i,ii=0,ip,j;              fv=fw; 
   double sum;              fw=fu; 
              } else if (fu <= fv || v == x || v == w) { 
   for (i=1;i<=n;i++) {              v=u; 
     ip=indx[i];              fv=fu; 
     sum=b[ip];            } 
     b[ip]=b[i];          } 
     if (ii)    } 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    nrerror("Too many iterations in brent"); 
     else if (sum) ii=i;    *xmin=x; 
     b[i]=sum;    return fx; 
   }  } 
   for (i=n;i>=1;i--) {  
     sum=b[i];  /****************** mnbrak ***********************/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   }              double (*func)(double)) 
 }  { 
     double ulim,u,r,q, dum;
 /************ Frequencies ********************/    double fu; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)   
 {  /* Some frequencies */    *fa=(*func)(*ax); 
      *fb=(*func)(*bx); 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    if (*fb > *fa) { 
   double ***freq; /* Frequencies */      SHFT(dum,*ax,*bx,dum) 
   double *pp;        SHFT(dum,*fb,*fa,dum) 
   double pos, k2, dateintsum=0,k2cpt=0;        } 
   FILE *ficresp;    *cx=(*bx)+GOLD*(*bx-*ax); 
   char fileresp[FILENAMELENGTH];    *fc=(*func)(*cx); 
      while (*fb > *fc) { 
   pp=vector(1,nlstate);      r=(*bx-*ax)*(*fb-*fc); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      q=(*bx-*cx)*(*fb-*fa); 
   strcpy(fileresp,"p");      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   strcat(fileresp,fileres);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);      if ((*bx-u)*(u-*cx) > 0.0) { 
     exit(0);        fu=(*func)(u); 
   }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        fu=(*func)(u); 
   j1=0;        if (fu < *fc) { 
            SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   j=cptcoveff;            SHFT(*fb,*fc,fu,(*func)(u)) 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            } 
        } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for(k1=1; k1<=j;k1++){        u=ulim; 
     for(i1=1; i1<=ncodemax[k1];i1++){        fu=(*func)(u); 
       j1++;      } else { 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        u=(*cx)+GOLD*(*cx-*bx); 
         scanf("%d", i);*/        fu=(*func)(u); 
       for (i=-1; i<=nlstate+ndeath; i++)        } 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        SHFT(*ax,*bx,*cx,u) 
           for(m=agemin; m <= agemax+3; m++)        SHFT(*fa,*fb,*fc,fu) 
             freq[i][jk][m]=0;        } 
        } 
       dateintsum=0;  
       k2cpt=0;  /*************** linmin ************************/
       for (i=1; i<=imx; i++) {  
         bool=1;  int ncom; 
         if  (cptcovn>0) {  double *pcom,*xicom;
           for (z1=1; z1<=cptcoveff; z1++)  double (*nrfunc)(double []); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         }  { 
         if (bool==1) {    double brent(double ax, double bx, double cx, 
           for(m=firstpass; m<=lastpass; m++){                 double (*f)(double), double tol, double *xmin); 
             k2=anint[m][i]+(mint[m][i]/12.);    double f1dim(double x); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
               if(agev[m][i]==0) agev[m][i]=agemax+1;                double *fc, double (*func)(double)); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    int j; 
               if (m<lastpass) {    double xx,xmin,bx,ax; 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double fx,fb,fa;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];   
               }    ncom=n; 
                  pcom=vector(1,n); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    xicom=vector(1,n); 
                 dateintsum=dateintsum+k2;    nrfunc=func; 
                 k2cpt++;    for (j=1;j<=n;j++) { 
               }      pcom[j]=p[j]; 
             }      xicom[j]=xi[j]; 
           }    } 
         }    ax=0.0; 
       }    xx=1.0; 
            mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
       if  (cptcovn>0) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         fprintf(ficresp, "\n#********** Variable ");    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  #endif
         fprintf(ficresp, "**********\n#");    for (j=1;j<=n;j++) { 
       }      xi[j] *= xmin; 
       for(i=1; i<=nlstate;i++)      p[j] += xi[j]; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    } 
       fprintf(ficresp, "\n");    free_vector(xicom,1,n); 
          free_vector(pcom,1,n); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){  } 
         if(i==(int)agemax+3)  
           printf("Total");  char *asc_diff_time(long time_sec, char ascdiff[])
         else  {
           printf("Age %d", i);    long sec_left, days, hours, minutes;
         for(jk=1; jk <=nlstate ; jk++){    days = (time_sec) / (60*60*24);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    sec_left = (time_sec) % (60*60*24);
             pp[jk] += freq[jk][m][i];    hours = (sec_left) / (60*60) ;
         }    sec_left = (sec_left) %(60*60);
         for(jk=1; jk <=nlstate ; jk++){    minutes = (sec_left) /60;
           for(m=-1, pos=0; m <=0 ; m++)    sec_left = (sec_left) % (60);
             pos += freq[jk][m][i];    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
           if(pp[jk]>=1.e-10)    return ascdiff;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  }
           else  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*************** powell ************************/
         }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
         for(jk=1; jk <=nlstate ; jk++){  { 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    void linmin(double p[], double xi[], int n, double *fret, 
             pp[jk] += freq[jk][m][i];                double (*func)(double [])); 
         }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
         for(jk=1,pos=0; jk <=nlstate ; jk++)    double fp,fptt;
           pos += pp[jk];    double *xits;
         for(jk=1; jk <=nlstate ; jk++){    int niterf, itmp;
           if(pos>=1.e-5)  
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    pt=vector(1,n); 
           else    ptt=vector(1,n); 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    xit=vector(1,n); 
           if( i <= (int) agemax){    xits=vector(1,n); 
             if(pos>=1.e-5){    *fret=(*func)(p); 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    for (j=1;j<=n;j++) pt[j]=p[j]; 
               probs[i][jk][j1]= pp[jk]/pos;      rcurr_time = time(NULL);  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    for (*iter=1;;++(*iter)) { 
             }      fp=(*fret); 
             else      ibig=0; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      del=0.0; 
           }      rlast_time=rcurr_time;
         }      /* (void) gettimeofday(&curr_time,&tzp); */
              rcurr_time = time(NULL);  
         for(jk=-1; jk <=nlstate+ndeath; jk++)      curr_time = *localtime(&rcurr_time);
           for(m=-1; m <=nlstate+ndeath; m++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
         if(i <= (int) agemax)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
           fprintf(ficresp,"\n");     for (i=1;i<=n;i++) {
         printf("\n");        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
     }        fprintf(ficrespow," %.12lf", p[i]);
   }      }
   dateintmean=dateintsum/k2cpt;      printf("\n");
        fprintf(ficlog,"\n");
   fclose(ficresp);      fprintf(ficrespow,"\n");fflush(ficrespow);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      if(*iter <=3){
   free_vector(pp,1,nlstate);        tml = *localtime(&rcurr_time);
          strcpy(strcurr,asctime(&tml));
   /* End of Freq */  /*       asctime_r(&tm,strcurr); */
 }        rforecast_time=rcurr_time; 
         itmp = strlen(strcurr);
 /************ Prevalence ********************/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          strcurr[itmp-1]='\0';
 {  /* Some frequencies */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for(niterf=10;niterf<=30;niterf+=10){
   double ***freq; /* Frequencies */          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
   double *pp;          forecast_time = *localtime(&rforecast_time);
   double pos, k2;  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&forecast_time));
   pp=vector(1,nlstate);          itmp = strlen(strfor);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(strfor[itmp-1]=='\n')
            strfor[itmp-1]='\0';
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   j1=0;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
          }
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(k1=1; k1<=j;k1++){        fptt=(*fret); 
     for(i1=1; i1<=ncodemax[k1];i1++){  #ifdef DEBUG
       j1++;        printf("fret=%lf \n",*fret);
              fprintf(ficlog,"fret=%lf \n",*fret);
       for (i=-1; i<=nlstate+ndeath; i++)    #endif
         for (jk=-1; jk<=nlstate+ndeath; jk++)          printf("%d",i);fflush(stdout);
           for(m=agemin; m <= agemax+3; m++)        fprintf(ficlog,"%d",i);fflush(ficlog);
             freq[i][jk][m]=0;        linmin(p,xit,n,fret,func); 
              if (fabs(fptt-(*fret)) > del) { 
       for (i=1; i<=imx; i++) {          del=fabs(fptt-(*fret)); 
         bool=1;          ibig=i; 
         if  (cptcovn>0) {        } 
           for (z1=1; z1<=cptcoveff; z1++)  #ifdef DEBUG
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        printf("%d %.12e",i,(*fret));
               bool=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
         }        for (j=1;j<=n;j++) {
         if (bool==1) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           for(m=firstpass; m<=lastpass; m++){          printf(" x(%d)=%.12e",j,xit[j]);
             k2=anint[m][i]+(mint[m][i]/12.);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        }
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(j=1;j<=n;j++) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;          printf(" p=%.12e",p[j]);
               if (m<lastpass) {          fprintf(ficlog," p=%.12e",p[j]);
                 if (calagedate>0)        }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        printf("\n");
                 else        fprintf(ficlog,"\n");
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  #endif
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      } 
               }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
             }  #ifdef DEBUG
           }        int k[2],l;
         }        k[0]=1;
       }        k[1]=-1;
       for(i=(int)agemin; i <= (int)agemax+3; i++){        printf("Max: %.12e",(*func)(p));
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (j=1;j<=n;j++) {
             pp[jk] += freq[jk][m][i];          printf(" %.12e",p[j]);
         }          fprintf(ficlog," %.12e",p[j]);
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pos=0; m <=0 ; m++)        printf("\n");
             pos += freq[jk][m][i];        fprintf(ficlog,"\n");
         }        for(l=0;l<=1;l++) {
                  for (j=1;j<=n;j++) {
         for(jk=1; jk <=nlstate ; jk++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             pp[jk] += freq[jk][m][i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }          }
                  printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                }
         for(jk=1; jk <=nlstate ; jk++){      #endif
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  
               probs[i][jk][j1]= pp[jk]/pos;        free_vector(xit,1,n); 
             }        free_vector(xits,1,n); 
           }        free_vector(ptt,1,n); 
         }        free_vector(pt,1,n); 
                return; 
       }      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
         ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        pt[j]=p[j]; 
   free_vector(pp,1,nlstate);      } 
        fptt=(*func)(ptt); 
 }  /* End of Freq */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
         /* x1 f1=fp x2 f2=*fret x3 f3=fptt, xm fm */
 /************* Waves Concatenation ***************/        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         /* Let f"(x2) be the 2nd derivative equal everywhere. Then the parabolic through (x1,f1), (x2,f2) and (x3,f3)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           will reach at f3 = fm + h^2/2 f''m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 {        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        /* Thus we compare delta(2h) with observed f1-f3 */
      Death is a valid wave (if date is known).        /* or best gain on one ancient line 'del' with total gain f1-f2 = f1 - f2 - 'del' with del */ 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
      and mw[mi+1][i]. dh depends on stepm.        t= t- del*SQR(fp-fptt);
      */        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
   int i, mi, m;  #ifdef DEBUG
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
      double sum=0., jmean=0.;*/               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   int j, k=0,jk, ju, jl;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   double sum=0.;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   jmin=1e+5;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   jmax=-1;  #endif
   jmean=0.;        if (t < 0.0) { /* Then we use it for last direction */
   for(i=1; i<=imx; i++){          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
     mi=0;          for (j=1;j<=n;j++) { 
     m=firstpass;            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
     while(s[m][i] <= nlstate){            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
       if(s[m][i]>=1)          }
         mw[++mi][i]=m;          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       if(m >=lastpass)          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
         break;  
       else  #ifdef DEBUG
         m++;          for(j=1;j<=n;j++){
     }/* end while */            printf(" %.12e",xit[j]);
     if (s[m][i] > nlstate){            fprintf(ficlog," %.12e",xit[j]);
       mi++;     /* Death is another wave */          }
       /* if(mi==0)  never been interviewed correctly before death */          printf("\n");
          /* Only death is a correct wave */          fprintf(ficlog,"\n");
       mw[mi][i]=m;  #endif
     }        }
       } 
     wav[i]=mi;    } 
     if(mi==0)  } 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }  /**** Prevalence limit (stable or period prevalence)  ****************/
   
   for(i=1; i<=imx; i++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(mi=1; mi<wav[i];mi++){  {
       if (stepm <=0)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         dh[mi][i]=1;       matrix by transitions matrix until convergence is reached */
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {    int i, ii,j,k;
           if (agedc[i] < 2*AGESUP) {    double min, max, maxmin, maxmax,sumnew=0.;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    /* double **matprod2(); */ /* test */
           if(j==0) j=1;  /* Survives at least one month after exam */    double **out, cov[NCOVMAX+1], **pmij();
           k=k+1;    double **newm;
           if (j >= jmax) jmax=j;    double agefin, delaymax=50 ; /* Max number of years to converge */
           if (j <= jmin) jmin=j;  
           sum=sum+j;    for (ii=1;ii<=nlstate+ndeath;ii++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for (j=1;j<=nlstate+ndeath;j++){
           }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }      }
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));     cov[1]=1.;
           k=k+1;   
           if (j >= jmax) jmax=j;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           else if (j <= jmin)jmin=j;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      newm=savm;
           sum=sum+j;      /* Covariates have to be included here again */
         }      cov[2]=agefin;
         jk= j/stepm;      
         jl= j -jk*stepm;      for (k=1; k<=cptcovn;k++) {
         ju= j -(jk+1)*stepm;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         if(jl <= -ju)        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
           dh[mi][i]=jk;      }
         else      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           dh[mi][i]=jk+1;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
         if(dh[mi][i]==0)      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
           dh[mi][i]=1; /* At least one step */      
       }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   jmean=sum/k;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
  }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 /*********** Tricode ****************************/      
 void tricode(int *Tvar, int **nbcode, int imx)      savm=oldm;
 {      oldm=newm;
   int Ndum[20],ij=1, k, j, i;      maxmax=0.;
   int cptcode=0;      for(j=1;j<=nlstate;j++){
   cptcoveff=0;        min=1.;
          max=0.;
   for (k=0; k<19; k++) Ndum[k]=0;        for(i=1; i<=nlstate; i++) {
   for (k=1; k<=7; k++) ncodemax[k]=0;          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (i=1; i<=imx; i++) {          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
       ij=(int)(covar[Tvar[j]][i]);          max=FMAX(max,prlim[i][j]);
       Ndum[ij]++;          min=FMIN(min,prlim[i][j]);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        }
       if (ij > cptcode) cptcode=ij;        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
       }
     for (i=0; i<=cptcode; i++) {      if(maxmax < ftolpl){
       if(Ndum[i]!=0) ncodemax[j]++;        return prlim;
     }      }
     ij=1;    }
   }
   
     for (i=1; i<=ncodemax[j]; i++) {  /*************** transition probabilities ***************/ 
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           nbcode[Tvar[j]][ij]=k;  {
              /* According to parameters values stored in x and the covariate's values stored in cov,
           ij++;       computes the probability to be observed in state j being in state i by appying the
         }       model to the ncovmodel covariates (including constant and age).
         if (ij > ncodemax[j]) break;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
       }         and, according on how parameters are entered, the position of the coefficient xij(nc) of the
     }       ncth covariate in the global vector x is given by the formula:
   }         j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
  for (k=0; k<19; k++) Ndum[k]=0;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
  for (i=1; i<=ncovmodel-2; i++) {       Outputs ps[i][j] the probability to be observed in j being in j according to
       ij=Tvar[i];       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
       Ndum[ij]++;    */
     }    double s1, lnpijopii;
     /*double t34;*/
  ij=1;    int i,j,j1, nc, ii, jj;
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){      for(i=1; i<= nlstate; i++){
      Tvaraff[ij]=i;        for(j=1; j<i;j++){
      ij++;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
    }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
  }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
    /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     cptcoveff=ij-1;          }
 }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 /*********** Health Expectancies ****************/        }
         for(j=i+1; j<=nlstate+ndeath;j++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 {            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /* Health expectancies */  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          }
   double age, agelim, hf;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   double ***p3mat,***varhe;        }
   double **dnewm,**doldm;      }
   double *xp;      
   double **gp, **gm;      for(i=1; i<= nlstate; i++){
   double ***gradg, ***trgradg;        s1=0;
   int theta;        for(j=1; j<i; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate*2,1,npar);        for(j=i+1; j<=nlstate+ndeath; j++){
   doldm=matrix(1,nlstate*2,1,nlstate*2);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
            /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   fprintf(ficreseij,"# Health expectancies\n");        }
   fprintf(ficreseij,"# Age");        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   for(i=1; i<=nlstate;i++)        ps[i][i]=1./(s1+1.);
     for(j=1; j<=nlstate;j++)        /* Computing other pijs */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        for(j=1; j<i; j++)
   fprintf(ficreseij,"\n");          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
   if(estepm < stepm){          ps[i][j]= exp(ps[i][j])*ps[i][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   }      } /* end i */
   else  hstepm=estepm;        
   /* We compute the life expectancy from trapezoids spaced every estepm months      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
    * This is mainly to measure the difference between two models: for example        for(jj=1; jj<= nlstate+ndeath; jj++){
    * if stepm=24 months pijx are given only every 2 years and by summing them          ps[ii][jj]=0;
    * we are calculating an estimate of the Life Expectancy assuming a linear          ps[ii][ii]=1;
    * progression inbetween and thus overestimating or underestimating according        }
    * to the curvature of the survival function. If, for the same date, we      }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      
    * to compare the new estimate of Life expectancy with the same linear      
    * hypothesis. A more precise result, taking into account a more precise      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
    * curvature will be obtained if estepm is as small as stepm. */      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   /* For example we decided to compute the life expectancy with the smallest unit */      /*   } */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      /*   printf("\n "); */
      nhstepm is the number of hstepm from age to agelim      /* } */
      nstepm is the number of stepm from age to agelin.      /* printf("\n ");printf("%lf ",cov[2]);*/
      Look at hpijx to understand the reason of that which relies in memory size      /*
      and note for a fixed period like estepm months */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        goto end;*/
      survival function given by stepm (the optimization length). Unfortunately it      return ps;
      means that if the survival funtion is printed only each two years of age and if  }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  /**************** Product of 2 matrices ******************/
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   {
   agelim=AGESUP;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* nhstepm age range expressed in number of stepm */    /* in, b, out are matrice of pointers which should have been initialized 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);       before: only the contents of out is modified. The function returns
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */       a pointer to pointers identical to out */
     /* if (stepm >= YEARM) hstepm=1;*/    int i, j, k;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for(i=nrl; i<= nrh; i++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(k=ncolol; k<=ncoloh; k++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        out[i][k]=0.;
     gp=matrix(0,nhstepm,1,nlstate*2);        for(j=ncl; j<=nch; j++)
     gm=matrix(0,nhstepm,1,nlstate*2);          out[i][k] +=in[i][j]*b[j][k];
       }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    return out;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
    
   /************* Higher Matrix Product ***************/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     /* Computing Variances of health expectancies */  {
     /* Computes the transition matrix starting at age 'age' over 
      for(theta=1; theta <=npar; theta++){       'nhstepm*hstepm*stepm' months (i.e. until
       for(i=1; i<=npar; i++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       nhstepm*hstepm matrices. 
       }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         (typically every 2 years instead of every month which is too big 
         for the memory).
       cptj=0;       Model is determined by parameters x and covariates have to be 
       for(j=1; j<= nlstate; j++){       included manually here. 
         for(i=1; i<=nlstate; i++){  
           cptj=cptj+1;       */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    int i, j, d, h, k;
           }    double **out, cov[NCOVMAX+1];
         }    double **newm;
       }  
          /* Hstepm could be zero and should return the unit matrix */
          for (i=1;i<=nlstate+ndeath;i++)
       for(i=1; i<=npar; i++)      for (j=1;j<=nlstate+ndeath;j++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        oldm[i][j]=(i==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          po[i][j][0]=(i==j ? 1.0 : 0.0);
            }
       cptj=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(j=1; j<= nlstate; j++){    for(h=1; h <=nhstepm; h++){
         for(i=1;i<=nlstate;i++){      for(d=1; d <=hstepm; d++){
           cptj=cptj+1;        newm=savm;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        /* Covariates have to be included here again */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        cov[1]=1.;
           }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         }        for (k=1; k<=cptcovn;k++) 
       }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(j=1; j<= nlstate*2; j++)        for (k=1; k<=cptcovage;k++)
         for(h=0; h<=nhstepm-1; h++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      }  
      
 /* End theta */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
      for(h=0; h<=nhstepm-1; h++)        savm=oldm;
       for(j=1; j<=nlstate*2;j++)        oldm=newm;
         for(theta=1; theta <=npar; theta++)      }
           trgradg[h][j][theta]=gradg[h][theta][j];      for(i=1; i<=nlstate+ndeath; i++)
              for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
      for(i=1;i<=nlstate*2;i++)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       for(j=1;j<=nlstate*2;j++)        }
         varhe[i][j][(int)age] =0.;      /*printf("h=%d ",h);*/
     } /* end h */
      printf("%d|",(int)age);fflush(stdout);  /*     printf("\n H=%d \n",h); */
      for(h=0;h<=nhstepm-1;h++){    return po;
       for(k=0;k<=nhstepm-1;k++){  }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  
         for(i=1;i<=nlstate*2;i++)  /*************** log-likelihood *************/
           for(j=1;j<=nlstate*2;j++)  double func( double *x)
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  {
       }    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     /* Computing expectancies */    double **out;
     for(i=1; i<=nlstate;i++)    double sw; /* Sum of weights */
       for(j=1; j<=nlstate;j++)    double lli; /* Individual log likelihood */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    int s1, s2;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double bbh, survp;
              long ipmx;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    /*extern weight */
     /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     fprintf(ficreseij,"%3.0f",age );      printf(" %d\n",s[4][i]);
     cptj=0;    */
     for(i=1; i<=nlstate;i++)    cov[1]=1.;
       for(j=1; j<=nlstate;j++){  
         cptj++;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }    if(mle==1){
     fprintf(ficreseij,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            /* Computes the values of the ncovmodel covariates of the model
     free_matrix(gm,0,nhstepm,1,nlstate*2);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     free_matrix(gp,0,nhstepm,1,nlstate*2);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);           to be observed in j being in i according to the model.
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);         */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   }          cov[2+k]=covar[Tvar[k]][i];
   printf("\n");        }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   free_vector(xp,1,npar);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   free_matrix(dnewm,1,nlstate*2,1,npar);           has been calculated etc */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        for(mi=1; mi<= wav[i]-1; mi++){
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance ******************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)            }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Variance of health expectancies */            newm=savm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **newm;            for (kk=1; kk<=cptcovage;kk++) {
   double **dnewm,**doldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   int i, j, nhstepm, hstepm, h, nstepm ;            }
   int k, cptcode;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *xp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **gp, **gm;            savm=oldm;
   double ***gradg, ***trgradg;            oldm=newm;
   double ***p3mat;          } /* end mult */
   double age,agelim, hf;        
   int theta;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   fprintf(ficresvij,"# Age");           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for(i=1; i<=nlstate;i++)           * the nearest (and in case of equal distance, to the lowest) interval but now
     for(j=1; j<=nlstate;j++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   fprintf(ficresvij,"\n");           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   xp=vector(1,npar);           * -stepm/2 to stepm/2 .
   dnewm=matrix(1,nlstate,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
   doldm=matrix(1,nlstate,1,nlstate);           * For stepm > 1 the results are less biased than in previous versions. 
             */
   if(estepm < stepm){          s1=s[mw[mi][i]][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   else  hstepm=estepm;            /* bias bh is positive if real duration
   /* For example we decided to compute the life expectancy with the smallest unit */           * is higher than the multiple of stepm and negative otherwise.
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.           */
      nhstepm is the number of hstepm from age to agelim          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
      nstepm is the number of stepm from age to agelin.          if( s2 > nlstate){ 
      Look at hpijx to understand the reason of that which relies in memory size            /* i.e. if s2 is a death state and if the date of death is known 
      and note for a fixed period like k years */               then the contribution to the likelihood is the probability to 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the               die between last step unit time and current  step unit time, 
      survival function given by stepm (the optimization length). Unfortunately it               which is also equal to probability to die before dh 
      means that if the survival funtion is printed only each two years of age and if               minus probability to die before dh-stepm . 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same               In version up to 0.92 likelihood was computed
      results. So we changed our mind and took the option of the best precision.          as if date of death was unknown. Death was treated as any other
   */          health state: the date of the interview describes the actual state
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          and not the date of a change in health state. The former idea was
   agelim = AGESUP;          to consider that at each interview the state was recorded
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          (healthy, disable or death) and IMaCh was corrected; but when we
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          introduced the exact date of death then we should have modified
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          the contribution of an exact death to the likelihood. This new
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          contribution is smaller and very dependent of the step unit
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          stepm. It is no more the probability to die between last interview
     gp=matrix(0,nhstepm,1,nlstate);          and month of death but the probability to survive from last
     gm=matrix(0,nhstepm,1,nlstate);          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
     for(theta=1; theta <=npar; theta++){          Jackson for correcting this bug.  Former versions increased
       for(i=1; i<=npar; i++){ /* Computes gradient */          mortality artificially. The bad side is that we add another loop
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            lli=log(out[s1][s2] - savm[s1][s2]);
   
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)          } else if  (s2==-2) {
           prlim[i][i]=probs[(int)age][i][ij];            for (j=1,survp=0. ; j<=nlstate; j++) 
       }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              /*survp += out[s1][j]; */
       for(j=1; j<= nlstate; j++){            lli= log(survp);
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          else if  (s2==-4) { 
         }            for (j=3,survp=0. ; j<=nlstate; j++)  
       }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                lli= log(survp); 
       for(i=1; i<=npar; i++) /* Computes gradient */          } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            else if  (s2==-5) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (j=1,survp=0. ; j<=2; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if (popbased==1) {            lli= log(survp); 
         for(i=1; i<=nlstate;i++)          } 
           prlim[i][i]=probs[(int)age][i][ij];          
       }          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(j=1; j<= nlstate; j++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         for(h=0; h<=nhstepm; h++){          } 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       }          ipmx +=1;
           sw += weight[i];
       for(j=1; j<= nlstate; j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(h=0; h<=nhstepm; h++){        } /* end of wave */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      } /* end of individual */
         }    }  else if(mle==2){
     } /* End theta */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(h=0; h<=nhstepm; h++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(theta=1; theta <=npar; theta++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           trgradg[h][j][theta]=gradg[h][theta][j];            }
           for(d=0; d<=dh[mi][i]; d++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            newm=savm;
     for(i=1;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1;j<=nlstate;j++)            for (kk=1; kk<=cptcovage;kk++) {
         vareij[i][j][(int)age] =0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for(h=0;h<=nhstepm;h++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(k=0;k<=nhstepm;k++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            savm=oldm;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            oldm=newm;
         for(i=1;i<=nlstate;i++)          } /* end mult */
           for(j=1;j<=nlstate;j++)        
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     fprintf(ficresvij,"%.0f ",age );          ipmx +=1;
     for(i=1; i<=nlstate;i++)          sw += weight[i];
       for(j=1; j<=nlstate;j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        } /* end of wave */
       }      } /* end of individual */
     fprintf(ficresvij,"\n");    }  else if(mle==3){  /* exponential inter-extrapolation */
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_matrix(gm,0,nhstepm,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (j=1;j<=nlstate+ndeath;j++){
   } /* End age */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(xp,1,npar);            }
   free_matrix(doldm,1,nlstate,1,npar);          for(d=0; d<dh[mi][i]; d++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Variance of prevlim ******************/            }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Variance of prevalence limit */            savm=oldm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            oldm=newm;
   double **newm;          } /* end mult */
   double **dnewm,**doldm;        
   int i, j, nhstepm, hstepm;          s1=s[mw[mi][i]][i];
   int k, cptcode;          s2=s[mw[mi+1][i]][i];
   double *xp;          bbh=(double)bh[mi][i]/(double)stepm; 
   double *gp, *gm;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double **gradg, **trgradg;          ipmx +=1;
   double age,agelim;          sw += weight[i];
   int theta;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      } /* end of individual */
   fprintf(ficresvpl,"# Age");    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresvpl," %1d-%1d",i,i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresvpl,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   xp=vector(1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,nlstate,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   hstepm=1*YEARM; /* Every year of age */          for(d=0; d<dh[mi][i]; d++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            newm=savm;
   agelim = AGESUP;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (kk=1; kk<=cptcovage;kk++) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          
     gradg=matrix(1,npar,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gp=vector(1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gm=vector(1,nlstate);            savm=oldm;
             oldm=newm;
     for(theta=1; theta <=npar; theta++){          } /* end mult */
       for(i=1; i<=npar; i++){ /* Computes gradient */        
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if( s2 > nlstate){ 
       for(i=1;i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
         gp[i] = prlim[i][i];          }else{
                lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ipmx +=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          sw += weight[i];
       for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gm[i] = prlim[i][i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
       for(i=1;i<=nlstate;i++)      } /* end of individual */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     } /* End theta */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     trgradg =matrix(1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
       for(theta=1; theta <=npar; theta++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         trgradg[j][theta]=gradg[theta][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(i=1;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
       varpl[i][(int)age] =0.;            newm=savm;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            for (kk=1; kk<=cptcovage;kk++) {
     for(i=1;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            }
           
     fprintf(ficresvpl,"%.0f ",age );            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            savm=oldm;
     fprintf(ficresvpl,"\n");            oldm=newm;
     free_vector(gp,1,nlstate);          } /* end mult */
     free_vector(gm,1,nlstate);        
     free_matrix(gradg,1,npar,1,nlstate);          s1=s[mw[mi][i]][i];
     free_matrix(trgradg,1,nlstate,1,npar);          s2=s[mw[mi+1][i]][i];
   } /* End age */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
   free_vector(xp,1,npar);          sw += weight[i];
   free_matrix(doldm,1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(dnewm,1,nlstate,1,nlstate);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
 }      } /* end of individual */
     } /* End of if */
 /************ Variance of one-step probabilities  ******************/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, j,  i1, k1, l1;    return -l;
   int k2, l2, j1,  z1;  }
   int k=0,l, cptcode;  
   int first=1;  /*************** log-likelihood *************/
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;  double funcone( double *x)
   double **dnewm,**doldm;  {
   double *xp;    /* Same as likeli but slower because of a lot of printf and if */
   double *gp, *gm;    int i, ii, j, k, mi, d, kk;
   double **gradg, **trgradg;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double **mu;    double **out;
   double age,agelim, cov[NCOVMAX];    double lli; /* Individual log likelihood */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    double llt;
   int theta;    int s1, s2;
   char fileresprob[FILENAMELENGTH];    double bbh, survp;
   char fileresprobcov[FILENAMELENGTH];    /*extern weight */
   char fileresprobcor[FILENAMELENGTH];    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double ***varpij;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   strcpy(fileresprob,"prob");    */
   strcat(fileresprob,fileres);    cov[1]=1.;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   strcpy(fileresprobcov,"probcov");    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcat(fileresprobcov,fileres);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for(mi=1; mi<= wav[i]-1; mi++){
     printf("Problem with resultfile: %s\n", fileresprobcov);        for (ii=1;ii<=nlstate+ndeath;ii++)
   }          for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresprobcor,"probcor");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresprobcor,fileres);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprobcor);        for(d=0; d<dh[mi][i]; d++){
   }          newm=savm;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for (kk=1; kk<=cptcovage;kk++) {
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   fprintf(ficresprob,"# Age");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresprobcov,"# Age");          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   fprintf(ficresprobcov,"# Age");          savm=oldm;
           oldm=newm;
         } /* end mult */
   for(i=1; i<=nlstate;i++)        
     for(j=1; j<=(nlstate+ndeath);j++){        s1=s[mw[mi][i]][i];
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        s2=s[mw[mi+1][i]][i];
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        /* bias is positive if real duration
     }           * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficresprob,"\n");         */
   fprintf(ficresprobcov,"\n");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   fprintf(ficresprobcor,"\n");          lli=log(out[s1][s2] - savm[s1][s2]);
   xp=vector(1,npar);        } else if  (s2==-2) {
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          for (j=1,survp=0. ; j<=nlstate; j++) 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          lli= log(survp);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        }else if (mle==1){
   first=1;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        } else if(mle==2){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     exit(0);        } else if(mle==3){  /* exponential inter-extrapolation */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   else{        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     fprintf(ficgp,"\n# Routine varprob");          lli=log(out[s1][s2]); /* Original formula */
   }        } else{  /* mle=0 back to 1 */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     printf("Problem with html file: %s\n", optionfilehtm);          /*lli=log(out[s1][s2]); */ /* Original formula */
     exit(0);        } /* End of if */
   }        ipmx +=1;
   else{        sw += weight[i];
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        if(globpr){
           fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   }   %11.6f %11.6f %11.6f ", \
   cov[1]=1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   j=cptcoveff;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   j1=0;            llt +=ll[k]*gipmx/gsw;
   for(k1=1; k1<=1;k1++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     for(i1=1; i1<=ncodemax[k1];i1++){          }
     j1++;          fprintf(ficresilk," %10.6f\n", -llt);
         }
     if  (cptcovn>0) {      } /* end of wave */
       fprintf(ficresprob, "\n#********** Variable ");    } /* end of individual */
       fprintf(ficresprobcov, "\n#********** Variable ");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       fprintf(ficgp, "\n#********** Variable ");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       fprintf(ficresprobcor, "\n#********** Variable ");    if(globpr==0){ /* First time we count the contributions and weights */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      gipmx=ipmx;
       fprintf(ficresprob, "**********\n#");      gsw=sw;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
       fprintf(ficresprobcov, "**********\n#");    return -l;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  }
       fprintf(ficgp, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficgp, "**********\n#");  /*************** function likelione ***********/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       fprintf(fichtm, "**********\n#");  {
     }    /* This routine should help understanding what is done with 
           the selection of individuals/waves and
       for (age=bage; age<=fage; age ++){       to check the exact contribution to the likelihood.
         cov[2]=age;       Plotting could be done.
         for (k=1; k<=cptcovn;k++) {     */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    int k;
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if(*globpri !=0){ /* Just counts and sums, no printings */
         for (k=1; k<=cptcovprod;k++)      strcpy(fileresilk,"ilk"); 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      strcat(fileresilk,fileres);
              if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        printf("Problem with resultfile: %s\n", fileresilk);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         gp=vector(1,(nlstate)*(nlstate+ndeath));      }
         gm=vector(1,(nlstate)*(nlstate+ndeath));      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
          fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         for(theta=1; theta <=npar; theta++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           for(i=1; i<=npar; i++)      for(k=1; k<=nlstate; k++) 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
            
           k=0;    *fretone=(*funcone)(p);
           for(i=1; i<= (nlstate); i++){    if(*globpri !=0){
             for(j=1; j<=(nlstate+ndeath);j++){      fclose(ficresilk);
               k=k+1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
               gp[k]=pmmij[i][j];      fflush(fichtm); 
             }    } 
           }    return;
            }
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
      /*********** Maximum Likelihood Estimation ***************/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           for(i=1; i<=(nlstate); i++){  {
             for(j=1; j<=(nlstate+ndeath);j++){    int i,j, iter;
               k=k+1;    double **xi;
               gm[k]=pmmij[i][j];    double fret;
             }    double fretone; /* Only one call to likelihood */
           }    /*  char filerespow[FILENAMELENGTH];*/
          xi=matrix(1,npar,1,npar);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    for (i=1;i<=npar;i++)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        for (j=1;j<=npar;j++)
         }        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    strcpy(filerespow,"pow"); 
           for(theta=1; theta <=npar; theta++)    strcat(filerespow,fileres);
             trgradg[j][theta]=gradg[theta][j];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", filerespow);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    }
            fprintf(ficrespow,"# Powell\n# iter -2*LL");
         pmij(pmmij,cov,ncovmodel,x,nlstate);    for (i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate+ndeath;j++)
         k=0;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for(i=1; i<=(nlstate); i++){    fprintf(ficrespow,"\n");
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;    powell(p,xi,npar,ftol,&iter,&fret,func);
             mu[k][(int) age]=pmmij[i][j];  
           }    free_matrix(xi,1,npar,1,npar);
         }    fclose(ficrespow);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             varpij[i][j][(int)age] = doldm[i][j];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
         /*printf("\n%d ",(int)age);  }
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /**** Computes Hessian and covariance matrix ***/
      }*/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
         fprintf(ficresprob,"\n%d ",(int)age);    double  **a,**y,*x,pd;
         fprintf(ficresprobcov,"\n%d ",(int)age);    double **hess;
         fprintf(ficresprobcor,"\n%d ",(int)age);    int i, j,jk;
     int *indx;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    void lubksb(double **a, int npar, int *indx, double b[]) ;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    void ludcmp(double **a, int npar, int *indx, double *d) ;
         }    double gompertz(double p[]);
         i=0;    hess=matrix(1,npar,1,npar);
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){    printf("\nCalculation of the hessian matrix. Wait...\n");
             i=i++;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    for (i=1;i<=npar;i++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      printf("%d",i);fflush(stdout);
             for (j=1; j<=i;j++){      fprintf(ficlog,"%d",i);fflush(ficlog);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);     
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
             }      
           }      /*  printf(" %f ",p[i]);
         }/* end of loop for state */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       } /* end of loop for age */    }
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    
       for (k1=1; k1<=(nlstate);k1++){    for (i=1;i<=npar;i++) {
         for (l1=1; l1<=(nlstate+ndeath);l1++){      for (j=1;j<=npar;j++)  {
           if(l1==k1) continue;        if (j>i) { 
           i=(k1-1)*(nlstate+ndeath)+l1;          printf(".%d%d",i,j);fflush(stdout);
           for (k2=1; k2<=(nlstate);k2++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
             for (l2=1; l2<=(nlstate+ndeath);l2++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
               if(l2==k2) continue;          
               j=(k2-1)*(nlstate+ndeath)+l2;          hess[j][i]=hess[i][j];    
               if(j<=i) continue;          /*printf(" %lf ",hess[i][j]);*/
               for (age=bage; age<=fage; age ++){        }
                 if ((int)age %5==0){      }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    printf("\n");
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficlog,"\n");
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   /* Computing eigen value of matrix of covariance */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    a=matrix(1,npar,1,npar);
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    y=matrix(1,npar,1,npar);
                   /* Eigen vectors */    x=vector(1,npar);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    indx=ivector(1,npar);
                   v21=sqrt(1.-v11*v11);    for (i=1;i<=npar;i++)
                   v12=-v21;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   v22=v11;    ludcmp(a,npar,indx,&pd);
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    for (j=1;j<=npar;j++) {
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      for (i=1;i<=npar;i++) x[i]=0;
                   if(first==1){      x[j]=1;
                     first=0;      lubksb(a,npar,indx,x);
                     fprintf(ficgp,"\nset parametric;set nolabel");      for (i=1;i<=npar;i++){ 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);        matcov[i][j]=x[i];
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);    }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);    printf("\n#Hessian matrix#\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    fprintf(ficlog,"\n#Hessian matrix#\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    for (i=1;i<=npar;i++) { 
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      for (j=1;j<=npar;j++) { 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        printf("%.3e ",hess[i][j]);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        fprintf(ficlog,"%.3e ",hess[i][j]);
                   }else{      }
                     first=0;      printf("\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      fprintf(ficlog,"\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    /* Recompute Inverse */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    for (i=1;i<=npar;i++)
                   }/* if first */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
                 } /* age mod 5 */    ludcmp(a,npar,indx,&pd);
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);    /*  printf("\n#Hessian matrix recomputed#\n");
               first=1;  
             } /*l12 */    for (j=1;j<=npar;j++) {
           } /* k12 */      for (i=1;i<=npar;i++) x[i]=0;
         } /*l1 */      x[j]=1;
       }/* k1 */      lubksb(a,npar,indx,x);
     } /* loop covariates */      for (i=1;i<=npar;i++){ 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        y[i][j]=x[i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        printf("%.3e ",y[i][j]);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        fprintf(ficlog,"%.3e ",y[i][j]);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      printf("\n");
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      fprintf(ficlog,"\n");
   }    }
   free_vector(xp,1,npar);    */
   fclose(ficresprob);  
   fclose(ficresprobcov);    free_matrix(a,1,npar,1,npar);
   fclose(ficresprobcor);    free_matrix(y,1,npar,1,npar);
   fclose(ficgp);    free_vector(x,1,npar);
   fclose(fichtm);    free_ivector(indx,1,npar);
 }    free_matrix(hess,1,npar,1,npar);
   
   
 /******************* Printing html file ***********/  }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\  /*************** hessian matrix ****************/
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
                   int popforecast, int estepm ,\  {
                   double jprev1, double mprev1,double anprev1, \    int i;
                   double jprev2, double mprev2,double anprev2){    int l=1, lmax=20;
   int jj1, k1, i1, cpt;    double k1,k2;
   /*char optionfilehtm[FILENAMELENGTH];*/    double p2[MAXPARM+1]; /* identical to x */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    double res;
     printf("Problem with %s \n",optionfilehtm), exit(0);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }    double fx;
     int k=0,kmax=10;
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    double l1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    fx=func(x);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    for (i=1;i<=npar;i++) p2[i]=x[i];
  - Life expectancies by age and initial health status (estepm=%2d months):    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      l1=pow(10,l);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        delt = delta*(l1*k);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        p2[theta]=x[theta] +delt;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        p2[theta]=x[theta]-delt;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        k2=func(p2)-fx;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        /*res= (k1-2.0*fx+k2)/delt/delt; */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        
   #ifdef DEBUGHESS
  if(popforecast==1) fprintf(fichtm,"\n        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  #endif
         <br>",fileres,fileres,fileres,fileres);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
  else        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          k=kmax;
 fprintf(fichtm," <li>Graphs</li><p>");        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
  m=cptcoveff;          k=kmax; l=lmax*10.;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
  jj1=0;          delts=delt;
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){      }
      jj1++;    }
      if (cptcovn > 0) {    delti[theta]=delts;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    return res; 
        for (cpt=1; cpt<=cptcoveff;cpt++)    
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      /* Pij */  {
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    int i;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        int l=1, l1, lmax=20;
      /* Quasi-incidences */    double k1,k2,k3,k4,res,fx;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    double p2[MAXPARM+1];
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    int k;
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){    fx=func(x);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    for (k=1; k<=2; k++) {
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (i=1;i<=npar;i++) p2[i]=x[i];
        }      p2[thetai]=x[thetai]+delti[thetai]/k;
     for(cpt=1; cpt<=nlstate;cpt++) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      k1=func(p2)-fx;
 interval) in state (%d): v%s%d%d.png <br>    
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        p2[thetai]=x[thetai]+delti[thetai]/k;
      }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      for(cpt=1; cpt<=nlstate;cpt++) {      k2=func(p2)-fx;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      p2[thetai]=x[thetai]-delti[thetai]/k;
      }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      k3=func(p2)-fx;
 health expectancies in states (1) and (2): e%s%d.png<br>    
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      p2[thetai]=x[thetai]-delti[thetai]/k;
    }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  }      k4=func(p2)-fx;
 fclose(fichtm);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 }  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 /******************* Gnuplot file **************/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  #endif
     }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    return res;
   int ng;  }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);  /************** Inverse of matrix **************/
   }  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
 #ifdef windows    int i,imax,j,k; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double big,dum,sum,temp; 
 #endif    double *vv; 
 m=pow(2,cptcoveff);   
      vv=vector(1,n); 
  /* 1eme*/    *d=1.0; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {    for (i=1;i<=n;i++) { 
    for (k1=1; k1<= m ; k1 ++) {      big=0.0; 
       for (j=1;j<=n;j++) 
 #ifdef windows        if ((temp=fabs(a[i][j])) > big) big=temp; 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      vv[i]=1.0/big; 
 #endif    } 
 #ifdef unix    for (j=1;j<=n;j++) { 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for (i=1;i<j;i++) { 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        sum=a[i][j]; 
 #endif        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 for (i=1; i<= nlstate ; i ++) {      } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      big=0.0; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=j;i<=n;i++) { 
 }        sum=a[i][j]; 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        for (k=1;k<j;k++) 
     for (i=1; i<= nlstate ; i ++) {          sum -= a[i][k]*a[k][j]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        a[i][j]=sum; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 }          big=dum; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          imax=i; 
      for (i=1; i<= nlstate ; i ++) {        } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (j != imax) { 
 }          for (k=1;k<=n;k++) { 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          dum=a[imax][k]; 
 #ifdef unix          a[imax][k]=a[j][k]; 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          a[j][k]=dum; 
 #endif        } 
    }        *d = -(*d); 
   }        vv[imax]=vv[j]; 
   /*2 eme*/      } 
       indx[j]=imax; 
   for (k1=1; k1<= m ; k1 ++) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      if (j != n) { 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        dum=1.0/(a[j][j]); 
            for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for (i=1; i<= nlstate+1 ; i ++) {      } 
       k=2*i;    } 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_vector(vv,1,n);  /* Doesn't work */
       for (j=1; j<= nlstate+1 ; j ++) {  ;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    void lubksb(double **a, int n, int *indx, double b[]) 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  { 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    int i,ii=0,ip,j; 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double sum; 
       for (j=1; j<= nlstate+1 ; j ++) {   
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (i=1;i<=n;i++) { 
         else fprintf(ficgp," \%%*lf (\%%*lf)");      ip=indx[i]; 
 }        sum=b[ip]; 
       fprintf(ficgp,"\" t\"\" w l 0,");      b[ip]=b[i]; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      if (ii) 
       for (j=1; j<= nlstate+1 ; j ++) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      else if (sum) ii=i; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      b[i]=sum; 
 }      } 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    for (i=n;i>=1;i--) { 
       else fprintf(ficgp,"\" t\"\" w l 0,");      sum=b[i]; 
     }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
      } 
   /*3eme*/  } 
   
   for (k1=1; k1<= m ; k1 ++) {  void pstamp(FILE *fichier)
     for (cpt=1; cpt<= nlstate ; cpt ++) {  {
       k=2+nlstate*(2*cpt-2);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  /************ Frequencies ********************/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  {  /* Some frequencies */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    int i, m, jk, k1,i1, j1, bool, z1,j;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    int first;
     double ***freq; /* Frequencies */
 */    double *pp, **prop;
       for (i=1; i< nlstate ; i ++) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    char fileresp[FILENAMELENGTH];
     
       }    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
      strcat(fileresp,fileres);
   /* CV preval stat */    if((ficresp=fopen(fileresp,"w"))==NULL) {
     for (k1=1; k1<= m ; k1 ++) {      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for (cpt=1; cpt<nlstate ; cpt ++) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       k=3;      exit(0);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
       for (i=1; i< nlstate ; i ++)    
         fprintf(ficgp,"+$%d",k+i+1);    j=cptcoveff;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
       l=3+(nlstate+ndeath)*cpt;    first=1;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
         l=3+(nlstate+ndeath)*cpt;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
         fprintf(ficgp,"+$%d",l+i+1);    /*    j1++;
       }  */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   }            scanf("%d", i);*/
          for (i=-5; i<=nlstate+ndeath; i++)  
   /* proba elementaires */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
    for(i=1,jk=1; i <=nlstate; i++){            for(m=iagemin; m <= iagemax+3; m++)
     for(k=1; k <=(nlstate+ndeath); k++){              freq[i][jk][m]=0;
       if (k != i) {        
         for(j=1; j <=ncovmodel; j++){        for (i=1; i<=nlstate; i++)  
                  for(m=iagemin; m <= iagemax+3; m++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            prop[i][m]=0;
           jk++;        
           fprintf(ficgp,"\n");        dateintsum=0;
         }        k2cpt=0;
       }        for (i=1; i<=imx; i++) {
     }          bool=1;
    }          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             for (z1=1; z1<=cptcoveff; z1++)       
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
      for(jk=1; jk <=m; jk++) {                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);                bool=0;
        if (ng==2)                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
        else                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
          fprintf(ficgp,"\nset title \"Probability\"\n");                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              } 
        i=1;          }
        for(k2=1; k2<=nlstate; k2++) {   
          k3=i;          if (bool==1){
          for(k=1; k<=(nlstate+ndeath); k++) {            for(m=firstpass; m<=lastpass; m++){
            if (k != k2){              k2=anint[m][i]+(mint[m][i]/12.);
              if(ng==2)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
              else                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
              ij=1;                if (m<lastpass) {
              for(j=3; j <=ncovmodel; j++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                }
                  ij++;                
                }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                else                  dateintsum=dateintsum+k2;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                  k2cpt++;
              }                }
              fprintf(ficgp,")/(1");                /*}*/
                          }
              for(k1=1; k1 <=nlstate; k1++){            }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        } /* end i */
                ij=1;         
                for(j=3; j <=ncovmodel; j++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        pstamp(ficresp);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        if  (cptcovn>0) {
                    ij++;          fprintf(ficresp, "\n#********** Variable "); 
                  }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  else          fprintf(ficresp, "**********\n#");
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficlog, "\n#********** Variable "); 
                }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                fprintf(ficgp,")");          fprintf(ficlog, "**********\n#");
              }        }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for(i=1; i<=nlstate;i++) 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
              i=i+ncovmodel;        fprintf(ficresp, "\n");
            }        
          }        for(i=iagemin; i <= iagemax+3; i++){
        }          if(i==iagemax+3){
      }            fprintf(ficlog,"Total");
    }          }else{
    fclose(ficgp);            if(first==1){
 }  /* end gnuplot */              first=0;
               printf("See log file for details...\n");
             }
 /*************** Moving average **************/            fprintf(ficlog,"Age %d", i);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          }
           for(jk=1; jk <=nlstate ; jk++){
   int i, cpt, cptcod;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              pp[jk] += freq[jk][m][i]; 
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          for(jk=1; jk <=nlstate ; jk++){
           mobaverage[(int)agedeb][i][cptcod]=0.;            for(m=-1, pos=0; m <=0 ; m++)
                  pos += freq[jk][m][i];
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            if(pp[jk]>=1.e-10){
       for (i=1; i<=nlstate;i++){              if(first==1){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for (cpt=0;cpt<=4;cpt++){              }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }            }else{
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              if(first==1)
         }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
              }
 }  
           for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 /************** Forecasting ******************/              pp[jk] += freq[jk][m][i];
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          }       
            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            pos += pp[jk];
   int *popage;            posprop += prop[jk][i];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;          for(jk=1; jk <=nlstate ; jk++){
   double ***p3mat;            if(pos>=1.e-5){
   char fileresf[FILENAMELENGTH];              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  agelim=AGESUP;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            }else{
               if(first==1)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
              }
   strcpy(fileresf,"f");            if( i <= iagemax){
   strcat(fileresf,fileres);              if(pos>=1.e-5){
   if((ficresf=fopen(fileresf,"w"))==NULL) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     printf("Problem with forecast resultfile: %s\n", fileresf);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   printf("Computing forecasting: result on file '%s' \n", fileresf);              }
               else
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
   if (mobilav==1) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
     movingaverage(agedeb, fage, ageminpar, mobaverage);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   }            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;              if(first==1)
   if (stepm<=12) stepsize=1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   agelim=AGESUP;              }
            if(i <= iagemax)
   hstepm=1;            fprintf(ficresp,"\n");
   hstepm=hstepm/stepm;          if(first==1)
   yp1=modf(dateintmean,&yp);            printf("Others in log...\n");
   anprojmean=yp;          fprintf(ficlog,"\n");
   yp2=modf((yp1*12),&yp);        }
   mprojmean=yp;        /*}*/
   yp1=modf((yp2*30.5),&yp);    }
   jprojmean=yp;    dateintmean=dateintsum/k2cpt; 
   if(jprojmean==0) jprojmean=1;   
   if(mprojmean==0) jprojmean=1;    fclose(ficresp);
      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   for(cptcov=1;cptcov<=i2;cptcov++){    /* End of Freq */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  }
       k=k+1;  
       fprintf(ficresf,"\n#******");  /************ Prevalence ********************/
       for(j=1;j<=cptcoveff;j++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       fprintf(ficresf,"******\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
       fprintf(ficresf,"# StartingAge FinalAge");       We still use firstpass and lastpass as another selection.
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    */
         
          int i, m, jk, k1, i1, j1, bool, z1,j;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double ***freq; /* Frequencies */
         fprintf(ficresf,"\n");    double *pp, **prop;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double pos,posprop; 
     double  y2; /* in fractional years */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int iagemin, iagemax;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int first; /** to stop verbosity which is redirected to log file */
           nhstepm = nhstepm/hstepm;  
              iagemin= (int) agemin;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    iagemax= (int) agemax;
           oldm=oldms;savm=savms;    /*pp=vector(1,nlstate);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      prop=matrix(1,nlstate,iagemin,iagemax+3); 
            /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           for (h=0; h<=nhstepm; h++){    j1=0;
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    /*j=cptcoveff;*/
             }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             for(j=1; j<=nlstate+ndeath;j++) {    
               kk1=0.;kk2=0;    first=1;
               for(i=1; i<=nlstate;i++) {                  for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
                 if (mobilav==1)      /*for(i1=1; i1<=ncodemax[k1];i1++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        j1++;*/
                 else {        
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for (i=1; i<=nlstate; i++)  
                 }          for(m=iagemin; m <= iagemax+3; m++)
                            prop[i][m]=0.0;
               }       
               if (h==(int)(calagedate+12*cpt)){        for (i=1; i<=imx; i++) { /* Each individual */
                 fprintf(ficresf," %.3f", kk1);          bool=1;
                                  if  (cptcovn>0) {
               }            for (z1=1; z1<=cptcoveff; z1++) 
             }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           }                bool=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } 
         }          if (bool==1) { 
       }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   fclose(ficresf);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 /************** Forecasting ******************/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                  prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              }
   int *popage;            } /* end selection of waves */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;        }
   double ***p3mat,***tabpop,***tabpopprev;        for(i=iagemin; i <= iagemax+3; i++){  
   char filerespop[FILENAMELENGTH];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          } 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
   agelim=AGESUP;          for(jk=1; jk <=nlstate ; jk++){     
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                probs[i][jk][j1]= prop[jk][i]/posprop;
                } else{
                  if(first==1){
   strcpy(filerespop,"pop");                  first=0;
   strcat(filerespop,fileres);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                }
     printf("Problem with forecast resultfile: %s\n", filerespop);              }
   }            } 
   printf("Computing forecasting: result on file '%s' \n", filerespop);          }/* end jk */ 
         }/* end i */ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      /*} *//* end i1 */
     } /* end j1 */
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /*free_vector(pp,1,nlstate);*/
   }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;  /************* Waves Concatenation ***************/
    
   agelim=AGESUP;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
   hstepm=1;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   hstepm=hstepm/stepm;       Death is a valid wave (if date is known).
         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   if (popforecast==1) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     if((ficpop=fopen(popfile,"r"))==NULL) {       and mw[mi+1][i]. dh depends on stepm.
       printf("Problem with population file : %s\n",popfile);exit(0);       */
     }  
     popage=ivector(0,AGESUP);    int i, mi, m;
     popeffectif=vector(0,AGESUP);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     popcount=vector(0,AGESUP);       double sum=0., jmean=0.;*/
        int first;
     i=1;      int j, k=0,jk, ju, jl;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double sum=0.;
        first=0;
     imx=i;    jmin=1e+5;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    jmax=-1;
   }    jmean=0.;
     for(i=1; i<=imx; i++){
   for(cptcov=1;cptcov<=i2;cptcov++){      mi=0;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      m=firstpass;
       k=k+1;      while(s[m][i] <= nlstate){
       fprintf(ficrespop,"\n#******");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       for(j=1;j<=cptcoveff;j++) {          mw[++mi][i]=m;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if(m >=lastpass)
       }          break;
       fprintf(ficrespop,"******\n");        else
       fprintf(ficrespop,"# Age");          m++;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      }/* end while */
       if (popforecast==1)  fprintf(ficrespop," [Population]");      if (s[m][i] > nlstate){
              mi++;     /* Death is another wave */
       for (cpt=0; cpt<=0;cpt++) {        /* if(mi==0)  never been interviewed correctly before death */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             /* Only death is a correct wave */
                mw[mi][i]=m;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;      wav[i]=mi;
                if(mi==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        nbwarn++;
           oldm=oldms;savm=savms;        if(first==0){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                  first=1;
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {        if(first==1){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {      } /* end mi==0 */
               kk1=0.;kk2=0;    } /* End individuals */
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)    for(i=1; i<=imx; i++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(mi=1; mi<wav[i];mi++){
                 else {        if (stepm <=0)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          dh[mi][i]=1;
                 }        else{
               }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
               if (h==(int)(calagedate+12*cpt)){            if (agedc[i] < 2*AGESUP) {
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   /*fprintf(ficrespop," %.3f", kk1);              if(j==0) j=1;  /* Survives at least one month after exam */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              else if(j<0){
               }                nberr++;
             }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             for(i=1; i<=nlstate;i++){                j=1; /* Temporary Dangerous patch */
               kk1=0.;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 for(j=1; j<=nlstate;j++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 }              }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              k=k+1;
             }              if (j >= jmax){
                 jmax=j;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                ijmax=i;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              }
           }              if (j <= jmin){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                jmin=j;
         }                ijmin=i;
       }              }
                sum=sum+j;
   /******/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          else{
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           nhstepm = nhstepm/hstepm;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            k=k+1;
           oldm=oldms;savm=savms;            if (j >= jmax) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                jmax=j;
           for (h=0; h<=nhstepm; h++){              ijmax=i;
             if (h==(int) (calagedate+YEARM*cpt)) {            }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            else if (j <= jmin){
             }              jmin=j;
             for(j=1; j<=nlstate+ndeath;j++) {              ijmin=i;
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
               }            if(j<0){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);              nberr++;
             }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
         }            sum=sum+j;
       }          }
    }          jk= j/stepm;
   }          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
   if (popforecast==1) {              dh[mi][i]=jk;
     free_ivector(popage,0,AGESUP);              bh[mi][i]=0;
     free_vector(popeffectif,0,AGESUP);            }else{ /* We want a negative bias in order to only have interpolation ie
     free_vector(popcount,0,AGESUP);                    * to avoid the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              bh[mi][i]=ju;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   fclose(ficrespop);          }else{
 }            if(jl <= -ju){
               dh[mi][i]=jk;
 /***********************************************/              bh[mi][i]=jl;       /* bias is positive if real duration
 /**************** Main Program *****************/                                   * is higher than the multiple of stepm and negative otherwise.
 /***********************************************/                                   */
             }
 int main(int argc, char *argv[])            else{
 {              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            }
   double agedeb, agefin,hf;            if(dh[mi][i]==0){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   double fret;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   double **xi,tmp,delta;            }
           } /* end if mle */
   double dum; /* Dummy variable */        }
   double ***p3mat;      } /* end wave */
   int *indx;    }
   char line[MAXLINE], linepar[MAXLINE];    jmean=sum/k;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   int firstobs=1, lastobs=10;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   int sdeb, sfin; /* Status at beginning and end */   }
   int c,  h , cpt,l;  
   int ju,jl, mi;  /*********** Tricode ****************************/
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  {
   int mobilav=0,popforecast=0;    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   int hstepm, nhstepm;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   double bage, fage, age, agelim, agebase;    /* nbcode[Tvar[j]][1]= 
   double ftolpl=FTOL;    */
   double **prlim;  
   double *severity;    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   double ***param; /* Matrix of parameters */    int modmaxcovj=0; /* Modality max of covariates j */
   double  *p;    int cptcode=0; /* Modality max of covariates j */
   double **matcov; /* Matrix of covariance */    int modmincovj=0; /* Modality min of covariates j */
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  
   double ***eij, ***vareij;    cptcoveff=0; 
   double **varpl; /* Variances of prevalence limits by age */   
   double *epj, vepp;    for (k=-1; k < maxncov; k++) Ndum[k]=0;
   double kk1, kk2;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
      /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   char z[1]="c", occ;                                      * If product of Vn*Vm, still boolean *:
 #include <sys/time.h>                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 #include <time.h>                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                          modality of the nth covariate of individual i. */
   /* long total_usecs;        if (ij > modmaxcovj)
   struct timeval start_time, end_time;          modmaxcovj=ij; 
          else if (ij < modmincovj) 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          modmincovj=ij; 
   getcwd(pathcd, size);        if ((ij < -1) && (ij > NCOVMAX)){
           printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   printf("\n%s",version);          exit(1);
   if(argc <=1){        }else
     printf("\nEnter the parameter file name: ");        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     scanf("%s",pathtot);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   else{        /* getting the maximum value of the modality of the covariate
     strcpy(pathtot,argv[1]);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   }           female is 1, then modmaxcovj=1.*/
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      }
   /*cygwin_split_path(pathtot,path,optionfile);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      cptcode=modmaxcovj;
   /* cutv(path,optionfile,pathtot,'\\');*/      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
   chdir(path);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   replace(pathc,path);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         }
 /*-------- arguments in the command line --------*/        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   strcpy(fileres,"r");      } /* Ndum[-1] number of undefined modalities */
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
   /*---------arguments file --------*/      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     printf("Problem with optionfile %s\n",optionfile);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
     goto end;         variables V1_1 and V1_2.
   }         nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
   strcpy(filereso,"o");         nbcode[Tvar[j]][2]=1;
   strcat(filereso,fileres);         nbcode[Tvar[j]][3]=2;
   if((ficparo=fopen(filereso,"w"))==NULL) {      */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      ij=1; /* ij is similar to i but can jumps over null modalities */
   }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   /* Reads comments: lines beginning with '#' */          /*recode from 0 */
   while((c=getc(ficpar))=='#' && c!= EOF){          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
     ungetc(c,ficpar);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
     fgets(line, MAXLINE, ficpar);                                       k is a modality. If we have model=V1+V1*sex 
     puts(line);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     fputs(line,ficparo);            ij++;
   }          }
   ungetc(c,ficpar);          if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      } /* end of loop on modality */ 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    
 while((c=getc(ficpar))=='#' && c!= EOF){   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
     puts(line);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     fputs(line,ficparo);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   }     Ndum[ij]++; 
   ungetc(c,ficpar);   } 
    
       ij=1;
   covar=matrix(0,NCOVMAX,1,n);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   cptcovn=0;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;     if((Ndum[i]!=0) && (i<=ncovcol)){
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   ncovmodel=2+cptcovn;       Tvaraff[ij]=i; /*For printing (unclear) */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       ij++;
       }else
   /* Read guess parameters */         Tvaraff[ij]=0;
   /* Reads comments: lines beginning with '#' */   }
   while((c=getc(ficpar))=='#' && c!= EOF){   ij--;
     ungetc(c,ficpar);   cptcoveff=ij; /*Number of total covariates*/
     fgets(line, MAXLINE, ficpar);  
     puts(line);  }
     fputs(line,ficparo);  
   }  
   ungetc(c,ficpar);  /*********** Health Expectancies ****************/
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){  {
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* Health expectancies, no variances */
       fprintf(ficparo,"%1d%1d",i1,j1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       printf("%1d%1d",i,j);    int nhstepma, nstepma; /* Decreasing with age */
       for(k=1; k<=ncovmodel;k++){    double age, agelim, hf;
         fscanf(ficpar," %lf",&param[i][j][k]);    double ***p3mat;
         printf(" %lf",param[i][j][k]);    double eip;
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    pstamp(ficreseij);
       fscanf(ficpar,"\n");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       printf("\n");    fprintf(ficreseij,"# Age");
       fprintf(ficparo,"\n");    for(i=1; i<=nlstate;i++){
     }      for(j=1; j<=nlstate;j++){
          fprintf(ficreseij," e%1d%1d ",i,j);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      }
       fprintf(ficreseij," e%1d. ",i);
   p=param[1][1];    }
      fprintf(ficreseij,"\n");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    if(estepm < stepm){
     fgets(line, MAXLINE, ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
     puts(line);    }
     fputs(line,ficparo);    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
   ungetc(c,ficpar);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */     * progression in between and thus overestimating or underestimating according
   for(i=1; i <=nlstate; i++){     * to the curvature of the survival function. If, for the same date, we 
     for(j=1; j <=nlstate+ndeath-1; j++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fscanf(ficpar,"%1d%1d",&i1,&j1);     * to compare the new estimate of Life expectancy with the same linear 
       printf("%1d%1d",i,j);     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficparo,"%1d%1d",i1,j1);     * curvature will be obtained if estepm is as small as stepm. */
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);    /* For example we decided to compute the life expectancy with the smallest unit */
         printf(" %le",delti3[i][j][k]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficparo," %le",delti3[i][j][k]);       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
       fscanf(ficpar,"\n");       Look at hpijx to understand the reason of that which relies in memory size
       printf("\n");       and note for a fixed period like estepm months */
       fprintf(ficparo,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
   delti=delti3[1][1];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   /* Reads comments: lines beginning with '#' */    */
   while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    agelim=AGESUP;
     puts(line);    /* If stepm=6 months */
     fputs(line,ficparo);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   ungetc(c,ficpar);      
    /* nhstepm age range expressed in number of stepm */
   matcov=matrix(1,npar,1,npar);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   for(i=1; i <=npar; i++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fscanf(ficpar,"%s",&str);    /* if (stepm >= YEARM) hstepm=1;*/
     printf("%s",str);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficparo,"%s",str);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    for (age=bage; age<=fage; age ++){ 
       printf(" %.5le",matcov[i][j]);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       fprintf(ficparo," %.5le",matcov[i][j]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
     fscanf(ficpar,"\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     printf("\n");  
     fprintf(ficparo,"\n");      /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   for(i=1; i <=npar; i++)         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     for(j=i+1;j<=npar;j++)      
       matcov[i][j]=matcov[j][i];      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
          
   printf("\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
     /*-------- Rewriting paramater file ----------*/      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      strcpy(rfileres,"r");    /* "Rparameterfile */      
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      /* Computing expectancies */
      strcat(rfileres,".");    /* */      for(i=1; i<=nlstate;i++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(j=1; j<=nlstate;j++)
     if((ficres =fopen(rfileres,"w"))==NULL) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     }            
     fprintf(ficres,"#%s\n",version);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      
     /*-------- data file ----------*/          }
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;      fprintf(ficreseij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
         eip=0;
     n= lastobs;        for(j=1; j<=nlstate;j++){
     severity = vector(1,maxwav);          eip +=eij[i][j][(int)age];
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     num=ivector(1,n);        }
     moisnais=vector(1,n);        fprintf(ficreseij,"%9.4f", eip );
     annais=vector(1,n);      }
     moisdc=vector(1,n);      fprintf(ficreseij,"\n");
     andc=vector(1,n);      
     agedc=vector(1,n);    }
     cod=ivector(1,n);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     weight=vector(1,n);    printf("\n");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fprintf(ficlog,"\n");
     mint=matrix(1,maxwav,1,n);    
     anint=matrix(1,maxwav,1,n);  }
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);  {
     /* Covariances of health expectancies eij and of total life expectancies according
     i=1;     to initial status i, ei. .
     while (fgets(line, MAXLINE, fic) != NULL)    {    */
       if ((i >= firstobs) && (i <=lastobs)) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
            int nhstepma, nstepma; /* Decreasing with age */
         for (j=maxwav;j>=1;j--){    double age, agelim, hf;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double ***p3matp, ***p3matm, ***varhe;
           strcpy(line,stra);    double **dnewm,**doldm;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double *xp, *xm;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double **gp, **gm;
         }    double ***gradg, ***trgradg;
            int theta;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double eip, vip;
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    xp=vector(1,npar);
     xm=vector(1,npar);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    dnewm=matrix(1,nlstate*nlstate,1,npar);
         for (j=ncovcol;j>=1;j--){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }    pstamp(ficresstdeij);
         num[i]=atol(stra);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
            fprintf(ficresstdeij,"# Age");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    for(i=1; i<=nlstate;i++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         i=i+1;      fprintf(ficresstdeij," e%1d. ",i);
       }    }
     }    fprintf(ficresstdeij,"\n");
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/    pstamp(ficrescveij);
   imx=i-1; /* Number of individuals */    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
   /* for (i=1; i<=imx; i++){    for(i=1; i<=nlstate;i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for(j=1; j<=nlstate;j++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        cptj= (j-1)*nlstate+i;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        for(i2=1; i2<=nlstate;i2++)
     }*/          for(j2=1; j2<=nlstate;j2++){
    /*  for (i=1; i<=imx; i++){            cptj2= (j2-1)*nlstate+i2;
      if (s[4][i]==9)  s[4][i]=-1;            if(cptj2 <= cptj)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
            }
        }
   /* Calculation of the number of parameter from char model*/    fprintf(ficrescveij,"\n");
   Tvar=ivector(1,15);    
   Tprod=ivector(1,15);    if(estepm < stepm){
   Tvaraff=ivector(1,15);      printf ("Problem %d lower than %d\n",estepm, stepm);
   Tvard=imatrix(1,15,1,2);    }
   Tage=ivector(1,15);          else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
   if (strlen(model) >1){     * This is mainly to measure the difference between two models: for example
     j=0, j1=0, k1=1, k2=1;     * if stepm=24 months pijx are given only every 2 years and by summing them
     j=nbocc(model,'+');     * we are calculating an estimate of the Life Expectancy assuming a linear 
     j1=nbocc(model,'*');     * progression in between and thus overestimating or underestimating according
     cptcovn=j+1;     * to the curvature of the survival function. If, for the same date, we 
     cptcovprod=j1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
     strcpy(modelsav,model);     * hypothesis. A more precise result, taking into account a more precise
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){     * curvature will be obtained if estepm is as small as stepm. */
       printf("Error. Non available option model=%s ",model);  
       goto end;    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
     for(i=(j+1); i>=1;i--){       nstepm is the number of stepm from age to agelin. 
       cutv(stra,strb,modelsav,'+');       Look at hpijx to understand the reason of that which relies in memory size
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);       and note for a fixed period like estepm months */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       /*scanf("%d",i);*/       survival function given by stepm (the optimization length). Unfortunately it
       if (strchr(strb,'*')) {       means that if the survival funtion is printed only each two years of age and if
         cutv(strd,strc,strb,'*');       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         if (strcmp(strc,"age")==0) {       results. So we changed our mind and took the option of the best precision.
           cptcovprod--;    */
           cutv(strb,stre,strd,'V');    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           Tvar[i]=atoi(stre);  
           cptcovage++;    /* If stepm=6 months */
             Tage[cptcovage]=i;    /* nhstepm age range expressed in number of stepm */
             /*printf("stre=%s ", stre);*/    agelim=AGESUP;
         }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
         else if (strcmp(strd,"age")==0) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           cptcovprod--;    /* if (stepm >= YEARM) hstepm=1;*/
           cutv(strb,stre,strc,'V');    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           Tvar[i]=atoi(stre);    
           cptcovage++;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tage[cptcovage]=i;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         else {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           cutv(strb,stre,strc,'V');    gp=matrix(0,nhstepm,1,nlstate*nlstate);
           Tvar[i]=ncovcol+k1;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;    for (age=bage; age<=fage; age ++){ 
           Tvard[k1][1]=atoi(strc);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           Tvard[k1][2]=atoi(stre);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           Tvar[cptcovn+k2]=Tvard[k1][1];      /* if (stepm >= YEARM) hstepm=1;*/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      /* If stepm=6 months */
           k1++;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           k2=k2+2;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         }      
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      /* Computing  Variances of health expectancies */
        /*  scanf("%d",i);*/      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       cutv(strd,strc,strb,'V');         decrease memory allocation */
       Tvar[i]=atoi(strc);      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ 
       strcpy(modelsav,stra);            xp[i] = x[i] + (i==theta ?delti[theta]:0);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         scanf("%d",i);*/        }
     }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
      
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        for(j=1; j<= nlstate; j++){
   printf("cptcovprod=%d ", cptcovprod);          for(i=1; i<=nlstate; i++){
   scanf("%d ",i);*/            for(h=0; h<=nhstepm-1; h++){
     fclose(fic);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     /*  if(mle==1){*/            }
     if (weightopt != 1) { /* Maximisation without weights*/          }
       for(i=1;i<=n;i++) weight[i]=1.0;        }
     }       
     /*-calculation of age at interview from date of interview and age at death -*/        for(ij=1; ij<= nlstate*nlstate; ij++)
     agev=matrix(1,maxwav,1,imx);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     for (i=1; i<=imx; i++) {          }
       for(m=2; (m<= maxwav); m++) {      }/* End theta */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      
          anint[m][i]=9999;      
          s[m][i]=-1;      for(h=0; h<=nhstepm-1; h++)
        }        for(j=1; j<=nlstate*nlstate;j++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
     }      
   
     for (i=1; i<=imx; i++)  {       for(ij=1;ij<=nlstate*nlstate;ij++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for(ji=1;ji<=nlstate*nlstate;ji++)
       for(m=1; (m<= maxwav); m++){          varhe[ij][ji][(int)age] =0.;
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {       printf("%d|",(int)age);fflush(stdout);
             if(agedc[i]>0)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               if(moisdc[i]!=99 && andc[i]!=9999)       for(h=0;h<=nhstepm-1;h++){
                 agev[m][i]=agedc[i];        for(k=0;k<=nhstepm-1;k++){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            else {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
               if (andc[i]!=9999){          for(ij=1;ij<=nlstate*nlstate;ij++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            for(ji=1;ji<=nlstate*nlstate;ji++)
               agev[m][i]=-1;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
               }        }
             }      }
           }  
           else if(s[m][i] !=9){ /* Should no more exist */      /* Computing expectancies */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
             if(mint[m][i]==99 || anint[m][i]==9999)      for(i=1; i<=nlstate;i++)
               agev[m][i]=1;        for(j=1; j<=nlstate;j++)
             else if(agev[m][i] <agemin){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               agemin=agev[m][i];            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            
             }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];          }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }      fprintf(ficresstdeij,"%3.0f",age );
             /*agev[m][i]=anint[m][i]-annais[i];*/      for(i=1; i<=nlstate;i++){
             /*   agev[m][i] = age[i]+2*m;*/        eip=0.;
           }        vip=0.;
           else { /* =9 */        for(j=1; j<=nlstate;j++){
             agev[m][i]=1;          eip += eij[i][j][(int)age];
             s[m][i]=-1;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         else /*= 0 Unknown */        }
           agev[m][i]=1;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }      }
          fprintf(ficresstdeij,"\n");
     }  
     for (i=1; i<=imx; i++)  {      fprintf(ficrescveij,"%3.0f",age );
       for(m=1; (m<= maxwav); m++){      for(i=1; i<=nlstate;i++)
         if (s[m][i] > (nlstate+ndeath)) {        for(j=1; j<=nlstate;j++){
           printf("Error: Wrong value in nlstate or ndeath\n");            cptj= (j-1)*nlstate+i;
           goto end;          for(i2=1; i2<=nlstate;i2++)
         }            for(j2=1; j2<=nlstate;j2++){
       }              cptj2= (j2-1)*nlstate+i2;
     }              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            }
         }
     free_vector(severity,1,maxwav);      fprintf(ficrescveij,"\n");
     free_imatrix(outcome,1,maxwav+1,1,n);     
     free_vector(moisnais,1,n);    }
     free_vector(annais,1,n);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     /* free_matrix(mint,1,maxwav,1,n);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        free_matrix(anint,1,maxwav,1,n);*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_vector(moisdc,1,n);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_vector(andc,1,n);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        printf("\n");
     wav=ivector(1,imx);    fprintf(ficlog,"\n");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    free_vector(xm,1,npar);
        free_vector(xp,1,npar);
     /* Concatenates waves */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  /************ Variance ******************/
       ncodemax[1]=1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  {
          /* Variance of health expectancies */
    codtab=imatrix(1,100,1,10);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    h=0;    /* double **newm;*/
    m=pow(2,cptcoveff);    double **dnewm,**doldm;
      double **dnewmp,**doldmp;
    for(k=1;k<=cptcoveff; k++){    int i, j, nhstepm, hstepm, h, nstepm ;
      for(i=1; i <=(m/pow(2,k));i++){    int k, cptcode;
        for(j=1; j <= ncodemax[k]; j++){    double *xp;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double **gp, **gm;  /* for var eij */
            h++;    double ***gradg, ***trgradg; /*for var eij */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    double **gradgp, **trgradgp; /* for var p point j */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    double *gpp, *gmp; /* for var p point j */
          }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
        }    double ***p3mat;
      }    double age,agelim, hf;
    }    double ***mobaverage;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    int theta;
       codtab[1][2]=1;codtab[2][2]=2; */    char digit[4];
    /* for(i=1; i <=m ;i++){    char digitp[25];
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    char fileresprobmorprev[FILENAMELENGTH];
       }  
       printf("\n");    if(popbased==1){
       }      if(mobilav!=0)
       scanf("%d",i);*/        strcpy(digitp,"-populbased-mobilav-");
          else strcpy(digitp,"-populbased-nomobil-");
    /* Calculates basic frequencies. Computes observed prevalence at single age    }
        and prints on file fileres'p'. */    else 
       strcpy(digitp,"-stablbased-");
      
        if (mobilav!=0) {
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      }
          }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    strcpy(fileresprobmorprev,"prmorprev"); 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     if(mle==1){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }    strcat(fileresprobmorprev,fileres);
        if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     /*--------- results files --------------*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    jk=1;   
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    pstamp(ficresprobmorprev);
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
        if (k != i)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          {      fprintf(ficresprobmorprev," p.%-d SE",j);
            printf("%d%d ",i,k);      for(i=1; i<=nlstate;i++)
            fprintf(ficres,"%1d%1d ",i,k);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
            for(j=1; j <=ncovmodel; j++){    }  
              printf("%f ",p[jk]);    fprintf(ficresprobmorprev,"\n");
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficgp,"\n# Routine varevsij");
              jk++;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
            }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
            printf("\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
            fprintf(ficres,"\n");  /*   } */
          }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      }    pstamp(ficresvij);
    }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
  if(mle==1){    if(popbased==1)
     /* Computing hessian and covariance matrix */      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     ftolhess=ftol; /* Usually correct */    else
     hesscov(matcov, p, npar, delti, ftolhess, func);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
  }    fprintf(ficresvij,"# Age");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    for(i=1; i<=nlstate;i++)
     printf("# Scales (for hessian or gradient estimation)\n");      for(j=1; j<=nlstate;j++)
      for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresvij,"\n");
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);    xp=vector(1,npar);
           printf("%1d%1d",i,j);    dnewm=matrix(1,nlstate,1,npar);
           for(k=1; k<=ncovmodel;k++){    doldm=matrix(1,nlstate,1,nlstate);
             printf(" %.5e",delti[jk]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             fprintf(ficres," %.5e",delti[jk]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             jk++;  
           }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           printf("\n");    gpp=vector(nlstate+1,nlstate+ndeath);
           fprintf(ficres,"\n");    gmp=vector(nlstate+1,nlstate+ndeath);
         }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }    
      }    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     k=1;    }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    else  hstepm=estepm;   
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     for(i=1;i<=npar;i++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       /*  if (k>nlstate) k=1;       nhstepm is the number of hstepm from age to agelim 
       i1=(i-1)/(ncovmodel*nlstate)+1;       nstepm is the number of stepm from age to agelin. 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       Look at function hpijx to understand why (it is linked to memory size questions) */
       printf("%s%d%d",alph[k],i1,tab[i]);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficres,"%3d",i);       survival function given by stepm (the optimization length). Unfortunately it
       printf("%3d",i);       means that if the survival funtion is printed every two years of age and if
       for(j=1; j<=i;j++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         fprintf(ficres," %.5e",matcov[i][j]);       results. So we changed our mind and took the option of the best precision.
         printf(" %.5e",matcov[i][j]);    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficres,"\n");    agelim = AGESUP;
       printf("\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       k++;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     while((c=getc(ficpar))=='#' && c!= EOF){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       ungetc(c,ficpar);      gp=matrix(0,nhstepm,1,nlstate);
       fgets(line, MAXLINE, ficpar);      gm=matrix(0,nhstepm,1,nlstate);
       puts(line);  
       fputs(line,ficparo);  
     }      for(theta=1; theta <=npar; theta++){
     ungetc(c,ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     estepm=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        }
     if (estepm==0 || estepm < stepm) estepm=stepm;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if (fage <= 2) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       bage = ageminpar;  
       fage = agemaxpar;        if (popbased==1) {
     }          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          }else{ /* mobilav */ 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
     while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);    
     puts(line);        for(j=1; j<= nlstate; j++){
     fputs(line,ficparo);          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   ungetc(c,ficpar);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        /* This for computing probability of death (h=1 means
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           computed over hstepm matrices product = hstepm*stepm months) 
                 as a weighted average of prlim.
   while((c=getc(ficpar))=='#' && c!= EOF){        */
     ungetc(c,ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fgets(line, MAXLINE, ficpar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     puts(line);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fputs(line,ficparo);        }    
   }        /* end probability of death */
   ungetc(c,ficpar);  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   fscanf(ficpar,"pop_based=%d\n",&popbased);        if (popbased==1) {
   fprintf(ficparo,"pop_based=%d\n",popbased);            if(mobilav ==0){
   fprintf(ficres,"pop_based=%d\n",popbased);              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   while((c=getc(ficpar))=='#' && c!= EOF){          }else{ /* mobilav */ 
     ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
     puts(line);          }
     fputs(line,ficparo);        }
   }  
   ungetc(c,ficpar);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          }
         }
         /* This for computing probability of death (h=1 means
 while((c=getc(ficpar))=='#' && c!= EOF){           computed over hstepm matrices product = hstepm*stepm months) 
     ungetc(c,ficpar);           as a weighted average of prlim.
     fgets(line, MAXLINE, ficpar);        */
     puts(line);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fputs(line,ficparo);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   ungetc(c,ficpar);        }    
         /* end probability of death */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for(j=1; j<= nlstate; j++) /* vareij */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          }
   
 /*------------ gnuplot -------------*/        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   strcpy(optionfilegnuplot,optionfilefiname);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   strcat(optionfilegnuplot,".gp");        }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);      } /* End theta */
   }  
   fclose(ficgp);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  
 /*--------- index.htm --------*/      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
   strcpy(optionfilehtm,optionfile);          for(theta=1; theta <=npar; theta++)
   strcat(optionfilehtm,".htm");            trgradg[h][j][theta]=gradg[h][theta][j];
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 Total number of observations=%d <br>\n      for(i=1;i<=nlstate;i++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        for(j=1;j<=nlstate;j++)
 <hr  size=\"2\" color=\"#EC5E5E\">          vareij[i][j][(int)age] =0.;
  <ul><li>Parameter files<br>\n  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      for(h=0;h<=nhstepm;h++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);        for(k=0;k<=nhstepm;k++){
   fclose(fichtm);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
 /*------------ free_vector  -------------*/              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
  chdir(path);        }
        }
  free_ivector(wav,1,imx);    
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      /* pptj */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
  free_ivector(num,1,n);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
  free_vector(agedc,1,n);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
  fclose(ficparo);          varppt[j][i]=doldmp[j][i];
  fclose(ficres);      /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   /*--------------- Prevalence limit --------------*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
   strcpy(filerespl,"pl");      if (popbased==1) {
   strcat(filerespl,fileres);        if(mobilav ==0){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          for(i=1; i<=nlstate;i++)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for(i=1; i<=nlstate;i++)
   fprintf(ficrespl,"#Prevalence limit\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficrespl,"#Age ");        }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      }
   fprintf(ficrespl,"\n");               
        /* This for computing probability of death (h=1 means
   prlim=matrix(1,nlstate,1,nlstate);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         as a weighted average of prlim.
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   k=0;      }    
   agebase=ageminpar;      /* end probability of death */
   agelim=agemaxpar;  
   ftolpl=1.e-10;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   i1=cptcoveff;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if (cptcovn < 1){i1=1;}        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
         k=k+1;      } 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      fprintf(ficresprobmorprev,"\n");
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1; i<=nlstate;i++)
         fprintf(ficrespl,"******\n");        for(j=1; j<=nlstate;j++){
                  fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for (age=agebase; age<=agelim; age++){        }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficresvij,"\n");
           fprintf(ficrespl,"%.0f",age );      free_matrix(gp,0,nhstepm,1,nlstate);
           for(i=1; i<=nlstate;i++)      free_matrix(gm,0,nhstepm,1,nlstate);
           fprintf(ficrespl," %.5f", prlim[i][i]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           fprintf(ficrespl,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    } /* End age */
     }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   fclose(ficrespl);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   /*------------- h Pij x at various ages ------------*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   printf("Computing pij: result on file '%s' \n", filerespij);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   /*if (stepm<=24) stepsize=2;*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   agelim=AGESUP;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   hstepm=stepsize*YEARM; /* Every year of age */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  */
    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   k=0;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_vector(xp,1,npar);
       k=k+1;    free_matrix(doldm,1,nlstate,1,nlstate);
         fprintf(ficrespij,"\n#****** ");    free_matrix(dnewm,1,nlstate,1,npar);
         for(j=1;j<=cptcoveff;j++)    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficrespij,"******\n");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fclose(ficresprobmorprev);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fflush(ficgp);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fflush(fichtm); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }  /* end varevsij */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /************ Variance of prevlim ******************/
           fprintf(ficrespij,"# Age");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           for(i=1; i<=nlstate;i++)  {
             for(j=1; j<=nlstate+ndeath;j++)    /* Variance of prevalence limit */
               fprintf(ficrespij," %1d-%1d",i,j);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           fprintf(ficrespij,"\n");    double **newm;
            for (h=0; h<=nhstepm; h++){    double **dnewm,**doldm;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    int i, j, nhstepm, hstepm;
             for(i=1; i<=nlstate;i++)    int k, cptcode;
               for(j=1; j<=nlstate+ndeath;j++)    double *xp;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double *gp, *gm;
             fprintf(ficrespij,"\n");    double **gradg, **trgradg;
              }    double age,agelim;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int theta;
           fprintf(ficrespij,"\n");    
         }    pstamp(ficresvpl);
     }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   }    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   fclose(ficrespij);  
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   /*---------- Forecasting ------------------*/    doldm=matrix(1,nlstate,1,nlstate);
   if((stepm == 1) && (strcmp(model,".")==0)){    
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    hstepm=1*YEARM; /* Every year of age */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   }    agelim = AGESUP;
   else{    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     erreur=108;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      if (stepm >= YEARM) hstepm=1;
   }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   /*---------- Health expectancies and variances ------------*/      gm=vector(1,nlstate);
   
   strcpy(filerest,"t");      for(theta=1; theta <=npar; theta++){
   strcat(filerest,fileres);        for(i=1; i<=npar; i++){ /* Computes gradient */
   if((ficrest=fopen(filerest,"w"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        }
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
   strcpy(filerese,"e");        for(i=1; i<=npar; i++) /* Computes gradient */
   strcat(filerese,fileres);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        for(i=1;i<=nlstate;i++)
   }          gm[i] = prlim[i][i];
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
         for(i=1;i<=nlstate;i++)
  strcpy(fileresv,"v");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   strcat(fileresv,fileres);      } /* End theta */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      trgradg =matrix(1,nlstate,1,npar);
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for(j=1; j<=nlstate;j++)
   calagedate=-1;        for(theta=1; theta <=npar; theta++)
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          trgradg[j][theta]=gradg[theta][j];
   
   k=0;      for(i=1;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){        varpl[i][(int)age] =0.;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       k=k+1;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       fprintf(ficrest,"\n#****** ");      for(i=1;i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"\n#****** ");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       for(j=1;j<=cptcoveff;j++)      fprintf(ficresvpl,"\n");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_vector(gp,1,nlstate);
       fprintf(ficreseij,"******\n");      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       fprintf(ficresvij,"\n#****** ");      free_matrix(trgradg,1,nlstate,1,npar);
       for(j=1;j<=cptcoveff;j++)    } /* End age */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_matrix(dnewm,1,nlstate,1,nlstate);
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    }
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /************ Variance of one-step probabilities  ******************/
       oldm=oldms;savm=savms;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  {
        int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
      int k=0,l, cptcode;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    int first=1, first1, first2;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       fprintf(ficrest,"\n");    double **dnewm,**doldm;
     double *xp;
       epj=vector(1,nlstate+1);    double *gp, *gm;
       for(age=bage; age <=fage ;age++){    double **gradg, **trgradg;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double **mu;
         if (popbased==1) {    double age,agelim, cov[NCOVMAX+1];
           for(i=1; i<=nlstate;i++)    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
             prlim[i][i]=probs[(int)age][i][k];    int theta;
         }    char fileresprob[FILENAMELENGTH];
            char fileresprobcov[FILENAMELENGTH];
         fprintf(ficrest," %4.0f",age);    char fileresprobcor[FILENAMELENGTH];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double ***varpij;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    strcpy(fileresprob,"prob"); 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    strcat(fileresprob,fileres);
           }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           epj[nlstate+1] +=epj[j];      printf("Problem with resultfile: %s\n", fileresprob);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
         for(i=1, vepp=0.;i <=nlstate;i++)    strcpy(fileresprobcov,"probcov"); 
           for(j=1;j <=nlstate;j++)    strcat(fileresprobcov,fileres);
             vepp += vareij[i][j][(int)age];    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      printf("Problem with resultfile: %s\n", fileresprobcov);
         for(j=1;j <=nlstate;j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    }
         }    strcpy(fileresprobcor,"probcor"); 
         fprintf(ficrest,"\n");    strcat(fileresprobcor,fileres);
       }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprobcor);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 free_matrix(mint,1,maxwav,1,n);    }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     free_vector(weight,1,n);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fclose(ficreseij);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fclose(ficresvij);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fclose(ficrest);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fclose(ficpar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   free_vector(epj,1,nlstate+1);    pstamp(ficresprob);
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   /*------- Variance limit prevalence------*/      fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
   strcpy(fileresvpl,"vpl");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   strcat(fileresvpl,fileres);    fprintf(ficresprobcov,"# Age");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    pstamp(ficresprobcor);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     exit(0);    fprintf(ficresprobcor,"# Age");
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     for(i=1; i<=nlstate;i++)
   k=0;      for(j=1; j<=(nlstate+ndeath);j++){
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       k=k+1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       fprintf(ficresvpl,"\n#****** ");      }  
       for(j=1;j<=cptcoveff;j++)   /* fprintf(ficresprob,"\n");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobcov,"\n");
       fprintf(ficresvpl,"******\n");    fprintf(ficresprobcor,"\n");
         */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    xp=vector(1,npar);
       oldm=oldms;savm=savms;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
  }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   fclose(ficresvpl);    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   /*---------- End : free ----------------*/    fprintf(fichtm,"\n");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    file %s<br>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    and drawn. It helps understanding how is the covariance between two incidences.\
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
    standard deviations wide on each axis. <br>\
   free_matrix(matcov,1,npar,1,npar);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   free_vector(delti,1,npar);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   free_matrix(agev,1,maxwav,1,imx);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     cov[1]=1;
   fprintf(fichtm,"\n</body>");    /* tj=cptcoveff; */
   fclose(fichtm);    tj = (int) pow(2,cptcoveff);
   fclose(ficgp);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
     for(j1=1; j1<=tj;j1++){
   if(erreur >0)      /*for(i1=1; i1<=ncodemax[t];i1++){ */
     printf("End of Imach with error or warning %d\n",erreur);      /*j1++;*/
   else   printf("End of Imach\n");        if  (cptcovn>0) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          fprintf(ficresprob, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(ficresprob, "**********\n#\n");
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(ficresprobcov, "\n#********** Variable "); 
   /*------ End -----------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
  end:          fprintf(ficgp, "\n#********** Variable "); 
 #ifdef windows          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* chdir(pathcd);*/          fprintf(ficgp, "**********\n#\n");
 #endif          
  /*system("wgnuplot graph.plt");*/          
  /*system("../gp37mgw/wgnuplot graph.plt");*/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
  /*system("cd ../gp37mgw");*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
  strcpy(plotcmd,GNUPLOTPROGRAM);          
  strcat(plotcmd," ");          fprintf(ficresprobcor, "\n#********** Variable ");    
  strcat(plotcmd,optionfilegnuplot);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  system(plotcmd);          fprintf(ficresprobcor, "**********\n#");    
         }
 #ifdef windows        
   while (z[0] != 'q') {        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     /* chdir(path); */        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        gp=vector(1,(nlstate)*(nlstate+ndeath));
     scanf("%s",z);        gm=vector(1,(nlstate)*(nlstate+ndeath));
     if (z[0] == 'c') system("./imach");        for (age=bage; age<=fage; age ++){ 
     else if (z[0] == 'e') system(optionfilehtm);          cov[2]=age;
     else if (z[0] == 'g') system(plotcmd);          for (k=1; k<=cptcovn;k++) {
     else if (z[0] == 'q') exit(0);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
   }                                                           * 1  1 1 1 1
 #endif                                                           * 2  2 1 1 1
 }                                                           * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.47  
changed lines
  Added in v.1.161


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>