Diff for /imach/src/imach.c between versions 1.46 and 1.169

version 1.46, 2002/05/30 17:44:35 version 1.169, 2014/12/22 23:08:31
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.169  2014/12/22 23:08:31  brouard
      Summary: 0.98p
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.168  2014/12/22 15:17:42  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: udate
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.167  2014/12/22 13:50:56  brouard
   computed from the time spent in each health state according to a    Summary: Testing uname and compiler version and if compiled 32 or 64
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Testing on Linux 64
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.166  2014/12/22 11:40:47  brouard
   conditional to be observed in state i at the first wave. Therefore    *** empty log message ***
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.165  2014/12/16 11:20:36  brouard
   complex model than "constant and age", you should modify the program    Summary: After compiling on Visual C
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    * imach.c (Module): Merging 1.61 to 1.162
   convergence.  
     Revision 1.164  2014/12/16 10:52:11  brouard
   The advantage of this computer programme, compared to a simple    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    * imach.c (Module): Merging 1.61 to 1.162
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.162  2014/09/25 11:43:39  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Summary: temporary backup 0.99!
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.1  2014/09/16 11:06:58  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Summary: With some code (wrong) for nlopt
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Author:
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.161  2014/09/15 20:41:41  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Problem with macro SQR on Intel compiler
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.160  2014/09/02 09:24:05  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.159  2014/09/01 10:34:10  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: WIN32
   software can be distributed freely for non commercial use. Latest version    Author: Brouard
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.158  2014/08/27 17:11:51  brouard
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.157  2014/08/27 16:26:55  brouard
 #include <stdlib.h>    Summary: Preparing windows Visual studio version
 #include <unistd.h>    Author: Brouard
   
 #define MAXLINE 256    In order to compile on Visual studio, time.h is now correct and time_t
 #define GNUPLOTPROGRAM "gnuplot"    and tm struct should be used. difftime should be used but sometimes I
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    just make the differences in raw time format (time(&now).
 #define FILENAMELENGTH 80    Trying to suppress #ifdef LINUX
 /*#define DEBUG*/    Add xdg-open for __linux in order to open default browser.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.156  2014/08/25 20:10:10  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    *** empty log message ***
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.155  2014/08/25 18:32:34  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: New compile, minor changes
     Author: Brouard
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.154  2014/06/20 17:32:08  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: Outputs now all graphs of convergence to period prevalence
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.153  2014/06/20 16:45:46  brouard
 #define YEARM 12. /* Number of months per year */    Summary: If 3 live state, convergence to period prevalence on same graph
 #define AGESUP 130    Author: Brouard
 #define AGEBASE 40  
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
 int erreur; /* Error number */  
 int nvar;    Revision 1.151  2014/06/18 16:43:30  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    *** empty log message ***
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.150  2014/06/18 16:42:35  brouard
 int ndeath=1; /* Number of dead states */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Author: brouard
 int popbased=0;  
     Revision 1.149  2014/06/18 15:51:14  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: Some fixes in parameter files errors
 int maxwav; /* Maxim number of waves */    Author: Nicolas Brouard
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.148  2014/06/17 17:38:48  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Summary: Nothing new
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Author: Brouard
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Just a new packaging for OS/X version 0.98nS
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.147  2014/06/16 10:33:11  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    *** empty log message ***
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.146  2014/06/16 10:20:28  brouard
  FILE  *ficresvij;    Summary: Merge
   char fileresv[FILENAMELENGTH];    Author: Brouard
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Merge, before building revised version.
   
 #define NR_END 1    Revision 1.145  2014/06/10 21:23:15  brouard
 #define FREE_ARG char*    Summary: Debugging with valgrind
 #define FTOL 1.0e-10    Author: Nicolas Brouard
   
 #define NRANSI    Lot of changes in order to output the results with some covariates
 #define ITMAX 200    After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
 #define TOL 2.0e-4    No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
 #define CGOLD 0.3819660    Also, decodemodel has been improved. Tricode is still not
 #define ZEPS 1.0e-10    optimal. nbcode should be improved. Documentation has been added in
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    the source code.
   
 #define GOLD 1.618034    Revision 1.143  2014/01/26 09:45:38  brouard
 #define GLIMIT 100.0    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define TINY 1.0e-20  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 static double maxarg1,maxarg2;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.142  2014/01/26 03:57:36  brouard
      Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 static double sqrarg;    Revision 1.141  2014/01/26 02:42:01  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.140  2011/09/02 10:37:54  brouard
 int imx;    Summary: times.h is ok with mingw32 now.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 int estepm;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.138  2010/04/30 18:19:40  brouard
 int m,nb;    *** empty log message ***
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.137  2010/04/29 18:11:38  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Checking covariates for more complex models
 double dateintmean=0;    than V1+V2. A lot of change to be done. Unstable.
   
 double *weight;    Revision 1.136  2010/04/26 20:30:53  brouard
 int **s; /* Status */    (Module): merging some libgsl code. Fixing computation
 double *agedc, **covar, idx;    of likelione (using inter/intrapolation if mle = 0) in order to
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.134  2009/10/29 13:18:53  brouard
 {    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.132  2009/07/06 08:22:05  brouard
 #ifdef windows    Many tings
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.131  2009/06/20 16:22:47  brouard
    s = strrchr( path, '/' );            /* find last / */    Some dimensions resccaled
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.130  2009/05/26 06:44:34  brouard
 #if     defined(__bsd__)                /* get current working directory */    (Module): Max Covariate is now set to 20 instead of 8. A
       extern char       *getwd( );    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.129  2007/08/31 13:49:27  lievre
       extern char       *getcwd( );    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.128  2006/06/30 13:02:05  brouard
 #endif    (Module): Clarifications on computing e.j
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.127  2006/04/28 18:11:50  brouard
       strcpy( name, path );             /* we've got it */    (Module): Yes the sum of survivors was wrong since
    } else {                             /* strip direcotry from path */    imach-114 because nhstepm was no more computed in the age
       s++;                              /* after this, the filename */    loop. Now we define nhstepma in the age loop.
       l2 = strlen( s );                 /* length of filename */    (Module): In order to speed up (in case of numerous covariates) we
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    compute health expectancies (without variances) in a first step
       strcpy( name, s );                /* save file name */    and then all the health expectancies with variances or standard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    deviation (needs data from the Hessian matrices) which slows the
       dirc[l1-l2] = 0;                  /* add zero */    computation.
    }    In the future we should be able to stop the program is only health
    l1 = strlen( dirc );                 /* length of directory */    expectancies and graph are needed without standard deviations.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.126  2006/04/28 17:23:28  brouard
 #else    (Module): Yes the sum of survivors was wrong since
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    imach-114 because nhstepm was no more computed in the age
 #endif    loop. Now we define nhstepma in the age loop.
    s = strrchr( name, '.' );            /* find last / */    Version 0.98h
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.125  2006/04/04 15:20:31  lievre
    l1= strlen( name);    Errors in calculation of health expectancies. Age was not initialized.
    l2= strlen( s)+1;    Forecasting file added.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.124  2006/03/22 17:13:53  lievre
    return( 0 );                         /* we're done */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 }    The log-likelihood is printed in the log file
   
     Revision 1.123  2006/03/20 10:52:43  brouard
 /******************************************/    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 void replace(char *s, char*t)  
 {    * imach.c (Module): Weights can have a decimal point as for
   int i;    English (a comma might work with a correct LC_NUMERIC environment,
   int lg=20;    otherwise the weight is truncated).
   i=0;    Modification of warning when the covariates values are not 0 or
   lg=strlen(t);    1.
   for(i=0; i<= lg; i++) {    Version 0.98g
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.122  2006/03/20 09:45:41  brouard
   }    (Module): Weights can have a decimal point as for
 }    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 int nbocc(char *s, char occ)    Modification of warning when the covariates values are not 0 or
 {    1.
   int i,j=0;    Version 0.98g
   int lg=20;  
   i=0;    Revision 1.121  2006/03/16 17:45:01  lievre
   lg=strlen(s);    * imach.c (Module): Comments concerning covariates added
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    * imach.c (Module): refinements in the computation of lli if
   }    status=-2 in order to have more reliable computation if stepm is
   return j;    not 1 month. Version 0.98f
 }  
     Revision 1.120  2006/03/16 15:10:38  lievre
 void cutv(char *u,char *v, char*t, char occ)    (Module): refinements in the computation of lli if
 {    status=-2 in order to have more reliable computation if stepm is
   int i,lg,j,p=0;    not 1 month. Version 0.98f
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.119  2006/03/15 17:42:26  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Bug if status = -2, the loglikelihood was
   }    computed as likelihood omitting the logarithm. Version O.98e
   
   lg=strlen(t);    Revision 1.118  2006/03/14 18:20:07  brouard
   for(j=0; j<p; j++) {    (Module): varevsij Comments added explaining the second
     (u[j] = t[j]);    table of variances if popbased=1 .
   }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      u[p]='\0';    (Module): Function pstamp added
     (Module): Version 0.98d
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.117  2006/03/14 17:16:22  brouard
   }    (Module): varevsij Comments added explaining the second
 }    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 /********************** nrerror ********************/    (Module): Function pstamp added
     (Module): Version 0.98d
 void nrerror(char error_text[])  
 {    Revision 1.116  2006/03/06 10:29:27  brouard
   fprintf(stderr,"ERREUR ...\n");    (Module): Variance-covariance wrong links and
   fprintf(stderr,"%s\n",error_text);    varian-covariance of ej. is needed (Saito).
   exit(1);  
 }    Revision 1.115  2006/02/27 12:17:45  brouard
 /*********************** vector *******************/    (Module): One freematrix added in mlikeli! 0.98c
 double *vector(int nl, int nh)  
 {    Revision 1.114  2006/02/26 12:57:58  brouard
   double *v;    (Module): Some improvements in processing parameter
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    filename with strsep.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.113  2006/02/24 14:20:24  brouard
 }    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 /************************ free vector ******************/    allocation too.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.112  2006/01/30 09:55:26  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 }  
     Revision 1.111  2006/01/25 20:38:18  brouard
 /************************ivector *******************************/    (Module): Lots of cleaning and bugs added (Gompertz)
 int *ivector(long nl,long nh)    (Module): Comments can be added in data file. Missing date values
 {    can be a simple dot '.'.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.110  2006/01/25 00:51:50  brouard
   if (!v) nrerror("allocation failure in ivector");    (Module): Lots of cleaning and bugs added (Gompertz)
   return v-nl+NR_END;  
 }    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.108  2006/01/19 18:05:42  lievre
 {    Gnuplot problem appeared...
   free((FREE_ARG)(v+nl-NR_END));    To be fixed
 }  
     Revision 1.107  2006/01/19 16:20:37  brouard
 /******************* imatrix *******************************/    Test existence of gnuplot in imach path
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.106  2006/01/19 13:24:36  brouard
 {    Some cleaning and links added in html output
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.105  2006/01/05 20:23:19  lievre
      *** empty log message ***
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.104  2005/09/30 16:11:43  lievre
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): sump fixed, loop imx fixed, and simplifications.
   m += NR_END;    (Module): If the status is missing at the last wave but we know
   m -= nrl;    that the person is alive, then we can code his/her status as -2
      (instead of missing=-1 in earlier versions) and his/her
      contributions to the likelihood is 1 - Prob of dying from last
   /* allocate rows and set pointers to them */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    the healthy state at last known wave). Version is 0.98
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.103  2005/09/30 15:54:49  lievre
   m[nrl] -= ncl;    (Module): sump fixed, loop imx fixed, and simplifications.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.102  2004/09/15 17:31:30  brouard
      Add the possibility to read data file including tab characters.
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.101  2004/09/15 10:38:38  brouard
 }    Fix on curr_time
   
 /****************** free_imatrix *************************/    Revision 1.100  2004/07/12 18:29:06  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    Add version for Mac OS X. Just define UNIX in Makefile
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.99  2004/06/05 08:57:40  brouard
      /* free an int matrix allocated by imatrix() */    *** empty log message ***
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.98  2004/05/16 15:05:56  brouard
   free((FREE_ARG) (m+nrl-NR_END));    New version 0.97 . First attempt to estimate force of mortality
 }    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 /******************* matrix *******************************/    This is the basic analysis of mortality and should be done before any
 double **matrix(long nrl, long nrh, long ncl, long nch)    other analysis, in order to test if the mortality estimated from the
 {    cross-longitudinal survey is different from the mortality estimated
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    from other sources like vital statistic data.
   double **m;  
     The same imach parameter file can be used but the option for mle should be -3.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Agnès, who wrote this part of the code, tried to keep most of the
   m += NR_END;    former routines in order to include the new code within the former code.
   m -= nrl;  
     The output is very simple: only an estimate of the intercept and of
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    the slope with 95% confident intervals.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Current limitations:
   m[nrl] -= ncl;    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    B) There is no computation of Life Expectancy nor Life Table.
   return m;  
 }    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 /*************************free matrix ************************/    suppressed.
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.96  2003/07/15 15:38:55  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   free((FREE_ARG)(m+nrl-NR_END));    rewritten within the same printf. Workaround: many printfs.
 }  
     Revision 1.95  2003/07/08 07:54:34  brouard
 /******************* ma3x *******************************/    * imach.c (Repository):
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Repository): Using imachwizard code to output a more meaningful covariance
 {    matrix (cov(a12,c31) instead of numbers.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.93  2003/06/25 16:33:55  brouard
   m += NR_END;    (Module): On windows (cygwin) function asctime_r doesn't
   m -= nrl;    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.92  2003/06/25 16:30:45  brouard
   m[nrl] += NR_END;    (Module): On windows (cygwin) function asctime_r doesn't
   m[nrl] -= ncl;    exist so I changed back to asctime which exists.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (Repository): Elapsed time after each iteration is now output. It
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    helps to forecast when convergence will be reached. Elapsed time
   m[nrl][ncl] += NR_END;    is stamped in powell.  We created a new html file for the graphs
   m[nrl][ncl] -= nll;    concerning matrix of covariance. It has extension -cov.htm.
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
   for (i=nrl+1; i<=nrh; i++) {    mle=-1 a template is output in file "or"mypar.txt with the design
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    of the covariance matrix to be input.
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    Revision 1.89  2003/06/24 12:30:52  brouard
   }    (Module): Some bugs corrected for windows. Also, when
   return m;    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 /*************************free ma3x ************************/    Revision 1.88  2003/06/23 17:54:56  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.87  2003/06/18 12:26:01  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Version 0.96
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 /***************** f1dim *************************/    routine fileappend.
 extern int ncom;  
 extern double *pcom,*xicom;    Revision 1.85  2003/06/17 13:12:43  brouard
 extern double (*nrfunc)(double []);    * imach.c (Repository): Check when date of death was earlier that
      current date of interview. It may happen when the death was just
 double f1dim(double x)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   int j;    assuming that the date of death was just one stepm after the
   double f;    interview.
   double *xt;    (Repository): Because some people have very long ID (first column)
      we changed int to long in num[] and we added a new lvector for
   xt=vector(1,ncom);    memory allocation. But we also truncated to 8 characters (left
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    truncation)
   f=(*nrfunc)(xt);    (Repository): No more line truncation errors.
   free_vector(xt,1,ncom);  
   return f;    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /*****************brent *************************/    many times. Probs is memory consuming and must be used with
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   int iter;  
   double a,b,d,etemp;    Revision 1.83  2003/06/10 13:39:11  lievre
   double fu,fv,fw,fx;    *** empty log message ***
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.82  2003/06/05 15:57:20  brouard
   double e=0.0;    Add log in  imach.c and  fullversion number is now printed.
    
   a=(ax < cx ? ax : cx);  */
   b=(ax > cx ? ax : cx);  /*
   x=w=v=bx;     Interpolated Markov Chain
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    Short summary of the programme:
     xm=0.5*(a+b);    
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    This program computes Healthy Life Expectancies from
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     printf(".");fflush(stdout);    first survey ("cross") where individuals from different ages are
 #ifdef DEBUG    interviewed on their health status or degree of disability (in the
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    case of a health survey which is our main interest) -2- at least a
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    second wave of interviews ("longitudinal") which measure each change
 #endif    (if any) in individual health status.  Health expectancies are
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    computed from the time spent in each health state according to a
       *xmin=x;    model. More health states you consider, more time is necessary to reach the
       return fx;    Maximum Likelihood of the parameters involved in the model.  The
     }    simplest model is the multinomial logistic model where pij is the
     ftemp=fu;    probability to be observed in state j at the second wave
     if (fabs(e) > tol1) {    conditional to be observed in state i at the first wave. Therefore
       r=(x-w)*(fx-fv);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       q=(x-v)*(fx-fw);    'age' is age and 'sex' is a covariate. If you want to have a more
       p=(x-v)*q-(x-w)*r;    complex model than "constant and age", you should modify the program
       q=2.0*(q-r);    where the markup *Covariates have to be included here again* invites
       if (q > 0.0) p = -p;    you to do it.  More covariates you add, slower the
       q=fabs(q);    convergence.
       etemp=e;  
       e=d;    The advantage of this computer programme, compared to a simple
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    multinomial logistic model, is clear when the delay between waves is not
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    identical for each individual. Also, if a individual missed an
       else {    intermediate interview, the information is lost, but taken into
         d=p/q;    account using an interpolation or extrapolation.  
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    hPijx is the probability to be observed in state i at age x+h
           d=SIGN(tol1,xm-x);    conditional to the observed state i at age x. The delay 'h' can be
       }    split into an exact number (nh*stepm) of unobserved intermediate
     } else {    states. This elementary transition (by month, quarter,
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    semester or year) is modelled as a multinomial logistic.  The hPx
     }    matrix is simply the matrix product of nh*stepm elementary matrices
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    and the contribution of each individual to the likelihood is simply
     fu=(*f)(u);    hPijx.
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    Also this programme outputs the covariance matrix of the parameters but also
       SHFT(v,w,x,u)    of the life expectancies. It also computes the period (stable) prevalence. 
         SHFT(fv,fw,fx,fu)    
         } else {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
           if (u < x) a=u; else b=u;             Institut national d'études démographiques, Paris.
           if (fu <= fw || w == x) {    This software have been partly granted by Euro-REVES, a concerted action
             v=w;    from the European Union.
             w=u;    It is copyrighted identically to a GNU software product, ie programme and
             fv=fw;    software can be distributed freely for non commercial use. Latest version
             fw=fu;    can be accessed at http://euroreves.ined.fr/imach .
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
             fv=fu;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
           }    
         }    **********************************************************************/
   }  /*
   nrerror("Too many iterations in brent");    main
   *xmin=x;    read parameterfile
   return fx;    read datafile
 }    concatwav
     freqsummary
 /****************** mnbrak ***********************/    if (mle >= 1)
       mlikeli
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    print results files
             double (*func)(double))    if mle==1 
 {       computes hessian
   double ulim,u,r,q, dum;    read end of parameter file: agemin, agemax, bage, fage, estepm
   double fu;        begin-prev-date,...
      open gnuplot file
   *fa=(*func)(*ax);    open html file
   *fb=(*func)(*bx);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   if (*fb > *fa) {     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     SHFT(dum,*ax,*bx,dum)                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       SHFT(dum,*fb,*fa,dum)      freexexit2 possible for memory heap.
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    h Pij x                         | pij_nom  ficrestpij
   *fc=(*func)(*cx);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   while (*fb > *fc) {         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     r=(*bx-*ax)*(*fb-*fc);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     ulim=(*bx)+GLIMIT*(*cx-*bx);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     if ((*bx-u)*(u-*cx) > 0.0) {     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       fu=(*func)(u);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    forecasting if prevfcast==1 prevforecast call prevalence()
       if (fu < *fc) {    health expectancies
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    Variance-covariance of DFLE
           SHFT(*fb,*fc,fu,(*func)(u))    prevalence()
           }     movingaverage()
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    varevsij() 
       u=ulim;    if popbased==1 varevsij(,popbased)
       fu=(*func)(u);    total life expectancies
     } else {    Variance of period (stable) prevalence
       u=(*cx)+GOLD*(*cx-*bx);   end
       fu=(*func)(u);  */
     }  
     SHFT(*ax,*bx,*cx,u)  #define POWELL /* Instead of NLOPT */
       SHFT(*fa,*fb,*fc,fu)  
       }  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /*************** linmin ************************/  #include <string.h>
   
 int ncom;  #ifdef _WIN32
 double *pcom,*xicom;  #include <io.h>
 double (*nrfunc)(double []);  #else
    #include <unistd.h>
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #endif
 {  
   double brent(double ax, double bx, double cx,  #include <limits.h>
                double (*f)(double), double tol, double *xmin);  #include <sys/types.h>
   double f1dim(double x);  #include <sys/utsname.h>
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #include <sys/stat.h>
               double *fc, double (*func)(double));  #include <errno.h>
   int j;  /* extern int errno; */
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /* #ifdef LINUX */
    /* #include <time.h> */
   ncom=n;  /* #include "timeval.h" */
   pcom=vector(1,n);  /* #else */
   xicom=vector(1,n);  /* #include <sys/time.h> */
   nrfunc=func;  /* #endif */
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  #include <time.h>
     xicom[j]=xi[j];  
   }  #ifdef GSL
   ax=0.0;  #include <gsl/gsl_errno.h>
   xx=1.0;  #include <gsl/gsl_multimin.h>
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #endif
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #ifdef NLOPT
 #endif  #include <nlopt.h>
   for (j=1;j<=n;j++) {  typedef struct {
     xi[j] *= xmin;    double (* function)(double [] );
     p[j] += xi[j];  } myfunc_data ;
   }  #endif
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /*************** powell ************************/  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   void linmin(double p[], double xi[], int n, double *fret,  #define FILENAMELENGTH 132
               double (*func)(double []));  
   int i,ibig,j;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double del,t,*pt,*ptt,*xit;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double fp,fptt;  
   double *xits;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   pt=vector(1,n);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   ptt=vector(1,n);  
   xit=vector(1,n);  #define NINTERVMAX 8
   xits=vector(1,n);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   *fret=(*func)(p);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   for (j=1;j<=n;j++) pt[j]=p[j];  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   for (*iter=1;;++(*iter)) {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
     fp=(*fret);  #define MAXN 20000
     ibig=0;  #define YEARM 12. /**< Number of months per year */
     del=0.0;  #define AGESUP 130
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define AGEBASE 40
     for (i=1;i<=n;i++)  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       printf(" %d %.12f",i, p[i]);  #ifdef _WIN32
     printf("\n");  #define DIRSEPARATOR '\\'
     for (i=1;i<=n;i++) {  #define CHARSEPARATOR "\\"
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define ODIRSEPARATOR '/'
       fptt=(*fret);  #else
 #ifdef DEBUG  #define DIRSEPARATOR '/'
       printf("fret=%lf \n",*fret);  #define CHARSEPARATOR "/"
 #endif  #define ODIRSEPARATOR '\\'
       printf("%d",i);fflush(stdout);  #endif
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /* $Id$ */
         del=fabs(fptt-(*fret));  /* $State$ */
         ibig=i;  
       }  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 #ifdef DEBUG  char fullversion[]="$Revision$ $Date$"; 
       printf("%d %.12e",i,(*fret));  char strstart[80];
       for (j=1;j<=n;j++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         printf(" x(%d)=%.12e",j,xit[j]);  int nvar=0, nforce=0; /* Number of variables, number of forces */
       }  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       for(j=1;j<=n;j++)  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
         printf(" p=%.12e",p[j]);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       printf("\n");  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 #endif  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 #ifdef DEBUG  int cptcov=0; /* Working variable */
       int k[2],l;  int npar=NPARMAX;
       k[0]=1;  int nlstate=2; /* Number of live states */
       k[1]=-1;  int ndeath=1; /* Number of dead states */
       printf("Max: %.12e",(*func)(p));  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       for (j=1;j<=n;j++)  int popbased=0;
         printf(" %.12e",p[j]);  
       printf("\n");  int *wav; /* Number of waves for this individuual 0 is possible */
       for(l=0;l<=1;l++) {  int maxwav=0; /* Maxim number of waves */
         for (j=1;j<=n;j++) {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         }                     to the likelihood and the sum of weights (done by funcone)*/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int mle=1, weightopt=0;
       }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #endif  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
       free_vector(xit,1,n);  int countcallfunc=0;  /* Count the number of calls to func */
       free_vector(xits,1,n);  double jmean=1; /* Mean space between 2 waves */
       free_vector(ptt,1,n);  double **matprod2(); /* test */
       free_vector(pt,1,n);  double **oldm, **newm, **savm; /* Working pointers to matrices */
       return;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     }  /*FILE *fic ; */ /* Used in readdata only */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     for (j=1;j<=n;j++) {  FILE *ficlog, *ficrespow;
       ptt[j]=2.0*p[j]-pt[j];  int globpr=0; /* Global variable for printing or not */
       xit[j]=p[j]-pt[j];  double fretone; /* Only one call to likelihood */
       pt[j]=p[j];  long ipmx=0; /* Number of contributions */
     }  double sw; /* Sum of weights */
     fptt=(*func)(ptt);  char filerespow[FILENAMELENGTH];
     if (fptt < fp) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  FILE *ficresilk;
       if (t < 0.0) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
         linmin(p,xit,n,fret,func);  FILE *ficresprobmorprev;
         for (j=1;j<=n;j++) {  FILE *fichtm, *fichtmcov; /* Html File */
           xi[j][ibig]=xi[j][n];  FILE *ficreseij;
           xi[j][n]=xit[j];  char filerese[FILENAMELENGTH];
         }  FILE *ficresstdeij;
 #ifdef DEBUG  char fileresstde[FILENAMELENGTH];
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  FILE *ficrescveij;
         for(j=1;j<=n;j++)  char filerescve[FILENAMELENGTH];
           printf(" %.12e",xit[j]);  FILE  *ficresvij;
         printf("\n");  char fileresv[FILENAMELENGTH];
 #endif  FILE  *ficresvpl;
       }  char fileresvpl[FILENAMELENGTH];
     }  char title[MAXLINE];
   }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /**** Prevalence limit ****************/  char command[FILENAMELENGTH];
   int  outcmd=0;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   int i, ii,j,k;  char fileregp[FILENAMELENGTH];
   double min, max, maxmin, maxmax,sumnew=0.;  char popfile[FILENAMELENGTH];
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   /* struct timezone tzp; */
   for (ii=1;ii<=nlstate+ndeath;ii++)  /* extern int gettimeofday(); */
     for (j=1;j<=nlstate+ndeath;j++){  struct tm tml, *gmtime(), *localtime();
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  extern time_t time();
   
    cov[1]=1.;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
    time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  struct tm tm;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  char strcurr[80], strfor[80];
     /* Covariates have to be included here again */  
      cov[2]=agefin;  char *endptr;
    long lval;
       for (k=1; k<=cptcovn;k++) {  double dval;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #define NR_END 1
       }  #define FREE_ARG char*
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #define FTOL 1.0e-10
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #define NRANSI 
   #define ITMAX 200 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #define TOL 2.0e-4 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
     savm=oldm;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     oldm=newm;  
     maxmax=0.;  #define GOLD 1.618034 
     for(j=1;j<=nlstate;j++){  #define GLIMIT 100.0 
       min=1.;  #define TINY 1.0e-20 
       max=0.;  
       for(i=1; i<=nlstate; i++) {  static double maxarg1,maxarg2;
         sumnew=0;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         prlim[i][j]= newm[i][j]/(1-sumnew);    
         max=FMAX(max,prlim[i][j]);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         min=FMIN(min,prlim[i][j]);  #define rint(a) floor(a+0.5)
       }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
       maxmin=max-min;  /* #define mytinydouble 1.0e-16 */
       maxmax=FMAX(maxmax,maxmin);  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     if(maxmax < ftolpl){  /* static double dsqrarg; */
       return prlim;  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     }  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /*************** transition probabilities ***************/  
   int imx; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  int stepm=1;
 {  /* Stepm, step in month: minimum step interpolation*/
   double s1, s2;  
   /*double t34;*/  int estepm;
   int i,j,j1, nc, ii, jj;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
     for(i=1; i<= nlstate; i++){  int m,nb;
     for(j=1; j<i;j++){  long *num;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         /*s2 += param[i][j][nc]*cov[nc];*/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double **pmmij, ***probs;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  double *ageexmed,*agecens;
       }  double dateintmean=0;
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  double *weight;
     }  int **s; /* Status */
     for(j=i+1; j<=nlstate+ndeath;j++){  double *agedc;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];                    * covar=matrix(0,NCOVMAX,1,n); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       }  double  idx; 
       ps[i][j]=s2;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     }  int *Ndum; /** Freq of modality (tricode */
   }  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     /*ps[3][2]=1;*/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
   for(i=1; i<= nlstate; i++){  
      s1=0;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     for(j=1; j<i; j++)  double ftolhess; /**< Tolerance for computing hessian */
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /**************** split *************************/
       s1+=exp(ps[i][j]);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       ps[i][j]= exp(ps[i][j])*ps[i][i];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     for(j=i+1; j<=nlstate+ndeath; j++)    */ 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    char  *ss;                            /* pointer */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    int   l1, l2;                         /* length counters */
   } /* end i */  
     l1 = strlen(path );                   /* length of path */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     for(jj=1; jj<= nlstate+ndeath; jj++){    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       ps[ii][jj]=0;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       ps[ii][ii]=1;      strcpy( name, path );               /* we got the fullname name because no directory */
     }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     for(jj=1; jj<= nlstate+ndeath; jj++){        return( GLOCK_ERROR_GETCWD );
      printf("%lf ",ps[ii][jj]);      }
    }      /* got dirc from getcwd*/
     printf("\n ");      printf(" DIRC = %s \n",dirc);
     }    } else {                              /* strip direcotry from path */
     printf("\n ");printf("%lf ",cov[2]);*/      ss++;                               /* after this, the filename */
 /*      l2 = strlen( ss );                  /* length of filename */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   goto end;*/      strcpy( name, ss );         /* save file name */
     return ps;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /**************** Product of 2 matrices ******************/    }
     /* We add a separator at the end of dirc if not exists */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      dirc[l1] =  DIRSEPARATOR;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      dirc[l1+1] = 0; 
   /* in, b, out are matrice of pointers which should have been initialized      printf(" DIRC3 = %s \n",dirc);
      before: only the contents of out is modified. The function returns    }
      a pointer to pointers identical to out */    ss = strrchr( name, '.' );            /* find last / */
   long i, j, k;    if (ss >0){
   for(i=nrl; i<= nrh; i++)      ss++;
     for(k=ncolol; k<=ncoloh; k++)      strcpy(ext,ss);                     /* save extension */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      l1= strlen( name);
         out[i][k] +=in[i][j]*b[j][k];      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
   return out;      finame[l1-l2]= 0;
 }    }
   
     return( 0 );                          /* we're done */
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /******************************************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  void replace_back_to_slash(char *s, char*t)
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    int i;
      (typically every 2 years instead of every month which is too big).    int lg=0;
      Model is determined by parameters x and covariates have to be    i=0;
      included manually here.    lg=strlen(t);
     for(i=0; i<= lg; i++) {
      */      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   int i, j, d, h, k;    }
   double **out, cov[NCOVMAX];  }
   double **newm;  
   char *trimbb(char *out, char *in)
   /* Hstepm could be zero and should return the unit matrix */  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   for (i=1;i<=nlstate+ndeath;i++)    char *s;
     for (j=1;j<=nlstate+ndeath;j++){    s=out;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    while (*in != '\0'){
       po[i][j][0]=(i==j ? 1.0 : 0.0);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     }        in++;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      }
   for(h=1; h <=nhstepm; h++){      *out++ = *in++;
     for(d=1; d <=hstepm; d++){    }
       newm=savm;    *out='\0';
       /* Covariates have to be included here again */    return s;
       cov[1]=1.;  }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char *cutl(char *blocc, char *alocc, char *in, char occ)
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       for (k=1; k<=cptcovprod;k++)       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
     */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    char *s, *t;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    t=in;s=in;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    while ((*in != occ) && (*in != '\0')){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      *alocc++ = *in++;
       savm=oldm;    }
       oldm=newm;    if( *in == occ){
     }      *(alocc)='\0';
     for(i=1; i<=nlstate+ndeath; i++)      s=++in;
       for(j=1;j<=nlstate+ndeath;j++) {    }
         po[i][j][h]=newm[i][j];   
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    if (s == t) {/* occ not found */
          */      *(alocc-(in-s))='\0';
       }      in=s;
   } /* end h */    }
   return po;    while ( *in != '\0'){
 }      *blocc++ = *in++;
     }
   
 /*************** log-likelihood *************/    *blocc='\0';
 double func( double *x)    return t;
 {  }
   int i, ii, j, k, mi, d, kk;  char *cutv(char *blocc, char *alocc, char *in, char occ)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   double sw; /* Sum of weights */       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double lli; /* Individual log likelihood */       gives blocc="abcdef2ghi" and alocc="j".
   long ipmx;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   /*extern weight */    */
   /* We are differentiating ll according to initial status */    char *s, *t;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    t=in;s=in;
   /*for(i=1;i<imx;i++)    while (*in != '\0'){
     printf(" %d\n",s[4][i]);      while( *in == occ){
   */        *blocc++ = *in++;
   cov[1]=1.;        s=in;
       }
   for(k=1; k<=nlstate; k++) ll[k]=0.;      *blocc++ = *in++;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    if (s == t) /* occ not found */
     for(mi=1; mi<= wav[i]-1; mi++){      *(blocc-(in-s))='\0';
       for (ii=1;ii<=nlstate+ndeath;ii++)    else
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      *(blocc-(in-s)-1)='\0';
       for(d=0; d<dh[mi][i]; d++){    in=s;
         newm=savm;    while ( *in != '\0'){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      *alocc++ = *in++;
         for (kk=1; kk<=cptcovage;kk++) {    }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }    *alocc='\0';
            return s;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  int nbocc(char *s, char occ)
         oldm=newm;  {
            int i,j=0;
            int lg=20;
       } /* end mult */    i=0;
          lg=strlen(s);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    for(i=0; i<= lg; i++) {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    if  (s[i] == occ ) j++;
       ipmx +=1;    }
       sw += weight[i];    return j;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  }
     } /* end of wave */  
   } /* end of individual */  /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*      gives u="abcdef2ghi" and v="j" *\/ */
   return -l;  /*   int i,lg,j,p=0; */
 }  /*   i=0; */
   /*   lg=strlen(t); */
   /*   for(j=0; j<=lg-1; j++) { */
 /*********** Maximum Likelihood Estimation ***************/  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  /*   for(j=0; j<p; j++) { */
   int i,j, iter;  /*     (u[j] = t[j]); */
   double **xi,*delti;  /*   } */
   double fret;  /*      u[p]='\0'; */
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  /*    for(j=0; j<= lg; j++) { */
     for (j=1;j<=npar;j++)  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*   } */
   printf("Powell\n");  /* } */
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   #ifdef _WIN32
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  char * strsep(char **pp, const char *delim)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  {
     char *p, *q;
 }           
     if ((p = *pp) == NULL)
 /**** Computes Hessian and covariance matrix ***/      return 0;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    if ((q = strpbrk (p, delim)) != NULL)
 {    {
   double  **a,**y,*x,pd;      *pp = q + 1;
   double **hess;      *q = '\0';
   int i, j,jk;    }
   int *indx;    else
       *pp = 0;
   double hessii(double p[], double delta, int theta, double delti[]);    return p;
   double hessij(double p[], double delti[], int i, int j);  }
   void lubksb(double **a, int npar, int *indx, double b[]) ;  #endif
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /********************** nrerror ********************/
   hess=matrix(1,npar,1,npar);  
   void nrerror(char error_text[])
   printf("\nCalculation of the hessian matrix. Wait...\n");  {
   for (i=1;i<=npar;i++){    fprintf(stderr,"ERREUR ...\n");
     printf("%d",i);fflush(stdout);    fprintf(stderr,"%s\n",error_text);
     hess[i][i]=hessii(p,ftolhess,i,delti);    exit(EXIT_FAILURE);
     /*printf(" %f ",p[i]);*/  }
     /*printf(" %lf ",hess[i][i]);*/  /*********************** vector *******************/
   }  double *vector(int nl, int nh)
    {
   for (i=1;i<=npar;i++) {    double *v;
     for (j=1;j<=npar;j++)  {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       if (j>i) {    if (!v) nrerror("allocation failure in vector");
         printf(".%d%d",i,j);fflush(stdout);    return v-nl+NR_END;
         hess[i][j]=hessij(p,delti,i,j);  }
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  /************************ free vector ******************/
       }  void free_vector(double*v, int nl, int nh)
     }  {
   }    free((FREE_ARG)(v+nl-NR_END));
   printf("\n");  }
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /************************ivector *******************************/
    int *ivector(long nl,long nh)
   a=matrix(1,npar,1,npar);  {
   y=matrix(1,npar,1,npar);    int *v;
   x=vector(1,npar);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   indx=ivector(1,npar);    if (!v) nrerror("allocation failure in ivector");
   for (i=1;i<=npar;i++)    return v-nl+NR_END;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /******************free ivector **************************/
   for (j=1;j<=npar;j++) {  void free_ivector(int *v, long nl, long nh)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    free((FREE_ARG)(v+nl-NR_END));
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
   }  {
     long *v;
   printf("\n#Hessian matrix#\n");    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   for (i=1;i<=npar;i++) {    if (!v) nrerror("allocation failure in ivector");
     for (j=1;j<=npar;j++) {    return v-nl+NR_END;
       printf("%.3e ",hess[i][j]);  }
     }  
     printf("\n");  /******************free lvector **************************/
   }  void free_lvector(long *v, long nl, long nh)
   {
   /* Recompute Inverse */    free((FREE_ARG)(v+nl-NR_END));
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
   /*  printf("\n#Hessian matrix recomputed#\n");       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
   for (j=1;j<=npar;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     for (i=1;i<=npar;i++) x[i]=0;    int **m; 
     x[j]=1;    
     lubksb(a,npar,indx,x);    /* allocate pointers to rows */ 
     for (i=1;i<=npar;i++){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       y[i][j]=x[i];    if (!m) nrerror("allocation failure 1 in matrix()"); 
       printf("%.3e ",y[i][j]);    m += NR_END; 
     }    m -= nrl; 
     printf("\n");    
   }    
   */    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   free_matrix(a,1,npar,1,npar);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   free_matrix(y,1,npar,1,npar);    m[nrl] += NR_END; 
   free_vector(x,1,npar);    m[nrl] -= ncl; 
   free_ivector(indx,1,npar);    
   free_matrix(hess,1,npar,1,npar);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
     /* return pointer to array of pointers to rows */ 
 }    return m; 
   } 
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  /****************** free_imatrix *************************/
 {  void free_imatrix(m,nrl,nrh,ncl,nch)
   int i;        int **m;
   int l=1, lmax=20;        long nch,ncl,nrh,nrl; 
   double k1,k2;       /* free an int matrix allocated by imatrix() */ 
   double p2[NPARMAX+1];  { 
   double res;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    free((FREE_ARG) (m+nrl-NR_END)); 
   double fx;  } 
   int k=0,kmax=10;  
   double l1;  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   fx=func(x);  {
   for (i=1;i<=npar;i++) p2[i]=x[i];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for(l=0 ; l <=lmax; l++){    double **m;
     l1=pow(10,l);  
     delts=delt;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(k=1 ; k <kmax; k=k+1){    if (!m) nrerror("allocation failure 1 in matrix()");
       delt = delta*(l1*k);    m += NR_END;
       p2[theta]=x[theta] +delt;    m -= nrl;
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       k2=func(p2)-fx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       /*res= (k1-2.0*fx+k2)/delt/delt; */    m[nrl] += NR_END;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    m[nrl] -= ncl;
        
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    return m;
 #endif    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
         k=kmax;     */
       }  }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  {
         delts=delt;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
     }  }
   }  
   delti[theta]=delts;  /******************* ma3x *******************************/
   return res;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    {
 }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i;    if (!m) nrerror("allocation failure 1 in matrix()");
   int l=1, l1, lmax=20;    m += NR_END;
   double k1,k2,k3,k4,res,fx;    m -= nrl;
   double p2[NPARMAX+1];  
   int k;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   fx=func(x);    m[nrl] += NR_END;
   for (k=1; k<=2; k++) {    m[nrl] -= ncl;
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     p2[thetai]=x[thetai]+delti[thetai]/k;    m[nrl][ncl] += NR_END;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    m[nrl][ncl] -= nll;
     k2=func(p2)-fx;    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
     p2[thetai]=x[thetai]-delti[thetai]/k;    
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (i=nrl+1; i<=nrh; i++) {
     k3=func(p2)-fx;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
        for (j=ncl+1; j<=nch; j++) 
     p2[thetai]=x[thetai]-delti[thetai]/k;        m[i][j]=m[i][j-1]+nlay;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k4=func(p2)-fx;    return m; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 #ifdef DEBUG             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    */
 #endif  }
   }  
   return res;  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /************** Inverse of matrix **************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 void ludcmp(double **a, int n, int *indx, double *d)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   int i,imax,j,k;  }
   double big,dum,sum,temp;  
   double *vv;  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
   vv=vector(1,n);  {
   *d=1.0;    /* Caution optionfilefiname is hidden */
   for (i=1;i<=n;i++) {    strcpy(tmpout,optionfilefiname);
     big=0.0;    strcat(tmpout,"/"); /* Add to the right */
     for (j=1;j<=n;j++)    strcat(tmpout,fileres);
       if ((temp=fabs(a[i][j])) > big) big=temp;    return tmpout;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  }
     vv[i]=1.0/big;  
   }  /*************** function subdirf2 ***********/
   for (j=1;j<=n;j++) {  char *subdirf2(char fileres[], char *preop)
     for (i=1;i<j;i++) {  {
       sum=a[i][j];    
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    /* Caution optionfilefiname is hidden */
       a[i][j]=sum;    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     big=0.0;    strcat(tmpout,preop);
     for (i=j;i<=n;i++) {    strcat(tmpout,fileres);
       sum=a[i][j];    return tmpout;
       for (k=1;k<j;k++)  }
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /*************** function subdirf3 ***********/
       if ( (dum=vv[i]*fabs(sum)) >= big) {  char *subdirf3(char fileres[], char *preop, char *preop2)
         big=dum;  {
         imax=i;    
       }    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     if (j != imax) {    strcat(tmpout,"/");
       for (k=1;k<=n;k++) {    strcat(tmpout,preop);
         dum=a[imax][k];    strcat(tmpout,preop2);
         a[imax][k]=a[j][k];    strcat(tmpout,fileres);
         a[j][k]=dum;    return tmpout;
       }  }
       *d = -(*d);  
       vv[imax]=vv[j];  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
     indx[j]=imax;    long sec_left, days, hours, minutes;
     if (a[j][j] == 0.0) a[j][j]=TINY;    days = (time_sec) / (60*60*24);
     if (j != n) {    sec_left = (time_sec) % (60*60*24);
       dum=1.0/(a[j][j]);    hours = (sec_left) / (60*60) ;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    sec_left = (sec_left) %(60*60);
     }    minutes = (sec_left) /60;
   }    sec_left = (sec_left) % (60);
   free_vector(vv,1,n);  /* Doesn't work */    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 ;    return ascdiff;
 }  }
   
 void lubksb(double **a, int n, int *indx, double b[])  /***************** f1dim *************************/
 {  extern int ncom; 
   int i,ii=0,ip,j;  extern double *pcom,*xicom;
   double sum;  extern double (*nrfunc)(double []); 
     
   for (i=1;i<=n;i++) {  double f1dim(double x) 
     ip=indx[i];  { 
     sum=b[ip];    int j; 
     b[ip]=b[i];    double f;
     if (ii)    double *xt; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];   
     else if (sum) ii=i;    xt=vector(1,ncom); 
     b[i]=sum;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   }    f=(*nrfunc)(xt); 
   for (i=n;i>=1;i--) {    free_vector(xt,1,ncom); 
     sum=b[i];    return f; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  } 
     b[i]=sum/a[i][i];  
   }  /*****************brent *************************/
 }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
 /************ Frequencies ********************/    int iter; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double a,b,d,etemp;
 {  /* Some frequencies */    double fu=0,fv,fw,fx;
      double ftemp=0.;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double ***freq; /* Frequencies */    double e=0.0; 
   double *pp;   
   double pos, k2, dateintsum=0,k2cpt=0;    a=(ax < cx ? ax : cx); 
   FILE *ficresp;    b=(ax > cx ? ax : cx); 
   char fileresp[FILENAMELENGTH];    x=w=v=bx; 
      fw=fv=fx=(*f)(x); 
   pp=vector(1,nlstate);    for (iter=1;iter<=ITMAX;iter++) { 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      xm=0.5*(a+b); 
   strcpy(fileresp,"p");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   strcat(fileresp,fileres);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   if((ficresp=fopen(fileresp,"w"))==NULL) {      printf(".");fflush(stdout);
     printf("Problem with prevalence resultfile: %s\n", fileresp);      fprintf(ficlog,".");fflush(ficlog);
     exit(0);  #ifdef DEBUGBRENT
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   j1=0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
   j=cptcoveff;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        *xmin=x; 
          return fx; 
   for(k1=1; k1<=j;k1++){      } 
     for(i1=1; i1<=ncodemax[k1];i1++){      ftemp=fu;
       j1++;      if (fabs(e) > tol1) { 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        r=(x-w)*(fx-fv); 
         scanf("%d", i);*/        q=(x-v)*(fx-fw); 
       for (i=-1; i<=nlstate+ndeath; i++)          p=(x-v)*q-(x-w)*r; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          q=2.0*(q-r); 
           for(m=agemin; m <= agemax+3; m++)        if (q > 0.0) p = -p; 
             freq[i][jk][m]=0;        q=fabs(q); 
              etemp=e; 
       dateintsum=0;        e=d; 
       k2cpt=0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (i=1; i<=imx; i++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         bool=1;        else { 
         if  (cptcovn>0) {          d=p/q; 
           for (z1=1; z1<=cptcoveff; z1++)          u=x+d; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          if (u-a < tol2 || b-u < tol2) 
               bool=0;            d=SIGN(tol1,xm-x); 
         }        } 
         if (bool==1) {      } else { 
           for(m=firstpass; m<=lastpass; m++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             k2=anint[m][i]+(mint[m][i]/12.);      } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;      fu=(*f)(u); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      if (fu <= fx) { 
               if (m<lastpass) {        if (u >= x) a=x; else b=x; 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        SHFT(v,w,x,u) 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          SHFT(fv,fw,fx,fu) 
               }          } else { 
                          if (u < x) a=u; else b=u; 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            if (fu <= fw || w == x) { 
                 dateintsum=dateintsum+k2;              v=w; 
                 k2cpt++;              w=u; 
               }              fv=fw; 
             }              fw=fu; 
           }            } else if (fu <= fv || v == x || v == w) { 
         }              v=u; 
       }              fv=fu; 
                    } 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          } 
     } 
       if  (cptcovn>0) {    nrerror("Too many iterations in brent"); 
         fprintf(ficresp, "\n#********** Variable ");    *xmin=x; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    return fx; 
         fprintf(ficresp, "**********\n#");  } 
       }  
       for(i=1; i<=nlstate;i++)  /****************** mnbrak ***********************/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                    double (*func)(double)) 
       for(i=(int)agemin; i <= (int)agemax+3; i++){  { 
         if(i==(int)agemax+3)    double ulim,u,r,q, dum;
           printf("Total");    double fu; 
         else   
           printf("Age %d", i);    *fa=(*func)(*ax); 
         for(jk=1; jk <=nlstate ; jk++){    *fb=(*func)(*bx); 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    if (*fb > *fa) { 
             pp[jk] += freq[jk][m][i];      SHFT(dum,*ax,*bx,dum) 
         }        SHFT(dum,*fb,*fa,dum) 
         for(jk=1; jk <=nlstate ; jk++){        } 
           for(m=-1, pos=0; m <=0 ; m++)    *cx=(*bx)+GOLD*(*bx-*ax); 
             pos += freq[jk][m][i];    *fc=(*func)(*cx); 
           if(pp[jk]>=1.e-10)    while (*fb > *fc) { /* Declining fa, fb, fc */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      r=(*bx-*ax)*(*fb-*fc); 
           else      q=(*bx-*cx)*(*fb-*fa); 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
         for(jk=1; jk <=nlstate ; jk++){      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        fu=(*func)(u); 
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }        /* f(x)=A(x-u)**2+f(u) */
         double A, fparabu; 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           pos += pp[jk];        fparabu= *fa - A*(*ax-u)*(*ax-u);
         for(jk=1; jk <=nlstate ; jk++){        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           if(pos>=1.e-5)        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  #endif 
           else      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        fu=(*func)(u); 
           if( i <= (int) agemax){        if (fu < *fc) { 
             if(pos>=1.e-5){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            SHFT(*fb,*fc,fu,(*func)(u)) 
               probs[i][jk][j1]= pp[jk]/pos;            } 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
             }        u=ulim; 
             else        fu=(*func)(u); 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      } else { 
           }        u=(*cx)+GOLD*(*cx-*bx); 
         }        fu=(*func)(u); 
              } 
         for(jk=-1; jk <=nlstate+ndeath; jk++)      SHFT(*ax,*bx,*cx,u) 
           for(m=-1; m <=nlstate+ndeath; m++)        SHFT(*fa,*fb,*fc,fu) 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        } 
         if(i <= (int) agemax)  } 
           fprintf(ficresp,"\n");  
         printf("\n");  /*************** linmin ************************/
       }  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
     }  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   }  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   dateintmean=dateintsum/k2cpt;  the value of func at the returned location p . This is actually all accomplished by calling the
    routines mnbrak and brent .*/
   fclose(ficresp);  int ncom; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  double *pcom,*xicom;
   free_vector(pp,1,nlstate);  double (*nrfunc)(double []); 
     
   /* End of Freq */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 }  { 
     double brent(double ax, double bx, double cx, 
 /************ Prevalence ********************/                 double (*f)(double), double tol, double *xmin); 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    double f1dim(double x); 
 {  /* Some frequencies */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    int j; 
   double ***freq; /* Frequencies */    double xx,xmin,bx,ax; 
   double *pp;    double fx,fb,fa;
   double pos, k2;   
     ncom=n; 
   pp=vector(1,nlstate);    pcom=vector(1,n); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    xicom=vector(1,n); 
      nrfunc=func; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for (j=1;j<=n;j++) { 
   j1=0;      pcom[j]=p[j]; 
        xicom[j]=xi[j]; 
   j=cptcoveff;    } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    ax=0.0; 
      xx=1.0; 
   for(k1=1; k1<=j;k1++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
     for(i1=1; i1<=ncodemax[k1];i1++){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
       j1++;  #ifdef DEBUG
          printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (i=-1; i<=nlstate+ndeath; i++)      fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #endif
           for(m=agemin; m <= agemax+3; m++)    for (j=1;j<=n;j++) { 
             freq[i][jk][m]=0;      xi[j] *= xmin; 
            p[j] += xi[j]; 
       for (i=1; i<=imx; i++) {    } 
         bool=1;    free_vector(xicom,1,n); 
         if  (cptcovn>0) {    free_vector(pcom,1,n); 
           for (z1=1; z1<=cptcoveff; z1++)  } 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  
         }  /*************** powell ************************/
         if (bool==1) {  /*
           for(m=firstpass; m<=lastpass; m++){  Minimization of a function func of n variables. Input consists of an initial starting point
             k2=anint[m][i]+(mint[m][i]/12.);  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
               if(agev[m][i]==0) agev[m][i]=agemax+1;  such that failure to decrease by more than this amount on one iteration signals doneness. On
               if(agev[m][i]==1) agev[m][i]=agemax+2;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
               if (m<lastpass) {  function value at p , and iter is the number of iterations taken. The routine linmin is used.
                 if (calagedate>0)   */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                 else              double (*func)(double [])) 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  { 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    void linmin(double p[], double xi[], int n, double *fret, 
               }                double (*func)(double [])); 
             }    int i,ibig,j; 
           }    double del,t,*pt,*ptt,*xit;
         }    double fp,fptt;
       }    double *xits;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    int niterf, itmp;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    pt=vector(1,n); 
             pp[jk] += freq[jk][m][i];    ptt=vector(1,n); 
         }    xit=vector(1,n); 
         for(jk=1; jk <=nlstate ; jk++){    xits=vector(1,n); 
           for(m=-1, pos=0; m <=0 ; m++)    *fret=(*func)(p); 
             pos += freq[jk][m][i];    for (j=1;j<=n;j++) pt[j]=p[j]; 
         }      rcurr_time = time(NULL);  
            for (*iter=1;;++(*iter)) { 
         for(jk=1; jk <=nlstate ; jk++){      fp=(*fret); 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      ibig=0; 
             pp[jk] += freq[jk][m][i];      del=0.0; 
         }      rlast_time=rcurr_time;
              /* (void) gettimeofday(&curr_time,&tzp); */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      rcurr_time = time(NULL);  
              curr_time = *localtime(&rcurr_time);
         for(jk=1; jk <=nlstate ; jk++){          printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
           if( i <= (int) agemax){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
             if(pos>=1.e-5){  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
               probs[i][jk][j1]= pp[jk]/pos;     for (i=1;i<=n;i++) {
             }        printf(" %d %.12f",i, p[i]);
           }        fprintf(ficlog," %d %.12lf",i, p[i]);
         }        fprintf(ficrespow," %.12lf", p[i]);
              }
       }      printf("\n");
     }      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
          tml = *localtime(&rcurr_time);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        strcpy(strcurr,asctime(&tml));
   free_vector(pp,1,nlstate);        rforecast_time=rcurr_time; 
          itmp = strlen(strcurr);
 }  /* End of Freq */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 /************* Waves Concatenation ***************/        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(niterf=10;niterf<=30;niterf+=10){
 {          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          forecast_time = *localtime(&rforecast_time);
      Death is a valid wave (if date is known).          strcpy(strfor,asctime(&forecast_time));
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          itmp = strlen(strfor);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          if(strfor[itmp-1]=='\n')
      and mw[mi+1][i]. dh depends on stepm.          strfor[itmp-1]='\0';
      */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   int i, mi, m;        }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      }
      double sum=0., jmean=0.;*/      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int j, k=0,jk, ju, jl;        fptt=(*fret); 
   double sum=0.;  #ifdef DEBUG
   jmin=1e+5;            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   jmax=-1;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   jmean=0.;  #endif
   for(i=1; i<=imx; i++){        printf("%d",i);fflush(stdout);
     mi=0;        fprintf(ficlog,"%d",i);fflush(ficlog);
     m=firstpass;        linmin(p,xit,n,fret,func); 
     while(s[m][i] <= nlstate){        if (fabs(fptt-(*fret)) > del) { 
       if(s[m][i]>=1)          del=fabs(fptt-(*fret)); 
         mw[++mi][i]=m;          ibig=i; 
       if(m >=lastpass)        } 
         break;  #ifdef DEBUG
       else        printf("%d %.12e",i,(*fret));
         m++;        fprintf(ficlog,"%d %.12e",i,(*fret));
     }/* end while */        for (j=1;j<=n;j++) {
     if (s[m][i] > nlstate){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       mi++;     /* Death is another wave */          printf(" x(%d)=%.12e",j,xit[j]);
       /* if(mi==0)  never been interviewed correctly before death */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
          /* Only death is a correct wave */        }
       mw[mi][i]=m;        for(j=1;j<=n;j++) {
     }          printf(" p(%d)=%.12e",j,p[j]);
           fprintf(ficlog," p(%d)=%.12e",j,p[j]);
     wav[i]=mi;        }
     if(mi==0)        printf("\n");
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        fprintf(ficlog,"\n");
   }  #endif
       } /* end i */
   for(i=1; i<=imx; i++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for(mi=1; mi<wav[i];mi++){  #ifdef DEBUG
       if (stepm <=0)        int k[2],l;
         dh[mi][i]=1;        k[0]=1;
       else{        k[1]=-1;
         if (s[mw[mi+1][i]][i] > nlstate) {        printf("Max: %.12e",(*func)(p));
           if (agedc[i] < 2*AGESUP) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for (j=1;j<=n;j++) {
           if(j==0) j=1;  /* Survives at least one month after exam */          printf(" %.12e",p[j]);
           k=k+1;          fprintf(ficlog," %.12e",p[j]);
           if (j >= jmax) jmax=j;        }
           if (j <= jmin) jmin=j;        printf("\n");
           sum=sum+j;        fprintf(ficlog,"\n");
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        for(l=0;l<=1;l++) {
           }          for (j=1;j<=n;j++) {
         }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         else{            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           k=k+1;          }
           if (j >= jmax) jmax=j;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           else if (j <= jmin)jmin=j;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        }
           sum=sum+j;  #endif
         }  
         jk= j/stepm;  
         jl= j -jk*stepm;        free_vector(xit,1,n); 
         ju= j -(jk+1)*stepm;        free_vector(xits,1,n); 
         if(jl <= -ju)        free_vector(ptt,1,n); 
           dh[mi][i]=jk;        free_vector(pt,1,n); 
         else        return; 
           dh[mi][i]=jk+1;      } 
         if(dh[mi][i]==0)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           dh[mi][i]=1; /* At least one step */      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
       }        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
   jmean=sum/k;      } 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      fptt=(*func)(ptt); 
  }      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 /*********** Tricode ****************************/        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 void tricode(int *Tvar, int **nbcode, int imx)        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 {        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
   int Ndum[20],ij=1, k, j, i;        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   int cptcode=0;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   cptcoveff=0;        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
          /* Thus we compare delta(2h) with observed f1-f3 */
   for (k=0; k<19; k++) Ndum[k]=0;        /* or best gain on one ancient line 'del' with total  */
   for (k=1; k<=7; k++) ncodemax[k]=0;        /* gain f1-f2 = f1 - f2 - 'del' with del  */
         /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
       ij=(int)(covar[Tvar[j]][i]);        t= t- del*SQR(fp-fptt);
       Ndum[ij]++;        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
       if (ij > cptcode) cptcode=ij;  #ifdef DEBUG
     }        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     for (i=0; i<=cptcode; i++) {        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       if(Ndum[i]!=0) ncodemax[j]++;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     }        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     ij=1;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   #endif
         if (t < 0.0) { /* Then we use it for last direction */
     for (i=1; i<=ncodemax[j]; i++) {          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
       for (k=0; k<=19; k++) {          for (j=1;j<=n;j++) { 
         if (Ndum[k] != 0) {            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
           nbcode[Tvar[j]][ij]=k;            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
                    }
           ij++;          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         }          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         if (ij > ncodemax[j]) break;  
       }    #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
  for (k=0; k<19; k++) Ndum[k]=0;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
  for (i=1; i<=ncovmodel-2; i++) {          }
       ij=Tvar[i];          printf("\n");
       Ndum[ij]++;          fprintf(ficlog,"\n");
     }  #endif
         } /* end of t negative */
  ij=1;      } /* end if (fptt < fp)  */
  for (i=1; i<=10; i++) {    } 
    if((Ndum[i]!=0) && (i<=ncovcol)){  } 
      Tvaraff[ij]=i;  
      ij++;  /**** Prevalence limit (stable or period prevalence)  ****************/
    }  
  }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    {
     cptcoveff=ij-1;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 }       matrix by transitions matrix until convergence is reached */
     
 /*********** Health Expectancies ****************/    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
 {    double **newm;
   /* Health expectancies */    double agefin, delaymax=50 ; /* Max number of years to converge */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    
   double age, agelim, hf;    for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***p3mat,***varhe;      for (j=1;j<=nlstate+ndeath;j++){
   double **dnewm,**doldm;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;      }
   double **gp, **gm;    
   double ***gradg, ***trgradg;    cov[1]=1.;
   int theta;    
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   xp=vector(1,npar);      newm=savm;
   dnewm=matrix(1,nlstate*2,1,npar);      /* Covariates have to be included here again */
   doldm=matrix(1,nlstate*2,1,nlstate*2);      cov[2]=agefin;
        
   fprintf(ficreseij,"# Health expectancies\n");      for (k=1; k<=cptcovn;k++) {
   fprintf(ficreseij,"# Age");        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for(i=1; i<=nlstate;i++)        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   fprintf(ficreseij,"\n");      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   if(estepm < stepm){      
     printf ("Problem %d lower than %d\n",estepm, stepm);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   else  hstepm=estepm;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   /* We compute the life expectancy from trapezoids spaced every estepm months      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
    * This is mainly to measure the difference between two models: for example      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
    * if stepm=24 months pijx are given only every 2 years and by summing them      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
    * we are calculating an estimate of the Life Expectancy assuming a linear      
    * progression inbetween and thus overestimating or underestimating according      savm=oldm;
    * to the curvature of the survival function. If, for the same date, we      oldm=newm;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      maxmax=0.;
    * to compare the new estimate of Life expectancy with the same linear      for(j=1;j<=nlstate;j++){
    * hypothesis. A more precise result, taking into account a more precise        min=1.;
    * curvature will be obtained if estepm is as small as stepm. */        max=0.;
         for(i=1; i<=nlstate; i++) {
   /* For example we decided to compute the life expectancy with the smallest unit */          sumnew=0;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
      nhstepm is the number of hstepm from age to agelim          prlim[i][j]= newm[i][j]/(1-sumnew);
      nstepm is the number of stepm from age to agelin.          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
      Look at hpijx to understand the reason of that which relies in memory size          max=FMAX(max,prlim[i][j]);
      and note for a fixed period like estepm months */          min=FMIN(min,prlim[i][j]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        }
      survival function given by stepm (the optimization length). Unfortunately it        maxmin=max-min;
      means that if the survival funtion is printed only each two years of age and if        maxmax=FMAX(maxmax,maxmin);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      } /* j loop */
      results. So we changed our mind and took the option of the best precision.      if(maxmax < ftolpl){
   */        return prlim;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      }
     } /* age loop */
   agelim=AGESUP;    return prlim; /* should not reach here */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  /*************** transition probabilities ***************/ 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* According to parameters values stored in x and the covariate's values stored in cov,
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);       computes the probability to be observed in state j being in state i by appying the
     gp=matrix(0,nhstepm,1,nlstate*2);       model to the ncovmodel covariates (including constant and age).
     gm=matrix(0,nhstepm,1,nlstate*2);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
     /* Computed by stepm unit matrices, product of hstepm matrices, stored       ncth covariate in the global vector x is given by the formula:
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);         j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       Outputs ps[i][j] the probability to be observed in j being in j according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     /* Computing Variances of health expectancies */    */
     double s1, lnpijopii;
      for(theta=1; theta <=npar; theta++){    /*double t34;*/
       for(i=1; i<=npar; i++){    int i,j, nc, ii, jj;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }      for(i=1; i<= nlstate; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(j=1; j<i;j++){
            for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       cptj=0;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
       for(j=1; j<= nlstate; j++){            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         for(i=1; i<=nlstate; i++){  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           cptj=cptj+1;          }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }        }
         }        for(j=i+1; j<=nlstate+ndeath;j++){
       }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       for(i=1; i<=npar; i++)  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
              }
       cptj=0;      }
       for(j=1; j<= nlstate; j++){      
         for(i=1;i<=nlstate;i++){      for(i=1; i<= nlstate; i++){
           cptj=cptj+1;        s1=0;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        for(j=1; j<i; j++){
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }        }
       }        for(j=i+1; j<=nlstate+ndeath; j++){
       for(j=1; j<= nlstate*2; j++)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(h=0; h<=nhstepm-1; h++){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        }
         }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
      }        ps[i][i]=1./(s1+1.);
            /* Computing other pijs */
 /* End theta */        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
      for(h=0; h<=nhstepm-1; h++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(j=1; j<=nlstate*2;j++)      } /* end i */
         for(theta=1; theta <=npar; theta++)      
           trgradg[h][j][theta]=gradg[h][theta][j];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
              for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
      for(i=1;i<=nlstate*2;i++)          ps[ii][ii]=1;
       for(j=1;j<=nlstate*2;j++)        }
         varhe[i][j][(int)age] =0.;      }
       
      printf("%d|",(int)age);fflush(stdout);      
      for(h=0;h<=nhstepm-1;h++){      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for(k=0;k<=nhstepm-1;k++){      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      /*   } */
         for(i=1;i<=nlstate*2;i++)      /*   printf("\n "); */
           for(j=1;j<=nlstate*2;j++)      /* } */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      /* printf("\n ");printf("%lf ",cov[2]);*/
       }      /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
            return ps;
     /* Computing expectancies */  }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)  /**************** Product of 2 matrices ******************/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
            {
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         }    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
     fprintf(ficreseij,"%3.0f",age );       a pointer to pointers identical to out */
     cptj=0;    int i, j, k;
     for(i=1; i<=nlstate;i++)    for(i=nrl; i<= nrh; i++)
       for(j=1; j<=nlstate;j++){      for(k=ncolol; k<=ncoloh; k++){
         cptj++;        out[i][k]=0.;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        for(j=ncl; j<=nch; j++)
       }          out[i][k] +=in[i][j]*b[j][k];
     fprintf(ficreseij,"\n");      }
        return out;
     free_matrix(gm,0,nhstepm,1,nlstate*2);  }
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  /************* Higher Matrix Product ***************/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   free_vector(xp,1,npar);  {
   free_matrix(dnewm,1,nlstate*2,1,npar);    /* Computes the transition matrix starting at age 'age' over 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);       'nhstepm*hstepm*stepm' months (i.e. until
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 /************ Variance ******************/       (typically every 2 years instead of every month which is too big 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)       for the memory).
 {       Model is determined by parameters x and covariates have to be 
   /* Variance of health expectancies */       included manually here. 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;       */
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm ;    int i, j, d, h, k;
   int k, cptcode;    double **out, cov[NCOVMAX+1];
   double *xp;    double **newm;
   double **gp, **gm;  
   double ***gradg, ***trgradg;    /* Hstepm could be zero and should return the unit matrix */
   double ***p3mat;    for (i=1;i<=nlstate+ndeath;i++)
   double age,agelim, hf;      for (j=1;j<=nlstate+ndeath;j++){
   int theta;        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      }
   fprintf(ficresvij,"# Age");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(i=1; i<=nlstate;i++)    for(h=1; h <=nhstepm; h++){
     for(j=1; j<=nlstate;j++)      for(d=1; d <=hstepm; d++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        newm=savm;
   fprintf(ficresvij,"\n");        /* Covariates have to be included here again */
         cov[1]=1.;
   xp=vector(1,npar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   dnewm=matrix(1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) 
   doldm=matrix(1,nlstate,1,nlstate);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   if(estepm < stepm){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf ("Problem %d lower than %d\n",estepm, stepm);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
      nhstepm is the number of hstepm from age to agelim        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
      nstepm is the number of stepm from age to agelin.        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
      Look at hpijx to understand the reason of that which relies in memory size                     pmij(pmmij,cov,ncovmodel,x,nlstate));
      and note for a fixed period like k years */        savm=oldm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        oldm=newm;
      survival function given by stepm (the optimization length). Unfortunately it      }
      means that if the survival funtion is printed only each two years of age and if      for(i=1; i<=nlstate+ndeath; i++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for(j=1;j<=nlstate+ndeath;j++) {
      results. So we changed our mind and took the option of the best precision.          po[i][j][h]=newm[i][j];
   */          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        }
   agelim = AGESUP;      /*printf("h=%d ",h);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    } /* end h */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*     printf("\n H=%d \n",h); */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    return po;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  #ifdef NLOPT
     gm=matrix(0,nhstepm,1,nlstate);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     double fret;
     for(theta=1; theta <=npar; theta++){    double *xt;
       for(i=1; i<=npar; i++){ /* Computes gradient */    int j;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    myfunc_data *d2 = (myfunc_data *) pd;
       }  /* xt = (p1-1); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      xt=vector(1,n); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   
       if (popbased==1) {    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
         for(i=1; i<=nlstate;i++)    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
           prlim[i][i]=probs[(int)age][i][ij];    printf("Function = %.12lf ",fret);
       }    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
      printf("\n");
       for(j=1; j<= nlstate; j++){   free_vector(xt,1,n);
         for(h=0; h<=nhstepm; h++){    return fret;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  #endif
         }  
       }  /*************** log-likelihood *************/
      double func( double *x)
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i, ii, j, k, mi, d, kk;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double **out;
      double sw; /* Sum of weights */
       if (popbased==1) {    double lli; /* Individual log likelihood */
         for(i=1; i<=nlstate;i++)    int s1, s2;
           prlim[i][i]=probs[(int)age][i][ij];    double bbh, survp;
       }    long ipmx;
     /*extern weight */
       for(j=1; j<= nlstate; j++){    /* We are differentiating ll according to initial status */
         for(h=0; h<=nhstepm; h++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      printf(" %d\n",s[4][i]);
         }    */
       }  
     ++countcallfunc;
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){    cov[1]=1.;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     } /* End theta */  
     if(mle==1){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
     for(h=0; h<=nhstepm; h++)           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       for(j=1; j<=nlstate;j++)           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         for(theta=1; theta <=npar; theta++)           to be observed in j being in i according to the model.
           trgradg[h][j][theta]=gradg[h][theta][j];         */
         for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          cov[2+k]=covar[Tvar[k]][i];
     for(i=1;i<=nlstate;i++)        }
       for(j=1;j<=nlstate;j++)        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         vareij[i][j][(int)age] =0.;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
     for(h=0;h<=nhstepm;h++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(k=0;k<=nhstepm;k++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            for (j=1;j<=nlstate+ndeath;j++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(j=1;j<=nlstate;j++)            }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficresvij,"%.0f ",age );              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     fprintf(ficresvij,"\n");            oldm=newm;
     free_matrix(gp,0,nhstepm,1,nlstate);          } /* end mult */
     free_matrix(gm,0,nhstepm,1,nlstate);        
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          /* But now since version 0.9 we anticipate for bias at large stepm.
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   } /* End age */           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
   free_vector(xp,1,npar);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   free_matrix(doldm,1,nlstate,1,npar);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   free_matrix(dnewm,1,nlstate,1,nlstate);           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 /************ Variance of prevlim ******************/           * For stepm > 1 the results are less biased than in previous versions. 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)           */
 {          s1=s[mw[mi][i]][i];
   /* Variance of prevalence limit */          s2=s[mw[mi+1][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          bbh=(double)bh[mi][i]/(double)stepm; 
   double **newm;          /* bias bh is positive if real duration
   double **dnewm,**doldm;           * is higher than the multiple of stepm and negative otherwise.
   int i, j, nhstepm, hstepm;           */
   int k, cptcode;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double *xp;          if( s2 > nlstate){ 
   double *gp, *gm;            /* i.e. if s2 is a death state and if the date of death is known 
   double **gradg, **trgradg;               then the contribution to the likelihood is the probability to 
   double age,agelim;               die between last step unit time and current  step unit time, 
   int theta;               which is also equal to probability to die before dh 
                   minus probability to die before dh-stepm . 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");               In version up to 0.92 likelihood was computed
   fprintf(ficresvpl,"# Age");          as if date of death was unknown. Death was treated as any other
   for(i=1; i<=nlstate;i++)          health state: the date of the interview describes the actual state
       fprintf(ficresvpl," %1d-%1d",i,i);          and not the date of a change in health state. The former idea was
   fprintf(ficresvpl,"\n");          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   xp=vector(1,npar);          introduced the exact date of death then we should have modified
   dnewm=matrix(1,nlstate,1,npar);          the contribution of an exact death to the likelihood. This new
   doldm=matrix(1,nlstate,1,nlstate);          contribution is smaller and very dependent of the step unit
            stepm. It is no more the probability to die between last interview
   hstepm=1*YEARM; /* Every year of age */          and month of death but the probability to survive from last
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          interview up to one month before death multiplied by the
   agelim = AGESUP;          probability to die within a month. Thanks to Chris
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          Jackson for correcting this bug.  Former versions increased
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          mortality artificially. The bad side is that we add another loop
     if (stepm >= YEARM) hstepm=1;          which slows down the processing. The difference can be up to 10%
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          lower mortality.
     gradg=matrix(1,npar,1,nlstate);            */
     gp=vector(1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
     gm=vector(1,nlstate);  
   
     for(theta=1; theta <=npar; theta++){          } else if  (s2==-2) {
       for(i=1; i<=npar; i++){ /* Computes gradient */            for (j=1,survp=0. ; j<=nlstate; j++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }            /*survp += out[s1][j]; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            lli= log(survp);
       for(i=1;i<=nlstate;i++)          }
         gp[i] = prlim[i][i];          
              else if  (s2==-4) { 
       for(i=1; i<=npar; i++) /* Computes gradient */            for (j=3,survp=0. ; j<=nlstate; j++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            lli= log(survp); 
       for(i=1;i<=nlstate;i++)          } 
         gm[i] = prlim[i][i];  
           else if  (s2==-5) { 
       for(i=1;i<=nlstate;i++)            for (j=1,survp=0. ; j<=2; j++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     } /* End theta */            lli= log(survp); 
           } 
     trgradg =matrix(1,nlstate,1,npar);          
           else{
     for(j=1; j<=nlstate;j++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(theta=1; theta <=npar; theta++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         trgradg[j][theta]=gradg[theta][j];          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for(i=1;i<=nlstate;i++)          /*if(lli ==000.0)*/
       varpl[i][(int)age] =0.;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          ipmx +=1;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          sw += weight[i];
     for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        } /* end of wave */
       } /* end of individual */
     fprintf(ficresvpl,"%.0f ",age );    }  else if(mle==2){
     for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficresvpl,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
     free_vector(gp,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_vector(gm,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     free_matrix(gradg,1,npar,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(trgradg,1,nlstate,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   } /* End age */            }
           for(d=0; d<=dh[mi][i]; d++){
   free_vector(xp,1,npar);            newm=savm;
   free_matrix(doldm,1,nlstate,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(dnewm,1,nlstate,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Variance of one-step probabilities  ******************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            savm=oldm;
 {            oldm=newm;
   int i, j, i1, k1, j1, z1;          } /* end mult */
   int k=0,l, cptcode;        
   double **dnewm,**doldm;          s1=s[mw[mi][i]][i];
   double *xp;          s2=s[mw[mi+1][i]][i];
   double *gp, *gm;          bbh=(double)bh[mi][i]/(double)stepm; 
   double **gradg, **trgradg;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double age,agelim, cov[NCOVMAX];          ipmx +=1;
   int theta;          sw += weight[i];
   char fileresprob[FILENAMELENGTH];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char fileresprobcov[FILENAMELENGTH];        } /* end of wave */
   char fileresprobcor[FILENAMELENGTH];      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
   strcpy(fileresprob,"prob");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcat(fileresprob,fileres);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for(mi=1; mi<= wav[i]-1; mi++){
     printf("Problem with resultfile: %s\n", fileresprob);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresprobcov,"probcov");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresprobcov,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprobcov);          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   strcpy(fileresprobcor,"probcor");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcat(fileresprobcor,fileres);            for (kk=1; kk<=cptcovage;kk++) {
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("Problem with resultfile: %s\n", fileresprobcor);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            savm=oldm;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            oldm=newm;
            } /* end mult */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        
   fprintf(ficresprob,"# Age");          s1=s[mw[mi][i]][i];
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficresprobcov,"# Age");          bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficresprobcov,"# Age");          ipmx +=1;
   for(i=1; i<=nlstate;i++)          sw += weight[i];
     for(j=1; j<=(nlstate+ndeath);j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        } /* end of wave */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      } /* end of individual */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     }        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresprob,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresprobcov,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresprobcor,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   xp=vector(1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   cov[1]=1;          for(d=0; d<dh[mi][i]; d++){
   j=cptcoveff;            newm=savm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j1=0;            for (kk=1; kk<=cptcovage;kk++) {
   for(k1=1; k1<=1;k1++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i1=1; i1<=ncodemax[k1];i1++){            }
     j1++;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if  (cptcovn>0) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresprob, "\n#********** Variable ");            savm=oldm;
       fprintf(ficresprobcov, "\n#********** Variable ");            oldm=newm;
       fprintf(ficresprobcor, "\n#********** Variable ");          } /* end mult */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        
       fprintf(ficresprob, "**********\n#");          s1=s[mw[mi][i]][i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          s2=s[mw[mi+1][i]][i];
       fprintf(ficresprobcov, "**********\n#");          if( s2 > nlstate){ 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficresprobcor, "**********\n#");          }else{
     }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
              }
       for (age=bage; age<=fage; age ++){          ipmx +=1;
         cov[2]=age;          sw += weight[i];
         for (k=1; k<=cptcovn;k++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } /* end of individual */
         for (k=1; k<=cptcovprod;k++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         gradg=matrix(1,npar,1,9);        for(mi=1; mi<= wav[i]-1; mi++){
         trgradg=matrix(1,9,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            for (j=1;j<=nlstate+ndeath;j++){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(theta=1; theta <=npar; theta++){            }
           for(i=1; i<=npar; i++)          for(d=0; d<dh[mi][i]; d++){
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            newm=savm;
                      cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
                        cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=0;            }
           for(i=1; i<= (nlstate+ndeath); i++){          
             for(j=1; j<=(nlstate+ndeath);j++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               k=k+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               gp[k]=pmmij[i][j];            savm=oldm;
             }            oldm=newm;
           }          } /* end mult */
                  
           for(i=1; i<=npar; i++)          s1=s[mw[mi][i]][i];
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          s2=s[mw[mi+1][i]][i];
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          ipmx +=1;
           k=0;          sw += weight[i];
           for(i=1; i<=(nlstate+ndeath); i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             for(j=1; j<=(nlstate+ndeath);j++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
               k=k+1;        } /* end of wave */
               gm[k]=pmmij[i][j];      } /* end of individual */
             }    } /* End of if */
           }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
          /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      return -l;
         }  }
   
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  /*************** log-likelihood *************/
           for(theta=1; theta <=npar; theta++)  double funcone( double *x)
             trgradg[j][theta]=gradg[theta][j];  {
            /* Same as likeli but slower because of a lot of printf and if */
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    int i, ii, j, k, mi, d, kk;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
            double **out;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double lli; /* Individual log likelihood */
            double llt;
         k=0;    int s1, s2;
         for(i=1; i<=(nlstate+ndeath); i++){    double bbh, survp;
           for(j=1; j<=(nlstate+ndeath);j++){    /*extern weight */
             k=k+1;    /* We are differentiating ll according to initial status */
             gm[k]=pmmij[i][j];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           }    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
          */
         /*printf("\n%d ",(int)age);    cov[1]=1.;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for(k=1; k<=nlstate; k++) ll[k]=0.;
      }*/  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresprob,"\n%d ",(int)age);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresprobcov,"\n%d ",(int)age);      for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficresprobcor,"\n%d ",(int)age);        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresprob,"%12.3e (%12.3e) ",gm[i],sqrt(doldm[i][j]));            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
           fprintf(ficresprobcov,"%12.3e ",gm[i]);        for(d=0; d<dh[mi][i]; d++){
           fprintf(ficresprobcor,"%12.3e ",gm[i]);          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         i=0;          for (kk=1; kk<=cptcovage;kk++) {
         for (k=1; k<=(nlstate);k++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for (l=1; l<=(nlstate+ndeath);l++){          }
             i=i++;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             for (j=1; j<=i;j++){          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
               fprintf(ficresprobcov," %12.3e",doldm[i][j]);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
               fprintf(ficresprobcor," %12.3e",doldm[i][j]/sqrt(doldm[i][i])/sqrt(doldm[j][j]));          savm=oldm;
             }          oldm=newm;
           }        } /* end mult */
         }        
       }        s1=s[mw[mi][i]][i];
     }        s2=s[mw[mi+1][i]][i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        bbh=(double)bh[mi][i]/(double)stepm; 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        /* bias is positive if real duration
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);         * is higher than the multiple of stepm and negative otherwise.
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);         */
   }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   free_vector(xp,1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
   fclose(ficresprob);        } else if  (s2==-2) {
   fclose(ficresprobcov);          for (j=1,survp=0. ; j<=nlstate; j++) 
   fclose(ficresprobcor);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 }          lli= log(survp);
         }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /******************* Printing html file ***********/        } else if(mle==2){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   int lastpass, int stepm, int weightopt, char model[],\        } else if(mle==3){  /* exponential inter-extrapolation */
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                   char version[], int popforecast, int estepm ,\          lli=log(out[s1][s2]); /* Original formula */
                   double jprev1, double mprev1,double anprev1, \        } else{  /* mle=0 back to 1 */
                   double jprev2, double mprev2,double anprev2){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int jj1, k1, i1, cpt;          /*lli=log(out[s1][s2]); */ /* Original formula */
   FILE *fichtm;        } /* End of if */
   /*char optionfilehtm[FILENAMELENGTH];*/        ipmx +=1;
         sw += weight[i];
   strcpy(optionfilehtm,optionfile);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcat(optionfilehtm,".htm");        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        if(globpr){
     printf("Problem with %s \n",optionfilehtm), exit(0);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   }   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 \n            llt +=ll[k]*gipmx/gsw;
 Total number of observations=%d <br>\n            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          }
 <hr  size=\"2\" color=\"#EC5E5E\">          fprintf(ficresilk," %10.6f\n", -llt);
  <ul><li>Parameter files<br>\n        }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      } /* end of wave */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    if(globpr==0){ /* First time we count the contributions and weights */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      gipmx=ipmx;
  - Life expectancies by age and initial health status (estepm=%2d months):      gsw=sw;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    return -l;
   }
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  /*************** function likelione ***********/
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  {
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    /* This routine should help understanding what is done with 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       the selection of individuals/waves and
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       to check the exact contribution to the likelihood.
        Plotting could be done.
  if(popforecast==1) fprintf(fichtm,"\n     */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    int k;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);    if(*globpri !=0){ /* Just counts and sums, no printings */
  else      strcpy(fileresilk,"ilk"); 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      strcat(fileresilk,fileres);
 fprintf(fichtm," <li>Graphs</li><p>");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
  m=cptcoveff;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
  jj1=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
  for(k1=1; k1<=m;k1++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
    for(i1=1; i1<=ncodemax[k1];i1++){      for(k=1; k<=nlstate; k++) 
      jj1++;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      if (cptcovn > 0) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    *fretone=(*funcone)(p);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    if(*globpri !=0){
      }      fclose(ficresilk);
      /* Pij */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      fflush(fichtm); 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        } 
      /* Quasi-incidences */    return;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){  /*********** Maximum Likelihood Estimation ***************/
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
        }  {
     for(cpt=1; cpt<=nlstate;cpt++) {    int i,j, iter=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double **xi;
 interval) in state (%d): v%s%d%d.png <br>    double fret;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double fretone; /* Only one call to likelihood */
      }    /*  char filerespow[FILENAMELENGTH];*/
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  #ifdef NLOPT
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int creturn;
      }    nlopt_opt opt;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 health expectancies in states (1) and (2): e%s%d.png<br>    double *lb;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    double minf; /* the minimum objective value, upon return */
 fprintf(fichtm,"\n</body>");    double * p1; /* Shifted parameters from 0 instead of 1 */
    }    myfunc_data dinst, *d = &dinst;
  }  #endif
 fclose(fichtm);  
 }  
     xi=matrix(1,npar,1,npar);
 /******************* Gnuplot file **************/    for (i=1;i<=npar;i++)
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   int ng;    strcpy(filerespow,"pow"); 
   strcpy(optionfilegnuplot,optionfilefiname);    strcat(filerespow,fileres);
   strcat(optionfilegnuplot,".gp");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      printf("Problem with resultfile: %s\n", filerespow);
     printf("Problem with file %s",optionfilegnuplot);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 #ifdef windows    for (i=1;i<=nlstate;i++)
     fprintf(ficgp,"cd \"%s\" \n",pathc);      for(j=1;j<=nlstate+ndeath;j++)
 #endif        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 m=pow(2,cptcoveff);    fprintf(ficrespow,"\n");
    #ifdef POWELL
  /* 1eme*/    powell(p,xi,npar,ftol,&iter,&fret,func);
   for (cpt=1; cpt<= nlstate ; cpt ++) {  #endif
    for (k1=1; k1<= m ; k1 ++) {  
   #ifdef NLOPT
 #ifdef windows  #ifdef NEWUOA
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  #else
 #endif    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 #ifdef unix  #endif
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    lb=vector(0,npar-1);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 #endif    nlopt_set_lower_bounds(opt, lb);
     nlopt_set_initial_step1(opt, 0.1);
 for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    d->function = func;
 }    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    nlopt_set_min_objective(opt, myfunc, d);
     for (i=1; i<= nlstate ; i ++) {    nlopt_set_xtol_rel(opt, ftol);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf("nlopt failed! %d\n",creturn); 
 }    }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    else {
      for (i=1; i<= nlstate ; i ++) {      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      iter=1; /* not equal */
 }      }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    nlopt_destroy(opt);
 #ifdef unix  #endif
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    free_matrix(xi,1,npar,1,npar);
 #endif    fclose(ficrespow);
    }    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   }    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   /*2 eme*/    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   
   for (k1=1; k1<= m ; k1 ++) {  }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  /**** Computes Hessian and covariance matrix ***/
      void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for (i=1; i<= nlstate+1 ; i ++) {  {
       k=2*i;    double  **a,**y,*x,pd;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double **hess;
       for (j=1; j<= nlstate+1 ; j ++) {    int i, j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int *indx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for (j=1; j<= nlstate+1 ; j ++) {    double gompertz(double p[]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    hess=matrix(1,npar,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      printf("\nCalculation of the hessian matrix. Wait...\n");
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    for (i=1;i<=npar;i++){
       for (j=1; j<= nlstate+1 ; j ++) {      printf("%d",i);fflush(stdout);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"%d",i);fflush(ficlog);
   else fprintf(ficgp," \%%*lf (\%%*lf)");     
 }         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      
       else fprintf(ficgp,"\" t\"\" w l 0,");      /*  printf(" %f ",p[i]);
     }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   }    }
      
   /*3eme*/    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
   for (k1=1; k1<= m ; k1 ++) {        if (j>i) { 
     for (cpt=1; cpt<= nlstate ; cpt ++) {          printf(".%d%d",i,j);fflush(stdout);
       k=2+nlstate*(2*cpt-2);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          hess[i][j]=hessij(p,delti,i,j,func,npar);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          hess[j][i]=hess[i][j];    
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          /*printf(" %lf ",hess[i][j]);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    printf("\n");
     fprintf(ficlog,"\n");
 */  
       for (i=1; i< nlstate ; i ++) {    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
       }    a=matrix(1,npar,1,npar);
     }    y=matrix(1,npar,1,npar);
   }    x=vector(1,npar);
      indx=ivector(1,npar);
   /* CV preval stat */    for (i=1;i<=npar;i++)
     for (k1=1; k1<= m ; k1 ++) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     for (cpt=1; cpt<nlstate ; cpt ++) {    ludcmp(a,npar,indx,&pd);
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for (j=1;j<=npar;j++) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       for (i=1; i< nlstate ; i ++)      lubksb(a,npar,indx,x);
         fprintf(ficgp,"+$%d",k+i+1);      for (i=1;i<=npar;i++){ 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        matcov[i][j]=x[i];
            }
       l=3+(nlstate+ndeath)*cpt;    }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    printf("\n#Hessian matrix#\n");
         l=3+(nlstate+ndeath)*cpt;    fprintf(ficlog,"\n#Hessian matrix#\n");
         fprintf(ficgp,"+$%d",l+i+1);    for (i=1;i<=npar;i++) { 
       }      for (j=1;j<=npar;j++) { 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          printf("%.3e ",hess[i][j]);
     }        fprintf(ficlog,"%.3e ",hess[i][j]);
   }        }
        printf("\n");
   /* proba elementaires */      fprintf(ficlog,"\n");
    for(i=1,jk=1; i <=nlstate; i++){    }
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {    /* Recompute Inverse */
         for(j=1; j <=ncovmodel; j++){    for (i=1;i<=npar;i++)
              for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    ludcmp(a,npar,indx,&pd);
           jk++;  
           fprintf(ficgp,"\n");    /*  printf("\n#Hessian matrix recomputed#\n");
         }  
       }    for (j=1;j<=npar;j++) {
     }      for (i=1;i<=npar;i++) x[i]=0;
    }      x[j]=1;
       lubksb(a,npar,indx,x);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      for (i=1;i<=npar;i++){ 
      for(jk=1; jk <=m; jk++) {        y[i][j]=x[i];
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        printf("%.3e ",y[i][j]);
        if (ng==2)        fprintf(ficlog,"%.3e ",y[i][j]);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      }
        else      printf("\n");
          fprintf(ficgp,"\nset title \"Probability\"\n");      fprintf(ficlog,"\n");
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    }
        i=1;    */
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;    free_matrix(a,1,npar,1,npar);
          for(k=1; k<=(nlstate+ndeath); k++) {    free_matrix(y,1,npar,1,npar);
            if (k != k2){    free_vector(x,1,npar);
              if(ng==2)    free_ivector(indx,1,npar);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    free_matrix(hess,1,npar,1,npar);
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;  }
              for(j=3; j <=ncovmodel; j++) {  
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*************** hessian matrix ****************/
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
                  ij++;  {
                }    int i;
                else    int l=1, lmax=20;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double k1,k2;
              }    double p2[MAXPARM+1]; /* identical to x */
              fprintf(ficgp,")/(1");    double res;
                  double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
              for(k1=1; k1 <=nlstate; k1++){      double fx;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    int k=0,kmax=10;
                ij=1;    double l1;
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fx=func(x);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (i=1;i<=npar;i++) p2[i]=x[i];
                    ij++;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
                  }      l1=pow(10,l);
                  else      delts=delt;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for(k=1 ; k <kmax; k=k+1){
                }        delt = delta*(l1*k);
                fprintf(ficgp,")");        p2[theta]=x[theta] +delt;
              }        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        p2[theta]=x[theta]-delt;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        k2=func(p2)-fx;
              i=i+ncovmodel;        /*res= (k1-2.0*fx+k2)/delt/delt; */
            }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          }        
        }  #ifdef DEBUGHESS
      }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    fclose(ficgp);  #endif
 }  /* end gnuplot */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
 /*************** Moving average **************/        }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
   int i, cpt, cptcod;        }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for (i=1; i<=nlstate;i++)          delts=delt;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;      }
        }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    delti[theta]=delts;
       for (i=1; i<=nlstate;i++){    return res; 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
           for (cpt=0;cpt<=4;cpt++){  }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  {
         }    int i;
       }    int l=1, lmax=20;
     }    double k1,k2,k3,k4,res,fx;
        double p2[MAXPARM+1];
 }    int k;
   
     fx=func(x);
 /************** Forecasting ******************/    for (k=1; k<=2; k++) {
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int *popage;      k1=func(p2)-fx;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    
   double *popeffectif,*popcount;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double ***p3mat;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   char fileresf[FILENAMELENGTH];      k2=func(p2)-fx;
     
  agelim=AGESUP;      p2[thetai]=x[thetai]-delti[thetai]/k;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
        p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcpy(fileresf,"f");      k4=func(p2)-fx;
   strcat(fileresf,fileres);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  #ifdef DEBUG
     printf("Problem with forecast resultfile: %s\n", fileresf);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   printf("Computing forecasting: result on file '%s' \n", fileresf);  #endif
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    return res;
   }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************** Inverse of matrix **************/
     movingaverage(agedeb, fage, ageminpar, mobaverage);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
     int i,imax,j,k; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double big,dum,sum,temp; 
   if (stepm<=12) stepsize=1;    double *vv; 
     
   agelim=AGESUP;    vv=vector(1,n); 
      *d=1.0; 
   hstepm=1;    for (i=1;i<=n;i++) { 
   hstepm=hstepm/stepm;      big=0.0; 
   yp1=modf(dateintmean,&yp);      for (j=1;j<=n;j++) 
   anprojmean=yp;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   yp2=modf((yp1*12),&yp);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   mprojmean=yp;      vv[i]=1.0/big; 
   yp1=modf((yp2*30.5),&yp);    } 
   jprojmean=yp;    for (j=1;j<=n;j++) { 
   if(jprojmean==0) jprojmean=1;      for (i=1;i<j;i++) { 
   if(mprojmean==0) jprojmean=1;        sum=a[i][j]; 
          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        a[i][j]=sum; 
        } 
   for(cptcov=1;cptcov<=i2;cptcov++){      big=0.0; 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for (i=j;i<=n;i++) { 
       k=k+1;        sum=a[i][j]; 
       fprintf(ficresf,"\n#******");        for (k=1;k<j;k++) 
       for(j=1;j<=cptcoveff;j++) {          sum -= a[i][k]*a[k][j]; 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        a[i][j]=sum; 
       }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       fprintf(ficresf,"******\n");          big=dum; 
       fprintf(ficresf,"# StartingAge FinalAge");          imax=i; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        } 
            } 
            if (j != imax) { 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        for (k=1;k<=n;k++) { 
         fprintf(ficresf,"\n");          dum=a[imax][k]; 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        } 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        *d = -(*d); 
           nhstepm = nhstepm/hstepm;        vv[imax]=vv[j]; 
                } 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      indx[j]=imax; 
           oldm=oldms;savm=savms;      if (a[j][j] == 0.0) a[j][j]=TINY; 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        if (j != n) { 
                dum=1.0/(a[j][j]); 
           for (h=0; h<=nhstepm; h++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
             if (h==(int) (calagedate+YEARM*cpt)) {      } 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    } 
             }    free_vector(vv,1,n);  /* Doesn't work */
             for(j=1; j<=nlstate+ndeath;j++) {  ;
               kk1=0.;kk2=0;  } 
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)  void lubksb(double **a, int n, int *indx, double b[]) 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  { 
                 else {    int i,ii=0,ip,j; 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double sum; 
                 }   
                    for (i=1;i<=n;i++) { 
               }      ip=indx[i]; 
               if (h==(int)(calagedate+12*cpt)){      sum=b[ip]; 
                 fprintf(ficresf," %.3f", kk1);      b[ip]=b[i]; 
                              if (ii) 
               }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
             }      else if (sum) ii=i; 
           }      b[i]=sum; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
         }    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
     }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
            } 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  } 
   
   fclose(ficresf);  void pstamp(FILE *fichier)
 }  {
 /************** Forecasting ******************/    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  }
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  /************ Frequencies ********************/
   int *popage;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  {  /* Some frequencies */
   double *popeffectif,*popcount;    
   double ***p3mat,***tabpop,***tabpopprev;    int i, m, jk, j1, bool, z1,j;
   char filerespop[FILENAMELENGTH];    int first;
     double ***freq; /* Frequencies */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *pp, **prop;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   agelim=AGESUP;    char fileresp[FILENAMELENGTH];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    
      pp=vector(1,nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    prop=matrix(1,nlstate,iagemin,iagemax+3);
      strcpy(fileresp,"p");
      strcat(fileresp,fileres);
   strcpy(filerespop,"pop");    if((ficresp=fopen(fileresp,"w"))==NULL) {
   strcat(filerespop,fileres);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     printf("Problem with forecast resultfile: %s\n", filerespop);      exit(0);
   }    }
   printf("Computing forecasting: result on file '%s' \n", filerespop);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
     j=cptcoveff;
   if (mobilav==1) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    first=1;
   }  
     /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
   if (stepm<=12) stepsize=1;    /*    j1++; */
      for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
   agelim=AGESUP;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            scanf("%d", i);*/
   hstepm=1;        for (i=-5; i<=nlstate+ndeath; i++)  
   hstepm=hstepm/stepm;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
   if (popforecast==1) {              freq[i][jk][m]=0;
     if((ficpop=fopen(popfile,"r"))==NULL) {        
       printf("Problem with population file : %s\n",popfile);exit(0);        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
     popage=ivector(0,AGESUP);            prop[i][m]=0;
     popeffectif=vector(0,AGESUP);        
     popcount=vector(0,AGESUP);        dateintsum=0;
            k2cpt=0;
     i=1;          for (i=1; i<=imx; i++) {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          bool=1;
              if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     imx=i;            for (z1=1; z1<=cptcoveff; z1++)       
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
   }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
                 bool=0;
   for(cptcov=1;cptcov<=i2;cptcov++){                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
       k=k+1;                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
       fprintf(ficrespop,"\n#******");                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
       for(j=1;j<=cptcoveff;j++) {              } 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       }   
       fprintf(ficrespop,"******\n");          if (bool==1){
       fprintf(ficrespop,"# Age");            for(m=firstpass; m<=lastpass; m++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              k2=anint[m][i]+(mint[m][i]/12.);
       if (popforecast==1)  fprintf(ficrespop," [Population]");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                      if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for (cpt=0; cpt<=0;cpt++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                        if (m<lastpass) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           nhstepm = nhstepm/hstepm;                }
                          
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           oldm=oldms;savm=savms;                  dateintsum=dateintsum+k2;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                    k2cpt++;
                        }
           for (h=0; h<=nhstepm; h++){                /*}*/
             if (h==(int) (calagedate+YEARM*cpt)) {            }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }
             }        } /* end i */
             for(j=1; j<=nlstate+ndeath;j++) {         
               kk1=0.;kk2=0;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
               for(i=1; i<=nlstate;i++) {                      pstamp(ficresp);
                 if (mobilav==1)        if  (cptcovn>0) {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          fprintf(ficresp, "\n#********** Variable "); 
                 else {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          fprintf(ficresp, "**********\n#");
                 }          fprintf(ficlog, "\n#********** Variable "); 
               }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               if (h==(int)(calagedate+12*cpt)){          fprintf(ficlog, "**********\n#");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        }
                   /*fprintf(ficrespop," %.3f", kk1);        for(i=1; i<=nlstate;i++) 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
               }        fprintf(ficresp, "\n");
             }        
             for(i=1; i<=nlstate;i++){        for(i=iagemin; i <= iagemax+3; i++){
               kk1=0.;          if(i==iagemax+3){
                 for(j=1; j<=nlstate;j++){            fprintf(ficlog,"Total");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          }else{
                 }            if(first==1){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              first=0;
             }              printf("See log file for details...\n");
             }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            fprintf(ficlog,"Age %d", i);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          }
           }          for(jk=1; jk <=nlstate ; jk++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         }              pp[jk] += freq[jk][m][i]; 
       }          }
            for(jk=1; jk <=nlstate ; jk++){
   /******/            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            if(pp[jk]>=1.e-10){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                if(first==1){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              }
           nhstepm = nhstepm/hstepm;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                      }else{
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(first==1)
           oldm=oldms;savm=savms;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }          for(jk=1; jk <=nlstate ; jk++){
             for(j=1; j<=nlstate+ndeath;j++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               kk1=0.;kk2=0;              pp[jk] += freq[jk][m][i];
               for(i=1; i<=nlstate;i++) {                        }       
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               }            pos += pp[jk];
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            posprop += prop[jk][i];
             }          }
           }          for(jk=1; jk <=nlstate ; jk++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(pos>=1.e-5){
         }              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }            }else{
                if(first==1)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if (popforecast==1) {            }
     free_ivector(popage,0,AGESUP);            if( i <= iagemax){
     free_vector(popeffectif,0,AGESUP);              if(pos>=1.e-5){
     free_vector(popcount,0,AGESUP);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
   fclose(ficrespop);              else
 }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
 /***********************************************/          }
 /**************** Main Program *****************/          
 /***********************************************/          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
 int main(int argc, char *argv[])              if(freq[jk][m][i] !=0 ) {
 {              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double agedeb, agefin,hf;              }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          if(i <= iagemax)
             fprintf(ficresp,"\n");
   double fret;          if(first==1)
   double **xi,tmp,delta;            printf("Others in log...\n");
           fprintf(ficlog,"\n");
   double dum; /* Dummy variable */        }
   double ***p3mat;        /*}*/
   int *indx;    }
   char line[MAXLINE], linepar[MAXLINE];    dateintmean=dateintsum/k2cpt; 
   char title[MAXLINE];   
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    fclose(ficresp);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      free_vector(pp,1,nlstate);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   char filerest[FILENAMELENGTH];  }
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];  /************ Prevalence ********************/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   int firstobs=1, lastobs=10;  {  
   int sdeb, sfin; /* Status at beginning and end */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   int c,  h , cpt,l;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   int ju,jl, mi;       We still use firstpass and lastpass as another selection.
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;   
   int mobilav=0,popforecast=0;    int i, m, jk, j1, bool, z1,j;
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    double **prop;
     double posprop; 
   double bage, fage, age, agelim, agebase;    double  y2; /* in fractional years */
   double ftolpl=FTOL;    int iagemin, iagemax;
   double **prlim;    int first; /** to stop verbosity which is redirected to log file */
   double *severity;  
   double ***param; /* Matrix of parameters */    iagemin= (int) agemin;
   double  *p;    iagemax= (int) agemax;
   double **matcov; /* Matrix of covariance */    /*pp=vector(1,nlstate);*/
   double ***delti3; /* Scale */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double *delti; /* Scale */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double ***eij, ***vareij;    j1=0;
   double **varpl; /* Variances of prevalence limits by age */    
   double *epj, vepp;    /*j=cptcoveff;*/
   double kk1, kk2;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    
      first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";      /*for(i1=1; i1<=ncodemax[k1];i1++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];        j1++;*/
         
         for (i=1; i<=nlstate; i++)  
   char z[1]="c", occ;          for(m=iagemin; m <= iagemax+3; m++)
 #include <sys/time.h>            prop[i][m]=0.0;
 #include <time.h>       
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
   /* long total_usecs;          if  (cptcovn>0) {
   struct timeval start_time, end_time;            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                bool=0;
   getcwd(pathcd, size);          } 
           if (bool==1) { 
   printf("\n%s",version);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   if(argc <=1){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     printf("\nEnter the parameter file name: ");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     scanf("%s",pathtot);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   else{                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     strcpy(pathtot,argv[1]);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   /*cygwin_split_path(pathtot,path,optionfile);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                } 
   /* cutv(path,optionfile,pathtot,'\\');*/              }
             } /* end selection of waves */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        }
   chdir(path);        for(i=iagemin; i <= iagemax+3; i++){  
   replace(pathc,path);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
 /*-------- arguments in the command line --------*/          } 
           
   strcpy(fileres,"r");          for(jk=1; jk <=nlstate ; jk++){     
   strcat(fileres, optionfilefiname);            if( i <=  iagemax){ 
   strcat(fileres,".txt");    /* Other files have txt extension */              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   /*---------arguments file --------*/              } else{
                 if(first==1){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                  first=0;
     printf("Problem with optionfile %s\n",optionfile);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     goto end;                }
   }              }
             } 
   strcpy(filereso,"o");          }/* end jk */ 
   strcat(filereso,fileres);        }/* end i */ 
   if((ficparo=fopen(filereso,"w"))==NULL) {      /*} *//* end i1 */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    } /* end j1 */
   }    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   /* Reads comments: lines beginning with '#' */    /*free_vector(pp,1,nlstate);*/
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     ungetc(c,ficpar);  }  /* End of prevalence */
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************* Waves Concatenation ***************/
     fputs(line,ficparo);  
   }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   ungetc(c,ficpar);  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       Death is a valid wave (if date is known).
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 while((c=getc(ficpar))=='#' && c!= EOF){       and mw[mi+1][i]. dh depends on stepm.
     ungetc(c,ficpar);       */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    int i, mi, m;
     fputs(line,ficparo);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
   ungetc(c,ficpar);    int first;
      int j, k=0,jk, ju, jl;
        double sum=0.;
   covar=matrix(0,NCOVMAX,1,n);    first=0;
   cptcovn=0;    jmin=100000;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    jmax=-1;
     jmean=0.;
   ncovmodel=2+cptcovn;    for(i=1; i<=imx; i++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      mi=0;
        m=firstpass;
   /* Read guess parameters */      while(s[m][i] <= nlstate){
   /* Reads comments: lines beginning with '#' */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   while((c=getc(ficpar))=='#' && c!= EOF){          mw[++mi][i]=m;
     ungetc(c,ficpar);        if(m >=lastpass)
     fgets(line, MAXLINE, ficpar);          break;
     puts(line);        else
     fputs(line,ficparo);          m++;
   }      }/* end while */
   ungetc(c,ficpar);      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        /* if(mi==0)  never been interviewed correctly before death */
     for(i=1; i <=nlstate; i++)           /* Only death is a correct wave */
     for(j=1; j <=nlstate+ndeath-1; j++){        mw[mi][i]=m;
       fscanf(ficpar,"%1d%1d",&i1,&j1);      }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);      wav[i]=mi;
       for(k=1; k<=ncovmodel;k++){      if(mi==0){
         fscanf(ficpar," %lf",&param[i][j][k]);        nbwarn++;
         printf(" %lf",param[i][j][k]);        if(first==0){
         fprintf(ficparo," %lf",param[i][j][k]);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       }          first=1;
       fscanf(ficpar,"\n");        }
       printf("\n");        if(first==1){
       fprintf(ficparo,"\n");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     }        }
        } /* end mi==0 */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    } /* End individuals */
   
   p=param[1][1];    for(i=1; i<=imx; i++){
        for(mi=1; mi<wav[i];mi++){
   /* Reads comments: lines beginning with '#' */        if (stepm <=0)
   while((c=getc(ficpar))=='#' && c!= EOF){          dh[mi][i]=1;
     ungetc(c,ficpar);        else{
     fgets(line, MAXLINE, ficpar);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     puts(line);            if (agedc[i] < 2*AGESUP) {
     fputs(line,ficparo);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   }              if(j==0) j=1;  /* Survives at least one month after exam */
   ungetc(c,ficpar);              else if(j<0){
                 nberr++;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                j=1; /* Temporary Dangerous patch */
   for(i=1; i <=nlstate; i++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for(j=1; j <=nlstate+ndeath-1; j++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       printf("%1d%1d",i,j);              }
       fprintf(ficparo,"%1d%1d",i1,j1);              k=k+1;
       for(k=1; k<=ncovmodel;k++){              if (j >= jmax){
         fscanf(ficpar,"%le",&delti3[i][j][k]);                jmax=j;
         printf(" %le",delti3[i][j][k]);                ijmax=i;
         fprintf(ficparo," %le",delti3[i][j][k]);              }
       }              if (j <= jmin){
       fscanf(ficpar,"\n");                jmin=j;
       printf("\n");                ijmin=i;
       fprintf(ficparo,"\n");              }
     }              sum=sum+j;
   }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   delti=delti3[1][1];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              }
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){          else{
     ungetc(c,ficpar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     fgets(line, MAXLINE, ficpar);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     puts(line);  
     fputs(line,ficparo);            k=k+1;
   }            if (j >= jmax) {
   ungetc(c,ficpar);              jmax=j;
                ijmax=i;
   matcov=matrix(1,npar,1,npar);            }
   for(i=1; i <=npar; i++){            else if (j <= jmin){
     fscanf(ficpar,"%s",&str);              jmin=j;
     printf("%s",str);              ijmin=i;
     fprintf(ficparo,"%s",str);            }
     for(j=1; j <=i; j++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       fscanf(ficpar," %le",&matcov[i][j]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       printf(" %.5le",matcov[i][j]);            if(j<0){
       fprintf(ficparo," %.5le",matcov[i][j]);              nberr++;
     }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fscanf(ficpar,"\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     printf("\n");            }
     fprintf(ficparo,"\n");            sum=sum+j;
   }          }
   for(i=1; i <=npar; i++)          jk= j/stepm;
     for(j=i+1;j<=npar;j++)          jl= j -jk*stepm;
       matcov[i][j]=matcov[j][i];          ju= j -(jk+1)*stepm;
              if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   printf("\n");            if(jl==0){
               dh[mi][i]=jk;
               bh[mi][i]=0;
     /*-------- Rewriting paramater file ----------*/            }else{ /* We want a negative bias in order to only have interpolation ie
      strcpy(rfileres,"r");    /* "Rparameterfile */                    * to avoid the price of an extra matrix product in likelihood */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              dh[mi][i]=jk+1;
      strcat(rfileres,".");    /* */              bh[mi][i]=ju;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            }
     if((ficres =fopen(rfileres,"w"))==NULL) {          }else{
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            if(jl <= -ju){
     }              dh[mi][i]=jk;
     fprintf(ficres,"#%s\n",version);              bh[mi][i]=jl;       /* bias is positive if real duration
                                       * is higher than the multiple of stepm and negative otherwise.
     /*-------- data file ----------*/                                   */
     if((fic=fopen(datafile,"r"))==NULL)    {            }
       printf("Problem with datafile: %s\n", datafile);goto end;            else{
     }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
     n= lastobs;            }
     severity = vector(1,maxwav);            if(dh[mi][i]==0){
     outcome=imatrix(1,maxwav+1,1,n);              dh[mi][i]=1; /* At least one step */
     num=ivector(1,n);              bh[mi][i]=ju; /* At least one step */
     moisnais=vector(1,n);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     annais=vector(1,n);            }
     moisdc=vector(1,n);          } /* end if mle */
     andc=vector(1,n);        }
     agedc=vector(1,n);      } /* end wave */
     cod=ivector(1,n);    }
     weight=vector(1,n);    jmean=sum/k;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     mint=matrix(1,maxwav,1,n);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     anint=matrix(1,maxwav,1,n);   }
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      /*********** Tricode ****************************/
     tab=ivector(1,NCOVMAX);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     ncodemax=ivector(1,8);  {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     i=1;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     while (fgets(line, MAXLINE, fic) != NULL)    {     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       if ((i >= firstobs) && (i <=lastobs)) {     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
             * nbcode[Tvar[j]][1]= 
         for (j=maxwav;j>=1;j--){    */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int modmaxcovj=0; /* Modality max of covariates j */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int cptcode=0; /* Modality max of covariates j */
         }    int modmincovj=0; /* Modality min of covariates j */
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    cptcoveff=0; 
    
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /* Loop on covariates without age and products */
         for (j=ncovcol;j>=1;j--){    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
         }                                 modality of this covariate Vj*/ 
         num[i]=atol(stra);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                              * If product of Vn*Vm, still boolean *:
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
         i=i+1;                                        modality of the nth covariate of individual i. */
       }        if (ij > modmaxcovj)
     }          modmaxcovj=ij; 
     /* printf("ii=%d", ij);        else if (ij < modmincovj) 
        scanf("%d",i);*/          modmincovj=ij; 
   imx=i-1; /* Number of individuals */        if ((ij < -1) && (ij > NCOVMAX)){
           printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   /* for (i=1; i<=imx; i++){          exit(1);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        }else
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     }*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    /*  for (i=1; i<=imx; i++){        /* getting the maximum value of the modality of the covariate
      if (s[4][i]==9)  s[4][i]=-1;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/           female is 1, then modmaxcovj=1.*/
        }
        printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   /* Calculation of the number of parameter from char model*/      cptcode=modmaxcovj;
   Tvar=ivector(1,15);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   Tprod=ivector(1,15);     /*for (i=0; i<=cptcode; i++) {*/
   Tvaraff=ivector(1,15);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
   Tvard=imatrix(1,15,1,2);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
   Tage=ivector(1,15);              if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
              ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   if (strlen(model) >1){        }
     j=0, j1=0, k1=1, k2=1;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     j=nbocc(model,'+');           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     j1=nbocc(model,'*');      } /* Ndum[-1] number of undefined modalities */
     cptcovn=j+1;  
     cptcovprod=j1;      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
          /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     strcpy(modelsav,model);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){         modmincovj=3; modmaxcovj = 7;
       printf("Error. Non available option model=%s ",model);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
       goto end;         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
     }         variables V1_1 and V1_2.
             nbcode[Tvar[j]][ij]=k;
     for(i=(j+1); i>=1;i--){         nbcode[Tvar[j]][1]=0;
       cutv(stra,strb,modelsav,'+');         nbcode[Tvar[j]][2]=1;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);         nbcode[Tvar[j]][3]=2;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      */
       /*scanf("%d",i);*/      ij=1; /* ij is similar to i but can jumps over null modalities */
       if (strchr(strb,'*')) {      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         cutv(strd,strc,strb,'*');        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
         if (strcmp(strc,"age")==0) {          /*recode from 0 */
           cptcovprod--;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
           cutv(strb,stre,strd,'V');            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
           Tvar[i]=atoi(stre);                                       k is a modality. If we have model=V1+V1*sex 
           cptcovage++;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             Tage[cptcovage]=i;            ij++;
             /*printf("stre=%s ", stre);*/          }
         }          if (ij > ncodemax[j]) break; 
         else if (strcmp(strd,"age")==0) {        }  /* end of loop on */
           cptcovprod--;      } /* end of loop on modality */ 
           cutv(strb,stre,strc,'V');    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
           Tvar[i]=atoi(stre);    
           cptcovage++;   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
           Tage[cptcovage]=i;    
         }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
         else {     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
           cutv(strb,stre,strc,'V');     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
           Tvar[i]=ncovcol+k1;     Ndum[ij]++; 
           cutv(strb,strc,strd,'V');   } 
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);   ij=1;
           Tvard[k1][2]=atoi(stre);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
           Tvar[cptcovn+k2]=Tvard[k1][1];     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     if((Ndum[i]!=0) && (i<=ncovcol)){
           for (k=1; k<=lastobs;k++)       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       Tvaraff[ij]=i; /*For printing (unclear) */
           k1++;       ij++;
           k2=k2+2;     }else
         }         Tvaraff[ij]=0;
       }   }
       else {   ij--;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/   cptcoveff=ij; /*Number of total covariates*/
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');  }
       Tvar[i]=atoi(strc);  
       }  
       strcpy(modelsav,stra);    /*********** Health Expectancies ****************/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     }  
 }  {
      /* Health expectancies, no variances */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int i, j, nhstepm, hstepm, h, nstepm;
   printf("cptcovprod=%d ", cptcovprod);    int nhstepma, nstepma; /* Decreasing with age */
   scanf("%d ",i);*/    double age, agelim, hf;
     fclose(fic);    double ***p3mat;
     double eip;
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    pstamp(ficreseij);
       for(i=1;i<=n;i++) weight[i]=1.0;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     }    fprintf(ficreseij,"# Age");
     /*-calculation of age at interview from date of interview and age at death -*/    for(i=1; i<=nlstate;i++){
     agev=matrix(1,maxwav,1,imx);      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
     for (i=1; i<=imx; i++) {      }
       for(m=2; (m<= maxwav); m++) {      fprintf(ficreseij," e%1d. ",i);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    }
          anint[m][i]=9999;    fprintf(ficreseij,"\n");
          s[m][i]=-1;  
        }    
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    if(estepm < stepm){
       }      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
     else  hstepm=estepm;   
     for (i=1; i<=imx; i++)  {    /* We compute the life expectancy from trapezoids spaced every estepm months
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);     * This is mainly to measure the difference between two models: for example
       for(m=1; (m<= maxwav); m++){     * if stepm=24 months pijx are given only every 2 years and by summing them
         if(s[m][i] >0){     * we are calculating an estimate of the Life Expectancy assuming a linear 
           if (s[m][i] >= nlstate+1) {     * progression in between and thus overestimating or underestimating according
             if(agedc[i]>0)     * to the curvature of the survival function. If, for the same date, we 
               if(moisdc[i]!=99 && andc[i]!=9999)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                 agev[m][i]=agedc[i];     * to compare the new estimate of Life expectancy with the same linear 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/     * hypothesis. A more precise result, taking into account a more precise
            else {     * curvature will be obtained if estepm is as small as stepm. */
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    /* For example we decided to compute the life expectancy with the smallest unit */
               agev[m][i]=-1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               }       nhstepm is the number of hstepm from age to agelim 
             }       nstepm is the number of stepm from age to agelin. 
           }       Look at hpijx to understand the reason of that which relies in memory size
           else if(s[m][i] !=9){ /* Should no more exist */       and note for a fixed period like estepm months */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             if(mint[m][i]==99 || anint[m][i]==9999)       survival function given by stepm (the optimization length). Unfortunately it
               agev[m][i]=1;       means that if the survival funtion is printed only each two years of age and if
             else if(agev[m][i] <agemin){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               agemin=agev[m][i];       results. So we changed our mind and took the option of the best precision.
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    */
             }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];    agelim=AGESUP;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /* If stepm=6 months */
             }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             /*agev[m][i]=anint[m][i]-annais[i];*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
             /*   agev[m][i] = age[i]+2*m;*/      
           }  /* nhstepm age range expressed in number of stepm */
           else { /* =9 */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             agev[m][i]=1;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             s[m][i]=-1;    /* if (stepm >= YEARM) hstepm=1;*/
           }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else /*= 0 Unknown */  
           agev[m][i]=1;    for (age=bage; age<=fage; age ++){ 
       }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
     for (i=1; i<=imx; i++)  {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {      /* If stepm=6 months */
           printf("Error: Wrong value in nlstate or ndeath\n");        /* Computed by stepm unit matrices, product of hstepma matrices, stored
           goto end;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         }      
       }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     }      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      
       printf("%d|",(int)age);fflush(stdout);
     free_vector(severity,1,maxwav);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     free_imatrix(outcome,1,maxwav+1,1,n);      
     free_vector(moisnais,1,n);      /* Computing expectancies */
     free_vector(annais,1,n);      for(i=1; i<=nlstate;i++)
     /* free_matrix(mint,1,maxwav,1,n);        for(j=1; j<=nlstate;j++)
        free_matrix(anint,1,maxwav,1,n);*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     free_vector(moisdc,1,n);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     free_vector(andc,1,n);            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      
     wav=ivector(1,imx);          }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      fprintf(ficreseij,"%3.0f",age );
          for(i=1; i<=nlstate;i++){
     /* Concatenates waves */        eip=0;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       Tcode=ivector(1,100);        }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        fprintf(ficreseij,"%9.4f", eip );
       ncodemax[1]=1;      }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      fprintf(ficreseij,"\n");
            
    codtab=imatrix(1,100,1,10);    }
    h=0;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    m=pow(2,cptcoveff);    printf("\n");
      fprintf(ficlog,"\n");
    for(k=1;k<=cptcoveff; k++){    
      for(i=1; i <=(m/pow(2,k));i++){  }
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    /* Covariances of health expectancies eij and of total life expectancies according
          }     to initial status i, ei. .
        }    */
      }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
    }    int nhstepma, nstepma; /* Decreasing with age */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    double age, agelim, hf;
       codtab[1][2]=1;codtab[2][2]=2; */    double ***p3matp, ***p3matm, ***varhe;
    /* for(i=1; i <=m ;i++){    double **dnewm,**doldm;
       for(k=1; k <=cptcovn; k++){    double *xp, *xm;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    double **gp, **gm;
       }    double ***gradg, ***trgradg;
       printf("\n");    int theta;
       }  
       scanf("%d",i);*/    double eip, vip;
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        and prints on file fileres'p'. */    xp=vector(1,npar);
     xm=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
        doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pstamp(ficresstdeij);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresstdeij,"# Age");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for(i=1; i<=nlstate;i++){
            for(j=1; j<=nlstate;j++)
     /* For Powell, parameters are in a vector p[] starting at p[1]        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      fprintf(ficresstdeij," e%1d. ",i);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    }
     fprintf(ficresstdeij,"\n");
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    pstamp(ficrescveij);
     }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
        fprintf(ficrescveij,"# Age");
     /*--------- results files --------------*/    for(i=1; i<=nlstate;i++)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      for(j=1; j<=nlstate;j++){
          cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
    jk=1;          for(j2=1; j2<=nlstate;j2++){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            cptj2= (j2-1)*nlstate+i2;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            if(cptj2 <= cptj)
    for(i=1,jk=1; i <=nlstate; i++){              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
      for(k=1; k <=(nlstate+ndeath); k++){          }
        if (k != i)      }
          {    fprintf(ficrescveij,"\n");
            printf("%d%d ",i,k);    
            fprintf(ficres,"%1d%1d ",i,k);    if(estepm < stepm){
            for(j=1; j <=ncovmodel; j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
              printf("%f ",p[jk]);    }
              fprintf(ficres,"%f ",p[jk]);    else  hstepm=estepm;   
              jk++;    /* We compute the life expectancy from trapezoids spaced every estepm months
            }     * This is mainly to measure the difference between two models: for example
            printf("\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
            fprintf(ficres,"\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
          }     * progression in between and thus overestimating or underestimating according
      }     * to the curvature of the survival function. If, for the same date, we 
    }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
  if(mle==1){     * to compare the new estimate of Life expectancy with the same linear 
     /* Computing hessian and covariance matrix */     * hypothesis. A more precise result, taking into account a more precise
     ftolhess=ftol; /* Usually correct */     * curvature will be obtained if estepm is as small as stepm. */
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     printf("# Scales (for hessian or gradient estimation)\n");       nhstepm is the number of hstepm from age to agelim 
      for(i=1,jk=1; i <=nlstate; i++){       nstepm is the number of stepm from age to agelin. 
       for(j=1; j <=nlstate+ndeath; j++){       Look at hpijx to understand the reason of that which relies in memory size
         if (j!=i) {       and note for a fixed period like estepm months */
           fprintf(ficres,"%1d%1d",i,j);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           printf("%1d%1d",i,j);       survival function given by stepm (the optimization length). Unfortunately it
           for(k=1; k<=ncovmodel;k++){       means that if the survival funtion is printed only each two years of age and if
             printf(" %.5e",delti[jk]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             fprintf(ficres," %.5e",delti[jk]);       results. So we changed our mind and took the option of the best precision.
             jk++;    */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           printf("\n");  
           fprintf(ficres,"\n");    /* If stepm=6 months */
         }    /* nhstepm age range expressed in number of stepm */
       }    agelim=AGESUP;
      }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     k=1;    /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    
     for(i=1;i<=npar;i++){    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*  if (k>nlstate) k=1;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       i1=(i-1)/(ncovmodel*nlstate)+1;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficres,"%3d",i);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       printf("%3d",i);  
       for(j=1; j<=i;j++){    for (age=bage; age<=fage; age ++){ 
         fprintf(ficres," %.5e",matcov[i][j]);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         printf(" %.5e",matcov[i][j]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficres,"\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       printf("\n");  
       k++;      /* If stepm=6 months */
     }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     while((c=getc(ficpar))=='#' && c!= EOF){      
       ungetc(c,ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fgets(line, MAXLINE, ficpar);  
       puts(line);      /* Computing  Variances of health expectancies */
       fputs(line,ficparo);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     }         decrease memory allocation */
     ungetc(c,ficpar);      for(theta=1; theta <=npar; theta++){
     estepm=0;        for(i=1; i<=npar; i++){ 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     if (estepm==0 || estepm < stepm) estepm=stepm;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     if (fage <= 2) {        }
       bage = ageminpar;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       fage = agemaxpar;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     }    
            for(j=1; j<= nlstate; j++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          for(i=1; i<=nlstate; i++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            for(h=0; h<=nhstepm-1; h++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);       
     fputs(line,ficparo);        for(ij=1; ij<= nlstate*nlstate; ij++)
   }          for(h=0; h<=nhstepm-1; h++){
   ungetc(c,ficpar);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
            }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      }/* End theta */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      
            for(h=0; h<=nhstepm-1; h++)
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate*nlstate;j++)
     ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++)
     fgets(line, MAXLINE, ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
     puts(line);      
     fputs(line,ficparo);  
   }       for(ij=1;ij<=nlstate*nlstate;ij++)
   ungetc(c,ficpar);        for(ji=1;ji<=nlstate*nlstate;ji++)
            varhe[ij][ji][(int)age] =0.;
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       printf("%d|",(int)age);fflush(stdout);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);        for(k=0;k<=nhstepm-1;k++){
   fprintf(ficparo,"pop_based=%d\n",popbased);            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   fprintf(ficres,"pop_based=%d\n",popbased);            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
            for(ij=1;ij<=nlstate*nlstate;ij++)
   while((c=getc(ficpar))=='#' && c!= EOF){            for(ji=1;ji<=nlstate*nlstate;ji++)
     ungetc(c,ficpar);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      }
     fputs(line,ficparo);  
   }      /* Computing expectancies */
   ungetc(c,ficpar);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        for(j=1; j<=nlstate;j++)
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficresstdeij,"%3.0f",age );
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++){
   }        eip=0.;
   ungetc(c,ficpar);        vip=0.;
         for(j=1; j<=nlstate;j++){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          eip += eij[i][j][(int)age];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 /*------------ gnuplot -------------*/      }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      fprintf(ficresstdeij,"\n");
    
 /*------------ free_vector  -------------*/      fprintf(ficrescveij,"%3.0f",age );
  chdir(path);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
  free_ivector(wav,1,imx);          cptj= (j-1)*nlstate+i;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for(i2=1; i2<=nlstate;i2++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              for(j2=1; j2<=nlstate;j2++){
  free_ivector(num,1,n);              cptj2= (j2-1)*nlstate+i2;
  free_vector(agedc,1,n);              if(cptj2 <= cptj)
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
  fclose(ficparo);            }
  fclose(ficres);        }
       fprintf(ficrescveij,"\n");
 /*--------- index.htm --------*/     
     }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /*--------------- Prevalence limit --------------*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerespl,"pl");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filerespl,fileres);    printf("\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fprintf(ficlog,"\n");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }    free_vector(xm,1,npar);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    free_vector(xp,1,npar);
   fprintf(ficrespl,"#Prevalence limit\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   fprintf(ficrespl,"#Age ");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   fprintf(ficrespl,"\n");  }
    
   prlim=matrix(1,nlstate,1,nlstate);  /************ Variance ******************/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Variance of health expectancies */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* double **newm;*/
   k=0;    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
   agebase=ageminpar;    
   agelim=agemaxpar;    int movingaverage();
   ftolpl=1.e-10;    double **dnewm,**doldm;
   i1=cptcoveff;    double **dnewmp,**doldmp;
   if (cptcovn < 1){i1=1;}    int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
   for(cptcov=1;cptcov<=i1;cptcov++){    double *xp;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double **gp, **gm;  /* for var eij */
         k=k+1;    double ***gradg, ***trgradg; /*for var eij */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    double **gradgp, **trgradgp; /* for var p point j */
         fprintf(ficrespl,"\n#******");    double *gpp, *gmp; /* for var p point j */
         for(j=1;j<=cptcoveff;j++)    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***p3mat;
         fprintf(ficrespl,"******\n");    double age,agelim, hf;
            double ***mobaverage;
         for (age=agebase; age<=agelim; age++){    int theta;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    char digit[4];
           fprintf(ficrespl,"%.0f",age );    char digitp[25];
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);    char fileresprobmorprev[FILENAMELENGTH];
           fprintf(ficrespl,"\n");  
         }    if(popbased==1){
       }      if(mobilav!=0)
     }        strcpy(digitp,"-populbased-mobilav-");
   fclose(ficrespl);      else strcpy(digitp,"-populbased-nomobil-");
     }
   /*------------- h Pij x at various ages ------------*/    else 
        strcpy(digitp,"-stablbased-");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    if (mobilav!=0) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   printf("Computing pij: result on file '%s' \n", filerespij);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   /*if (stepm<=24) stepsize=2;*/    }
   
   agelim=AGESUP;    strcpy(fileresprobmorprev,"prmorprev"); 
   hstepm=stepsize*YEARM; /* Every year of age */    sprintf(digit,"%-d",ij);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
   k=0;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   for(cptcov=1;cptcov<=i1;cptcov++){    strcat(fileresprobmorprev,fileres);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       k=k+1;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficrespij,"\n#****** ");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficrespij,"******\n");   
            fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    pstamp(ficresprobmorprev);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           oldm=oldms;savm=savms;      fprintf(ficresprobmorprev," p.%-d SE",j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1; i<=nlstate;i++)
           fprintf(ficrespij,"# Age");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           for(i=1; i<=nlstate;i++)    }  
             for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficresprobmorprev,"\n");
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficgp,"\n# Routine varevsij");
           fprintf(ficrespij,"\n");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
            for (h=0; h<=nhstepm; h++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             for(i=1; i<=nlstate;i++)  /*   } */
               for(j=1; j<=nlstate+ndeath;j++)    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    pstamp(ficresvij);
             fprintf(ficrespij,"\n");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
              }    if(popbased==1)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
           fprintf(ficrespij,"\n");    else
         }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     }    fprintf(ficresvij,"# Age");
   }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   fclose(ficrespij);  
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   /*---------- Forecasting ------------------*/    doldm=matrix(1,nlstate,1,nlstate);
   if((stepm == 1) && (strcmp(model,".")==0)){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   else{    gpp=vector(nlstate+1,nlstate+ndeath);
     erreur=108;    gmp=vector(nlstate+1,nlstate+ndeath);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    
      if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   /*---------- Health expectancies and variances ------------*/    }
     else  hstepm=estepm;   
   strcpy(filerest,"t");    /* For example we decided to compute the life expectancy with the smallest unit */
   strcat(filerest,fileres);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if((ficrest=fopen(filerest,"w"))==NULL) {       nhstepm is the number of hstepm from age to agelim 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       nstepm is the number of stepm from age to agelin. 
   }       Look at function hpijx to understand why (it is linked to memory size questions) */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   strcpy(filerese,"e");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcat(filerese,fileres);       results. So we changed our mind and took the option of the best precision.
   if((ficreseij=fopen(filerese,"w"))==NULL) {    */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }    agelim = AGESUP;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  strcpy(fileresv,"v");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(fileresv,fileres);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   k=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       k=k+1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)        if (popbased==1) {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if(mobilav ==0){
       fprintf(ficrest,"******\n");            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficreseij,"\n#****** ");          }else{ /* mobilav */ 
       for(j=1;j<=cptcoveff;j++)            for(i=1; i<=nlstate;i++)
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficreseij,"******\n");          }
         }
       fprintf(ficresvij,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)        for(j=1; j<= nlstate; j++){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(h=0; h<=nhstepm; h++){
       fprintf(ficresvij,"******\n");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
       oldm=oldms;savm=savms;        }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);           as a weighted average of prlim.
       oldm=oldms;savm=savms;        */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        /* end probability of death */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
       epj=vector(1,nlstate+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(age=bage; age <=fage ;age++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   
         if (popbased==1) {        if (popbased==1) {
           for(i=1; i<=nlstate;i++)          if(mobilav ==0){
             prlim[i][i]=probs[(int)age][i][k];            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=probs[(int)age][i][ij];
                  }else{ /* mobilav */ 
         fprintf(ficrest," %4.0f",age);            for(i=1; i<=nlstate;i++)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){              prlim[i][i]=mobaverage[(int)age][i][ij];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           epj[nlstate+1] +=epj[j];          for(h=0; h<=nhstepm; h++){
         }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         for(i=1, vepp=0.;i <=nlstate;i++)          }
           for(j=1;j <=nlstate;j++)        }
             vepp += vareij[i][j][(int)age];        /* This for computing probability of death (h=1 means
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));           computed over hstepm matrices product = hstepm*stepm months) 
         for(j=1;j <=nlstate;j++){           as a weighted average of prlim.
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficrest,"\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
   }        /* end probability of death */
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        for(j=1; j<= nlstate; j++) /* vareij */
     free_vector(weight,1,n);          for(h=0; h<=nhstepm; h++){
   fclose(ficreseij);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   fclose(ficresvij);          }
   fclose(ficrest);  
   fclose(ficpar);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   free_vector(epj,1,nlstate+1);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
   /*------- Variance limit prevalence------*/    
       } /* End theta */
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      for(h=0; h<=nhstepm; h++) /* veij */
     exit(0);        for(j=1; j<=nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            trgradg[h][j][theta]=gradg[h][theta][j];
   
   k=0;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   for(cptcov=1;cptcov<=i1;cptcov++){        for(theta=1; theta <=npar; theta++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          trgradgp[j][theta]=gradgp[theta][j];
       k=k+1;    
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1;i<=nlstate;i++)
       fprintf(ficresvpl,"******\n");        for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] =0.;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;      for(h=0;h<=nhstepm;h++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(k=0;k<=nhstepm;k++){
     }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
  }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   fclose(ficresvpl);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   /*---------- End : free ----------------*/        }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      }
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /* pptj */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          varppt[j][i]=doldmp[j][i];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      /* end ppptj */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   free_matrix(matcov,1,npar,1,npar);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   free_vector(delti,1,npar);   
   free_matrix(agev,1,maxwav,1,imx);      if (popbased==1) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
   if(erreur >0)            prlim[i][i]=probs[(int)age][i][ij];
     printf("End of Imach with error or warning %d\n",erreur);        }else{ /* mobilav */ 
   else   printf("End of Imach\n");          for(i=1; i<=nlstate;i++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      }
   /*printf("Total time was %d uSec.\n", total_usecs);*/               
   /*------ End -----------*/      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
  end:      */
 #ifdef windows      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /* chdir(pathcd);*/        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 #endif          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
  /*system("wgnuplot graph.plt");*/      }    
  /*system("../gp37mgw/wgnuplot graph.plt");*/      /* end probability of death */
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
  strcpy(plotcmd,GNUPLOTPROGRAM);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  strcat(plotcmd," ");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
  strcat(plotcmd,optionfilegnuplot);        for(i=1; i<=nlstate;i++){
  system(plotcmd);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
 #ifdef windows      } 
   while (z[0] != 'q') {      fprintf(ficresprobmorprev,"\n");
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      fprintf(ficresvij,"%.0f ",age );
     scanf("%s",z);      for(i=1; i<=nlstate;i++)
     if (z[0] == 'c') system("./imach");        for(j=1; j<=nlstate;j++){
     else if (z[0] == 'e') system(optionfilehtm);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     else if (z[0] == 'g') system(plotcmd);        }
     else if (z[0] == 'q') exit(0);      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
 #endif      free_matrix(gm,0,nhstepm,1,nlstate);
 }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* #include <gnu/libc-version.h> */ /* Only on gnu */
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(". ");fprintf(ficlog,". ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
   #elif __unix__ // all unices, not all compilers
       // Unix
   #elif __linux__
       // linux
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   #include <stdint.h>
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit."); /* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
     printf(" 64-bit.");/* 64-bit */
   #else
    printf(" wtf-bit."); /* wtf */
   #endif
   
   struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf("GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, "GNU C version %d.\n", __GNUC_VERSION__);
   #endif
   #if defined(_MSC_VER)
      printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);
      fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);
   #endif
      
     /* printf("GNU libc version: %s\n", gnu_get_libc_version()); */
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.46  
changed lines
  Added in v.1.169


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>