Diff for /imach/src/imach.c between versions 1.48 and 1.165

version 1.48, 2002/06/10 13:12:49 version 1.165, 2014/12/16 11:20:36
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.165  2014/12/16 11:20:36  brouard
      Summary: After compiling on Visual C
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): Merging 1.61 to 1.162
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.164  2014/12/16 10:52:11  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    * imach.c (Module): Merging 1.61 to 1.162
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.163  2014/12/16 10:30:11  brouard
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Module): Merging 1.61 to 1.162
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.162  2014/09/25 11:43:39  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: temporary backup 0.99!
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.1  2014/09/16 11:06:58  brouard
   complex model than "constant and age", you should modify the program    Summary: With some code (wrong) for nlopt
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Author:
   convergence.  
     Revision 1.161  2014/09/15 20:41:41  brouard
   The advantage of this computer programme, compared to a simple    Summary: Problem with macro SQR on Intel compiler
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.160  2014/09/02 09:24:05  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.159  2014/09/01 10:34:10  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: WIN32
   conditional to the observed state i at age x. The delay 'h' can be    Author: Brouard
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.158  2014/08/27 17:11:51  brouard
   semester or year) is model as a multinomial logistic.  The hPx    *** empty log message ***
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.157  2014/08/27 16:26:55  brouard
   hPijx.    Summary: Preparing windows Visual studio version
     Author: Brouard
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    In order to compile on Visual studio, time.h is now correct and time_t
      and tm struct should be used. difftime should be used but sometimes I
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    just make the differences in raw time format (time(&now).
            Institut national d'études démographiques, Paris.    Trying to suppress #ifdef LINUX
   This software have been partly granted by Euro-REVES, a concerted action    Add xdg-open for __linux in order to open default browser.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.156  2014/08/25 20:10:10  brouard
   software can be distributed freely for non commercial use. Latest version    *** empty log message ***
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.155  2014/08/25 18:32:34  brouard
      Summary: New compile, minor changes
 #include <math.h>    Author: Brouard
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.154  2014/06/20 17:32:08  brouard
 #include <unistd.h>    Summary: Outputs now all graphs of convergence to period prevalence
   
 #define MAXLINE 256    Revision 1.153  2014/06/20 16:45:46  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Summary: If 3 live state, convergence to period prevalence on same graph
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Author: Brouard
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.152  2014/06/18 17:54:09  brouard
 #define windows    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 #define NINTERVMAX 8    Author: brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.149  2014/06/18 15:51:14  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: Some fixes in parameter files errors
 #define MAXN 20000    Author: Nicolas Brouard
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.148  2014/06/17 17:38:48  brouard
 #define AGEBASE 40    Summary: Nothing new
 #ifdef windows    Author: Brouard
 #define DIRSEPARATOR '\\'  
 #else    Just a new packaging for OS/X version 0.98nS
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.146  2014/06/16 10:20:28  brouard
 int nvar;    Summary: Merge
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Author: Brouard
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Merge, before building revised version.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.145  2014/06/10 21:23:15  brouard
 int popbased=0;    Summary: Debugging with valgrind
     Author: Nicolas Brouard
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Lot of changes in order to output the results with some covariates
 int jmin, jmax; /* min, max spacing between 2 waves */    After the Edimburgh REVES conference 2014, it seems mandatory to
 int mle, weightopt;    improve the code.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    No more memory valgrind error but a lot has to be done in order to
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    continue the work of splitting the code into subroutines.
 double jmean; /* Mean space between 2 waves */    Also, decodemodel has been improved. Tricode is still not
 double **oldm, **newm, **savm; /* Working pointers to matrices */    optimal. nbcode should be improved. Documentation has been added in
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    the source code.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.143  2014/01/26 09:45:38  brouard
 FILE *fichtm; /* Html File */    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 FILE  *ficresvij;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.142  2014/01/26 03:57:36  brouard
 char fileresvpl[FILENAMELENGTH];    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.141  2014/01/26 02:42:01  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 char filerest[FILENAMELENGTH];    Revision 1.140  2011/09/02 10:37:54  brouard
 char fileregp[FILENAMELENGTH];    Summary: times.h is ok with mingw32 now.
 char popfile[FILENAMELENGTH];  
     Revision 1.139  2010/06/14 07:50:17  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.138  2010/04/30 18:19:40  brouard
 #define FTOL 1.0e-10    *** empty log message ***
   
 #define NRANSI    Revision 1.137  2010/04/29 18:11:38  brouard
 #define ITMAX 200    (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
 #define TOL 2.0e-4  
     Revision 1.136  2010/04/26 20:30:53  brouard
 #define CGOLD 0.3819660    (Module): merging some libgsl code. Fixing computation
 #define ZEPS 1.0e-10    of likelione (using inter/intrapolation if mle = 0) in order to
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.135  2009/10/29 15:33:14  brouard
 #define TINY 1.0e-20    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 static double maxarg1,maxarg2;    Revision 1.134  2009/10/29 13:18:53  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.133  2009/07/06 10:21:25  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    just nforces
 #define rint(a) floor(a+0.5)  
     Revision 1.132  2009/07/06 08:22:05  brouard
 static double sqrarg;    Many tings
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
 int imx;  
 int stepm;    Revision 1.130  2009/05/26 06:44:34  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
 int estepm;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.129  2007/08/31 13:49:27  lievre
 int m,nb;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.128  2006/06/30 13:02:05  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Clarifications on computing e.j
 double dateintmean=0;  
     Revision 1.127  2006/04/28 18:11:50  brouard
 double *weight;    (Module): Yes the sum of survivors was wrong since
 int **s; /* Status */    imach-114 because nhstepm was no more computed in the age
 double *agedc, **covar, idx;    loop. Now we define nhstepma in the age loop.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    and then all the health expectancies with variances or standard
 double ftolhess; /* Tolerance for computing hessian */    deviation (needs data from the Hessian matrices) which slows the
     computation.
 /**************** split *************************/    In the future we should be able to stop the program is only health
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    expectancies and graph are needed without standard deviations.
 {  
    char *s;                             /* pointer */    Revision 1.126  2006/04/28 17:23:28  brouard
    int  l1, l2;                         /* length counters */    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
    l1 = strlen( path );                 /* length of path */    loop. Now we define nhstepma in the age loop.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Version 0.98h
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.125  2006/04/04 15:20:31  lievre
 #if     defined(__bsd__)                /* get current working directory */    Errors in calculation of health expectancies. Age was not initialized.
       extern char       *getwd( );    Forecasting file added.
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.124  2006/03/22 17:13:53  lievre
 #else    Parameters are printed with %lf instead of %f (more numbers after the comma).
       extern char       *getcwd( );    The log-likelihood is printed in the log file
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.123  2006/03/20 10:52:43  brouard
 #endif    * imach.c (Module): <title> changed, corresponds to .htm file
          return( GLOCK_ERROR_GETCWD );    name. <head> headers where missing.
       }  
       strcpy( name, path );             /* we've got it */    * imach.c (Module): Weights can have a decimal point as for
    } else {                             /* strip direcotry from path */    English (a comma might work with a correct LC_NUMERIC environment,
       s++;                              /* after this, the filename */    otherwise the weight is truncated).
       l2 = strlen( s );                 /* length of filename */    Modification of warning when the covariates values are not 0 or
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    1.
       strcpy( name, s );                /* save file name */    Version 0.98g
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.122  2006/03/20 09:45:41  brouard
    }    (Module): Weights can have a decimal point as for
    l1 = strlen( dirc );                 /* length of directory */    English (a comma might work with a correct LC_NUMERIC environment,
 #ifdef windows    otherwise the weight is truncated).
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Modification of warning when the covariates values are not 0 or
 #else    1.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Version 0.98g
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.121  2006/03/16 17:45:01  lievre
    s++;    * imach.c (Module): Comments concerning covariates added
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    * imach.c (Module): refinements in the computation of lli if
    l2= strlen( s)+1;    status=-2 in order to have more reliable computation if stepm is
    strncpy( finame, name, l1-l2);    not 1 month. Version 0.98f
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.120  2006/03/16 15:10:38  lievre
 }    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 /******************************************/  
     Revision 1.119  2006/03/15 17:42:26  brouard
 void replace(char *s, char*t)    (Module): Bug if status = -2, the loglikelihood was
 {    computed as likelihood omitting the logarithm. Version O.98e
   int i;  
   int lg=20;    Revision 1.118  2006/03/14 18:20:07  brouard
   i=0;    (Module): varevsij Comments added explaining the second
   lg=strlen(t);    table of variances if popbased=1 .
   for(i=0; i<= lg; i++) {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (s[i] = t[i]);    (Module): Function pstamp added
     if (t[i]== '\\') s[i]='/';    (Module): Version 0.98d
   }  
 }    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 int nbocc(char *s, char occ)    table of variances if popbased=1 .
 {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   int i,j=0;    (Module): Function pstamp added
   int lg=20;    (Module): Version 0.98d
   i=0;  
   lg=strlen(s);    Revision 1.116  2006/03/06 10:29:27  brouard
   for(i=0; i<= lg; i++) {    (Module): Variance-covariance wrong links and
   if  (s[i] == occ ) j++;    varian-covariance of ej. is needed (Saito).
   }  
   return j;    Revision 1.115  2006/02/27 12:17:45  brouard
 }    (Module): One freematrix added in mlikeli! 0.98c
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.114  2006/02/26 12:57:58  brouard
 {    (Module): Some improvements in processing parameter
   int i,lg,j,p=0;    filename with strsep.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.113  2006/02/24 14:20:24  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Memory leaks checks with valgrind and:
   }    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.112  2006/01/30 09:55:26  brouard
     (u[j] = t[j]);    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   }  
      u[p]='\0';    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
    for(j=0; j<= lg; j++) {    (Module): Comments can be added in data file. Missing date values
     if (j>=(p+1))(v[j-p-1] = t[j]);    can be a simple dot '.'.
   }  
 }    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /********************** nrerror ********************/  
     Revision 1.109  2006/01/24 19:37:15  brouard
 void nrerror(char error_text[])    (Module): Comments (lines starting with a #) are allowed in data.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.108  2006/01/19 18:05:42  lievre
   fprintf(stderr,"%s\n",error_text);    Gnuplot problem appeared...
   exit(1);    To be fixed
 }  
 /*********************** vector *******************/    Revision 1.107  2006/01/19 16:20:37  brouard
 double *vector(int nl, int nh)    Test existence of gnuplot in imach path
 {  
   double *v;    Revision 1.106  2006/01/19 13:24:36  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Some cleaning and links added in html output
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.105  2006/01/05 20:23:19  lievre
 }    *** empty log message ***
   
 /************************ free vector ******************/    Revision 1.104  2005/09/30 16:11:43  lievre
 void free_vector(double*v, int nl, int nh)    (Module): sump fixed, loop imx fixed, and simplifications.
 {    (Module): If the status is missing at the last wave but we know
   free((FREE_ARG)(v+nl-NR_END));    that the person is alive, then we can code his/her status as -2
 }    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 /************************ivector *******************************/    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int *ivector(long nl,long nh)    the healthy state at last known wave). Version is 0.98
 {  
   int *v;    Revision 1.103  2005/09/30 15:54:49  lievre
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Module): sump fixed, loop imx fixed, and simplifications.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.102  2004/09/15 17:31:30  brouard
 }    Add the possibility to read data file including tab characters.
   
 /******************free ivector **************************/    Revision 1.101  2004/09/15 10:38:38  brouard
 void free_ivector(int *v, long nl, long nh)    Fix on curr_time
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.100  2004/07/12 18:29:06  brouard
 }    Add version for Mac OS X. Just define UNIX in Makefile
   
 /******************* imatrix *******************************/    Revision 1.99  2004/06/05 08:57:40  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    *** empty log message ***
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.98  2004/05/16 15:05:56  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    New version 0.97 . First attempt to estimate force of mortality
   int **m;    directly from the data i.e. without the need of knowing the health
      state at each age, but using a Gompertz model: log u =a + b*age .
   /* allocate pointers to rows */    This is the basic analysis of mortality and should be done before any
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    other analysis, in order to test if the mortality estimated from the
   if (!m) nrerror("allocation failure 1 in matrix()");    cross-longitudinal survey is different from the mortality estimated
   m += NR_END;    from other sources like vital statistic data.
   m -= nrl;  
      The same imach parameter file can be used but the option for mle should be -3.
    
   /* allocate rows and set pointers to them */    Agnès, who wrote this part of the code, tried to keep most of the
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    former routines in order to include the new code within the former code.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    The output is very simple: only an estimate of the intercept and of
   m[nrl] -= ncl;    the slope with 95% confident intervals.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Current limitations:
      A) Even if you enter covariates, i.e. with the
   /* return pointer to array of pointers to rows */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   return m;    B) There is no computation of Life Expectancy nor Life Table.
 }  
     Revision 1.97  2004/02/20 13:25:42  lievre
 /****************** free_imatrix *************************/    Version 0.96d. Population forecasting command line is (temporarily)
 void free_imatrix(m,nrl,nrh,ncl,nch)    suppressed.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.96  2003/07/15 15:38:55  brouard
      /* free an int matrix allocated by imatrix() */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.95  2003/07/08 07:54:34  brouard
 }    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 /******************* matrix *******************************/    matrix (cov(a12,c31) instead of numbers.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Just cleaning
   double **m;  
     Revision 1.93  2003/06/25 16:33:55  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): On windows (cygwin) function asctime_r doesn't
   if (!m) nrerror("allocation failure 1 in matrix()");    exist so I changed back to asctime which exists.
   m += NR_END;    (Module): Version 0.96b
   m -= nrl;  
     Revision 1.92  2003/06/25 16:30:45  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): On windows (cygwin) function asctime_r doesn't
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    exist so I changed back to asctime which exists.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Repository): Elapsed time after each iteration is now output. It
   return m;    helps to forecast when convergence will be reached. Elapsed time
 }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.90  2003/06/24 12:34:15  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    mle=-1 a template is output in file "or"mypar.txt with the design
   free((FREE_ARG)(m+nrl-NR_END));    of the covariance matrix to be input.
 }  
     Revision 1.89  2003/06/24 12:30:52  brouard
 /******************* ma3x *******************************/    (Module): Some bugs corrected for windows. Also, when
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.87  2003/06/18 12:26:01  brouard
   m += NR_END;    Version 0.96
   m -= nrl;  
     Revision 1.86  2003/06/17 20:04:08  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Change position of html and gnuplot routines and added
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    routine fileappend.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    was wrong (infinity). We still send an "Error" but patch by
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    assuming that the date of death was just one stepm after the
   m[nrl][ncl] += NR_END;    interview.
   m[nrl][ncl] -= nll;    (Repository): Because some people have very long ID (first column)
   for (j=ncl+1; j<=nch; j++)    we changed int to long in num[] and we added a new lvector for
     m[nrl][j]=m[nrl][j-1]+nlay;    memory allocation. But we also truncated to 8 characters (left
      truncation)
   for (i=nrl+1; i<=nrh; i++) {    (Repository): No more line truncation errors.
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.84  2003/06/13 21:44:43  brouard
       m[i][j]=m[i][j-1]+nlay;    * imach.c (Repository): Replace "freqsummary" at a correct
   }    place. It differs from routine "prevalence" which may be called
   return m;    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.82  2003/06/05 15:57:20  brouard
   free((FREE_ARG)(m+nrl-NR_END));    Add log in  imach.c and  fullversion number is now printed.
 }  
   */
 /***************** f1dim *************************/  /*
 extern int ncom;     Interpolated Markov Chain
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    Short summary of the programme:
      
 double f1dim(double x)    This program computes Healthy Life Expectancies from
 {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   int j;    first survey ("cross") where individuals from different ages are
   double f;    interviewed on their health status or degree of disability (in the
   double *xt;    case of a health survey which is our main interest) -2- at least a
      second wave of interviews ("longitudinal") which measure each change
   xt=vector(1,ncom);    (if any) in individual health status.  Health expectancies are
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    computed from the time spent in each health state according to a
   f=(*nrfunc)(xt);    model. More health states you consider, more time is necessary to reach the
   free_vector(xt,1,ncom);    Maximum Likelihood of the parameters involved in the model.  The
   return f;    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /*****************brent *************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   int iter;    where the markup *Covariates have to be included here again* invites
   double a,b,d,etemp;    you to do it.  More covariates you add, slower the
   double fu,fv,fw,fx;    convergence.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    The advantage of this computer programme, compared to a simple
   double e=0.0;    multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
   a=(ax < cx ? ax : cx);    intermediate interview, the information is lost, but taken into
   b=(ax > cx ? ax : cx);    account using an interpolation or extrapolation.  
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    hPijx is the probability to be observed in state i at age x+h
   for (iter=1;iter<=ITMAX;iter++) {    conditional to the observed state i at age x. The delay 'h' can be
     xm=0.5*(a+b);    split into an exact number (nh*stepm) of unobserved intermediate
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    states. This elementary transition (by month, quarter,
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    semester or year) is modelled as a multinomial logistic.  The hPx
     printf(".");fflush(stdout);    matrix is simply the matrix product of nh*stepm elementary matrices
 #ifdef DEBUG    and the contribution of each individual to the likelihood is simply
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    hPijx.
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Also this programme outputs the covariance matrix of the parameters but also
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    of the life expectancies. It also computes the period (stable) prevalence. 
       *xmin=x;    
       return fx;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     }             Institut national d'études démographiques, Paris.
     ftemp=fu;    This software have been partly granted by Euro-REVES, a concerted action
     if (fabs(e) > tol1) {    from the European Union.
       r=(x-w)*(fx-fv);    It is copyrighted identically to a GNU software product, ie programme and
       q=(x-v)*(fx-fw);    software can be distributed freely for non commercial use. Latest version
       p=(x-v)*q-(x-w)*r;    can be accessed at http://euroreves.ined.fr/imach .
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       q=fabs(q);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       etemp=e;    
       e=d;    **********************************************************************/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /*
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    main
       else {    read parameterfile
         d=p/q;    read datafile
         u=x+d;    concatwav
         if (u-a < tol2 || b-u < tol2)    freqsummary
           d=SIGN(tol1,xm-x);    if (mle >= 1)
       }      mlikeli
     } else {    print results files
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if mle==1 
     }       computes hessian
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    read end of parameter file: agemin, agemax, bage, fage, estepm
     fu=(*f)(u);        begin-prev-date,...
     if (fu <= fx) {    open gnuplot file
       if (u >= x) a=x; else b=x;    open html file
       SHFT(v,w,x,u)    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
         SHFT(fv,fw,fx,fu)     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
         } else {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
           if (u < x) a=u; else b=u;      freexexit2 possible for memory heap.
           if (fu <= fw || w == x) {  
             v=w;    h Pij x                         | pij_nom  ficrestpij
             w=u;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
             fv=fw;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
             fw=fu;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
           } else if (fu <= fv || v == x || v == w) {  
             v=u;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
             fv=fu;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
           }    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
         }     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   }     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   nrerror("Too many iterations in brent");  
   *xmin=x;    forecasting if prevfcast==1 prevforecast call prevalence()
   return fx;    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /****************** mnbrak ***********************/     movingaverage()
     varevsij() 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if popbased==1 varevsij(,popbased)
             double (*func)(double))    total life expectancies
 {    Variance of period (stable) prevalence
   double ulim,u,r,q, dum;   end
   double fu;  */
    
   *fa=(*func)(*ax);  #define POWELL /* Instead of NLOPT */
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  #include <math.h>
     SHFT(dum,*ax,*bx,dum)  #include <stdio.h>
       SHFT(dum,*fb,*fa,dum)  #include <stdlib.h>
       }  #include <string.h>
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  #ifdef _WIN32
   while (*fb > *fc) {  #include <io.h>
     r=(*bx-*ax)*(*fb-*fc);  #else
     q=(*bx-*cx)*(*fb-*fa);  #include <unistd.h>
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #endif
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #include <limits.h>
     if ((*bx-u)*(u-*cx) > 0.0) {  #include <sys/types.h>
       fu=(*func)(u);  #include <sys/stat.h>
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #include <errno.h>
       fu=(*func)(u);  /* extern int errno; */
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /* #ifdef LINUX */
           SHFT(*fb,*fc,fu,(*func)(u))  /* #include <time.h> */
           }  /* #include "timeval.h" */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /* #else */
       u=ulim;  /* #include <sys/time.h> */
       fu=(*func)(u);  /* #endif */
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  #include <time.h>
       fu=(*func)(u);  
     }  #ifdef GSL
     SHFT(*ax,*bx,*cx,u)  #include <gsl/gsl_errno.h>
       SHFT(*fa,*fb,*fc,fu)  #include <gsl/gsl_multimin.h>
       }  #endif
 }  
   #ifdef NLOPT
 /*************** linmin ************************/  #include <nlopt.h>
   typedef struct {
 int ncom;    double (* function)(double [] );
 double *pcom,*xicom;  } myfunc_data ;
 double (*nrfunc)(double []);  #endif
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define GNUPLOTPROGRAM "gnuplot"
               double *fc, double (*func)(double));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int j;  #define FILENAMELENGTH 132
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   ncom=n;  
   pcom=vector(1,n);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   xicom=vector(1,n);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   nrfunc=func;  
   for (j=1;j<=n;j++) {  #define NINTERVMAX 8
     pcom[j]=p[j];  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     xicom[j]=xi[j];  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   ax=0.0;  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   xx=1.0;  #define MAXN 20000
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define YEARM 12. /**< Number of months per year */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define AGESUP 130
 #ifdef DEBUG  #define AGEBASE 40
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 #endif  #ifdef _WIN32
   for (j=1;j<=n;j++) {  #define DIRSEPARATOR '\\'
     xi[j] *= xmin;  #define CHARSEPARATOR "\\"
     p[j] += xi[j];  #define ODIRSEPARATOR '/'
   }  #else
   free_vector(xicom,1,n);  #define DIRSEPARATOR '/'
   free_vector(pcom,1,n);  #define CHARSEPARATOR "/"
 }  #define ODIRSEPARATOR '\\'
   #endif
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /* $Id$ */
             double (*func)(double []))  /* $State$ */
 {  
   void linmin(double p[], double xi[], int n, double *fret,  char version[]="Imach version 0.99, September 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
               double (*func)(double []));  char fullversion[]="$Revision$ $Date$"; 
   int i,ibig,j;  char strstart[80];
   double del,t,*pt,*ptt,*xit;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double fp,fptt;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   double *xits;  int nvar=0, nforce=0; /* Number of variables, number of forces */
   pt=vector(1,n);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   ptt=vector(1,n);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   xit=vector(1,n);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   xits=vector(1,n);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   *fret=(*func)(p);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   for (j=1;j<=n;j++) pt[j]=p[j];  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   for (*iter=1;;++(*iter)) {  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     fp=(*fret);  int cptcov=0; /* Working variable */
     ibig=0;  int npar=NPARMAX;
     del=0.0;  int nlstate=2; /* Number of live states */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int ndeath=1; /* Number of dead states */
     for (i=1;i<=n;i++)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       printf(" %d %.12f",i, p[i]);  int popbased=0;
     printf("\n");  
     for (i=1;i<=n;i++) {  int *wav; /* Number of waves for this individuual 0 is possible */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int maxwav=0; /* Maxim number of waves */
       fptt=(*fret);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 #ifdef DEBUG  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       printf("fret=%lf \n",*fret);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 #endif                     to the likelihood and the sum of weights (done by funcone)*/
       printf("%d",i);fflush(stdout);  int mle=1, weightopt=0;
       linmin(p,xit,n,fret,func);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       if (fabs(fptt-(*fret)) > del) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         del=fabs(fptt-(*fret));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         ibig=i;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       }  int countcallfunc=0;  /* Count the number of calls to func */
 #ifdef DEBUG  double jmean=1; /* Mean space between 2 waves */
       printf("%d %.12e",i,(*fret));  double **matprod2(); /* test */
       for (j=1;j<=n;j++) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         printf(" x(%d)=%.12e",j,xit[j]);  /*FILE *fic ; */ /* Used in readdata only */
       }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       for(j=1;j<=n;j++)  FILE *ficlog, *ficrespow;
         printf(" p=%.12e",p[j]);  int globpr=0; /* Global variable for printing or not */
       printf("\n");  double fretone; /* Only one call to likelihood */
 #endif  long ipmx=0; /* Number of contributions */
     }  double sw; /* Sum of weights */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  char filerespow[FILENAMELENGTH];
 #ifdef DEBUG  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       int k[2],l;  FILE *ficresilk;
       k[0]=1;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       k[1]=-1;  FILE *ficresprobmorprev;
       printf("Max: %.12e",(*func)(p));  FILE *fichtm, *fichtmcov; /* Html File */
       for (j=1;j<=n;j++)  FILE *ficreseij;
         printf(" %.12e",p[j]);  char filerese[FILENAMELENGTH];
       printf("\n");  FILE *ficresstdeij;
       for(l=0;l<=1;l++) {  char fileresstde[FILENAMELENGTH];
         for (j=1;j<=n;j++) {  FILE *ficrescveij;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  char filerescve[FILENAMELENGTH];
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  FILE  *ficresvij;
         }  char fileresv[FILENAMELENGTH];
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  FILE  *ficresvpl;
       }  char fileresvpl[FILENAMELENGTH];
 #endif  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       free_vector(xit,1,n);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       free_vector(xits,1,n);  char command[FILENAMELENGTH];
       free_vector(ptt,1,n);  int  outcmd=0;
       free_vector(pt,1,n);  
       return;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  char filelog[FILENAMELENGTH]; /* Log file */
     for (j=1;j<=n;j++) {  char filerest[FILENAMELENGTH];
       ptt[j]=2.0*p[j]-pt[j];  char fileregp[FILENAMELENGTH];
       xit[j]=p[j]-pt[j];  char popfile[FILENAMELENGTH];
       pt[j]=p[j];  
     }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /* struct timezone tzp; */
       if (t < 0.0) {  /* extern int gettimeofday(); */
         linmin(p,xit,n,fret,func);  struct tm tml, *gmtime(), *localtime();
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  extern time_t time();
           xi[j][n]=xit[j];  
         }  struct tm start_time, end_time, curr_time, last_time, forecast_time;
 #ifdef DEBUG  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  struct tm tm;
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  char strcurr[80], strfor[80];
         printf("\n");  
 #endif  char *endptr;
       }  long lval;
     }  double dval;
   }  
 }  #define NR_END 1
   #define FREE_ARG char*
 /**** Prevalence limit ****************/  #define FTOL 1.0e-10
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define NRANSI 
 {  #define ITMAX 200 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  #define TOL 2.0e-4 
   
   int i, ii,j,k;  #define CGOLD 0.3819660 
   double min, max, maxmin, maxmax,sumnew=0.;  #define ZEPS 1.0e-10 
   double **matprod2();  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  #define GOLD 1.618034 
   double agefin, delaymax=50 ; /* Max number of years to converge */  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  static double maxarg1,maxarg2;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
    cov[1]=1.;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  static double sqrarg;
     newm=savm;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     /* Covariates have to be included here again */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
      cov[2]=agefin;  int agegomp= AGEGOMP;
    
       for (k=1; k<=cptcovn;k++) {  int imx; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int stepm=1;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /* Stepm, step in month: minimum step interpolation*/
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int estepm;
       for (k=1; k<=cptcovprod;k++)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   int m,nb;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  long *num;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double **pmmij, ***probs;
   double *ageexmed,*agecens;
     savm=oldm;  double dateintmean=0;
     oldm=newm;  
     maxmax=0.;  double *weight;
     for(j=1;j<=nlstate;j++){  int **s; /* Status */
       min=1.;  double *agedc;
       max=0.;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       for(i=1; i<=nlstate; i++) {                    * covar=matrix(0,NCOVMAX,1,n); 
         sumnew=0;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  double  idx; 
         prlim[i][j]= newm[i][j]/(1-sumnew);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         max=FMAX(max,prlim[i][j]);  int *Ndum; /** Freq of modality (tricode */
         min=FMIN(min,prlim[i][j]);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       }  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       maxmin=max-min;  double *lsurv, *lpop, *tpop;
       maxmax=FMAX(maxmax,maxmin);  
     }  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     if(maxmax < ftolpl){  double ftolhess; /**< Tolerance for computing hessian */
       return prlim;  
     }  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 /*************** transition probabilities ***************/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   double s1, s2;  
   /*double t34;*/    l1 = strlen(path );                   /* length of path */
   int i,j,j1, nc, ii, jj;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     for(i=1; i<= nlstate; i++){    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     for(j=1; j<i;j++){      strcpy( name, path );               /* we got the fullname name because no directory */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         /*s2 += param[i][j][nc]*cov[nc];*/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /* get current working directory */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      /*    extern  char* getcwd ( char *buf , int len);*/
       }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       ps[i][j]=s2;        return( GLOCK_ERROR_GETCWD );
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      }
     }      /* got dirc from getcwd*/
     for(j=i+1; j<=nlstate+ndeath;j++){      printf(" DIRC = %s \n",dirc);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    } else {                              /* strip direcotry from path */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      ss++;                               /* after this, the filename */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      l2 = strlen( ss );                  /* length of filename */
       }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       ps[i][j]=s2;      strcpy( name, ss );         /* save file name */
     }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
     /*ps[3][2]=1;*/      printf(" DIRC2 = %s \n",dirc);
     }
   for(i=1; i<= nlstate; i++){    /* We add a separator at the end of dirc if not exists */
      s1=0;    l1 = strlen( dirc );                  /* length of directory */
     for(j=1; j<i; j++)    if( dirc[l1-1] != DIRSEPARATOR ){
       s1+=exp(ps[i][j]);      dirc[l1] =  DIRSEPARATOR;
     for(j=i+1; j<=nlstate+ndeath; j++)      dirc[l1+1] = 0; 
       s1+=exp(ps[i][j]);      printf(" DIRC3 = %s \n",dirc);
     ps[i][i]=1./(s1+1.);    }
     for(j=1; j<i; j++)    ss = strrchr( name, '.' );            /* find last / */
       ps[i][j]= exp(ps[i][j])*ps[i][i];    if (ss >0){
     for(j=i+1; j<=nlstate+ndeath; j++)      ss++;
       ps[i][j]= exp(ps[i][j])*ps[i][i];      strcpy(ext,ss);                     /* save extension */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      l1= strlen( name);
   } /* end i */      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      finame[l1-l2]= 0;
     for(jj=1; jj<= nlstate+ndeath; jj++){    }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;    return( 0 );                          /* we're done */
     }  }
   }  
   
   /******************************************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  void replace_back_to_slash(char *s, char*t)
      printf("%lf ",ps[ii][jj]);  {
    }    int i;
     printf("\n ");    int lg=0;
     }    i=0;
     printf("\n ");printf("%lf ",cov[2]);*/    lg=strlen(t);
 /*    for(i=0; i<= lg; i++) {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      (s[i] = t[i]);
   goto end;*/      if (t[i]== '\\') s[i]='/';
     return ps;    }
 }  }
   
 /**************** Product of 2 matrices ******************/  char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    char *s;
 {    s=out;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    while (*in != '\0'){
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   /* in, b, out are matrice of pointers which should have been initialized        in++;
      before: only the contents of out is modified. The function returns      }
      a pointer to pointers identical to out */      *out++ = *in++;
   long i, j, k;    }
   for(i=nrl; i<= nrh; i++)    *out='\0';
     for(k=ncolol; k<=ncoloh; k++)    return s;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   char *cutl(char *blocc, char *alocc, char *in, char occ)
   return out;  {
 }    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
        and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
 /************* Higher Matrix Product ***************/       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    char *s, *t;
 {    t=in;s=in;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    while ((*in != occ) && (*in != '\0')){
      duration (i.e. until      *alocc++ = *in++;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    if( *in == occ){
      (typically every 2 years instead of every month which is too big).      *(alocc)='\0';
      Model is determined by parameters x and covariates have to be      s=++in;
      included manually here.    }
    
      */    if (s == t) {/* occ not found */
       *(alocc-(in-s))='\0';
   int i, j, d, h, k;      in=s;
   double **out, cov[NCOVMAX];    }
   double **newm;    while ( *in != '\0'){
       *blocc++ = *in++;
   /* Hstepm could be zero and should return the unit matrix */    }
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){    *blocc='\0';
       oldm[i][j]=(i==j ? 1.0 : 0.0);    return t;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  char *cutv(char *blocc, char *alocc, char *in, char occ)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(h=1; h <=nhstepm; h++){    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     for(d=1; d <=hstepm; d++){       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       newm=savm;       gives blocc="abcdef2ghi" and alocc="j".
       /* Covariates have to be included here again */       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       cov[1]=1.;    */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    char *s, *t;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    t=in;s=in;
       for (k=1; k<=cptcovage;k++)    while (*in != '\0'){
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      while( *in == occ){
       for (k=1; k<=cptcovprod;k++)        *blocc++ = *in++;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        s=in;
       }
       *blocc++ = *in++;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    if (s == t) /* occ not found */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      *(blocc-(in-s))='\0';
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    else
       savm=oldm;      *(blocc-(in-s)-1)='\0';
       oldm=newm;    in=s;
     }    while ( *in != '\0'){
     for(i=1; i<=nlstate+ndeath; i++)      *alocc++ = *in++;
       for(j=1;j<=nlstate+ndeath;j++) {    }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    *alocc='\0';
          */    return s;
       }  }
   } /* end h */  
   return po;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
     int lg=20;
 /*************** log-likelihood *************/    i=0;
 double func( double *x)    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   int i, ii, j, k, mi, d, kk;    if  (s[i] == occ ) j++;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    }
   double **out;    return j;
   double sw; /* Sum of weights */  }
   double lli; /* Individual log likelihood */  
   long ipmx;  /* void cutv(char *u,char *v, char*t, char occ) */
   /*extern weight */  /* { */
   /* We are differentiating ll according to initial status */  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*for(i=1;i<imx;i++)  /*      gives u="abcdef2ghi" and v="j" *\/ */
     printf(" %d\n",s[4][i]);  /*   int i,lg,j,p=0; */
   */  /*   i=0; */
   cov[1]=1.;  /*   lg=strlen(t); */
   /*   for(j=0; j<=lg-1; j++) { */
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*   } */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /*   for(j=0; j<p; j++) { */
       for (ii=1;ii<=nlstate+ndeath;ii++)  /*     (u[j] = t[j]); */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*   } */
       for(d=0; d<dh[mi][i]; d++){  /*      u[p]='\0'; */
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*    for(j=0; j<= lg; j++) { */
         for (kk=1; kk<=cptcovage;kk++) {  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*   } */
         }  /* } */
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef _WIN32
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  char * strsep(char **pp, const char *delim)
         savm=oldm;  {
         oldm=newm;    char *p, *q;
                   
            if ((p = *pp) == NULL)
       } /* end mult */      return 0;
          if ((q = strpbrk (p, delim)) != NULL)
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      *pp = q + 1;
       ipmx +=1;      *q = '\0';
       sw += weight[i];    }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    else
     } /* end of wave */      *pp = 0;
   } /* end of individual */    return p;
   }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  #endif
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /********************** nrerror ********************/
   return -l;  
 }  void nrerror(char error_text[])
   {
     fprintf(stderr,"ERREUR ...\n");
 /*********** Maximum Likelihood Estimation ***************/    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  }
 {  /*********************** vector *******************/
   int i,j, iter;  double *vector(int nl, int nh)
   double **xi,*delti;  {
   double fret;    double *v;
   xi=matrix(1,npar,1,npar);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (i=1;i<=npar;i++)    if (!v) nrerror("allocation failure in vector");
     for (j=1;j<=npar;j++)    return v-nl+NR_END;
       xi[i][j]=(i==j ? 1.0 : 0.0);  }
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    free((FREE_ARG)(v+nl-NR_END));
   }
 }  
   /************************ivector *******************************/
 /**** Computes Hessian and covariance matrix ***/  int *ivector(long nl,long nh)
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  {
 {    int *v;
   double  **a,**y,*x,pd;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double **hess;    if (!v) nrerror("allocation failure in ivector");
   int i, j,jk;    return v-nl+NR_END;
   int *indx;  }
   
   double hessii(double p[], double delta, int theta, double delti[]);  /******************free ivector **************************/
   double hessij(double p[], double delti[], int i, int j);  void free_ivector(int *v, long nl, long nh)
   void lubksb(double **a, int npar, int *indx, double b[]) ;  {
   void ludcmp(double **a, int npar, int *indx, double *d) ;    free((FREE_ARG)(v+nl-NR_END));
   }
   hess=matrix(1,npar,1,npar);  
   /************************lvector *******************************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  long *lvector(long nl,long nh)
   for (i=1;i<=npar;i++){  {
     printf("%d",i);fflush(stdout);    long *v;
     hess[i][i]=hessii(p,ftolhess,i,delti);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     /*printf(" %f ",p[i]);*/    if (!v) nrerror("allocation failure in ivector");
     /*printf(" %lf ",hess[i][i]);*/    return v-nl+NR_END;
   }  }
    
   for (i=1;i<=npar;i++) {  /******************free lvector **************************/
     for (j=1;j<=npar;j++)  {  void free_lvector(long *v, long nl, long nh)
       if (j>i) {  {
         printf(".%d%d",i,j);fflush(stdout);    free((FREE_ARG)(v+nl-NR_END));
         hess[i][j]=hessij(p,delti,i,j);  }
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  /******************* imatrix *******************************/
       }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   }  { 
   printf("\n");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    
      /* allocate pointers to rows */ 
   a=matrix(1,npar,1,npar);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   y=matrix(1,npar,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   x=vector(1,npar);    m += NR_END; 
   indx=ivector(1,npar);    m -= nrl; 
   for (i=1;i<=npar;i++)    
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    
   ludcmp(a,npar,indx,&pd);    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   for (j=1;j<=npar;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     for (i=1;i<=npar;i++) x[i]=0;    m[nrl] += NR_END; 
     x[j]=1;    m[nrl] -= ncl; 
     lubksb(a,npar,indx,x);    
     for (i=1;i<=npar;i++){    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       matcov[i][j]=x[i];    
     }    /* return pointer to array of pointers to rows */ 
   }    return m; 
   } 
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  /****************** free_imatrix *************************/
     for (j=1;j<=npar;j++) {  void free_imatrix(m,nrl,nrh,ncl,nch)
       printf("%.3e ",hess[i][j]);        int **m;
     }        long nch,ncl,nrh,nrl; 
     printf("\n");       /* free an int matrix allocated by imatrix() */ 
   }  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   /* Recompute Inverse */    free((FREE_ARG) (m+nrl-NR_END)); 
   for (i=1;i<=npar;i++)  } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   /*  printf("\n#Hessian matrix recomputed#\n");  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (j=1;j<=npar;j++) {    double **m;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     lubksb(a,npar,indx,x);    if (!m) nrerror("allocation failure 1 in matrix()");
     for (i=1;i<=npar;i++){    m += NR_END;
       y[i][j]=x[i];    m -= nrl;
       printf("%.3e ",y[i][j]);  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
   */    m[nrl] -= ncl;
   
   free_matrix(a,1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   free_matrix(y,1,npar,1,npar);    return m;
   free_vector(x,1,npar);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   free_ivector(indx,1,npar);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   free_matrix(hess,1,npar,1,npar);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
      */
   }
 }  
   /*************************free matrix ************************/
 /*************** hessian matrix ****************/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 double hessii( double x[], double delta, int theta, double delti[])  {
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int i;    free((FREE_ARG)(m+nrl-NR_END));
   int l=1, lmax=20;  }
   double k1,k2;  
   double p2[NPARMAX+1];  /******************* ma3x *******************************/
   double res;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  {
   double fx;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int k=0,kmax=10;    double ***m;
   double l1;  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   fx=func(x);    if (!m) nrerror("allocation failure 1 in matrix()");
   for (i=1;i<=npar;i++) p2[i]=x[i];    m += NR_END;
   for(l=0 ; l <=lmax; l++){    m -= nrl;
     l1=pow(10,l);  
     delts=delt;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(k=1 ; k <kmax; k=k+1){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       delt = delta*(l1*k);    m[nrl] += NR_END;
       p2[theta]=x[theta] +delt;    m[nrl] -= ncl;
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
          m[nrl][ncl] += NR_END;
 #ifdef DEBUG    m[nrl][ncl] -= nll;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (j=ncl+1; j<=nch; j++) 
 #endif      m[nrl][j]=m[nrl][j-1]+nlay;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    for (i=nrl+1; i<=nrh; i++) {
         k=kmax;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        m[i][j]=m[i][j-1]+nlay;
         k=kmax; l=lmax*10.;    }
       }    return m; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         delts=delt;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       }    */
     }  }
   }  
   delti[theta]=delts;  /*************************free ma3x ************************/
   return res;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
 }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double hessij( double x[], double delti[], int thetai,int thetaj)    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   int i;  
   int l=1, l1, lmax=20;  /*************** function subdirf ***********/
   double k1,k2,k3,k4,res,fx;  char *subdirf(char fileres[])
   double p2[NPARMAX+1];  {
   int k;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   fx=func(x);    strcat(tmpout,"/"); /* Add to the right */
   for (k=1; k<=2; k++) {    strcat(tmpout,fileres);
     for (i=1;i<=npar;i++) p2[i]=x[i];    return tmpout;
     p2[thetai]=x[thetai]+delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  /*************** function subdirf2 ***********/
    char *subdirf2(char fileres[], char *preop)
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    
     k2=func(p2)-fx;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
     p2[thetai]=x[thetai]-delti[thetai]/k;    strcat(tmpout,"/");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    strcat(tmpout,preop);
     k3=func(p2)-fx;    strcat(tmpout,fileres);
      return tmpout;
     p2[thetai]=x[thetai]-delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  /*************** function subdirf3 ***********/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  char *subdirf3(char fileres[], char *preop, char *preop2)
 #ifdef DEBUG  {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    
 #endif    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
   return res;    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 /************** Inverse of matrix **************/    strcat(tmpout,fileres);
 void ludcmp(double **a, int n, int *indx, double *d)    return tmpout;
 {  }
   int i,imax,j,k;  
   double big,dum,sum,temp;  char *asc_diff_time(long time_sec, char ascdiff[])
   double *vv;  {
      long sec_left, days, hours, minutes;
   vv=vector(1,n);    days = (time_sec) / (60*60*24);
   *d=1.0;    sec_left = (time_sec) % (60*60*24);
   for (i=1;i<=n;i++) {    hours = (sec_left) / (60*60) ;
     big=0.0;    sec_left = (sec_left) %(60*60);
     for (j=1;j<=n;j++)    minutes = (sec_left) /60;
       if ((temp=fabs(a[i][j])) > big) big=temp;    sec_left = (sec_left) % (60);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     vv[i]=1.0/big;    return ascdiff;
   }  }
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /***************** f1dim *************************/
       sum=a[i][j];  extern int ncom; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  extern double *pcom,*xicom;
       a[i][j]=sum;  extern double (*nrfunc)(double []); 
     }   
     big=0.0;  double f1dim(double x) 
     for (i=j;i<=n;i++) {  { 
       sum=a[i][j];    int j; 
       for (k=1;k<j;k++)    double f;
         sum -= a[i][k]*a[k][j];    double *xt; 
       a[i][j]=sum;   
       if ( (dum=vv[i]*fabs(sum)) >= big) {    xt=vector(1,ncom); 
         big=dum;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         imax=i;    f=(*nrfunc)(xt); 
       }    free_vector(xt,1,ncom); 
     }    return f; 
     if (j != imax) {  } 
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  /*****************brent *************************/
         a[imax][k]=a[j][k];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         a[j][k]=dum;  { 
       }    int iter; 
       *d = -(*d);    double a,b,d,etemp;
       vv[imax]=vv[j];    double fu=0,fv,fw,fx;
     }    double ftemp=0.;
     indx[j]=imax;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     if (a[j][j] == 0.0) a[j][j]=TINY;    double e=0.0; 
     if (j != n) {   
       dum=1.0/(a[j][j]);    a=(ax < cx ? ax : cx); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
   }    fw=fv=fx=(*f)(x); 
   free_vector(vv,1,n);  /* Doesn't work */    for (iter=1;iter<=ITMAX;iter++) { 
 ;      xm=0.5*(a+b); 
 }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 void lubksb(double **a, int n, int *indx, double b[])      printf(".");fflush(stdout);
 {      fprintf(ficlog,".");fflush(ficlog);
   int i,ii=0,ip,j;  #ifdef DEBUGBRENT
   double sum;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (i=1;i<=n;i++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     ip=indx[i];  #endif
     sum=b[ip];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     b[ip]=b[i];        *xmin=x; 
     if (ii)        return fx; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      } 
     else if (sum) ii=i;      ftemp=fu;
     b[i]=sum;      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
   for (i=n;i>=1;i--) {        q=(x-v)*(fx-fw); 
     sum=b[i];        p=(x-v)*q-(x-w)*r; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        q=2.0*(q-r); 
     b[i]=sum/a[i][i];        if (q > 0.0) p = -p; 
   }        q=fabs(q); 
 }        etemp=e; 
         e=d; 
 /************ Frequencies ********************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {  /* Some frequencies */        else { 
            d=p/q; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          u=x+d; 
   double ***freq; /* Frequencies */          if (u-a < tol2 || b-u < tol2) 
   double *pp;            d=SIGN(tol1,xm-x); 
   double pos, k2, dateintsum=0,k2cpt=0;        } 
   FILE *ficresp;      } else { 
   char fileresp[FILENAMELENGTH];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
        } 
   pp=vector(1,nlstate);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      fu=(*f)(u); 
   strcpy(fileresp,"p");      if (fu <= fx) { 
   strcat(fileresp,fileres);        if (u >= x) a=x; else b=x; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        SHFT(v,w,x,u) 
     printf("Problem with prevalence resultfile: %s\n", fileresp);          SHFT(fv,fw,fx,fu) 
     exit(0);          } else { 
   }            if (u < x) a=u; else b=u; 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            if (fu <= fw || w == x) { 
   j1=0;              v=w; 
                w=u; 
   j=cptcoveff;              fv=fw; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              fw=fu; 
              } else if (fu <= fv || v == x || v == w) { 
   for(k1=1; k1<=j;k1++){              v=u; 
     for(i1=1; i1<=ncodemax[k1];i1++){              fv=fu; 
       j1++;            } 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          } 
         scanf("%d", i);*/    } 
       for (i=-1; i<=nlstate+ndeath; i++)      nrerror("Too many iterations in brent"); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      *xmin=x; 
           for(m=agemin; m <= agemax+3; m++)    return fx; 
             freq[i][jk][m]=0;  } 
        
       dateintsum=0;  /****************** mnbrak ***********************/
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         bool=1;              double (*func)(double)) 
         if  (cptcovn>0) {  { 
           for (z1=1; z1<=cptcoveff; z1++)    double ulim,u,r,q, dum;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double fu; 
               bool=0;   
         }    *fa=(*func)(*ax); 
         if (bool==1) {    *fb=(*func)(*bx); 
           for(m=firstpass; m<=lastpass; m++){    if (*fb > *fa) { 
             k2=anint[m][i]+(mint[m][i]/12.);      SHFT(dum,*ax,*bx,dum) 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        SHFT(dum,*fb,*fa,dum) 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    *cx=(*bx)+GOLD*(*bx-*ax); 
               if (m<lastpass) {    *fc=(*func)(*cx); 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    while (*fb > *fc) { /* Declining fa, fb, fc */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      r=(*bx-*ax)*(*fb-*fc); 
               }      q=(*bx-*cx)*(*fb-*fa); 
                    u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
                 dateintsum=dateintsum+k2;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
                 k2cpt++;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
               }        fu=(*func)(u); 
             }  #ifdef DEBUG
           }        /* f(x)=A(x-u)**2+f(u) */
         }        double A, fparabu; 
       }        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                fparabu= *fa - A*(*ax-u)*(*ax-u);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       if  (cptcovn>0) {  #endif 
         fprintf(ficresp, "\n#********** Variable ");      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fu=(*func)(u); 
         fprintf(ficresp, "**********\n#");        if (fu < *fc) { 
       }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for(i=1; i<=nlstate;i++)            SHFT(*fb,*fc,fu,(*func)(u)) 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            } 
       fprintf(ficresp, "\n");      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
              u=ulim; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        fu=(*func)(u); 
         if(i==(int)agemax+3)      } else { 
           printf("Total");        u=(*cx)+GOLD*(*cx-*bx); 
         else        fu=(*func)(u); 
           printf("Age %d", i);      } 
         for(jk=1; jk <=nlstate ; jk++){      SHFT(*ax,*bx,*cx,u) 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        SHFT(*fa,*fb,*fc,fu) 
             pp[jk] += freq[jk][m][i];        } 
         }  } 
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  /*************** linmin ************************/
             pos += freq[jk][m][i];  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
           if(pp[jk]>=1.e-10)  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
           else  the value of func at the returned location p . This is actually all accomplished by calling the
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  routines mnbrak and brent .*/
         }  int ncom; 
   double *pcom,*xicom;
         for(jk=1; jk <=nlstate ; jk++){  double (*nrfunc)(double []); 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)   
             pp[jk] += freq[jk][m][i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         }  { 
     double brent(double ax, double bx, double cx, 
         for(jk=1,pos=0; jk <=nlstate ; jk++)                 double (*f)(double), double tol, double *xmin); 
           pos += pp[jk];    double f1dim(double x); 
         for(jk=1; jk <=nlstate ; jk++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           if(pos>=1.e-5)                double *fc, double (*func)(double)); 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int j; 
           else    double xx,xmin,bx,ax; 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double fx,fb,fa;
           if( i <= (int) agemax){   
             if(pos>=1.e-5){    ncom=n; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    pcom=vector(1,n); 
               probs[i][jk][j1]= pp[jk]/pos;    xicom=vector(1,n); 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    nrfunc=func; 
             }    for (j=1;j<=n;j++) { 
             else      pcom[j]=p[j]; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      xicom[j]=xi[j]; 
           }    } 
         }    ax=0.0; 
            xx=1.0; 
         for(jk=-1; jk <=nlstate+ndeath; jk++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
           for(m=-1; m <=nlstate+ndeath; m++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  #ifdef DEBUG
         if(i <= (int) agemax)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           fprintf(ficresp,"\n");    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         printf("\n");  #endif
       }    for (j=1;j<=n;j++) { 
     }      xi[j] *= xmin; 
   }      p[j] += xi[j]; 
   dateintmean=dateintsum/k2cpt;    } 
      free_vector(xicom,1,n); 
   fclose(ficresp);    free_vector(pcom,1,n); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  } 
   free_vector(pp,1,nlstate);  
    
   /* End of Freq */  /*************** powell ************************/
 }  /*
   Minimization of a function func of n variables. Input consists of an initial starting point
 /************ Prevalence ********************/  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
 {  /* Some frequencies */  such that failure to decrease by more than this amount on one iteration signals doneness. On
    output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
   double ***freq; /* Frequencies */   */
   double *pp;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double pos, k2;              double (*func)(double [])) 
   { 
   pp=vector(1,nlstate);    void linmin(double p[], double xi[], int n, double *fret, 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                double (*func)(double [])); 
      int i,ibig,j; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double del,t,*pt,*ptt,*xit;
   j1=0;    double fp,fptt;
      double *xits;
   j=cptcoveff;    int niterf, itmp;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      pt=vector(1,n); 
   for(k1=1; k1<=j;k1++){    ptt=vector(1,n); 
     for(i1=1; i1<=ncodemax[k1];i1++){    xit=vector(1,n); 
       j1++;    xits=vector(1,n); 
          *fret=(*func)(p); 
       for (i=-1; i<=nlstate+ndeath; i++)      for (j=1;j<=n;j++) pt[j]=p[j]; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        rcurr_time = time(NULL);  
           for(m=agemin; m <= agemax+3; m++)    for (*iter=1;;++(*iter)) { 
             freq[i][jk][m]=0;      fp=(*fret); 
            ibig=0; 
       for (i=1; i<=imx; i++) {      del=0.0; 
         bool=1;      rlast_time=rcurr_time;
         if  (cptcovn>0) {      /* (void) gettimeofday(&curr_time,&tzp); */
           for (z1=1; z1<=cptcoveff; z1++)      rcurr_time = time(NULL);  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      curr_time = *localtime(&rcurr_time);
               bool=0;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
         }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
         if (bool==1) {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
           for(m=firstpass; m<=lastpass; m++){     for (i=1;i<=n;i++) {
             k2=anint[m][i]+(mint[m][i]/12.);        printf(" %d %.12f",i, p[i]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        fprintf(ficlog," %d %.12lf",i, p[i]);
               if(agev[m][i]==0) agev[m][i]=agemax+1;        fprintf(ficrespow," %.12lf", p[i]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;      }
               if (m<lastpass) {      printf("\n");
                 if (calagedate>0)      fprintf(ficlog,"\n");
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      fprintf(ficrespow,"\n");fflush(ficrespow);
                 else      if(*iter <=3){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        tml = *localtime(&rcurr_time);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        strcpy(strcurr,asctime(&tml));
               }        rforecast_time=rcurr_time; 
             }        itmp = strlen(strcurr);
           }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         }          strcurr[itmp-1]='\0';
       }        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       for(i=(int)agemin; i <= (int)agemax+3; i++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         for(jk=1; jk <=nlstate ; jk++){        for(niterf=10;niterf<=30;niterf+=10){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
             pp[jk] += freq[jk][m][i];          forecast_time = *localtime(&rforecast_time);
         }          strcpy(strfor,asctime(&forecast_time));
         for(jk=1; jk <=nlstate ; jk++){          itmp = strlen(strfor);
           for(m=-1, pos=0; m <=0 ; m++)          if(strfor[itmp-1]=='\n')
             pos += freq[jk][m][i];          strfor[itmp-1]='\0';
         }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                  fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      }
             pp[jk] += freq[jk][m][i];      for (i=1;i<=n;i++) { 
         }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                fptt=(*fret); 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  #ifdef DEBUG
                    printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         for(jk=1; jk <=nlstate ; jk++){                fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           if( i <= (int) agemax){  #endif
             if(pos>=1.e-5){        printf("%d",i);fflush(stdout);
               probs[i][jk][j1]= pp[jk]/pos;        fprintf(ficlog,"%d",i);fflush(ficlog);
             }        linmin(p,xit,n,fret,func); 
           }        if (fabs(fptt-(*fret)) > del) { 
         }          del=fabs(fptt-(*fret)); 
                  ibig=i; 
       }        } 
     }  #ifdef DEBUG
   }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
          for (j=1;j<=n;j++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   free_vector(pp,1,nlstate);          printf(" x(%d)=%.12e",j,xit[j]);
            fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 }  /* End of Freq */        }
         for(j=1;j<=n;j++) {
 /************* Waves Concatenation ***************/          printf(" p(%d)=%.12e",j,p[j]);
           fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        }
 {        printf("\n");
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        fprintf(ficlog,"\n");
      Death is a valid wave (if date is known).  #endif
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      } /* end i */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
      and mw[mi+1][i]. dh depends on stepm.  #ifdef DEBUG
      */        int k[2],l;
         k[0]=1;
   int i, mi, m;        k[1]=-1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        printf("Max: %.12e",(*func)(p));
      double sum=0., jmean=0.;*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   int j, k=0,jk, ju, jl;          printf(" %.12e",p[j]);
   double sum=0.;          fprintf(ficlog," %.12e",p[j]);
   jmin=1e+5;        }
   jmax=-1;        printf("\n");
   jmean=0.;        fprintf(ficlog,"\n");
   for(i=1; i<=imx; i++){        for(l=0;l<=1;l++) {
     mi=0;          for (j=1;j<=n;j++) {
     m=firstpass;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     while(s[m][i] <= nlstate){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       if(s[m][i]>=1)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         mw[++mi][i]=m;          }
       if(m >=lastpass)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         break;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       else        }
         m++;  #endif
     }/* end while */  
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */        free_vector(xit,1,n); 
       /* if(mi==0)  never been interviewed correctly before death */        free_vector(xits,1,n); 
          /* Only death is a correct wave */        free_vector(ptt,1,n); 
       mw[mi][i]=m;        free_vector(pt,1,n); 
     }        return; 
       } 
     wav[i]=mi;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     if(mi==0)      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   for(i=1; i<=imx; i++){      } 
     for(mi=1; mi<wav[i];mi++){      fptt=(*func)(ptt); 
       if (stepm <=0)      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
         dh[mi][i]=1;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       else{        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         if (s[mw[mi+1][i]][i] > nlstate) {        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
           if (agedc[i] < 2*AGESUP) {        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
           if(j==0) j=1;  /* Survives at least one month after exam */        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
           k=k+1;        /* Thus we compare delta(2h) with observed f1-f3 */
           if (j >= jmax) jmax=j;        /* or best gain on one ancient line 'del' with total  */
           if (j <= jmin) jmin=j;        /* gain f1-f2 = f1 - f2 - 'del' with del  */
           sum=sum+j;        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
         }        t= t- del*SQR(fp-fptt);
         else{        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
           k=k+1;  #ifdef DEBUG
           if (j >= jmax) jmax=j;        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           else if (j <= jmin)jmin=j;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           sum=sum+j;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         }        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         jk= j/stepm;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         jl= j -jk*stepm;  #endif
         ju= j -(jk+1)*stepm;        if (t < 0.0) { /* Then we use it for last direction */
         if(jl <= -ju)          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
           dh[mi][i]=jk;          for (j=1;j<=n;j++) { 
         else            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
           dh[mi][i]=jk+1;            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
         if(dh[mi][i]==0)          }
           dh[mi][i]=1; /* At least one step */          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       }          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
     }  
   }  #ifdef DEBUG
   jmean=sum/k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  }          for(j=1;j<=n;j++){
 /*********** Tricode ****************************/            printf(" %.12e",xit[j]);
 void tricode(int *Tvar, int **nbcode, int imx)            fprintf(ficlog," %.12e",xit[j]);
 {          }
   int Ndum[20],ij=1, k, j, i;          printf("\n");
   int cptcode=0;          fprintf(ficlog,"\n");
   cptcoveff=0;  #endif
          } /* end of t negative */
   for (k=0; k<19; k++) Ndum[k]=0;      } /* end if (fptt < fp)  */
   for (k=1; k<=7; k++) ncodemax[k]=0;    } 
   } 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {  /**** Prevalence limit (stable or period prevalence)  ****************/
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  {
       if (ij > cptcode) cptcode=ij;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
   
     for (i=0; i<=cptcode; i++) {    int i, ii,j,k;
       if(Ndum[i]!=0) ncodemax[j]++;    double min, max, maxmin, maxmax,sumnew=0.;
     }    /* double **matprod2(); */ /* test */
     ij=1;    double **out, cov[NCOVMAX+1], **pmij();
     double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
         if (Ndum[k] != 0) {      for (j=1;j<=nlstate+ndeath;j++){
           nbcode[Tvar[j]][ij]=k;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                }
           ij++;  
         }     cov[1]=1.;
         if (ij > ncodemax[j]) break;   
       }     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }        newm=savm;
       /* Covariates have to be included here again */
  for (k=0; k<19; k++) Ndum[k]=0;      cov[2]=agefin;
       
  for (i=1; i<=ncovmodel-2; i++) {      for (k=1; k<=cptcovn;k++) {
       ij=Tvar[i];        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       Ndum[ij]++;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
     }      }
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
  ij=1;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
  for (i=1; i<=10; i++) {      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
    if((Ndum[i]!=0) && (i<=ncovcol)){      
      Tvaraff[ij]=i;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      ij++;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
    }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
  }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
        /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     cptcoveff=ij-1;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 }      
       savm=oldm;
 /*********** Health Expectancies ****************/      oldm=newm;
       maxmax=0.;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      for(j=1;j<=nlstate;j++){
         min=1.;
 {        max=0.;
   /* Health expectancies */        for(i=1; i<=nlstate; i++) {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          sumnew=0;
   double age, agelim, hf;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double ***p3mat,***varhe;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double **dnewm,**doldm;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   double *xp;          max=FMAX(max,prlim[i][j]);
   double **gp, **gm;          min=FMIN(min,prlim[i][j]);
   double ***gradg, ***trgradg;        }
   int theta;        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      }
   xp=vector(1,npar);      if(maxmax < ftolpl){
   dnewm=matrix(1,nlstate*2,1,npar);        return prlim;
   doldm=matrix(1,nlstate*2,1,nlstate*2);      }
      }
   fprintf(ficreseij,"# Health expectancies\n");  }
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  /*************** transition probabilities ***************/ 
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   fprintf(ficreseij,"\n");  {
     /* According to parameters values stored in x and the covariate's values stored in cov,
   if(estepm < stepm){       computes the probability to be observed in state j being in state i by appying the
     printf ("Problem %d lower than %d\n",estepm, stepm);       model to the ncovmodel covariates (including constant and age).
   }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   else  hstepm=estepm;         and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   /* We compute the life expectancy from trapezoids spaced every estepm months       ncth covariate in the global vector x is given by the formula:
    * This is mainly to measure the difference between two models: for example       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
    * if stepm=24 months pijx are given only every 2 years and by summing them       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
    * we are calculating an estimate of the Life Expectancy assuming a linear       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
    * progression inbetween and thus overestimating or underestimating according       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
    * to the curvature of the survival function. If, for the same date, we       Outputs ps[i][j] the probability to be observed in j being in j according to
    * estimate the model with stepm=1 month, we can keep estepm to 24 months       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
    * to compare the new estimate of Life expectancy with the same linear    */
    * hypothesis. A more precise result, taking into account a more precise    double s1, lnpijopii;
    * curvature will be obtained if estepm is as small as stepm. */    /*double t34;*/
     int i,j, nc, ii, jj;
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      for(i=1; i<= nlstate; i++){
      nhstepm is the number of hstepm from age to agelim        for(j=1; j<i;j++){
      nstepm is the number of stepm from age to agelin.          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
      Look at hpijx to understand the reason of that which relies in memory size            /*lnpijopii += param[i][j][nc]*cov[nc];*/
      and note for a fixed period like estepm months */            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      results. So we changed our mind and took the option of the best precision.        }
   */        for(j=i+1; j<=nlstate+ndeath;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   agelim=AGESUP;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
     /* nhstepm age range expressed in number of stepm */          }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        }
     /* if (stepm >= YEARM) hstepm=1;*/      }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<= nlstate; i++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        s1=0;
     gp=matrix(0,nhstepm,1,nlstate*2);        for(j=1; j<i; j++){
     gm=matrix(0,nhstepm,1,nlstate*2);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for(j=i+1; j<=nlstate+ndeath; j++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            s1+=exp(ps[i][j]); /* In fact sums pij/pii */
            /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         ps[i][i]=1./(s1+1.);
     /* Computing Variances of health expectancies */        /* Computing other pijs */
         for(j=1; j<i; j++)
      for(theta=1; theta <=npar; theta++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(i=1; i<=npar; i++){        for(j=i+1; j<=nlstate+ndeath; j++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } /* end i */
        
       cptj=0;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(j=1; j<= nlstate; j++){        for(jj=1; jj<= nlstate+ndeath; jj++){
         for(i=1; i<=nlstate; i++){          ps[ii][jj]=0;
           cptj=cptj+1;          ps[ii][ii]=1;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      }
           }      
         }      
       }      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
            /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
            /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       for(i=1; i<=npar; i++)      /*   } */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /*   printf("\n "); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /* } */
            /* printf("\n ");printf("%lf ",cov[2]);*/
       cptj=0;      /*
       for(j=1; j<= nlstate; j++){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for(i=1;i<=nlstate;i++){        goto end;*/
           cptj=cptj+1;      return ps;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  /**************** Product of 2 matrices ******************/
         }  
       }  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
       for(j=1; j<= nlstate*2; j++)  {
         for(h=0; h<=nhstepm-1; h++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         }    /* in, b, out are matrice of pointers which should have been initialized 
      }       before: only the contents of out is modified. The function returns
           a pointer to pointers identical to out */
 /* End theta */    int i, j, k;
     for(i=nrl; i<= nrh; i++)
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for(k=ncolol; k<=ncoloh; k++){
         out[i][k]=0.;
      for(h=0; h<=nhstepm-1; h++)        for(j=ncl; j<=nch; j++)
       for(j=1; j<=nlstate*2;j++)          out[i][k] +=in[i][j]*b[j][k];
         for(theta=1; theta <=npar; theta++)      }
           trgradg[h][j][theta]=gradg[h][theta][j];    return out;
        }
   
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  /************* Higher Matrix Product ***************/
         varhe[i][j][(int)age] =0.;  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
      printf("%d|",(int)age);fflush(stdout);  {
      for(h=0;h<=nhstepm-1;h++){    /* Computes the transition matrix starting at age 'age' over 
       for(k=0;k<=nhstepm-1;k++){       'nhstepm*hstepm*stepm' months (i.e. until
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);       nhstepm*hstepm matrices. 
         for(i=1;i<=nlstate*2;i++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           for(j=1;j<=nlstate*2;j++)       (typically every 2 years instead of every month which is too big 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;       for the memory).
       }       Model is determined by parameters x and covariates have to be 
     }       included manually here. 
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)       */
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    int i, j, d, h, k;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double **out, cov[NCOVMAX+1];
              double **newm;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
     /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficreseij,"%3.0f",age );        oldm[i][j]=(i==j ? 1.0 : 0.0);
     cptj=0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)      }
       for(j=1; j<=nlstate;j++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         cptj++;    for(h=1; h <=nhstepm; h++){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      for(d=1; d <=hstepm; d++){
       }        newm=savm;
     fprintf(ficreseij,"\n");        /* Covariates have to be included here again */
            cov[1]=1.;
     free_matrix(gm,0,nhstepm,1,nlstate*2);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     free_matrix(gp,0,nhstepm,1,nlstate*2);        for (k=1; k<=cptcovn;k++) 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        for (k=1; k<=cptcovage;k++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   printf("\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
 /************ Variance ******************/        oldm=newm;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      }
 {      for(i=1; i<=nlstate+ndeath; i++)
   /* Variance of health expectancies */        for(j=1;j<=nlstate+ndeath;j++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          po[i][j][h]=newm[i][j];
   double **newm;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   double **dnewm,**doldm;        }
   int i, j, nhstepm, hstepm, h, nstepm ;      /*printf("h=%d ",h);*/
   int k, cptcode;    } /* end h */
   double *xp;  /*     printf("\n H=%d \n",h); */
   double **gp, **gm;    return po;
   double ***gradg, ***trgradg;  }
   double ***p3mat;  
   double age,agelim, hf;  #ifdef NLOPT
   int theta;    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     double fret;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    double *xt;
   fprintf(ficresvij,"# Age");    int j;
   for(i=1; i<=nlstate;i++)    myfunc_data *d2 = (myfunc_data *) pd;
     for(j=1; j<=nlstate;j++)  /* xt = (p1-1); */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    xt=vector(1,n); 
   fprintf(ficresvij,"\n");    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   
   xp=vector(1,npar);    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   dnewm=matrix(1,nlstate,1,npar);    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   doldm=matrix(1,nlstate,1,nlstate);    printf("Function = %.12lf ",fret);
      for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   if(estepm < stepm){    printf("\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);   free_vector(xt,1,n);
   }    return fret;
   else  hstepm=estepm;    }
   /* For example we decided to compute the life expectancy with the smallest unit */  #endif
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  /*************** log-likelihood *************/
      nstepm is the number of stepm from age to agelin.  double func( double *x)
      Look at hpijx to understand the reason of that which relies in memory size  {
      and note for a fixed period like k years */    int i, ii, j, k, mi, d, kk;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      survival function given by stepm (the optimization length). Unfortunately it    double **out;
      means that if the survival funtion is printed only each two years of age and if    double sw; /* Sum of weights */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double lli; /* Individual log likelihood */
      results. So we changed our mind and took the option of the best precision.    int s1, s2;
   */    double bbh, survp;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    long ipmx;
   agelim = AGESUP;    /*extern weight */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* We are differentiating ll according to initial status */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    /*for(i=1;i<imx;i++) 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf(" %d\n",s[4][i]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    */
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    ++countcallfunc;
   
     for(theta=1; theta <=npar; theta++){    cov[1]=1.;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      if(mle==1){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
       if (popbased==1) {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         for(i=1; i<=nlstate;i++)           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           prlim[i][i]=probs[(int)age][i][ij];           to be observed in j being in i according to the model.
       }         */
          for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       for(j=1; j<= nlstate; j++){          cov[2+k]=covar[Tvar[k]][i];
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         }           has been calculated etc */
       }        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=npar; i++) /* Computes gradient */            for (j=1;j<=nlstate+ndeath;j++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                savm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
            for(d=0; d<dh[mi][i]; d++){
       if (popbased==1) {            newm=savm;
         for(i=1; i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           prlim[i][i]=probs[(int)age][i][ij];            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
       for(j=1; j<= nlstate; j++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm; h++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            savm=oldm;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            oldm=newm;
         }          } /* end mult */
       }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for(j=1; j<= nlstate; j++)          /* But now since version 0.9 we anticipate for bias at large stepm.
         for(h=0; h<=nhstepm; h++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];           * (in months) between two waves is not a multiple of stepm, we rounded to 
         }           * the nearest (and in case of equal distance, to the lowest) interval but now
     } /* End theta */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     for(h=0; h<=nhstepm; h++)           * -stepm/2 to stepm/2 .
       for(j=1; j<=nlstate;j++)           * For stepm=1 the results are the same as for previous versions of Imach.
         for(theta=1; theta <=npar; theta++)           * For stepm > 1 the results are less biased than in previous versions. 
           trgradg[h][j][theta]=gradg[h][theta][j];           */
           s1=s[mw[mi][i]][i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          s2=s[mw[mi+1][i]][i];
     for(i=1;i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1;j<=nlstate;j++)          /* bias bh is positive if real duration
         vareij[i][j][(int)age] =0.;           * is higher than the multiple of stepm and negative otherwise.
            */
     for(h=0;h<=nhstepm;h++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(k=0;k<=nhstepm;k++){          if( s2 > nlstate){ 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            /* i.e. if s2 is a death state and if the date of death is known 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);               then the contribution to the likelihood is the probability to 
         for(i=1;i<=nlstate;i++)               die between last step unit time and current  step unit time, 
           for(j=1;j<=nlstate;j++)               which is also equal to probability to die before dh 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;               minus probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
     }          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
     fprintf(ficresvij,"%.0f ",age );          and not the date of a change in health state. The former idea was
     for(i=1; i<=nlstate;i++)          to consider that at each interview the state was recorded
       for(j=1; j<=nlstate;j++){          (healthy, disable or death) and IMaCh was corrected; but when we
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          introduced the exact date of death then we should have modified
       }          the contribution of an exact death to the likelihood. This new
     fprintf(ficresvij,"\n");          contribution is smaller and very dependent of the step unit
     free_matrix(gp,0,nhstepm,1,nlstate);          stepm. It is no more the probability to die between last interview
     free_matrix(gm,0,nhstepm,1,nlstate);          and month of death but the probability to survive from last
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          interview up to one month before death multiplied by the
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          probability to die within a month. Thanks to Chris
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          Jackson for correcting this bug.  Former versions increased
   } /* End age */          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
   free_vector(xp,1,npar);          lower mortality.
   free_matrix(doldm,1,nlstate,1,npar);            */
   free_matrix(dnewm,1,nlstate,1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
   
 }  
           } else if  (s2==-2) {
 /************ Variance of prevlim ******************/            for (j=1,survp=0. ; j<=nlstate; j++) 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 {            /*survp += out[s1][j]; */
   /* Variance of prevalence limit */            lli= log(survp);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   double **newm;          
   double **dnewm,**doldm;          else if  (s2==-4) { 
   int i, j, nhstepm, hstepm;            for (j=3,survp=0. ; j<=nlstate; j++)  
   int k, cptcode;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double *xp;            lli= log(survp); 
   double *gp, *gm;          } 
   double **gradg, **trgradg;  
   double age,agelim;          else if  (s2==-5) { 
   int theta;            for (j=1,survp=0. ; j<=2; j++)  
                  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            lli= log(survp); 
   fprintf(ficresvpl,"# Age");          } 
   for(i=1; i<=nlstate;i++)          
       fprintf(ficresvpl," %1d-%1d",i,i);          else{
   fprintf(ficresvpl,"\n");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   xp=vector(1,npar);          } 
   dnewm=matrix(1,nlstate,1,npar);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   doldm=matrix(1,nlstate,1,nlstate);          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   hstepm=1*YEARM; /* Every year of age */          ipmx +=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          sw += weight[i];
   agelim = AGESUP;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } /* end of wave */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      } /* end of individual */
     if (stepm >= YEARM) hstepm=1;    }  else if(mle==2){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gradg=matrix(1,npar,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gp=vector(1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
     gm=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for(theta=1; theta <=npar; theta++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++){ /* Computes gradient */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }          for(d=0; d<=dh[mi][i]; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            newm=savm;
       for(i=1;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         gp[i] = prlim[i][i];            for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++) /* Computes gradient */            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1;i<=nlstate;i++)            savm=oldm;
         gm[i] = prlim[i][i];            oldm=newm;
           } /* end mult */
       for(i=1;i<=nlstate;i++)        
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          s1=s[mw[mi][i]][i];
     } /* End theta */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
     trgradg =matrix(1,nlstate,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
     for(j=1; j<=nlstate;j++)          sw += weight[i];
       for(theta=1; theta <=npar; theta++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         trgradg[j][theta]=gradg[theta][j];        } /* end of wave */
       } /* end of individual */
     for(i=1;i<=nlstate;i++)    }  else if(mle==3){  /* exponential inter-extrapolation */
       varpl[i][(int)age] =0.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for(mi=1; mi<= wav[i]-1; mi++){
     for(i=1;i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresvpl,"%.0f ",age );              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          for(d=0; d<dh[mi][i]; d++){
     fprintf(ficresvpl,"\n");            newm=savm;
     free_vector(gp,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_vector(gm,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
     free_matrix(gradg,1,npar,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_matrix(trgradg,1,nlstate,1,npar);            }
   } /* End age */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(xp,1,npar);            savm=oldm;
   free_matrix(doldm,1,nlstate,1,npar);            oldm=newm;
   free_matrix(dnewm,1,nlstate,1,nlstate);          } /* end mult */
         
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************ Variance of one-step probabilities  ******************/          bbh=(double)bh[mi][i]/(double)stepm; 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {          ipmx +=1;
   int i, j,  i1, k1, l1;          sw += weight[i];
   int k2, l2, j1,  z1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int k=0,l, cptcode;        } /* end of wave */
   int first=1;      } /* end of individual */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double **dnewm,**doldm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *xp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *gp, *gm;        for(mi=1; mi<= wav[i]-1; mi++){
   double **gradg, **trgradg;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **mu;            for (j=1;j<=nlstate+ndeath;j++){
   double age,agelim, cov[NCOVMAX];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;            }
   char fileresprob[FILENAMELENGTH];          for(d=0; d<dh[mi][i]; d++){
   char fileresprobcov[FILENAMELENGTH];            newm=savm;
   char fileresprobcor[FILENAMELENGTH];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   double ***varpij;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   strcpy(fileresprob,"prob");          
   strcat(fileresprob,fileres);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("Problem with resultfile: %s\n", fileresprob);            savm=oldm;
   }            oldm=newm;
   strcpy(fileresprobcov,"probcov");          } /* end mult */
   strcat(fileresprobcov,fileres);        
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with resultfile: %s\n", fileresprobcov);          s2=s[mw[mi+1][i]][i];
   }          if( s2 > nlstate){ 
   strcpy(fileresprobcor,"probcor");            lli=log(out[s1][s2] - savm[s1][s2]);
   strcat(fileresprobcor,fileres);          }else{
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     printf("Problem with resultfile: %s\n", fileresprobcor);          }
   }          ipmx +=1;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          sw += weight[i];
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      } /* end of individual */
   fprintf(ficresprob,"# Age");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresprobcov,"# Age");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresprobcov,"# Age");          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=(nlstate+ndeath);j++){            }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            newm=savm;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }              for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresprob,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresprobcov,"\n");            }
   fprintf(ficresprobcor,"\n");          
   xp=vector(1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            savm=oldm;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            oldm=newm;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          } /* end mult */
   first=1;        
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          s2=s[mw[mi+1][i]][i];
     exit(0);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          ipmx +=1;
   else{          sw += weight[i];
     fprintf(ficgp,"\n# Routine varprob");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        } /* end of wave */
     printf("Problem with html file: %s\n", optionfilehtm);      } /* end of individual */
     exit(0);    } /* End of if */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   else{    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    return -l;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  }
   
   }  /*************** log-likelihood *************/
   cov[1]=1;  double funcone( double *x)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Same as likeli but slower because of a lot of printf and if */
   j1=0;    int i, ii, j, k, mi, d, kk;
   for(k1=1; k1<=1;k1++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for(i1=1; i1<=ncodemax[k1];i1++){    double **out;
     j1++;    double lli; /* Individual log likelihood */
     double llt;
     if  (cptcovn>0) {    int s1, s2;
       fprintf(ficresprob, "\n#********** Variable ");    double bbh, survp;
       fprintf(ficresprobcov, "\n#********** Variable ");    /*extern weight */
       fprintf(ficgp, "\n#********** Variable ");    /* We are differentiating ll according to initial status */
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       fprintf(ficresprobcor, "\n#********** Variable ");    /*for(i=1;i<imx;i++) 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      printf(" %d\n",s[4][i]);
       fprintf(ficresprob, "**********\n#");    */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    cov[1]=1.;
       fprintf(ficresprobcov, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       fprintf(ficgp, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficgp, "**********\n#");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(fichtm, "**********\n#");        for (ii=1;ii<=nlstate+ndeath;ii++)
     }          for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (age=bage; age<=fage; age ++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         cov[2]=age;          }
         for (k=1; k<=cptcovn;k++) {        for(d=0; d<dh[mi][i]; d++){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for (kk=1; kk<=cptcovage;kk++) {
         for (k=1; k<=cptcovprod;k++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          }
                  /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         gp=vector(1,(nlstate)*(nlstate+ndeath));          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
         gm=vector(1,(nlstate)*(nlstate+ndeath));          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
              savm=oldm;
         for(theta=1; theta <=npar; theta++){          oldm=newm;
           for(i=1; i<=npar; i++)        } /* end mult */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        
                  s1=s[mw[mi][i]][i];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        s2=s[mw[mi+1][i]][i];
                  bbh=(double)bh[mi][i]/(double)stepm; 
           k=0;        /* bias is positive if real duration
           for(i=1; i<= (nlstate); i++){         * is higher than the multiple of stepm and negative otherwise.
             for(j=1; j<=(nlstate+ndeath);j++){         */
               k=k+1;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
               gp[k]=pmmij[i][j];          lli=log(out[s1][s2] - savm[s1][s2]);
             }        } else if  (s2==-2) {
           }          for (j=1,survp=0. ; j<=nlstate; j++) 
                      survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for(i=1; i<=npar; i++)          lli= log(survp);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        }else if (mle==1){
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        } else if(mle==2){
           k=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           for(i=1; i<=(nlstate); i++){        } else if(mle==3){  /* exponential inter-extrapolation */
             for(j=1; j<=(nlstate+ndeath);j++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               k=k+1;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
               gm[k]=pmmij[i][j];          lli=log(out[s1][s2]); /* Original formula */
             }        } else{  /* mle=0 back to 1 */
           }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                /*lli=log(out[s1][s2]); */ /* Original formula */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        } /* End of if */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          ipmx +=1;
         }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(theta=1; theta <=npar; theta++)        if(globpr){
             trgradg[j][theta]=gradg[theta][j];          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
           %11.6f %11.6f %11.6f ", \
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                  for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);            llt +=ll[k]*gipmx/gsw;
                    fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         k=0;          }
         for(i=1; i<=(nlstate); i++){          fprintf(ficresilk," %10.6f\n", -llt);
           for(j=1; j<=(nlstate+ndeath);j++){        }
             k=k+1;      } /* end of wave */
             mu[k][(int) age]=pmmij[i][j];    } /* end of individual */
           }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    if(globpr==0){ /* First time we count the contributions and weights */
             varpij[i][j][(int)age] = doldm[i][j];      gipmx=ipmx;
       gsw=sw;
         /*printf("\n%d ",(int)age);    }
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    return -l;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  }
      }*/  
   
         fprintf(ficresprob,"\n%d ",(int)age);  /*************** function likelione ***********/
         fprintf(ficresprobcov,"\n%d ",(int)age);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         fprintf(ficresprobcor,"\n%d ",(int)age);  {
     /* This routine should help understanding what is done with 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)       the selection of individuals/waves and
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));       to check the exact contribution to the likelihood.
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){       Plotting could be done.
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);     */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    int k;
         }  
         i=0;    if(*globpri !=0){ /* Just counts and sums, no printings */
         for (k=1; k<=(nlstate);k++){      strcpy(fileresilk,"ilk"); 
           for (l=1; l<=(nlstate+ndeath);l++){      strcat(fileresilk,fileres);
             i=i++;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        printf("Problem with resultfile: %s\n", fileresilk);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
             for (j=1; j<=i;j++){      }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
             }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           }      for(k=1; k<=nlstate; k++) 
         }/* end of loop for state */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       } /* end of loop for age */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    }
       for (k1=1; k1<=(nlstate);k1++){  
         for (l1=1; l1<=(nlstate+ndeath);l1++){    *fretone=(*funcone)(p);
           if(l1==k1) continue;    if(*globpri !=0){
           i=(k1-1)*(nlstate+ndeath)+l1;      fclose(ficresilk);
           for (k2=1; k2<=(nlstate);k2++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
             for (l2=1; l2<=(nlstate+ndeath);l2++){      fflush(fichtm); 
               if(l2==k2) continue;    } 
               j=(k2-1)*(nlstate+ndeath)+l2;    return;
               if(j<=i) continue;  }
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  /*********** Maximum Likelihood Estimation ***************/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   mu1=mu[i][(int) age]/stepm*YEARM ;  {
                   mu2=mu[j][(int) age]/stepm*YEARM;    int i,j, iter=0;
                   /* Computing eigen value of matrix of covariance */    double **xi;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    double fret;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    double fretone; /* Only one call to likelihood */
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    /*  char filerespow[FILENAMELENGTH];*/
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  #ifdef NLOPT
                   v21=sqrt(1.-v11*v11);    int creturn;
                   v12=-v21;    nlopt_opt opt;
                   v22=v11;    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
                   /*printf(fignu*/    double *lb;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    double minf; /* the minimum objective value, upon return */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    double * p1; /* Shifted parameters from 0 instead of 1 */
                   if(first==1){    myfunc_data dinst, *d = &dinst;
                     first=0;  #endif
                     fprintf(ficgp,"\nset parametric;set nolabel");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    xi=matrix(1,npar,1,npar);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);    for (i=1;i<=npar;i++)
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);      for (j=1;j<=npar;j++)
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);        xi[i][j]=(i==j ? 1.0 : 0.0);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    strcpy(filerespow,"pow"); 
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    strcat(filerespow,fileres);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    if((ficrespow=fopen(filerespow,"w"))==NULL) {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      printf("Problem with resultfile: %s\n", filerespow);
                   }else{      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                     first=0;    }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    for (i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      for(j=1;j<=nlstate+ndeath;j++)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    fprintf(ficrespow,"\n");
                   }/* if first */  #ifdef POWELL
                 } /* age mod 5 */    powell(p,xi,npar,ftol,&iter,&fret,func);
               } /* end loop age */  #endif
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);  
               first=1;  #ifdef NLOPT
             } /*l12 */  #ifdef NEWUOA
           } /* k12 */    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
         } /*l1 */  #else
       }/* k1 */    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
     } /* loop covariates */  #endif
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    lb=vector(0,npar-1);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    nlopt_set_lower_bounds(opt, lb);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    nlopt_set_initial_step1(opt, 0.1);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   }    d->function = func;
   free_vector(xp,1,npar);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   fclose(ficresprob);    nlopt_set_min_objective(opt, myfunc, d);
   fclose(ficresprobcov);    nlopt_set_xtol_rel(opt, ftol);
   fclose(ficresprobcor);    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   fclose(ficgp);      printf("nlopt failed! %d\n",creturn); 
   fclose(fichtm);    }
 }    else {
       printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 /******************* Printing html file ***********/      iter=1; /* not equal */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    }
                   int lastpass, int stepm, int weightopt, char model[],\    nlopt_destroy(opt);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  #endif
                   int popforecast, int estepm ,\    free_matrix(xi,1,npar,1,npar);
                   double jprev1, double mprev1,double anprev1, \    fclose(ficrespow);
                   double jprev2, double mprev2,double anprev2){    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   int jj1, k1, i1, cpt;    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   /*char optionfilehtm[FILENAMELENGTH];*/    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);  }
   }  
   /**** Computes Hessian and covariance matrix ***/
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  {
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    double  **a,**y,*x,pd;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    double **hess;
  - Life expectancies by age and initial health status (estepm=%2d months):    int i, j;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    int *indx;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    void lubksb(double **a, int npar, int *indx, double b[]) ;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    void ludcmp(double **a, int npar, int *indx, double *d) ;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    double gompertz(double p[]);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    hess=matrix(1,npar,1,npar);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    printf("\nCalculation of the hessian matrix. Wait...\n");
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
  if(popforecast==1) fprintf(fichtm,"\n      printf("%d",i);fflush(stdout);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      fprintf(ficlog,"%d",i);fflush(ficlog);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n     
         <br>",fileres,fileres,fileres,fileres);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
  else      
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      /*  printf(" %f ",p[i]);
 fprintf(fichtm," <li>Graphs</li><p>");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
  m=cptcoveff;    
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
  jj1=0;        if (j>i) { 
  for(k1=1; k1<=m;k1++){          printf(".%d%d",i,j);fflush(stdout);
    for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      jj1++;          hess[i][j]=hessij(p,delti,i,j,func,npar);
      if (cptcovn > 0) {          
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          hess[j][i]=hess[i][j];    
        for (cpt=1; cpt<=cptcoveff;cpt++)          /*printf(" %lf ",hess[i][j]);*/
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      }
      }    }
      /* Pij */    printf("\n");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    fprintf(ficlog,"\n");
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
      /* Quasi-incidences */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    
        /* Stable prevalence in each health state */    a=matrix(1,npar,1,npar);
        for(cpt=1; cpt<nlstate;cpt++){    y=matrix(1,npar,1,npar);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    x=vector(1,npar);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    indx=ivector(1,npar);
        }    for (i=1;i<=npar;i++)
     for(cpt=1; cpt<=nlstate;cpt++) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    ludcmp(a,npar,indx,&pd);
 interval) in state (%d): v%s%d%d.png <br>  
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (j=1;j<=npar;j++) {
      }      for (i=1;i<=npar;i++) x[i]=0;
      for(cpt=1; cpt<=nlstate;cpt++) {      x[j]=1;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      lubksb(a,npar,indx,x);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (i=1;i<=npar;i++){ 
      }        matcov[i][j]=x[i];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      }
 health expectancies in states (1) and (2): e%s%d.png<br>    }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
    }    printf("\n#Hessian matrix#\n");
  }    fprintf(ficlog,"\n#Hessian matrix#\n");
 fclose(fichtm);    for (i=1;i<=npar;i++) { 
 }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
 /******************* Gnuplot file **************/        fprintf(ficlog,"%.3e ",hess[i][j]);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      }
       printf("\n");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      fprintf(ficlog,"\n");
   int ng;    }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    /* Recompute Inverse */
   }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 #ifdef windows    ludcmp(a,npar,indx,&pd);
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif    /*  printf("\n#Hessian matrix recomputed#\n");
 m=pow(2,cptcoveff);  
      for (j=1;j<=npar;j++) {
  /* 1eme*/      for (i=1;i<=npar;i++) x[i]=0;
   for (cpt=1; cpt<= nlstate ; cpt ++) {      x[j]=1;
    for (k1=1; k1<= m ; k1 ++) {      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
 #ifdef windows        y[i][j]=x[i];
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        printf("%.3e ",y[i][j]);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        fprintf(ficlog,"%.3e ",y[i][j]);
 #endif      }
 #ifdef unix      printf("\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      fprintf(ficlog,"\n");
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    }
 #endif    */
   
 for (i=1; i<= nlstate ; i ++) {    free_matrix(a,1,npar,1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(y,1,npar,1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_vector(x,1,npar);
 }    free_ivector(indx,1,npar);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    free_matrix(hess,1,npar,1,npar);
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  /*************** hessian matrix ****************/
      for (i=1; i<= nlstate ; i ++) {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int i;
 }      int l=1, lmax=20;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double k1,k2;
 #ifdef unix    double p2[MAXPARM+1]; /* identical to x */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    double res;
 #endif    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
    }    double fx;
   }    int k=0,kmax=10;
   /*2 eme*/    double l1;
   
   for (k1=1; k1<= m ; k1 ++) {    fx=func(x);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
          l1=pow(10,l);
     for (i=1; i<= nlstate+1 ; i ++) {      delts=delt;
       k=2*i;      for(k=1 ; k <kmax; k=k+1){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        delt = delta*(l1*k);
       for (j=1; j<= nlstate+1 ; j ++) {        p2[theta]=x[theta] +delt;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        p2[theta]=x[theta]-delt;
 }          k2=func(p2)-fx;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        /*res= (k1-2.0*fx+k2)/delt/delt; */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        
       for (j=1; j<= nlstate+1 ; j ++) {  #ifdef DEBUGHESS
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 }    #endif
       fprintf(ficgp,"\" t\"\" w l 0,");        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for (j=1; j<= nlstate+1 ; j ++) {          k=kmax;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 }            k=kmax; l=lmax*10;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        }
       else fprintf(ficgp,"\" t\"\" w l 0,");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     }          delts=delt;
   }        }
        }
   /*3eme*/    }
     delti[theta]=delts;
   for (k1=1; k1<= m ; k1 ++) {    return res; 
     for (cpt=1; cpt<= nlstate ; cpt ++) {    
       k=2+nlstate*(2*cpt-2);  }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    int i;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    int l=1, lmax=20;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double k1,k2,k3,k4,res,fx;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double p2[MAXPARM+1];
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    int k;
   
 */    fx=func(x);
       for (i=1; i< nlstate ; i ++) {    for (k=1; k<=2; k++) {
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     }      k1=func(p2)-fx;
   }    
        p2[thetai]=x[thetai]+delti[thetai]/k;
   /* CV preval stat */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for (k1=1; k1<= m ; k1 ++) {      k2=func(p2)-fx;
     for (cpt=1; cpt<nlstate ; cpt ++) {    
       k=3;      p2[thetai]=x[thetai]-delti[thetai]/k;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      k3=func(p2)-fx;
     
       for (i=1; i< nlstate ; i ++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         fprintf(ficgp,"+$%d",k+i+1);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      k4=func(p2)-fx;
            res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       l=3+(nlstate+ndeath)*cpt;  #ifdef DEBUG
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for (i=1; i< nlstate ; i ++) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         l=3+(nlstate+ndeath)*cpt;  #endif
         fprintf(ficgp,"+$%d",l+i+1);    }
       }    return res;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    }
     }  
   }    /************** Inverse of matrix **************/
    void ludcmp(double **a, int n, int *indx, double *d) 
   /* proba elementaires */  { 
    for(i=1,jk=1; i <=nlstate; i++){    int i,imax,j,k; 
     for(k=1; k <=(nlstate+ndeath); k++){    double big,dum,sum,temp; 
       if (k != i) {    double *vv; 
         for(j=1; j <=ncovmodel; j++){   
            vv=vector(1,n); 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    *d=1.0; 
           jk++;    for (i=1;i<=n;i++) { 
           fprintf(ficgp,"\n");      big=0.0; 
         }      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
     }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
    }      vv[i]=1.0/big; 
     } 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    for (j=1;j<=n;j++) { 
      for(jk=1; jk <=m; jk++) {      for (i=1;i<j;i++) { 
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        sum=a[i][j]; 
        if (ng==2)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        a[i][j]=sum; 
        else      } 
          fprintf(ficgp,"\nset title \"Probability\"\n");      big=0.0; 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      for (i=j;i<=n;i++) { 
        i=1;        sum=a[i][j]; 
        for(k2=1; k2<=nlstate; k2++) {        for (k=1;k<j;k++) 
          k3=i;          sum -= a[i][k]*a[k][j]; 
          for(k=1; k<=(nlstate+ndeath); k++) {        a[i][j]=sum; 
            if (k != k2){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
              if(ng==2)          big=dum; 
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          imax=i; 
              else        } 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      } 
              ij=1;      if (j != imax) { 
              for(j=3; j <=ncovmodel; j++) {        for (k=1;k<=n;k++) { 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          dum=a[imax][k]; 
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          a[imax][k]=a[j][k]; 
                  ij++;          a[j][k]=dum; 
                }        } 
                else        *d = -(*d); 
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        vv[imax]=vv[j]; 
              }      } 
              fprintf(ficgp,")/(1");      indx[j]=imax; 
                    if (a[j][j] == 0.0) a[j][j]=TINY; 
              for(k1=1; k1 <=nlstate; k1++){        if (j != n) { 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        dum=1.0/(a[j][j]); 
                ij=1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                for(j=3; j <=ncovmodel; j++){      } 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    } 
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_vector(vv,1,n);  /* Doesn't work */
                    ij++;  ;
                  }  } 
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  void lubksb(double **a, int n, int *indx, double b[]) 
                }  { 
                fprintf(ficgp,")");    int i,ii=0,ip,j; 
              }    double sum; 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);   
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    for (i=1;i<=n;i++) { 
              i=i+ncovmodel;      ip=indx[i]; 
            }      sum=b[ip]; 
          }      b[ip]=b[i]; 
        }      if (ii) 
      }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
    }      else if (sum) ii=i; 
    fclose(ficgp);      b[i]=sum; 
 }  /* end gnuplot */    } 
     for (i=n;i>=1;i--) { 
       sum=b[i]; 
 /*************** Moving average **************/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      b[i]=sum/a[i][i]; 
     } 
   int i, cpt, cptcod;  } 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)  void pstamp(FILE *fichier)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  {
           mobaverage[(int)agedeb][i][cptcod]=0.;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
      }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){  /************ Frequencies ********************/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           for (cpt=0;cpt<=4;cpt++){  {  /* Some frequencies */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    
           }    int i, m, jk, j1, bool, z1,j;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    int first;
         }    double ***freq; /* Frequencies */
       }    double *pp, **prop;
     }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        char fileresp[FILENAMELENGTH];
 }    
     pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
 /************** Forecasting ******************/    strcpy(fileresp,"p");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   int *popage;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      exit(0);
   double *popeffectif,*popcount;    }
   double ***p3mat;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   char fileresf[FILENAMELENGTH];    j1=0;
     
  agelim=AGESUP;    j=cptcoveff;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    first=1;
    
      /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
   strcpy(fileresf,"f");    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
   strcat(fileresf,fileres);    /*    j1++;
   if((ficresf=fopen(fileresf,"w"))==NULL) {  */
     printf("Problem with forecast resultfile: %s\n", fileresf);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
   }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   printf("Computing forecasting: result on file '%s' \n", fileresf);          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
   if (mobilav==1) {              freq[i][jk][m]=0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;        
   if (stepm<=12) stepsize=1;        dateintsum=0;
          k2cpt=0;
   agelim=AGESUP;        for (i=1; i<=imx; i++) {
            bool=1;
   hstepm=1;          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   hstepm=hstepm/stepm;            for (z1=1; z1<=cptcoveff; z1++)       
   yp1=modf(dateintmean,&yp);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
   anprojmean=yp;                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
   yp2=modf((yp1*12),&yp);                bool=0;
   mprojmean=yp;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   yp1=modf((yp2*30.5),&yp);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
   jprojmean=yp;                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
   if(jprojmean==0) jprojmean=1;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
   if(mprojmean==0) jprojmean=1;              } 
            }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);   
            if (bool==1){
   for(cptcov=1;cptcov<=i2;cptcov++){            for(m=firstpass; m<=lastpass; m++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              k2=anint[m][i]+(mint[m][i]/12.);
       k=k+1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       fprintf(ficresf,"\n#******");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(j=1;j<=cptcoveff;j++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                if (m<lastpass) {
       fprintf(ficresf,"******\n");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficresf,"# StartingAge FinalAge");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                }
                      
                      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {                  dateintsum=dateintsum+k2;
         fprintf(ficresf,"\n");                  k2cpt++;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                  }
                 /*}*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;        } /* end i */
                   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           oldm=oldms;savm=savms;        pstamp(ficresp);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if  (cptcovn>0) {
                  fprintf(ficresp, "\n#********** Variable "); 
           for (h=0; h<=nhstepm; h++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficresp, "**********\n#");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          fprintf(ficlog, "\n#********** Variable "); 
             }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             for(j=1; j<=nlstate+ndeath;j++) {          fprintf(ficlog, "**********\n#");
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      for(i=1; i<=nlstate;i++) 
                 if (mobilav==1)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        fprintf(ficresp, "\n");
                 else {        
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(i=iagemin; i <= iagemax+3; i++){
                 }          if(i==iagemax+3){
                            fprintf(ficlog,"Total");
               }          }else{
               if (h==(int)(calagedate+12*cpt)){            if(first==1){
                 fprintf(ficresf," %.3f", kk1);              first=0;
                                      printf("See log file for details...\n");
               }            }
             }            fprintf(ficlog,"Age %d", i);
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       }              pp[jk] += freq[jk][m][i]; 
     }          }
   }          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pos=0; m <=0 ; m++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   fclose(ficresf);              if(first==1){
 }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 /************** Forecasting ******************/              }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
              }else{
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              if(first==1)
   int *popage;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double *popeffectif,*popcount;            }
   double ***p3mat,***tabpop,***tabpopprev;          }
   char filerespop[FILENAMELENGTH];  
           for(jk=1; jk <=nlstate ; jk++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              pp[jk] += freq[jk][m][i];
   agelim=AGESUP;          }       
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            posprop += prop[jk][i];
            }
            for(jk=1; jk <=nlstate ; jk++){
   strcpy(filerespop,"pop");            if(pos>=1.e-5){
   strcat(filerespop,fileres);              if(first==1)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("Problem with forecast resultfile: %s\n", filerespop);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }            }else{
   printf("Computing forecasting: result on file '%s' \n", filerespop);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   if (mobilav==1) {            if( i <= iagemax){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if(pos>=1.e-5){
     movingaverage(agedeb, fage, ageminpar, mobaverage);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;              }
   if (stepm<=12) stepsize=1;              else
                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   agelim=AGESUP;            }
            }
   hstepm=1;          
   hstepm=hstepm/stepm;          for(jk=-1; jk <=nlstate+ndeath; jk++)
              for(m=-1; m <=nlstate+ndeath; m++)
   if (popforecast==1) {              if(freq[jk][m][i] !=0 ) {
     if((ficpop=fopen(popfile,"r"))==NULL) {              if(first==1)
       printf("Problem with population file : %s\n",popfile);exit(0);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     popage=ivector(0,AGESUP);              }
     popeffectif=vector(0,AGESUP);          if(i <= iagemax)
     popcount=vector(0,AGESUP);            fprintf(ficresp,"\n");
              if(first==1)
     i=1;              printf("Others in log...\n");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(ficlog,"\n");
            }
     imx=i;        /*}*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    }
   }    dateintmean=dateintsum/k2cpt; 
    
   for(cptcov=1;cptcov<=i2;cptcov++){    fclose(ficresp);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       k=k+1;    free_vector(pp,1,nlstate);
       fprintf(ficrespop,"\n#******");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       for(j=1;j<=cptcoveff;j++) {    /* End of Freq */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
       }  
       fprintf(ficrespop,"******\n");  /************ Prevalence ********************/
       fprintf(ficrespop,"# Age");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  {  
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             in each health status at the date of interview (if between dateprev1 and dateprev2).
       for (cpt=0; cpt<=0;cpt++) {       We still use firstpass and lastpass as another selection.
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      */
           
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int i, m, jk, j1, bool, z1,j;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    double **prop;
              double posprop; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double  y2; /* in fractional years */
           oldm=oldms;savm=savms;    int iagemin, iagemax;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int first; /** to stop verbosity which is redirected to log file */
          
           for (h=0; h<=nhstepm; h++){    iagemin= (int) agemin;
             if (h==(int) (calagedate+YEARM*cpt)) {    iagemax= (int) agemax;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /*pp=vector(1,nlstate);*/
             }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             for(j=1; j<=nlstate+ndeath;j++) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
               kk1=0.;kk2=0;    j1=0;
               for(i=1; i<=nlstate;i++) {                  
                 if (mobilav==1)    /*j=cptcoveff;*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                 else {    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    first=1;
                 }    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
               }      /*for(i1=1; i1<=ncodemax[k1];i1++){
               if (h==(int)(calagedate+12*cpt)){        j1++;*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        
                   /*fprintf(ficrespop," %.3f", kk1);        for (i=1; i<=nlstate; i++)  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          for(m=iagemin; m <= iagemax+3; m++)
               }            prop[i][m]=0.0;
             }       
             for(i=1; i<=nlstate;i++){        for (i=1; i<=imx; i++) { /* Each individual */
               kk1=0.;          bool=1;
                 for(j=1; j<=nlstate;j++){          if  (cptcovn>0) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            for (z1=1; z1<=cptcoveff; z1++) 
                 }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                bool=0;
             }          } 
           if (bool==1) { 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
   /******/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  } 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            } /* end selection of waves */
           nhstepm = nhstepm/hstepm;          }
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=iagemin; i <= iagemax+3; i++){  
           oldm=oldms;savm=savms;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              posprop += prop[jk][i]; 
           for (h=0; h<=nhstepm; h++){          } 
             if (h==(int) (calagedate+YEARM*cpt)) {          
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(jk=1; jk <=nlstate ; jk++){     
             }            if( i <=  iagemax){ 
             for(j=1; j<=nlstate+ndeath;j++) {              if(posprop>=1.e-5){ 
               kk1=0.;kk2=0;                probs[i][jk][j1]= prop[jk][i]/posprop;
               for(i=1; i<=nlstate;i++) {                            } else{
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                    if(first==1){
               }                  first=0;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
             }                }
           }              }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            } 
         }          }/* end jk */ 
       }        }/* end i */ 
    }      /*} *//* end i1 */
   }    } /* end j1 */
      
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
   if (popforecast==1) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     free_ivector(popage,0,AGESUP);  }  /* End of prevalence */
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);  /************* Waves Concatenation ***************/
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   fclose(ficrespop);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 }       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 /***********************************************/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 /**************** Main Program *****************/       and mw[mi+1][i]. dh depends on stepm.
 /***********************************************/       */
   
 int main(int argc, char *argv[])    int i, mi, m;
 {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    int first;
   double agedeb, agefin,hf;    int j, k=0,jk, ju, jl;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double sum=0.;
     first=0;
   double fret;    jmin=100000;
   double **xi,tmp,delta;    jmax=-1;
     jmean=0.;
   double dum; /* Dummy variable */    for(i=1; i<=imx; i++){
   double ***p3mat;      mi=0;
   int *indx;      m=firstpass;
   char line[MAXLINE], linepar[MAXLINE];      while(s[m][i] <= nlstate){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   int firstobs=1, lastobs=10;          mw[++mi][i]=m;
   int sdeb, sfin; /* Status at beginning and end */        if(m >=lastpass)
   int c,  h , cpt,l;          break;
   int ju,jl, mi;        else
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          m++;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      }/* end while */
   int mobilav=0,popforecast=0;      if (s[m][i] > nlstate){
   int hstepm, nhstepm;        mi++;     /* Death is another wave */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   double bage, fage, age, agelim, agebase;        mw[mi][i]=m;
   double ftolpl=FTOL;      }
   double **prlim;  
   double *severity;      wav[i]=mi;
   double ***param; /* Matrix of parameters */      if(mi==0){
   double  *p;        nbwarn++;
   double **matcov; /* Matrix of covariance */        if(first==0){
   double ***delti3; /* Scale */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   double *delti; /* Scale */          first=1;
   double ***eij, ***vareij;        }
   double **varpl; /* Variances of prevalence limits by age */        if(first==1){
   double *epj, vepp;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   double kk1, kk2;        }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      } /* end mi==0 */
      } /* End individuals */
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
   char z[1]="c", occ;          dh[mi][i]=1;
 #include <sys/time.h>        else{
 #include <time.h>          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            if (agedc[i] < 2*AGESUP) {
                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   /* long total_usecs;              if(j==0) j=1;  /* Survives at least one month after exam */
   struct timeval start_time, end_time;              else if(j<0){
                  nberr++;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   getcwd(pathcd, size);                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   printf("\n%s",version);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if(argc <=1){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     printf("\nEnter the parameter file name: ");              }
     scanf("%s",pathtot);              k=k+1;
   }              if (j >= jmax){
   else{                jmax=j;
     strcpy(pathtot,argv[1]);                ijmax=i;
   }              }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/              if (j <= jmin){
   /*cygwin_split_path(pathtot,path,optionfile);                jmin=j;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                ijmin=i;
   /* cutv(path,optionfile,pathtot,'\\');*/              }
               sum=sum+j;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   chdir(path);            }
   replace(pathc,path);          }
           else{
 /*-------- arguments in the command line --------*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);            k=k+1;
   strcat(fileres,".txt");    /* Other files have txt extension */            if (j >= jmax) {
               jmax=j;
   /*---------arguments file --------*/              ijmax=i;
             }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            else if (j <= jmin){
     printf("Problem with optionfile %s\n",optionfile);              jmin=j;
     goto end;              ijmin=i;
   }            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   strcpy(filereso,"o");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   strcat(filereso,fileres);            if(j<0){
   if((ficparo=fopen(filereso,"w"))==NULL) {              nberr++;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
   /* Reads comments: lines beginning with '#' */            sum=sum+j;
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          jk= j/stepm;
     fgets(line, MAXLINE, ficpar);          jl= j -jk*stepm;
     puts(line);          ju= j -(jk+1)*stepm;
     fputs(line,ficparo);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   }            if(jl==0){
   ungetc(c,ficpar);              dh[mi][i]=jk;
               bh[mi][i]=0;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            }else{ /* We want a negative bias in order to only have interpolation ie
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                    * to avoid the price of an extra matrix product in likelihood */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);              dh[mi][i]=jk+1;
 while((c=getc(ficpar))=='#' && c!= EOF){              bh[mi][i]=ju;
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          }else{
     puts(line);            if(jl <= -ju){
     fputs(line,ficparo);              dh[mi][i]=jk;
   }              bh[mi][i]=jl;       /* bias is positive if real duration
   ungetc(c,ficpar);                                   * is higher than the multiple of stepm and negative otherwise.
                                     */
                }
   covar=matrix(0,NCOVMAX,1,n);            else{
   cptcovn=0;              dh[mi][i]=jk+1;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              bh[mi][i]=ju;
             }
   ncovmodel=2+cptcovn;            if(dh[mi][i]==0){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              dh[mi][i]=1; /* At least one step */
                bh[mi][i]=ju; /* At least one step */
   /* Read guess parameters */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){          } /* end if mle */
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      } /* end wave */
     puts(line);    }
     fputs(line,ficparo);    jmean=sum/k;
   }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   ungetc(c,ficpar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)  /*********** Tricode ****************************/
     for(j=1; j <=nlstate+ndeath-1; j++){  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
       fscanf(ficpar,"%1d%1d",&i1,&j1);  {
       fprintf(ficparo,"%1d%1d",i1,j1);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       printf("%1d%1d",i,j);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       for(k=1; k<=ncovmodel;k++){    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
         fscanf(ficpar," %lf",&param[i][j][k]);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
         printf(" %lf",param[i][j][k]);    /* nbcode[Tvar[j]][1]= 
         fprintf(ficparo," %lf",param[i][j][k]);    */
       }  
       fscanf(ficpar,"\n");    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       printf("\n");    int modmaxcovj=0; /* Modality max of covariates j */
       fprintf(ficparo,"\n");    int cptcode=0; /* Modality max of covariates j */
     }    int modmincovj=0; /* Modality min of covariates j */
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     cptcoveff=0; 
   p=param[1][1];   
      for (k=-1; k < maxncov; k++) Ndum[k]=0;
   /* Reads comments: lines beginning with '#' */    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /* Loop on covariates without age and products */
     fgets(line, MAXLINE, ficpar);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     puts(line);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
     fputs(line,ficparo);                                 modality of this covariate Vj*/ 
   }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   ungetc(c,ficpar);                                      * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   for(i=1; i <=nlstate; i++){                                        modality of the nth covariate of individual i. */
     for(j=1; j <=nlstate+ndeath-1; j++){        if (ij > modmaxcovj)
       fscanf(ficpar,"%1d%1d",&i1,&j1);          modmaxcovj=ij; 
       printf("%1d%1d",i,j);        else if (ij < modmincovj) 
       fprintf(ficparo,"%1d%1d",i1,j1);          modmincovj=ij; 
       for(k=1; k<=ncovmodel;k++){        if ((ij < -1) && (ij > NCOVMAX)){
         fscanf(ficpar,"%le",&delti3[i][j][k]);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
         printf(" %le",delti3[i][j][k]);          exit(1);
         fprintf(ficparo," %le",delti3[i][j][k]);        }else
       }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
       fscanf(ficpar,"\n");        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
       printf("\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       fprintf(ficparo,"\n");        /* getting the maximum value of the modality of the covariate
     }           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   }           female is 1, then modmaxcovj=1.*/
   delti=delti3[1][1];      }
        printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   /* Reads comments: lines beginning with '#' */      cptcode=modmaxcovj;
   while((c=getc(ficpar))=='#' && c!= EOF){      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     ungetc(c,ficpar);     /*for (i=0; i<=cptcode; i++) {*/
     fgets(line, MAXLINE, ficpar);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     puts(line);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     fputs(line,ficparo);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   }          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   ungetc(c,ficpar);        }
          /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   matcov=matrix(1,npar,1,npar);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   for(i=1; i <=npar; i++){      } /* Ndum[-1] number of undefined modalities */
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     fprintf(ficparo,"%s",str);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     for(j=1; j <=i; j++){      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
       fscanf(ficpar," %le",&matcov[i][j]);         modmincovj=3; modmaxcovj = 7;
       printf(" %.5le",matcov[i][j]);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
       fprintf(ficparo," %.5le",matcov[i][j]);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
     }         variables V1_1 and V1_2.
     fscanf(ficpar,"\n");         nbcode[Tvar[j]][ij]=k;
     printf("\n");         nbcode[Tvar[j]][1]=0;
     fprintf(ficparo,"\n");         nbcode[Tvar[j]][2]=1;
   }         nbcode[Tvar[j]][3]=2;
   for(i=1; i <=npar; i++)      */
     for(j=i+1;j<=npar;j++)      ij=1; /* ij is similar to i but can jumps over null modalities */
       matcov[i][j]=matcov[j][i];      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
            for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   printf("\n");          /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
     /*-------- Rewriting paramater file ----------*/                                       k is a modality. If we have model=V1+V1*sex 
      strcpy(rfileres,"r");    /* "Rparameterfile */                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            ij++;
      strcat(rfileres,".");    /* */          }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          if (ij > ncodemax[j]) break; 
     if((ficres =fopen(rfileres,"w"))==NULL) {        }  /* end of loop on */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      } /* end of loop on modality */ 
     }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     fprintf(ficres,"#%s\n",version);    
       for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     /*-------- data file ----------*/    
     if((fic=fopen(datafile,"r"))==NULL)    {    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       printf("Problem with datafile: %s\n", datafile);goto end;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; 
     n= lastobs;   } 
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);   ij=1;
     num=ivector(1,n);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     moisnais=vector(1,n);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     annais=vector(1,n);     if((Ndum[i]!=0) && (i<=ncovcol)){
     moisdc=vector(1,n);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     andc=vector(1,n);       Tvaraff[ij]=i; /*For printing (unclear) */
     agedc=vector(1,n);       ij++;
     cod=ivector(1,n);     }else
     weight=vector(1,n);         Tvaraff[ij]=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */   }
     mint=matrix(1,maxwav,1,n);   ij--;
     anint=matrix(1,maxwav,1,n);   cptcoveff=ij; /*Number of total covariates*/
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      }
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);  
   /*********** Health Expectancies ****************/
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       if ((i >= firstobs) && (i <=lastobs)) {  
          {
         for (j=maxwav;j>=1;j--){    /* Health expectancies, no variances */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    int i, j, nhstepm, hstepm, h, nstepm;
           strcpy(line,stra);    int nhstepma, nstepma; /* Decreasing with age */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double age, agelim, hf;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double ***p3mat;
         }    double eip;
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    pstamp(ficreseij);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for(i=1; i<=nlstate;i++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      }
         for (j=ncovcol;j>=1;j--){      fprintf(ficreseij," e%1d. ",i);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
         }    fprintf(ficreseij,"\n");
         num[i]=atol(stra);  
            
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    if(estepm < stepm){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
         i=i+1;    else  hstepm=estepm;   
       }    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
     /* printf("ii=%d", ij);     * if stepm=24 months pijx are given only every 2 years and by summing them
        scanf("%d",i);*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
   imx=i-1; /* Number of individuals */     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   /* for (i=1; i<=imx; i++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;     * to compare the new estimate of Life expectancy with the same linear 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;     * hypothesis. A more precise result, taking into account a more precise
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;     * curvature will be obtained if estepm is as small as stepm. */
     }*/  
    /*  for (i=1; i<=imx; i++){    /* For example we decided to compute the life expectancy with the smallest unit */
      if (s[4][i]==9)  s[4][i]=-1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /* Calculation of the number of parameter from char model*/       and note for a fixed period like estepm months */
   Tvar=ivector(1,15);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   Tprod=ivector(1,15);       survival function given by stepm (the optimization length). Unfortunately it
   Tvaraff=ivector(1,15);       means that if the survival funtion is printed only each two years of age and if
   Tvard=imatrix(1,15,1,2);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   Tage=ivector(1,15);             results. So we changed our mind and took the option of the best precision.
        */
   if (strlen(model) >1){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');    agelim=AGESUP;
     j1=nbocc(model,'*');    /* If stepm=6 months */
     cptcovn=j+1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     cptcovprod=j1;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          
     strcpy(modelsav,model);  /* nhstepm age range expressed in number of stepm */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       printf("Error. Non available option model=%s ",model);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       goto end;    /* if (stepm >= YEARM) hstepm=1;*/
     }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');    for (age=bage; age<=fage; age ++){ 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /*scanf("%d",i);*/      /* if (stepm >= YEARM) hstepm=1;*/
       if (strchr(strb,'*')) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {      /* If stepm=6 months */
           cptcovprod--;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           cutv(strb,stre,strd,'V');         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           Tvar[i]=atoi(stre);      
           cptcovage++;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
             Tage[cptcovage]=i;      
             /*printf("stre=%s ", stre);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }      
         else if (strcmp(strd,"age")==0) {      printf("%d|",(int)age);fflush(stdout);
           cptcovprod--;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           cutv(strb,stre,strc,'V');      
           Tvar[i]=atoi(stre);      /* Computing expectancies */
           cptcovage++;      for(i=1; i<=nlstate;i++)
           Tage[cptcovage]=i;        for(j=1; j<=nlstate;j++)
         }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         else {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           cutv(strb,stre,strc,'V');            
           Tvar[i]=ncovcol+k1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;          }
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);      fprintf(ficreseij,"%3.0f",age );
           Tvar[cptcovn+k2]=Tvard[k1][1];      for(i=1; i<=nlstate;i++){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        eip=0;
           for (k=1; k<=lastobs;k++)        for(j=1; j<=nlstate;j++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          eip +=eij[i][j][(int)age];
           k1++;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           k2=k2+2;        }
         }        fprintf(ficreseij,"%9.4f", eip );
       }      }
       else {      fprintf(ficreseij,"\n");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      
        /*  scanf("%d",i);*/    }
       cutv(strd,strc,strb,'V');    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       Tvar[i]=atoi(strc);    printf("\n");
       }    fprintf(ficlog,"\n");
       strcpy(modelsav,stra);      
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  }
         scanf("%d",i);*/  
     }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 }  
    {
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /* Covariances of health expectancies eij and of total life expectancies according
   printf("cptcovprod=%d ", cptcovprod);     to initial status i, ei. .
   scanf("%d ",i);*/    */
     fclose(fic);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     /*  if(mle==1){*/    double age, agelim, hf;
     if (weightopt != 1) { /* Maximisation without weights*/    double ***p3matp, ***p3matm, ***varhe;
       for(i=1;i<=n;i++) weight[i]=1.0;    double **dnewm,**doldm;
     }    double *xp, *xm;
     /*-calculation of age at interview from date of interview and age at death -*/    double **gp, **gm;
     agev=matrix(1,maxwav,1,imx);    double ***gradg, ***trgradg;
     int theta;
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {    double eip, vip;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
          s[m][i]=-1;    xp=vector(1,npar);
        }    xm=vector(1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
       }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     }    
     pstamp(ficresstdeij);
     for (i=1; i<=imx; i++)  {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficresstdeij,"# Age");
       for(m=1; (m<= maxwav); m++){    for(i=1; i<=nlstate;i++){
         if(s[m][i] >0){      for(j=1; j<=nlstate;j++)
           if (s[m][i] >= nlstate+1) {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
             if(agedc[i]>0)      fprintf(ficresstdeij," e%1d. ",i);
               if(moisdc[i]!=99 && andc[i]!=9999)    }
                 agev[m][i]=agedc[i];    fprintf(ficresstdeij,"\n");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {    pstamp(ficrescveij);
               if (andc[i]!=9999){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    fprintf(ficrescveij,"# Age");
               agev[m][i]=-1;    for(i=1; i<=nlstate;i++)
               }      for(j=1; j<=nlstate;j++){
             }        cptj= (j-1)*nlstate+i;
           }        for(i2=1; i2<=nlstate;i2++)
           else if(s[m][i] !=9){ /* Should no more exist */          for(j2=1; j2<=nlstate;j2++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            cptj2= (j2-1)*nlstate+i2;
             if(mint[m][i]==99 || anint[m][i]==9999)            if(cptj2 <= cptj)
               agev[m][i]=1;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             else if(agev[m][i] <agemin){          }
               agemin=agev[m][i];      }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficrescveij,"\n");
             }    
             else if(agev[m][i] >agemax){    if(estepm < stepm){
               agemax=agev[m][i];      printf ("Problem %d lower than %d\n",estepm, stepm);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    }
             }    else  hstepm=estepm;   
             /*agev[m][i]=anint[m][i]-annais[i];*/    /* We compute the life expectancy from trapezoids spaced every estepm months
             /*   agev[m][i] = age[i]+2*m;*/     * This is mainly to measure the difference between two models: for example
           }     * if stepm=24 months pijx are given only every 2 years and by summing them
           else { /* =9 */     * we are calculating an estimate of the Life Expectancy assuming a linear 
             agev[m][i]=1;     * progression in between and thus overestimating or underestimating according
             s[m][i]=-1;     * to the curvature of the survival function. If, for the same date, we 
           }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         }     * to compare the new estimate of Life expectancy with the same linear 
         else /*= 0 Unknown */     * hypothesis. A more precise result, taking into account a more precise
           agev[m][i]=1;     * curvature will be obtained if estepm is as small as stepm. */
       }  
        /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (i=1; i<=imx; i++)  {       nhstepm is the number of hstepm from age to agelim 
       for(m=1; (m<= maxwav); m++){       nstepm is the number of stepm from age to agelin. 
         if (s[m][i] > (nlstate+ndeath)) {       Look at hpijx to understand the reason of that which relies in memory size
           printf("Error: Wrong value in nlstate or ndeath\n");         and note for a fixed period like estepm months */
           goto end;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);    /* If stepm=6 months */
     free_vector(moisnais,1,n);    /* nhstepm age range expressed in number of stepm */
     free_vector(annais,1,n);    agelim=AGESUP;
     /* free_matrix(mint,1,maxwav,1,n);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
        free_matrix(anint,1,maxwav,1,n);*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(moisdc,1,n);    /* if (stepm >= YEARM) hstepm=1;*/
     free_vector(andc,1,n);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
        p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     wav=ivector(1,imx);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
        gp=matrix(0,nhstepm,1,nlstate*nlstate);
     /* Concatenates waves */    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       Tcode=ivector(1,100);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      /* if (stepm >= YEARM) hstepm=1;*/
       ncodemax[1]=1;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
            /* If stepm=6 months */
    codtab=imatrix(1,100,1,10);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
    h=0;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
    m=pow(2,cptcoveff);      
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){      /* Computing  Variances of health expectancies */
        for(j=1; j <= ncodemax[k]; j++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){         decrease memory allocation */
            h++;      for(theta=1; theta <=npar; theta++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        for(i=1; i<=npar; i++){ 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
        }        }
      }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
    }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    
       codtab[1][2]=1;codtab[2][2]=2; */        for(j=1; j<= nlstate; j++){
    /* for(i=1; i <=m ;i++){          for(i=1; i<=nlstate; i++){
       for(k=1; k <=cptcovn; k++){            for(h=0; h<=nhstepm-1; h++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       printf("\n");            }
       }          }
       scanf("%d",i);*/        }
           
    /* Calculates basic frequencies. Computes observed prevalence at single age        for(ij=1; ij<= nlstate*nlstate; ij++)
        and prints on file fileres'p'. */          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
              }
          }/* End theta */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(h=0; h<=nhstepm-1; h++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate*nlstate;j++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for(theta=1; theta <=npar; theta++)
                  trgradg[h][j][theta]=gradg[h][theta][j];
     /* For Powell, parameters are in a vector p[] starting at p[1]      
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
     if(mle==1){          varhe[ij][ji][(int)age] =0.;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }       printf("%d|",(int)age);fflush(stdout);
           fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     /*--------- results files --------------*/       for(h=0;h<=nhstepm-1;h++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
    jk=1;          for(ij=1;ij<=nlstate*nlstate;ij++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for(ji=1;ji<=nlstate*nlstate;ji++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
    for(i=1,jk=1; i <=nlstate; i++){        }
      for(k=1; k <=(nlstate+ndeath); k++){      }
        if (k != i)  
          {      /* Computing expectancies */
            printf("%d%d ",i,k);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
            fprintf(ficres,"%1d%1d ",i,k);      for(i=1; i<=nlstate;i++)
            for(j=1; j <=ncovmodel; j++){        for(j=1; j<=nlstate;j++)
              printf("%f ",p[jk]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              fprintf(ficres,"%f ",p[jk]);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
              jk++;            
            }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
            printf("\n");  
            fprintf(ficres,"\n");          }
          }  
      }      fprintf(ficresstdeij,"%3.0f",age );
    }      for(i=1; i<=nlstate;i++){
  if(mle==1){        eip=0.;
     /* Computing hessian and covariance matrix */        vip=0.;
     ftolhess=ftol; /* Usually correct */        for(j=1; j<=nlstate;j++){
     hesscov(matcov, p, npar, delti, ftolhess, func);          eip += eij[i][j][(int)age];
  }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     printf("# Scales (for hessian or gradient estimation)\n");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
      for(i=1,jk=1; i <=nlstate; i++){        }
       for(j=1; j <=nlstate+ndeath; j++){        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         if (j!=i) {      }
           fprintf(ficres,"%1d%1d",i,j);      fprintf(ficresstdeij,"\n");
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){      fprintf(ficrescveij,"%3.0f",age );
             printf(" %.5e",delti[jk]);      for(i=1; i<=nlstate;i++)
             fprintf(ficres," %.5e",delti[jk]);        for(j=1; j<=nlstate;j++){
             jk++;          cptj= (j-1)*nlstate+i;
           }          for(i2=1; i2<=nlstate;i2++)
           printf("\n");            for(j2=1; j2<=nlstate;j2++){
           fprintf(ficres,"\n");              cptj2= (j2-1)*nlstate+i2;
         }              if(cptj2 <= cptj)
       }                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
      }            }
            }
     k=1;      fprintf(ficrescveij,"\n");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
     for(i=1;i<=npar;i++){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       /*  if (k>nlstate) k=1;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       i1=(i-1)/(ncovmodel*nlstate)+1;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficres,"%3d",i);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("%3d",i);    printf("\n");
       for(j=1; j<=i;j++){    fprintf(ficlog,"\n");
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);    free_vector(xm,1,npar);
       }    free_vector(xp,1,npar);
       fprintf(ficres,"\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       printf("\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       k++;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     }  }
      
     while((c=getc(ficpar))=='#' && c!= EOF){  /************ Variance ******************/
       ungetc(c,ficpar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       fgets(line, MAXLINE, ficpar);  {
       puts(line);    /* Variance of health expectancies */
       fputs(line,ficparo);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     }    /* double **newm;*/
     ungetc(c,ficpar);    double **dnewm,**doldm;
     estepm=0;    double **dnewmp,**doldmp;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    int i, j, nhstepm, hstepm, h, nstepm ;
     if (estepm==0 || estepm < stepm) estepm=stepm;    int k;
     if (fage <= 2) {    double *xp;
       bage = ageminpar;    double **gp, **gm;  /* for var eij */
       fage = agemaxpar;    double ***gradg, ***trgradg; /*for var eij */
     }    double **gradgp, **trgradgp; /* for var p point j */
        double *gpp, *gmp; /* for var p point j */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double ***p3mat;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double age,agelim, hf;
      double ***mobaverage;
     while((c=getc(ficpar))=='#' && c!= EOF){    int theta;
     ungetc(c,ficpar);    char digit[4];
     fgets(line, MAXLINE, ficpar);    char digitp[25];
     puts(line);  
     fputs(line,ficparo);    char fileresprobmorprev[FILENAMELENGTH];
   }  
   ungetc(c,ficpar);    if(popbased==1){
        if(mobilav!=0)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        strcpy(digitp,"-populbased-mobilav-");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      else strcpy(digitp,"-populbased-nomobil-");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
          else 
   while((c=getc(ficpar))=='#' && c!= EOF){      strcpy(digitp,"-stablbased-");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if (mobilav!=0) {
     puts(line);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fputs(line,ficparo);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
     }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fprintf(ficparo,"pop_based=%d\n",popbased);      strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fprintf(ficres,"pop_based=%d\n",popbased);      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
   while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     puts(line);    }
     fputs(line,ficparo);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }   
   ungetc(c,ficpar);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     ungetc(c,ficpar);    }  
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobmorprev,"\n");
     puts(line);    fprintf(ficgp,"\n# Routine varevsij");
     fputs(line,ficparo);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   ungetc(c,ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    pstamp(ficresvij);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
 /*------------ gnuplot -------------*/      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   strcpy(optionfilegnuplot,optionfilefiname);    fprintf(ficresvij,"# Age");
   strcat(optionfilegnuplot,".gp");    for(i=1; i<=nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      for(j=1; j<=nlstate;j++)
     printf("Problem with file %s",optionfilegnuplot);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   }    fprintf(ficresvij,"\n");
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    xp=vector(1,npar);
 /*--------- index.htm --------*/    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   strcpy(optionfilehtm,optionfile);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   strcat(optionfilehtm,".htm");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   }    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    
 \n    if(estepm < stepm){
 Total number of observations=%d <br>\n      printf ("Problem %d lower than %d\n",estepm, stepm);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    }
 <hr  size=\"2\" color=\"#EC5E5E\">    else  hstepm=estepm;   
  <ul><li>Parameter files<br>\n    /* For example we decided to compute the life expectancy with the smallest unit */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);       nhstepm is the number of hstepm from age to agelim 
   fclose(fichtm);       nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
 /*------------ free_vector  -------------*/       means that if the survival funtion is printed every two years of age and if
  chdir(path);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
  free_ivector(wav,1,imx);    */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      agelim = AGESUP;
  free_ivector(num,1,n);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  free_vector(agedc,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  fclose(ficparo);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  fclose(ficres);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   /*--------------- Prevalence limit --------------*/  
    
   strcpy(filerespl,"pl");      for(theta=1; theta <=npar; theta++){
   strcat(filerespl,fileres);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");        if (popbased==1) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          if(mobilav ==0){
   fprintf(ficrespl,"\n");            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   prlim=matrix(1,nlstate,1,nlstate);          }else{ /* mobilav */ 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(i=1; i<=nlstate;i++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              prlim[i][i]=mobaverage[(int)age][i][ij];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
   k=0;        for(j=1; j<= nlstate; j++){
   agebase=ageminpar;          for(h=0; h<=nhstepm; h++){
   agelim=agemaxpar;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   ftolpl=1.e-10;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   i1=cptcoveff;          }
   if (cptcovn < 1){i1=1;}        }
         /* This for computing probability of death (h=1 means
   for(cptcov=1;cptcov<=i1;cptcov++){           computed over hstepm matrices product = hstepm*stepm months) 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           as a weighted average of prlim.
         k=k+1;        */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficrespl,"\n#******");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         for(j=1;j<=cptcoveff;j++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }    
         fprintf(ficrespl,"******\n");        /* end probability of death */
          
         for (age=agebase; age<=agelim; age++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficrespl,"%.0f",age );        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for(i=1; i<=nlstate;i++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficrespl," %.5f", prlim[i][i]);   
           fprintf(ficrespl,"\n");        if (popbased==1) {
         }          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
   fclose(ficrespl);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   /*------------- h Pij x at various ages ------------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   }          for(h=0; h<=nhstepm; h++){
   printf("Computing pij: result on file '%s' \n", filerespij);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/        }
         /* This for computing probability of death (h=1 means
   agelim=AGESUP;           computed over hstepm matrices product = hstepm*stepm months) 
   hstepm=stepsize*YEARM; /* Every year of age */           as a weighted average of prlim.
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   k=0;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   for(cptcov=1;cptcov<=i1;cptcov++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }    
       k=k+1;        /* end probability of death */
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)        for(j=1; j<= nlstate; j++) /* vareij */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(h=0; h<=nhstepm; h++){
         fprintf(ficrespij,"******\n");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                  }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        } /* End theta */
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);      for(h=0; h<=nhstepm; h++) /* veij */
           fprintf(ficrespij,"\n");        for(j=1; j<=nlstate;j++)
            for (h=0; h<=nhstepm; h++){          for(theta=1; theta <=npar; theta++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            trgradg[h][j][theta]=gradg[h][theta][j];
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for(theta=1; theta <=npar; theta++)
             fprintf(ficrespij,"\n");          trgradgp[j][theta]=gradgp[theta][j];
              }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }      for(i=1;i<=nlstate;i++)
     }        for(j=1;j<=nlstate;j++)
   }          vareij[i][j][(int)age] =0.;
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
   fclose(ficrespij);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   /*---------- Forecasting ------------------*/            for(j=1;j<=nlstate;j++)
   if((stepm == 1) && (strcmp(model,".")==0)){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      }
   }    
   else{      /* pptj */
     erreur=108;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   /*---------- Health expectancies and variances ------------*/      /* end ppptj */
       /*  x centered again */
   strcpy(filerest,"t");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   strcat(filerest,fileres);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   if((ficrest=fopen(filerest,"w"))==NULL) {   
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      if (popbased==1) {
   }        if(mobilav ==0){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   strcpy(filerese,"e");          for(i=1; i<=nlstate;i++)
   strcat(filerese,fileres);            prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficreseij=fopen(filerese,"w"))==NULL) {        }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      }
   }               
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
  strcpy(fileresv,"v");         as a weighted average of prlim.
   strcat(fileresv,fileres);      */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }    
   calagedate=-1;      /* end probability of death */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   k=0;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(i=1; i<=nlstate;i++){
       k=k+1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       fprintf(ficrest,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)      } 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficresprobmorprev,"\n");
       fprintf(ficrest,"******\n");  
       fprintf(ficresvij,"%.0f ",age );
       fprintf(ficreseij,"\n#****** ");      for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)        for(j=1; j<=nlstate;j++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       fprintf(ficreseij,"******\n");        }
       fprintf(ficresvij,"\n");
       fprintf(ficresvij,"\n#****** ");      free_matrix(gp,0,nhstepm,1,nlstate);
       for(j=1;j<=cptcoveff;j++)      free_matrix(gm,0,nhstepm,1,nlstate);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       fprintf(ficresvij,"******\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    } /* End age */
       oldm=oldms;savm=savms;    free_vector(gpp,nlstate+1,nlstate+ndeath);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       oldm=oldms;savm=savms;    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
       fprintf(ficrest,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
       epj=vector(1,nlstate+1);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       for(age=bage; age <=fage ;age++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         if (popbased==1) {  */
           for(i=1; i<=nlstate;i++)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             prlim[i][i]=probs[(int)age][i][k];    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         }  
            free_vector(xp,1,npar);
         fprintf(ficrest," %4.0f",age);    free_matrix(doldm,1,nlstate,1,nlstate);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    free_matrix(dnewm,1,nlstate,1,npar);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           epj[nlstate+1] +=epj[j];    fclose(ficresprobmorprev);
         }    fflush(ficgp);
     fflush(fichtm); 
         for(i=1, vepp=0.;i <=nlstate;i++)  }  /* end varevsij */
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  /************ Variance of prevlim ******************/
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         for(j=1;j <=nlstate;j++){  {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    /* Variance of prevalence limit */
         }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         fprintf(ficrest,"\n");  
       }    double **dnewm,**doldm;
     }    int i, j, nhstepm, hstepm;
   }    double *xp;
 free_matrix(mint,1,maxwav,1,n);    double *gp, *gm;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    double **gradg, **trgradg;
     free_vector(weight,1,n);    double age,agelim;
   fclose(ficreseij);    int theta;
   fclose(ficresvij);    
   fclose(ficrest);    pstamp(ficresvpl);
   fclose(ficpar);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   free_vector(epj,1,nlstate+1);    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
   /*------- Variance limit prevalence------*/          fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    xp=vector(1,npar);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    dnewm=matrix(1,nlstate,1,npar);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    doldm=matrix(1,nlstate,1,nlstate);
     exit(0);    
   }    hstepm=1*YEARM; /* Every year of age */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   k=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   for(cptcov=1;cptcov<=i1;cptcov++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if (stepm >= YEARM) hstepm=1;
       k=k+1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fprintf(ficresvpl,"\n#****** ");      gradg=matrix(1,npar,1,nlstate);
       for(j=1;j<=cptcoveff;j++)      gp=vector(1,nlstate);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gm=vector(1,nlstate);
       fprintf(ficresvpl,"******\n");  
            for(theta=1; theta <=npar; theta++){
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for(i=1; i<=npar; i++){ /* Computes gradient */
       oldm=oldms;savm=savms;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        }
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  }        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   fclose(ficresvpl);      
         for(i=1; i<=npar; i++) /* Computes gradient */
   /*---------- End : free ----------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          gm[i] = prlim[i][i];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
          for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      } /* End theta */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      trgradg =matrix(1,nlstate,1,npar);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
        for(j=1; j<=nlstate;j++)
   free_matrix(matcov,1,npar,1,npar);        for(theta=1; theta <=npar; theta++)
   free_vector(delti,1,npar);          trgradg[j][theta]=gradg[theta][j];
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   fprintf(fichtm,"\n</body>");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fclose(fichtm);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   fclose(ficgp);      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   if(erreur >0)      fprintf(ficresvpl,"%.0f ",age );
     printf("End of Imach with error or warning %d\n",erreur);      for(i=1; i<=nlstate;i++)
   else   printf("End of Imach\n");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      free_vector(gm,1,nlstate);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      free_matrix(gradg,1,npar,1,nlstate);
   /*------ End -----------*/      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
  end:    free_vector(xp,1,npar);
 #ifdef windows    free_matrix(doldm,1,nlstate,1,npar);
   /* chdir(pathcd);*/    free_matrix(dnewm,1,nlstate,1,nlstate);
 #endif  
  /*system("wgnuplot graph.plt");*/  }
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/  /************ Variance of one-step probabilities  ******************/
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
  strcpy(plotcmd,GNUPLOTPROGRAM);  {
  strcat(plotcmd," ");    int i, j=0,  k1, l1, tj;
  strcat(plotcmd,optionfilegnuplot);    int k2, l2, j1,  z1;
  system(plotcmd);    int k=0, l;
     int first=1, first1, first2;
 #ifdef windows    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   while (z[0] != 'q') {    double **dnewm,**doldm;
     /* chdir(path); */    double *xp;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    double *gp, *gm;
     scanf("%s",z);    double **gradg, **trgradg;
     if (z[0] == 'c') system("./imach");    double **mu;
     else if (z[0] == 'e') system(optionfilehtm);    double age, cov[NCOVMAX+1];
     else if (z[0] == 'g') system(plotcmd);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     else if (z[0] == 'q') exit(0);    int theta;
   }    char fileresprob[FILENAMELENGTH];
 #endif    char fileresprobcov[FILENAMELENGTH];
 }    char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence from cross-sectional prevalence in each state (1 to %d) to period (stable) prevalence in specific state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.48  
changed lines
  Added in v.1.165


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>