Diff for /imach/src/imach.c between versions 1.159 and 1.163

version 1.159, 2014/09/01 10:34:10 version 1.163, 2014/12/16 10:30:11
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
   Revision 1.159  2014/09/01 10:34:10  brouard    Revision 1.159  2014/09/01 10:34:10  brouard
   Summary: WIN32    Summary: WIN32
   Author: Brouard    Author: Brouard
Line 509 Line 526
 #include <gsl/gsl_multimin.h>  #include <gsl/gsl_multimin.h>
 #endif  #endif
   
   #ifdef NLOPT
   #include <nlopt.h>
   typedef struct {
     double (* function)(double [] );
   } myfunc_data ;
   #endif
   
 /* #include <libintl.h> */  /* #include <libintl.h> */
 /* #define _(String) gettext (String) */  /* #define _(String) gettext (String) */
   
Line 547 Line 571
 /* $Id$ */  /* $Id$ */
 /* $State$ */  /* $State$ */
   
 char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";  char version[]="Imach version 0.99, September 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
 char fullversion[]="$Revision$ $Date$";   char fullversion[]="$Revision$ $Date$"; 
 char strstart[80];  char strstart[80];
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
Line 578  int **mw; /* mw[mi][i] is number of the Line 602  int **mw; /* mw[mi][i] is number of the
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
            * wave mi and wave mi+1 is not an exact multiple of stepm. */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int countcallfunc=0;  /* Count the number of calls to func */
 double jmean=1; /* Mean space between 2 waves */  double jmean=1; /* Mean space between 2 waves */
 double **matprod2(); /* test */  double **matprod2(); /* test */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  double **oldm, **newm, **savm; /* Working pointers to matrices */
Line 786  char *cutl(char *blocc, char *alocc, cha Line 811  char *cutl(char *blocc, char *alocc, cha
      gives blocc="abcdef2ghi" and alocc="j".       gives blocc="abcdef2ghi" and alocc="j".
      If occ is not found blocc is null and alocc is equal to in. Returns blocc       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   */    */
   char *s, *t, *bl;    char *s, *t;
   t=in;s=in;    t=in;s=in;
   while ((*in != occ) && (*in != '\0')){    while ((*in != occ) && (*in != '\0')){
     *alocc++ = *in++;      *alocc++ = *in++;
Line 870  int nbocc(char *s, char occ) Line 895  int nbocc(char *s, char occ)
 /*   } */  /*   } */
 /* } */  /* } */
   
   #ifdef _WIN32
   char * strsep(char **pp, const char *delim)
   {
     char *p, *q;
            
     if ((p = *pp) == NULL)
       return 0;
     if ((q = strpbrk (p, delim)) != NULL)
     {
       *pp = q + 1;
       *q = '\0';
     }
     else
       *pp = 0;
     return p;
   }
   #endif
   
 /********************** nrerror ********************/  /********************** nrerror ********************/
   
 void nrerror(char error_text[])  void nrerror(char error_text[])
Line 1069  char *subdirf3(char fileres[], char *pre Line 1112  char *subdirf3(char fileres[], char *pre
   return tmpout;    return tmpout;
 }  }
   
   char *asc_diff_time(long time_sec, char ascdiff[])
   {
     long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   }
   
 /***************** f1dim *************************/  /***************** f1dim *************************/
 extern int ncom;   extern int ncom; 
 extern double *pcom,*xicom;  extern double *pcom,*xicom;
Line 1107  double brent(double ax, double bx, doubl Line 1163  double brent(double ax, double bx, doubl
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf(".");fflush(stdout);      printf(".");fflush(stdout);
     fprintf(ficlog,".");fflush(ficlog);      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUGBRENT
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
Line 1177  void mnbrak(double *ax, double *bx, doub Line 1233  void mnbrak(double *ax, double *bx, doub
       }         } 
   *cx=(*bx)+GOLD*(*bx-*ax);     *cx=(*bx)+GOLD*(*bx-*ax); 
   *fc=(*func)(*cx);     *fc=(*func)(*cx); 
   while (*fb > *fc) {     while (*fb > *fc) { /* Declining fa, fb, fc */
     r=(*bx-*ax)*(*fb-*fc);       r=(*bx-*ax)*(*fb-*fc); 
     q=(*bx-*cx)*(*fb-*fa);       q=(*bx-*cx)*(*fb-*fa); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
     ulim=(*bx)+GLIMIT*(*cx-*bx);       ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
     if ((*bx-u)*(u-*cx) > 0.0) {       if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
       fu=(*func)(u);         fu=(*func)(u); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {   #ifdef DEBUG
         /* f(x)=A(x-u)**2+f(u) */
         double A, fparabu; 
         A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         fparabu= *fa - A*(*ax-u)*(*ax-u);
         printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
   #endif 
       } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
       fu=(*func)(u);         fu=(*func)(u); 
       if (fu < *fc) {         if (fu < *fc) { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           SHFT(*fb,*fc,fu,(*func)(u))             SHFT(*fb,*fc,fu,(*func)(u)) 
           }             } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
       u=ulim;         u=ulim; 
       fu=(*func)(u);         fu=(*func)(u); 
     } else {       } else { 
Line 1204  void mnbrak(double *ax, double *bx, doub Line 1268  void mnbrak(double *ax, double *bx, doub
 }   } 
   
 /*************** linmin ************************/  /*************** linmin ************************/
   /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   the value of func at the returned location p . This is actually all accomplished by calling the
   routines mnbrak and brent .*/
 int ncom;   int ncom; 
 double *pcom,*xicom;  double *pcom,*xicom;
 double (*nrfunc)(double []);   double (*nrfunc)(double []); 
Line 1230  void linmin(double p[], double xi[], int Line 1298  void linmin(double p[], double xi[], int
   }     } 
   ax=0.0;     ax=0.0; 
   xx=1.0;     xx=1.0; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
Line 1244  void linmin(double p[], double xi[], int Line 1312  void linmin(double p[], double xi[], int
   free_vector(pcom,1,n);     free_vector(pcom,1,n); 
 }   } 
   
 char *asc_diff_time(long time_sec, char ascdiff[])  
 {  
   long sec_left, days, hours, minutes;  
   days = (time_sec) / (60*60*24);  
   sec_left = (time_sec) % (60*60*24);  
   hours = (sec_left) / (60*60) ;  
   sec_left = (sec_left) %(60*60);  
   minutes = (sec_left) /60;  
   sec_left = (sec_left) % (60);  
   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);    
   return ascdiff;  
 }  
   
 /*************** powell ************************/  /*************** powell ************************/
   /*
   Minimization of a function func of n variables. Input consists of an initial starting point
   p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   such that failure to decrease by more than this amount on one iteration signals doneness. On
   output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   function value at p , and iter is the number of iterations taken. The routine linmin is used.
    */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             double (*func)(double []))               double (*func)(double [])) 
 {   { 
Line 1298  void powell(double p[], double **xi, int Line 1362  void powell(double p[], double **xi, int
     if(*iter <=3){      if(*iter <=3){
       tml = *localtime(&rcurr_time);        tml = *localtime(&rcurr_time);
       strcpy(strcurr,asctime(&tml));        strcpy(strcurr,asctime(&tml));
 /*       asctime_r(&tm,strcurr); */  
       rforecast_time=rcurr_time;         rforecast_time=rcurr_time; 
       itmp = strlen(strcurr);        itmp = strlen(strcurr);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         strcurr[itmp-1]='\0';          strcurr[itmp-1]='\0';
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       for(niterf=10;niterf<=30;niterf+=10){        for(niterf=10;niterf<=30;niterf+=10){
         rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         forecast_time = *localtime(&rforecast_time);          forecast_time = *localtime(&rforecast_time);
 /*      asctime_r(&tmf,strfor); */  
         strcpy(strfor,asctime(&forecast_time));          strcpy(strfor,asctime(&forecast_time));
         itmp = strlen(strfor);          itmp = strlen(strfor);
         if(strfor[itmp-1]=='\n')          if(strfor[itmp-1]=='\n')
Line 1340  void powell(double p[], double **xi, int Line 1402  void powell(double p[], double **xi, int
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       for(j=1;j<=n;j++) {        for(j=1;j<=n;j++) {
         printf(" p=%.12e",p[j]);          printf(" p(%d)=%.12e",j,p[j]);
         fprintf(ficlog," p=%.12e",p[j]);          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
 #endif  #endif
     }       } /* end i */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 #ifdef DEBUG  #ifdef DEBUG
       int k[2],l;        int k[2],l;
Line 1379  void powell(double p[], double **xi, int Line 1441  void powell(double p[], double **xi, int
       return;         return; 
     }       } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=n;j++) {       for (j=1;j<=n;j++) { /* Computes an extrapolated point */
       ptt[j]=2.0*p[j]-pt[j];         ptt[j]=2.0*p[j]-pt[j]; 
       xit[j]=p[j]-pt[j];         xit[j]=p[j]-pt[j]; 
       pt[j]=p[j];         pt[j]=p[j]; 
     }       } 
     fptt=(*func)(ptt);       fptt=(*func)(ptt); 
     if (fptt < fp) {       if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       if (t < 0.0) {         /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         linmin(p,xit,n,fret,func);         /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
         /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
         /* Thus we compare delta(2h) with observed f1-f3 */
         /* or best gain on one ancient line 'del' with total  */
         /* gain f1-f2 = f1 - f2 - 'del' with del  */
         /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
         t= t- del*SQR(fp-fptt);
         printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
   #ifdef DEBUG
         printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   #endif
         if (t < 0.0) { /* Then we use it for last direction */
           linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
         for (j=1;j<=n;j++) {           for (j=1;j<=n;j++) { 
           xi[j][ibig]=xi[j][n];             xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
           xi[j][n]=xit[j];             xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
         }          }
           printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
   
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){          for(j=1;j<=n;j++){
           printf(" %.12e",xit[j]);            printf(" %.12e",xit[j]);
           fprintf(ficlog," %.12e",xit[j]);            fprintf(ficlog," %.12e",xit[j]);
Line 1403  void powell(double p[], double **xi, int Line 1488  void powell(double p[], double **xi, int
         printf("\n");          printf("\n");
         fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
 #endif  #endif
       }        } /* end of t negative */
     }       } /* end if (fptt < fp)  */
   }     } 
 }   } 
   
Line 1634  double ***hpxij(double ***po, int nhstep Line 1719  double ***hpxij(double ***po, int nhstep
   return po;    return po;
 }  }
   
   #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     double fret;
     double *xt;
     int j;
     myfunc_data *d2 = (myfunc_data *) pd;
   /* xt = (p1-1); */
     xt=vector(1,n); 
     for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   
     fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     printf("Function = %.12lf ",fret);
     for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     printf("\n");
    free_vector(xt,1,n);
     return fret;
   }
   #endif
   
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double func( double *x)  double func( double *x)
Line 1652  double func( double *x) Line 1756  double func( double *x)
   /*for(i=1;i<imx;i++)     /*for(i=1;i<imx;i++) 
     printf(" %d\n",s[4][i]);      printf(" %d\n",s[4][i]);
   */    */
   
     ++countcallfunc;
   
   cov[1]=1.;    cov[1]=1.;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
Line 2038  void mlikeli(FILE *ficres,double p[], in Line 2145  void mlikeli(FILE *ficres,double p[], in
   double fret;    double fret;
   double fretone; /* Only one call to likelihood */    double fretone; /* Only one call to likelihood */
   /*  char filerespow[FILENAMELENGTH];*/    /*  char filerespow[FILENAMELENGTH];*/
   
   #ifdef NLOPT
     int creturn;
     nlopt_opt opt;
     /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     double *lb;
     double minf; /* the minimum objective value, upon return */
     double * p1; /* Shifted parameters from 0 instead of 1 */
     myfunc_data dinst, *d = &dinst;
   #endif
   
   
   xi=matrix(1,npar,1,npar);    xi=matrix(1,npar,1,npar);
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++)
     for (j=1;j<=npar;j++)      for (j=1;j<=npar;j++)
Line 2054  void mlikeli(FILE *ficres,double p[], in Line 2173  void mlikeli(FILE *ficres,double p[], in
     for(j=1;j<=nlstate+ndeath;j++)      for(j=1;j<=nlstate+ndeath;j++)
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficrespow,"\n");    fprintf(ficrespow,"\n");
   #ifdef POWELL
   powell(p,xi,npar,ftol,&iter,&fret,func);    powell(p,xi,npar,ftol,&iter,&fret,func);
   #endif
   
   #ifdef NLOPT
   #ifdef NEWUOA
     opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   #else
     opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   #endif
     lb=vector(0,npar-1);
     for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     nlopt_set_lower_bounds(opt, lb);
     nlopt_set_initial_step1(opt, 0.1);
     
     p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     d->function = func;
     printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     nlopt_set_min_objective(opt, myfunc, d);
     nlopt_set_xtol_rel(opt, ftol);
     if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       printf("nlopt failed! %d\n",creturn); 
     }
     else {
       printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       iter=1; /* not equal */
     }
     nlopt_destroy(opt);
   #endif
   free_matrix(xi,1,npar,1,npar);    free_matrix(xi,1,npar,1,npar);
   fclose(ficrespow);    fclose(ficrespow);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   
 }  }
   
Line 5975  Interval (in months) between two waves: Line 6121  Interval (in months) between two waves:
           
 #ifdef GSL  #ifdef GSL
     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");      printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 #elsedef  #else
     printf("Powell\n");  fprintf(ficlog,"Powell\n");      printf("Powell\n");  fprintf(ficlog,"Powell\n");
 #endif  #endif
     strcpy(filerespow,"pow-mort");       strcpy(filerespow,"pow-mort"); 
Line 5986  Interval (in months) between two waves: Line 6132  Interval (in months) between two waves:
     }      }
 #ifdef GSL  #ifdef GSL
     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");      fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 #elsedef  #else
     fprintf(ficrespow,"# Powell\n# iter -2*LL");      fprintf(ficrespow,"# Powell\n# iter -2*LL");
 #endif  #endif
     /*  for (i=1;i<=nlstate;i++)      /*  for (i=1;i<=nlstate;i++)
Line 6548  Interval (in months) between two waves: Line 6694  Interval (in months) between two waves:
   
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/          for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* Segmentation fault */            oldm=oldms;savm=savms; /* Segmentation fault */
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);            cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");            fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)            if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);              fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);

Removed from v.1.159  
changed lines
  Added in v.1.163


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>