Diff for /imach/src/imach.c between versions 1.8 and 1.169

version 1.8, 2001/05/02 17:54:31 version 1.169, 2014/12/22 23:08:31
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.169  2014/12/22 23:08:31  brouard
   individuals from different ages are interviewed on their health status    Summary: 0.98p
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.168  2014/12/22 15:17:42  brouard
   of life states). More degrees you consider, more time is necessary to    Summary: udate
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.167  2014/12/22 13:50:56  brouard
   the probabibility to be observed in state j at the second wave conditional    Summary: Testing uname and compiler version and if compiled 32 or 64
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Testing on Linux 64
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.166  2014/12/22 11:40:47  brouard
     *Covariates have to be included here again* invites you to do it.    *** empty log message ***
   More covariates you add, less is the speed of the convergence.  
     Revision 1.165  2014/12/16 11:20:36  brouard
   The advantage that this computer programme claims, comes from that if the    Summary: After compiling on Visual C
   delay between waves is not identical for each individual, or if some  
   individual missed an interview, the information is not rounded or lost, but    * imach.c (Module): Merging 1.61 to 1.162
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.164  2014/12/16 10:52:11  brouard
   observed in state i at age x+h conditional to the observed state i at age    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    * imach.c (Module): Merging 1.61 to 1.162
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.163  2014/12/16 10:30:11  brouard
   and the contribution of each individual to the likelihood is simply hPijx.    * imach.c (Module): Merging 1.61 to 1.162
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.162  2014/09/25 11:43:39  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: temporary backup 0.99!
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.1  2014/09/16 11:06:58  brouard
            Institut national d'études démographiques, Paris.    Summary: With some code (wrong) for nlopt
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Author:
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.161  2014/09/15 20:41:41  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: Problem with macro SQR on Intel compiler
   **********************************************************************/  
      Revision 1.160  2014/09/02 09:24:05  brouard
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.159  2014/09/01 10:34:10  brouard
 #include <unistd.h>    Summary: WIN32
     Author: Brouard
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.158  2014/08/27 17:11:51  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.157  2014/08/27 16:26:55  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Preparing windows Visual studio version
     Author: Brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
 #define NINTERVMAX 8    just make the differences in raw time format (time(&now).
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Trying to suppress #ifdef LINUX
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add xdg-open for __linux in order to open default browser.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.156  2014/08/25 20:10:10  brouard
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.154  2014/06/20 17:32:08  brouard
 int npar=NPARMAX;    Summary: Outputs now all graphs of convergence to period prevalence
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.153  2014/06/20 16:45:46  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.152  2014/06/18 17:54:09  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.151  2014/06/18 16:43:30  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    *** empty log message ***
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.150  2014/06/18 16:42:35  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    Author: brouard
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.149  2014/06/18 15:51:14  brouard
   char filerese[FILENAMELENGTH];    Summary: Some fixes in parameter files errors
  FILE  *ficresvij;    Author: Nicolas Brouard
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.148  2014/06/17 17:38:48  brouard
   char fileresvpl[FILENAMELENGTH];    Summary: Nothing new
     Author: Brouard
 #define NR_END 1  
 #define FREE_ARG char*    Just a new packaging for OS/X version 0.98nS
 #define FTOL 1.0e-10  
     Revision 1.147  2014/06/16 10:33:11  brouard
 #define NRANSI    *** empty log message ***
 #define ITMAX 200  
     Revision 1.146  2014/06/16 10:20:28  brouard
 #define TOL 2.0e-4    Summary: Merge
     Author: Brouard
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Merge, before building revised version.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.145  2014/06/10 21:23:15  brouard
 #define GOLD 1.618034    Summary: Debugging with valgrind
 #define GLIMIT 100.0    Author: Nicolas Brouard
 #define TINY 1.0e-20  
     Lot of changes in order to output the results with some covariates
 static double maxarg1,maxarg2;    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    improve the code.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    No more memory valgrind error but a lot has to be done in order to
      continue the work of splitting the code into subroutines.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Also, decodemodel has been improved. Tricode is still not
 #define rint(a) floor(a+0.5)    optimal. nbcode should be improved. Documentation has been added in
     the source code.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.143  2014/01/26 09:45:38  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
 int imx;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int stepm;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.142  2014/01/26 03:57:36  brouard
 int m,nb;    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 double **pmmij;  
     Revision 1.141  2014/01/26 02:42:01  brouard
 double *weight;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.140  2011/09/02 10:37:54  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Summary: times.h is ok with mingw32 now.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.139  2010/06/14 07:50:17  brouard
 double ftolhess; /* Tolerance for computing hessian */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name )    Revision 1.138  2010/04/30 18:19:40  brouard
 {    *** empty log message ***
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
    l1 = strlen( path );                 /* length of path */    than V1+V2. A lot of change to be done. Unstable.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.136  2010/04/26 20:30:53  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): merging some libgsl code. Fixing computation
 #if     defined(__bsd__)                /* get current working directory */    of likelione (using inter/intrapolation if mle = 0) in order to
       extern char       *getwd( );    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.135  2009/10/29 15:33:14  brouard
       extern char       *getcwd( );    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.134  2009/10/29 13:18:53  brouard
 #endif    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.133  2009/07/06 10:21:25  brouard
       strcpy( name, path );             /* we've got it */    just nforces
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.132  2009/07/06 08:22:05  brouard
       l2 = strlen( s );                 /* length of filename */    Many tings
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.131  2009/06/20 16:22:47  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Some dimensions resccaled
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.130  2009/05/26 06:44:34  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Max Covariate is now set to 20 instead of 8. A
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    lot of cleaning with variables initialized to 0. Trying to make
    return( 0 );                         /* we're done */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 }  
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 /******************************************/  
     Revision 1.128  2006/06/30 13:02:05  brouard
 void replace(char *s, char*t)    (Module): Clarifications on computing e.j
 {  
   int i;    Revision 1.127  2006/04/28 18:11:50  brouard
   int lg=20;    (Module): Yes the sum of survivors was wrong since
   i=0;    imach-114 because nhstepm was no more computed in the age
   lg=strlen(t);    loop. Now we define nhstepma in the age loop.
   for(i=0; i<= lg; i++) {    (Module): In order to speed up (in case of numerous covariates) we
     (s[i] = t[i]);    compute health expectancies (without variances) in a first step
     if (t[i]== '\\') s[i]='/';    and then all the health expectancies with variances or standard
   }    deviation (needs data from the Hessian matrices) which slows the
 }    computation.
     In the future we should be able to stop the program is only health
 int nbocc(char *s, char occ)    expectancies and graph are needed without standard deviations.
 {  
   int i,j=0;    Revision 1.126  2006/04/28 17:23:28  brouard
   int lg=20;    (Module): Yes the sum of survivors was wrong since
   i=0;    imach-114 because nhstepm was no more computed in the age
   lg=strlen(s);    loop. Now we define nhstepma in the age loop.
   for(i=0; i<= lg; i++) {    Version 0.98h
   if  (s[i] == occ ) j++;  
   }    Revision 1.125  2006/04/04 15:20:31  lievre
   return j;    Errors in calculation of health expectancies. Age was not initialized.
 }    Forecasting file added.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.124  2006/03/22 17:13:53  lievre
 {    Parameters are printed with %lf instead of %f (more numbers after the comma).
   int i,lg,j,p=0;    The log-likelihood is printed in the log file
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.123  2006/03/20 10:52:43  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    * imach.c (Module): <title> changed, corresponds to .htm file
   }    name. <head> headers where missing.
   
   lg=strlen(t);    * imach.c (Module): Weights can have a decimal point as for
   for(j=0; j<p; j++) {    English (a comma might work with a correct LC_NUMERIC environment,
     (u[j] = t[j]);    otherwise the weight is truncated).
   }    Modification of warning when the covariates values are not 0 or
      u[p]='\0';    1.
     Version 0.98g
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.122  2006/03/20 09:45:41  brouard
   }    (Module): Weights can have a decimal point as for
 }    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 /********************** nrerror ********************/    Modification of warning when the covariates values are not 0 or
     1.
 void nrerror(char error_text[])    Version 0.98g
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.121  2006/03/16 17:45:01  lievre
   fprintf(stderr,"%s\n",error_text);    * imach.c (Module): Comments concerning covariates added
   exit(1);  
 }    * imach.c (Module): refinements in the computation of lli if
 /*********************** vector *******************/    status=-2 in order to have more reliable computation if stepm is
 double *vector(int nl, int nh)    not 1 month. Version 0.98f
 {  
   double *v;    Revision 1.120  2006/03/16 15:10:38  lievre
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): refinements in the computation of lli if
   if (!v) nrerror("allocation failure in vector");    status=-2 in order to have more reliable computation if stepm is
   return v-nl+NR_END;    not 1 month. Version 0.98f
 }  
     Revision 1.119  2006/03/15 17:42:26  brouard
 /************************ free vector ******************/    (Module): Bug if status = -2, the loglikelihood was
 void free_vector(double*v, int nl, int nh)    computed as likelihood omitting the logarithm. Version O.98e
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.118  2006/03/14 18:20:07  brouard
 }    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 /************************ivector *******************************/    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int *ivector(long nl,long nh)    (Module): Function pstamp added
 {    (Module): Version 0.98d
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.117  2006/03/14 17:16:22  brouard
   if (!v) nrerror("allocation failure in ivector");    (Module): varevsij Comments added explaining the second
   return v-nl+NR_END;    table of variances if popbased=1 .
 }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 /******************free ivector **************************/    (Module): Version 0.98d
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.116  2006/03/06 10:29:27  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Variance-covariance wrong links and
 }    varian-covariance of ej. is needed (Saito).
   
 /******************* imatrix *******************************/    Revision 1.115  2006/02/27 12:17:45  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): One freematrix added in mlikeli! 0.98c
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.114  2006/02/26 12:57:58  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Some improvements in processing parameter
   int **m;    filename with strsep.
    
   /* allocate pointers to rows */    Revision 1.113  2006/02/24 14:20:24  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): Memory leaks checks with valgrind and:
   if (!m) nrerror("allocation failure 1 in matrix()");    datafile was not closed, some imatrix were not freed and on matrix
   m += NR_END;    allocation too.
   m -= nrl;  
      Revision 1.112  2006/01/30 09:55:26  brouard
      (Module): Back to gnuplot.exe instead of wgnuplot.exe
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.111  2006/01/25 20:38:18  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Lots of cleaning and bugs added (Gompertz)
   m[nrl] += NR_END;    (Module): Comments can be added in data file. Missing date values
   m[nrl] -= ncl;    can be a simple dot '.'.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.109  2006/01/24 19:37:15  brouard
 }    (Module): Comments (lines starting with a #) are allowed in data.
   
 /****************** free_imatrix *************************/    Revision 1.108  2006/01/19 18:05:42  lievre
 void free_imatrix(m,nrl,nrh,ncl,nch)    Gnuplot problem appeared...
       int **m;    To be fixed
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.107  2006/01/19 16:20:37  brouard
 {    Test existence of gnuplot in imach path
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.106  2006/01/19 13:24:36  brouard
 }    Some cleaning and links added in html output
   
 /******************* matrix *******************************/    Revision 1.105  2006/01/05 20:23:19  lievre
 double **matrix(long nrl, long nrh, long ncl, long nch)    *** empty log message ***
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.104  2005/09/30 16:11:43  lievre
   double **m;    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    that the person is alive, then we can code his/her status as -2
   if (!m) nrerror("allocation failure 1 in matrix()");    (instead of missing=-1 in earlier versions) and his/her
   m += NR_END;    contributions to the likelihood is 1 - Prob of dying from last
   m -= nrl;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.103  2005/09/30 15:54:49  lievre
   m[nrl] += NR_END;    (Module): sump fixed, loop imx fixed, and simplifications.
   m[nrl] -= ncl;  
     Revision 1.102  2004/09/15 17:31:30  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Add the possibility to read data file including tab characters.
   return m;  
 }    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.100  2004/07/12 18:29:06  brouard
 {    Add version for Mac OS X. Just define UNIX in Makefile
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.99  2004/06/05 08:57:40  brouard
 }    *** empty log message ***
   
 /******************* ma3x *******************************/    Revision 1.98  2004/05/16 15:05:56  brouard
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    New version 0.97 . First attempt to estimate force of mortality
 {    directly from the data i.e. without the need of knowing the health
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    state at each age, but using a Gompertz model: log u =a + b*age .
   double ***m;    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    cross-longitudinal survey is different from the mortality estimated
   if (!m) nrerror("allocation failure 1 in matrix()");    from other sources like vital statistic data.
   m += NR_END;  
   m -= nrl;    The same imach parameter file can be used but the option for mle should be -3.
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Agnès, who wrote this part of the code, tried to keep most of the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    former routines in order to include the new code within the former code.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Current limitations:
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    A) Even if you enter covariates, i.e. with the
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   m[nrl][ncl] += NR_END;    B) There is no computation of Life Expectancy nor Life Table.
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Revision 1.97  2004/02/20 13:25:42  lievre
     m[nrl][j]=m[nrl][j-1]+nlay;    Version 0.96d. Population forecasting command line is (temporarily)
      suppressed.
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.96  2003/07/15 15:38:55  brouard
     for (j=ncl+1; j<=nch; j++)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       m[i][j]=m[i][j-1]+nlay;    rewritten within the same printf. Workaround: many printfs.
   }  
   return m;    Revision 1.95  2003/07/08 07:54:34  brouard
 }    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 /*************************free ma3x ************************/    matrix (cov(a12,c31) instead of numbers.
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Just cleaning
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.93  2003/06/25 16:33:55  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /***************** f1dim *************************/    (Module): Version 0.96b
 extern int ncom;  
 extern double *pcom,*xicom;    Revision 1.92  2003/06/25 16:30:45  brouard
 extern double (*nrfunc)(double []);    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
 double f1dim(double x)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   int j;    * imach.c (Repository): Duplicated warning errors corrected.
   double f;    (Repository): Elapsed time after each iteration is now output. It
   double *xt;    helps to forecast when convergence will be reached. Elapsed time
      is stamped in powell.  We created a new html file for the graphs
   xt=vector(1,ncom);    concerning matrix of covariance. It has extension -cov.htm.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.90  2003/06/24 12:34:15  brouard
   free_vector(xt,1,ncom);    (Module): Some bugs corrected for windows. Also, when
   return f;    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 /*****************brent *************************/    Revision 1.89  2003/06/24 12:30:52  brouard
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   int iter;    of the covariance matrix to be input.
   double a,b,d,etemp;  
   double fu,fv,fw,fx;    Revision 1.88  2003/06/23 17:54:56  brouard
   double ftemp;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    Revision 1.87  2003/06/18 12:26:01  brouard
      Version 0.96
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    Revision 1.86  2003/06/17 20:04:08  brouard
   x=w=v=bx;    (Module): Change position of html and gnuplot routines and added
   fw=fv=fx=(*f)(x);    routine fileappend.
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    Revision 1.85  2003/06/17 13:12:43  brouard
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    * imach.c (Repository): Check when date of death was earlier that
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    current date of interview. It may happen when the death was just
     printf(".");fflush(stdout);    prior to the death. In this case, dh was negative and likelihood
 #ifdef DEBUG    was wrong (infinity). We still send an "Error" but patch by
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    assuming that the date of death was just one stepm after the
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    interview.
 #endif    (Repository): Because some people have very long ID (first column)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    we changed int to long in num[] and we added a new lvector for
       *xmin=x;    memory allocation. But we also truncated to 8 characters (left
       return fx;    truncation)
     }    (Repository): No more line truncation errors.
     ftemp=fu;  
     if (fabs(e) > tol1) {    Revision 1.84  2003/06/13 21:44:43  brouard
       r=(x-w)*(fx-fv);    * imach.c (Repository): Replace "freqsummary" at a correct
       q=(x-v)*(fx-fw);    place. It differs from routine "prevalence" which may be called
       p=(x-v)*q-(x-w)*r;    many times. Probs is memory consuming and must be used with
       q=2.0*(q-r);    parcimony.
       if (q > 0.0) p = -p;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       q=fabs(q);  
       etemp=e;    Revision 1.83  2003/06/10 13:39:11  lievre
       e=d;    *** empty log message ***
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.82  2003/06/05 15:57:20  brouard
       else {    Add log in  imach.c and  fullversion number is now printed.
         d=p/q;  
         u=x+d;  */
         if (u-a < tol2 || b-u < tol2)  /*
           d=SIGN(tol1,xm-x);     Interpolated Markov Chain
       }  
     } else {    Short summary of the programme:
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    
     }    This program computes Healthy Life Expectancies from
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     fu=(*f)(u);    first survey ("cross") where individuals from different ages are
     if (fu <= fx) {    interviewed on their health status or degree of disability (in the
       if (u >= x) a=x; else b=x;    case of a health survey which is our main interest) -2- at least a
       SHFT(v,w,x,u)    second wave of interviews ("longitudinal") which measure each change
         SHFT(fv,fw,fx,fu)    (if any) in individual health status.  Health expectancies are
         } else {    computed from the time spent in each health state according to a
           if (u < x) a=u; else b=u;    model. More health states you consider, more time is necessary to reach the
           if (fu <= fw || w == x) {    Maximum Likelihood of the parameters involved in the model.  The
             v=w;    simplest model is the multinomial logistic model where pij is the
             w=u;    probability to be observed in state j at the second wave
             fv=fw;    conditional to be observed in state i at the first wave. Therefore
             fw=fu;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
           } else if (fu <= fv || v == x || v == w) {    'age' is age and 'sex' is a covariate. If you want to have a more
             v=u;    complex model than "constant and age", you should modify the program
             fv=fu;    where the markup *Covariates have to be included here again* invites
           }    you to do it.  More covariates you add, slower the
         }    convergence.
   }  
   nrerror("Too many iterations in brent");    The advantage of this computer programme, compared to a simple
   *xmin=x;    multinomial logistic model, is clear when the delay between waves is not
   return fx;    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /****************** mnbrak ***********************/  
     hPijx is the probability to be observed in state i at age x+h
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    conditional to the observed state i at age x. The delay 'h' can be
             double (*func)(double))    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   double ulim,u,r,q, dum;    semester or year) is modelled as a multinomial logistic.  The hPx
   double fu;    matrix is simply the matrix product of nh*stepm elementary matrices
      and the contribution of each individual to the likelihood is simply
   *fa=(*func)(*ax);    hPijx.
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    Also this programme outputs the covariance matrix of the parameters but also
     SHFT(dum,*ax,*bx,dum)    of the life expectancies. It also computes the period (stable) prevalence. 
       SHFT(dum,*fb,*fa,dum)    
       }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   *cx=(*bx)+GOLD*(*bx-*ax);             Institut national d'études démographiques, Paris.
   *fc=(*func)(*cx);    This software have been partly granted by Euro-REVES, a concerted action
   while (*fb > *fc) {    from the European Union.
     r=(*bx-*ax)*(*fb-*fc);    It is copyrighted identically to a GNU software product, ie programme and
     q=(*bx-*cx)*(*fb-*fa);    software can be distributed freely for non commercial use. Latest version
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    can be accessed at http://euroreves.ined.fr/imach .
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     if ((*bx-u)*(u-*cx) > 0.0) {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {    **********************************************************************/
       fu=(*func)(u);  /*
       if (fu < *fc) {    main
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    read parameterfile
           SHFT(*fb,*fc,fu,(*func)(u))    read datafile
           }    concatwav
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    freqsummary
       u=ulim;    if (mle >= 1)
       fu=(*func)(u);      mlikeli
     } else {    print results files
       u=(*cx)+GOLD*(*cx-*bx);    if mle==1 
       fu=(*func)(u);       computes hessian
     }    read end of parameter file: agemin, agemax, bage, fage, estepm
     SHFT(*ax,*bx,*cx,u)        begin-prev-date,...
       SHFT(*fa,*fb,*fc,fu)    open gnuplot file
       }    open html file
 }    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
      for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 /*************** linmin ************************/                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       freexexit2 possible for memory heap.
 int ncom;  
 double *pcom,*xicom;    h Pij x                         | pij_nom  ficrestpij
 double (*nrfunc)(double []);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
           1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 {  
   double brent(double ax, double bx, double cx,         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
                double (*f)(double), double tol, double *xmin);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   double f1dim(double x);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
               double *fc, double (*func)(double));     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   int j;  
   double xx,xmin,bx,ax;    forecasting if prevfcast==1 prevforecast call prevalence()
   double fx,fb,fa;    health expectancies
      Variance-covariance of DFLE
   ncom=n;    prevalence()
   pcom=vector(1,n);     movingaverage()
   xicom=vector(1,n);    varevsij() 
   nrfunc=func;    if popbased==1 varevsij(,popbased)
   for (j=1;j<=n;j++) {    total life expectancies
     pcom[j]=p[j];    Variance of period (stable) prevalence
     xicom[j]=xi[j];   end
   }  */
   ax=0.0;  
   xx=1.0;  #define POWELL /* Instead of NLOPT */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #include <math.h>
 #ifdef DEBUG  #include <stdio.h>
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #include <stdlib.h>
 #endif  #include <string.h>
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  #ifdef _WIN32
     p[j] += xi[j];  #include <io.h>
   }  #else
   free_vector(xicom,1,n);  #include <unistd.h>
   free_vector(pcom,1,n);  #endif
 }  
   #include <limits.h>
 /*************** powell ************************/  #include <sys/types.h>
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #include <sys/utsname.h>
             double (*func)(double []))  #include <sys/stat.h>
 {  #include <errno.h>
   void linmin(double p[], double xi[], int n, double *fret,  /* extern int errno; */
               double (*func)(double []));  
   int i,ibig,j;  /* #ifdef LINUX */
   double del,t,*pt,*ptt,*xit;  /* #include <time.h> */
   double fp,fptt;  /* #include "timeval.h" */
   double *xits;  /* #else */
   pt=vector(1,n);  /* #include <sys/time.h> */
   ptt=vector(1,n);  /* #endif */
   xit=vector(1,n);  
   xits=vector(1,n);  #include <time.h>
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  #ifdef GSL
   for (*iter=1;;++(*iter)) {  #include <gsl/gsl_errno.h>
     fp=(*fret);  #include <gsl/gsl_multimin.h>
     ibig=0;  #endif
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  #ifdef NLOPT
       printf(" %d %.12f",i, p[i]);  #include <nlopt.h>
     printf("\n");  typedef struct {
     for (i=1;i<=n;i++) {    double (* function)(double [] );
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  } myfunc_data ;
       fptt=(*fret);  #endif
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  /* #include <libintl.h> */
 #endif  /* #define _(String) gettext (String) */
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  #define GNUPLOTPROGRAM "gnuplot"
         ibig=i;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       }  #define FILENAMELENGTH 132
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       for (j=1;j<=n;j++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       }  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  #define NINTERVMAX 8
       printf("\n");  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #endif  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
 #ifdef DEBUG  #define MAXN 20000
       int k[2],l;  #define YEARM 12. /**< Number of months per year */
       k[0]=1;  #define AGESUP 130
       k[1]=-1;  #define AGEBASE 40
       printf("Max: %.12e",(*func)(p));  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       for (j=1;j<=n;j++)  #ifdef _WIN32
         printf(" %.12e",p[j]);  #define DIRSEPARATOR '\\'
       printf("\n");  #define CHARSEPARATOR "\\"
       for(l=0;l<=1;l++) {  #define ODIRSEPARATOR '/'
         for (j=1;j<=n;j++) {  #else
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define DIRSEPARATOR '/'
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define CHARSEPARATOR "/"
         }  #define ODIRSEPARATOR '\\'
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #endif
       }  
 #endif  /* $Id$ */
   /* $State$ */
   
       free_vector(xit,1,n);  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       free_vector(xits,1,n);  char fullversion[]="$Revision$ $Date$"; 
       free_vector(ptt,1,n);  char strstart[80];
       free_vector(pt,1,n);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       return;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     }  int nvar=0, nforce=0; /* Number of variables, number of forces */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     for (j=1;j<=n;j++) {  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       ptt[j]=2.0*p[j]-pt[j];  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       xit[j]=p[j]-pt[j];  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       pt[j]=p[j];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     fptt=(*func)(ptt);  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     if (fptt < fp) {  int cptcov=0; /* Working variable */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int npar=NPARMAX;
       if (t < 0.0) {  int nlstate=2; /* Number of live states */
         linmin(p,xit,n,fret,func);  int ndeath=1; /* Number of dead states */
         for (j=1;j<=n;j++) {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
           xi[j][ibig]=xi[j][n];  int popbased=0;
           xi[j][n]=xit[j];  
         }  int *wav; /* Number of waves for this individuual 0 is possible */
 #ifdef DEBUG  int maxwav=0; /* Maxim number of waves */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
         for(j=1;j<=n;j++)  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
           printf(" %.12e",xit[j]);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         printf("\n");                     to the likelihood and the sum of weights (done by funcone)*/
 #endif  int mle=1, weightopt=0;
       }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int countcallfunc=0;  /* Count the number of calls to func */
 /**** Prevalence limit ****************/  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*FILE *fic ; */ /* Used in readdata only */
      matrix by transitions matrix until convergence is reached */  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
   int i, ii,j,k;  int globpr=0; /* Global variable for printing or not */
   double min, max, maxmin, maxmax,sumnew=0.;  double fretone; /* Only one call to likelihood */
   double **matprod2();  long ipmx=0; /* Number of contributions */
   double **out, cov[NCOVMAX], **pmij();  double sw; /* Sum of weights */
   double **newm;  char filerespow[FILENAMELENGTH];
   double agefin, delaymax=50 ; /* Max number of years to converge */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   for (ii=1;ii<=nlstate+ndeath;ii++)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     for (j=1;j<=nlstate+ndeath;j++){  FILE *ficresprobmorprev;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  FILE *fichtm, *fichtmcov; /* Html File */
     }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
    cov[1]=1.;  FILE *ficresstdeij;
    char fileresstde[FILENAMELENGTH];
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  FILE *ficrescveij;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char filerescve[FILENAMELENGTH];
     newm=savm;  FILE  *ficresvij;
     /* Covariates have to be included here again */  char fileresv[FILENAMELENGTH];
      cov[2]=agefin;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
       for (k=1; k<=cptcovn;k++) {  char title[MAXLINE];
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       for (k=1; k<=cptcovage;k++)  char command[FILENAMELENGTH];
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int  outcmd=0;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  char filelog[FILENAMELENGTH]; /* Log file */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char popfile[FILENAMELENGTH];
   
     savm=oldm;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     oldm=newm;  
     maxmax=0.;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     for(j=1;j<=nlstate;j++){  /* struct timezone tzp; */
       min=1.;  /* extern int gettimeofday(); */
       max=0.;  struct tm tml, *gmtime(), *localtime();
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  extern time_t time();
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  struct tm start_time, end_time, curr_time, last_time, forecast_time;
         max=FMAX(max,prlim[i][j]);  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
         min=FMIN(min,prlim[i][j]);  struct tm tm;
       }  
       maxmin=max-min;  char strcurr[80], strfor[80];
       maxmax=FMAX(maxmax,maxmin);  
     }  char *endptr;
     if(maxmax < ftolpl){  long lval;
       return prlim;  double dval;
     }  
   }  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /*************** transition probabilities **********/  
   #define NRANSI 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #define ITMAX 200 
 {  
   double s1, s2;  #define TOL 2.0e-4 
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
     for(i=1; i<= nlstate; i++){  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define GOLD 1.618034 
         /*s2 += param[i][j][nc]*cov[nc];*/  #define GLIMIT 100.0 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define TINY 1.0e-20 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  static double maxarg1,maxarg2;
       ps[i][j]=s2;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     }    
     for(j=i+1; j<=nlstate+ndeath;j++){  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define rint(a) floor(a+0.5)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /* #define mytinydouble 1.0e-16 */
       }  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
       ps[i][j]=s2;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     }  /* static double dsqrarg; */
   }  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   for(i=1; i<= nlstate; i++){  static double sqrarg;
      s1=0;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     for(j=1; j<i; j++)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       s1+=exp(ps[i][j]);  int agegomp= AGEGOMP;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  int imx; 
     ps[i][i]=1./(s1+1.);  int stepm=1;
     for(j=1; j<i; j++)  /* Stepm, step in month: minimum step interpolation*/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  int estepm;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  int m,nb;
   long *num;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     for(jj=1; jj<= nlstate+ndeath; jj++){  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       ps[ii][jj]=0;  double **pmmij, ***probs;
       ps[ii][ii]=1;  double *ageexmed,*agecens;
     }  double dateintmean=0;
   }  
   double *weight;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  int **s; /* Status */
     for(jj=1; jj<= nlstate+ndeath; jj++){  double *agedc;
      printf("%lf ",ps[ii][jj]);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
    }                    * covar=matrix(0,NCOVMAX,1,n); 
     printf("\n ");                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     }  double  idx; 
     printf("\n ");printf("%lf ",cov[2]);*/  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 /*  int *Ndum; /** Freq of modality (tricode */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   goto end;*/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     return ps;  double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 /**************** Product of 2 matrices ******************/  double ftolhess; /**< Tolerance for computing hessian */
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   /* in, b, out are matrice of pointers which should have been initialized       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      before: only the contents of out is modified. The function returns    */ 
      a pointer to pointers identical to out */    char  *ss;                            /* pointer */
   long i, j, k;    int   l1, l2;                         /* length counters */
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    l1 = strlen(path );                   /* length of path */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         out[i][k] +=in[i][j]*b[j][k];    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
   return out;      strcpy( name, path );               /* we got the fullname name because no directory */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /************* Higher Matrix Product ***************/      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        return( GLOCK_ERROR_GETCWD );
 {      }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      /* got dirc from getcwd*/
      duration (i.e. until      printf(" DIRC = %s \n",dirc);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    } else {                              /* strip direcotry from path */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      ss++;                               /* after this, the filename */
      (typically every 2 years instead of every month which is too big).      l2 = strlen( ss );                  /* length of filename */
      Model is determined by parameters x and covariates have to be      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
      included manually here.      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
      */      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
   int i, j, d, h, k;    }
   double **out, cov[NCOVMAX];    /* We add a separator at the end of dirc if not exists */
   double **newm;    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
   /* Hstepm could be zero and should return the unit matrix */      dirc[l1] =  DIRSEPARATOR;
   for (i=1;i<=nlstate+ndeath;i++)      dirc[l1+1] = 0; 
     for (j=1;j<=nlstate+ndeath;j++){      printf(" DIRC3 = %s \n",dirc);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    }
       po[i][j][0]=(i==j ? 1.0 : 0.0);    ss = strrchr( name, '.' );            /* find last / */
     }    if (ss >0){
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      ss++;
   for(h=1; h <=nhstepm; h++){      strcpy(ext,ss);                     /* save extension */
     for(d=1; d <=hstepm; d++){      l1= strlen( name);
       newm=savm;      l2= strlen(ss)+1;
       /* Covariates have to be included here again */      strncpy( finame, name, l1-l2);
       cov[1]=1.;      finame[l1-l2]= 0;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
 for (k=1; k<=cptcovage;k++)    return( 0 );                          /* we're done */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
    for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /******************************************/
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  void replace_back_to_slash(char *s, char*t)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    int i;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    int lg=0;
       savm=oldm;    i=0;
       oldm=newm;    lg=strlen(t);
     }    for(i=0; i<= lg; i++) {
     for(i=1; i<=nlstate+ndeath; i++)      (s[i] = t[i]);
       for(j=1;j<=nlstate+ndeath;j++) {      if (t[i]== '\\') s[i]='/';
         po[i][j][h]=newm[i][j];    }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  }
          */  
       }  char *trimbb(char *out, char *in)
   } /* end h */  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   return po;    char *s;
 }    s=out;
     while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 /*************** log-likelihood *************/        in++;
 double func( double *x)      }
 {      *out++ = *in++;
   int i, ii, j, k, mi, d, kk;    }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    *out='\0';
   double **out;    return s;
   double sw; /* Sum of weights */  }
   double lli; /* Individual log likelihood */  
   long ipmx;  char *cutl(char *blocc, char *alocc, char *in, char occ)
   /*extern weight */  {
   /* We are differentiating ll according to initial status */    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   /*for(i=1;i<imx;i++)       gives blocc="abcdef2ghi" and alocc="j".
     printf(" %d\n",s[4][i]);       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   */    */
   cov[1]=1.;    char *s, *t;
     t=in;s=in;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    while ((*in != occ) && (*in != '\0')){
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      *alocc++ = *in++;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    }
     for(mi=1; mi<= wav[i]-1; mi++){    if( *in == occ){
       for (ii=1;ii<=nlstate+ndeath;ii++)      *(alocc)='\0';
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      s=++in;
       for(d=0; d<dh[mi][i]; d++){    }
         newm=savm;   
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    if (s == t) {/* occ not found */
         for (kk=1; kk<=cptcovage;kk++) {      *(alocc-(in-s))='\0';
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      in=s;
         }    }
            while ( *in != '\0'){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      *blocc++ = *in++;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    }
         savm=oldm;  
         oldm=newm;    *blocc='\0';
            return t;
          }
       } /* end mult */  char *cutv(char *blocc, char *alocc, char *in, char occ)
        {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       ipmx +=1;       gives blocc="abcdef2ghi" and alocc="j".
       sw += weight[i];       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    */
     } /* end of wave */    char *s, *t;
   } /* end of individual */    t=in;s=in;
     while (*in != '\0'){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      while( *in == occ){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        *blocc++ = *in++;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        s=in;
   return -l;      }
 }      *blocc++ = *in++;
     }
     if (s == t) /* occ not found */
 /*********** Maximum Likelihood Estimation ***************/      *(blocc-(in-s))='\0';
     else
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      *(blocc-(in-s)-1)='\0';
 {    in=s;
   int i,j, iter;    while ( *in != '\0'){
   double **xi,*delti;      *alocc++ = *in++;
   double fret;    }
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)    *alocc='\0';
     for (j=1;j<=npar;j++)    return s;
       xi[i][j]=(i==j ? 1.0 : 0.0);  }
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  int nbocc(char *s, char occ)
   {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    int i,j=0;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    int lg=20;
     i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /**** Computes Hessian and covariance matrix ***/    if  (s[i] == occ ) j++;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    }
 {    return j;
   double  **a,**y,*x,pd;  }
   double **hess;  
   int i, j,jk;  /* void cutv(char *u,char *v, char*t, char occ) */
   int *indx;  /* { */
   /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   double hessii(double p[], double delta, int theta, double delti[]);  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   double hessij(double p[], double delti[], int i, int j);  /*      gives u="abcdef2ghi" and v="j" *\/ */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*   int i,lg,j,p=0; */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*   i=0; */
   /*   lg=strlen(t); */
   /*   for(j=0; j<=lg-1; j++) { */
   hess=matrix(1,npar,1,npar);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  /*   for(j=0; j<p; j++) { */
     printf("%d",i);fflush(stdout);  /*     (u[j] = t[j]); */
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*   } */
     /*printf(" %f ",p[i]);*/  /*      u[p]='\0'; */
   }  
   /*    for(j=0; j<= lg; j++) { */
   for (i=1;i<=npar;i++) {  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     for (j=1;j<=npar;j++)  {  /*   } */
       if (j>i) {  /* } */
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);  #ifdef _WIN32
         hess[j][i]=hess[i][j];  char * strsep(char **pp, const char *delim)
       }  {
     }    char *p, *q;
   }           
   printf("\n");    if ((p = *pp) == NULL)
       return 0;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    if ((q = strpbrk (p, delim)) != NULL)
      {
   a=matrix(1,npar,1,npar);      *pp = q + 1;
   y=matrix(1,npar,1,npar);      *q = '\0';
   x=vector(1,npar);    }
   indx=ivector(1,npar);    else
   for (i=1;i<=npar;i++)      *pp = 0;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    return p;
   ludcmp(a,npar,indx,&pd);  }
   #endif
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /********************** nrerror ********************/
     x[j]=1;  
     lubksb(a,npar,indx,x);  void nrerror(char error_text[])
     for (i=1;i<=npar;i++){  {
       matcov[i][j]=x[i];    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
   }    exit(EXIT_FAILURE);
   }
   printf("\n#Hessian matrix#\n");  /*********************** vector *******************/
   for (i=1;i<=npar;i++) {  double *vector(int nl, int nh)
     for (j=1;j<=npar;j++) {  {
       printf("%.3e ",hess[i][j]);    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     printf("\n");    if (!v) nrerror("allocation failure in vector");
   }    return v-nl+NR_END;
   }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /************************ free vector ******************/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  void free_vector(double*v, int nl, int nh)
   ludcmp(a,npar,indx,&pd);  {
     free((FREE_ARG)(v+nl-NR_END));
   /*  printf("\n#Hessian matrix recomputed#\n");  }
   
   for (j=1;j<=npar;j++) {  /************************ivector *******************************/
     for (i=1;i<=npar;i++) x[i]=0;  int *ivector(long nl,long nh)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    int *v;
     for (i=1;i<=npar;i++){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       y[i][j]=x[i];    if (!v) nrerror("allocation failure in ivector");
       printf("%.3e ",y[i][j]);    return v-nl+NR_END;
     }  }
     printf("\n");  
   }  /******************free ivector **************************/
   */  void free_ivector(int *v, long nl, long nh)
   {
   free_matrix(a,1,npar,1,npar);    free((FREE_ARG)(v+nl-NR_END));
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /************************lvector *******************************/
   free_matrix(hess,1,npar,1,npar);  long *lvector(long nl,long nh)
   {
     long *v;
 }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
 /*************** hessian matrix ****************/    return v-nl+NR_END;
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  /******************free lvector **************************/
   int l=1, lmax=20;  void free_lvector(long *v, long nl, long nh)
   double k1,k2;  {
   double p2[NPARMAX+1];    free((FREE_ARG)(v+nl-NR_END));
   double res;  }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  /******************* imatrix *******************************/
   int k=0,kmax=10;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double l1;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
   fx=func(x);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for (i=1;i<=npar;i++) p2[i]=x[i];    int **m; 
   for(l=0 ; l <=lmax; l++){    
     l1=pow(10,l);    /* allocate pointers to rows */ 
     delts=delt;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     for(k=1 ; k <kmax; k=k+1){    if (!m) nrerror("allocation failure 1 in matrix()"); 
       delt = delta*(l1*k);    m += NR_END; 
       p2[theta]=x[theta] +delt;    m -= nrl; 
       k1=func(p2)-fx;    
       p2[theta]=x[theta]-delt;    
       k2=func(p2)-fx;    /* allocate rows and set pointers to them */ 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
          m[nrl] += NR_END; 
 #ifdef DEBUG    m[nrl] -= ncl; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    
 #endif    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    /* return pointer to array of pointers to rows */ 
         k=kmax;    return m; 
       }  } 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        int **m;
         delts=delt;        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
     }  { 
   }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   delti[theta]=delts;    free((FREE_ARG) (m+nrl-NR_END)); 
   return res;  } 
    
 }  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 double hessij( double x[], double delti[], int thetai,int thetaj)  {
 {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   int i;    double **m;
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double p2[NPARMAX+1];    if (!m) nrerror("allocation failure 1 in matrix()");
   int k;    m += NR_END;
     m -= nrl;
   fx=func(x);  
   for (k=1; k<=2; k++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (i=1;i<=npar;i++) p2[i]=x[i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     p2[thetai]=x[thetai]+delti[thetai]/k;    m[nrl] += NR_END;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    m[nrl] -= ncl;
     k1=func(p2)-fx;  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     p2[thetai]=x[thetai]+delti[thetai]/k;    return m;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     k2=func(p2)-fx;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
    that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     p2[thetai]=x[thetai]-delti[thetai]/k;     */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k3=func(p2)-fx;  
    /*************************free matrix ************************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k4=func(p2)-fx;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    free((FREE_ARG)(m+nrl-NR_END));
 #ifdef DEBUG  }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /******************* ma3x *******************************/
   }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   return res;  {
 }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   int i,imax,j,k;    m += NR_END;
   double big,dum,sum,temp;    m -= nrl;
   double *vv;  
      m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   vv=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *d=1.0;    m[nrl] += NR_END;
   for (i=1;i<=n;i++) {    m[nrl] -= ncl;
     big=0.0;  
     for (j=1;j<=n;j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     vv[i]=1.0/big;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
   for (j=1;j<=n;j++) {    m[nrl][ncl] -= nll;
     for (i=1;i<j;i++) {    for (j=ncl+1; j<=nch; j++) 
       sum=a[i][j];      m[nrl][j]=m[nrl][j-1]+nlay;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    
       a[i][j]=sum;    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     big=0.0;      for (j=ncl+1; j<=nch; j++) 
     for (i=j;i<=n;i++) {        m[i][j]=m[i][j-1]+nlay;
       sum=a[i][j];    }
       for (k=1;k<j;k++)    return m; 
         sum -= a[i][k]*a[k][j];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       a[i][j]=sum;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       if ( (dum=vv[i]*fabs(sum)) >= big) {    */
         big=dum;  }
         imax=i;  
       }  /*************************free ma3x ************************/
     }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     if (j != imax) {  {
       for (k=1;k<=n;k++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         dum=a[imax][k];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         a[imax][k]=a[j][k];    free((FREE_ARG)(m+nrl-NR_END));
         a[j][k]=dum;  }
       }  
       *d = -(*d);  /*************** function subdirf ***********/
       vv[imax]=vv[j];  char *subdirf(char fileres[])
     }  {
     indx[j]=imax;    /* Caution optionfilefiname is hidden */
     if (a[j][j] == 0.0) a[j][j]=TINY;    strcpy(tmpout,optionfilefiname);
     if (j != n) {    strcat(tmpout,"/"); /* Add to the right */
       dum=1.0/(a[j][j]);    strcat(tmpout,fileres);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    return tmpout;
     }  }
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /*************** function subdirf2 ***********/
 ;  char *subdirf2(char fileres[], char *preop)
 }  {
     
 void lubksb(double **a, int n, int *indx, double b[])    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   int i,ii=0,ip,j;    strcat(tmpout,"/");
   double sum;    strcat(tmpout,preop);
      strcat(tmpout,fileres);
   for (i=1;i<=n;i++) {    return tmpout;
     ip=indx[i];  }
     sum=b[ip];  
     b[ip]=b[i];  /*************** function subdirf3 ***********/
     if (ii)  char *subdirf3(char fileres[], char *preop, char *preop2)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  {
     else if (sum) ii=i;    
     b[i]=sum;    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
   for (i=n;i>=1;i--) {    strcat(tmpout,"/");
     sum=b[i];    strcat(tmpout,preop);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    strcat(tmpout,preop2);
     b[i]=sum/a[i][i];    strcat(tmpout,fileres);
   }    return tmpout;
 }  }
   
 /************ Frequencies ********************/  char *asc_diff_time(long time_sec, char ascdiff[])
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)  {
 {  /* Some frequencies */    long sec_left, days, hours, minutes;
      days = (time_sec) / (60*60*24);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    sec_left = (time_sec) % (60*60*24);
   double ***freq; /* Frequencies */    hours = (sec_left) / (60*60) ;
   double *pp;    sec_left = (sec_left) %(60*60);
   double pos;    minutes = (sec_left) /60;
   FILE *ficresp;    sec_left = (sec_left) % (60);
   char fileresp[FILENAMELENGTH];    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   pp=vector(1,nlstate);  }
   
   strcpy(fileresp,"p");  /***************** f1dim *************************/
   strcat(fileresp,fileres);  extern int ncom; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {  extern double *pcom,*xicom;
     printf("Problem with prevalence resultfile: %s\n", fileresp);  extern double (*nrfunc)(double []); 
     exit(0);   
   }  double f1dim(double x) 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  { 
   j1=0;    int j; 
     double f;
   j=cptcoveff;    double *xt; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}   
     xt=vector(1,ncom); 
   for(k1=1; k1<=j;k1++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
    for(i1=1; i1<=ncodemax[k1];i1++){    f=(*nrfunc)(xt); 
        j1++;    free_vector(xt,1,ncom); 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    return f; 
          scanf("%d", i);*/  } 
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)    /*****************brent *************************/
            for(m=agemin; m <= agemax+3; m++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
              freq[i][jk][m]=0;  { 
            int iter; 
        for (i=1; i<=imx; i++) {    double a,b,d,etemp;
          bool=1;    double fu=0,fv,fw,fx;
          if  (cptcovn>0) {    double ftemp=0.;
            for (z1=1; z1<=cptcoveff; z1++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double e=0.0; 
                bool=0;   
          }    a=(ax < cx ? ax : cx); 
           if (bool==1) {    b=(ax > cx ? ax : cx); 
            for(m=firstpass; m<=lastpass-1; m++){    x=w=v=bx; 
              if(agev[m][i]==0) agev[m][i]=agemax+1;    fw=fv=fx=(*f)(x); 
              if(agev[m][i]==1) agev[m][i]=agemax+2;    for (iter=1;iter<=ITMAX;iter++) { 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      xm=0.5*(a+b); 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
            }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
          }      printf(".");fflush(stdout);
        }      fprintf(ficlog,".");fflush(ficlog);
         if  (cptcovn>0) {  #ifdef DEBUGBRENT
          fprintf(ficresp, "\n#********** Variable ");      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        fprintf(ficresp, "**********\n#");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         }  #endif
        for(i=1; i<=nlstate;i++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        *xmin=x; 
        fprintf(ficresp, "\n");        return fx; 
              } 
   for(i=(int)agemin; i <= (int)agemax+3; i++){      ftemp=fu;
     if(i==(int)agemax+3)      if (fabs(e) > tol1) { 
       printf("Total");        r=(x-w)*(fx-fv); 
     else        q=(x-v)*(fx-fw); 
       printf("Age %d", i);        p=(x-v)*q-(x-w)*r; 
     for(jk=1; jk <=nlstate ; jk++){        q=2.0*(q-r); 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        if (q > 0.0) p = -p; 
         pp[jk] += freq[jk][m][i];        q=fabs(q); 
     }        etemp=e; 
     for(jk=1; jk <=nlstate ; jk++){        e=d; 
       for(m=-1, pos=0; m <=0 ; m++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         pos += freq[jk][m][i];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       if(pp[jk]>=1.e-10)        else { 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          d=p/q; 
       else          u=x+d; 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
     for(jk=1; jk <=nlstate ; jk++){        } 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)      } else { 
         pp[jk] += freq[jk][m][i];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     for(jk=1,pos=0; jk <=nlstate ; jk++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       pos += pp[jk];      fu=(*f)(u); 
     for(jk=1; jk <=nlstate ; jk++){      if (fu <= fx) { 
       if(pos>=1.e-5)        if (u >= x) a=x; else b=x; 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        SHFT(v,w,x,u) 
       else          SHFT(fv,fw,fx,fu) 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          } else { 
       if( i <= (int) agemax){            if (u < x) a=u; else b=u; 
         if(pos>=1.e-5)            if (fu <= fw || w == x) { 
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              v=w; 
       else              w=u; 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);              fv=fw; 
       }              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     for(jk=-1; jk <=nlstate+ndeath; jk++)              v=u; 
       for(m=-1; m <=nlstate+ndeath; m++)              fv=fu; 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            } 
     if(i <= (int) agemax)          } 
       fprintf(ficresp,"\n");    } 
     printf("\n");    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
     }    return fx; 
  }  } 
    
   fclose(ficresp);  /****************** mnbrak ***********************/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
 }  /* End of Freq */  { 
     double ulim,u,r,q, dum;
 /************* Waves Concatenation ***************/    double fu; 
    
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    *fa=(*func)(*ax); 
 {    *fb=(*func)(*bx); 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    if (*fb > *fa) { 
      Death is a valid wave (if date is known).      SHFT(dum,*ax,*bx,dum) 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        SHFT(dum,*fb,*fa,dum) 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        } 
      and mw[mi+1][i]. dh depends on stepm.    *cx=(*bx)+GOLD*(*bx-*ax); 
      */    *fc=(*func)(*cx); 
     while (*fb > *fc) { /* Declining fa, fb, fc */
   int i, mi, m;      r=(*bx-*ax)*(*fb-*fc); 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      q=(*bx-*cx)*(*fb-*fa); 
      double sum=0., jmean=0.;*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 int j, k=0,jk, ju, jl;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
      double sum=0.;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
 jmin=1e+5;        fu=(*func)(u); 
  jmax=-1;  #ifdef DEBUG
 jmean=0.;        /* f(x)=A(x-u)**2+f(u) */
   for(i=1; i<=imx; i++){        double A, fparabu; 
     mi=0;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
     m=firstpass;        fparabu= *fa - A*(*ax-u)*(*ax-u);
     while(s[m][i] <= nlstate){        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       if(s[m][i]>=1)        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         mw[++mi][i]=m;  #endif 
       if(m >=lastpass)      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
         break;        fu=(*func)(u); 
       else        if (fu < *fc) { 
         m++;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }/* end while */            SHFT(*fb,*fc,fu,(*func)(u)) 
     if (s[m][i] > nlstate){            } 
       mi++;     /* Death is another wave */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
       /* if(mi==0)  never been interviewed correctly before death */        u=ulim; 
          /* Only death is a correct wave */        fu=(*func)(u); 
       mw[mi][i]=m;      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
     wav[i]=mi;      } 
     if(mi==0)      SHFT(*ax,*bx,*cx,u) 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        SHFT(*fa,*fb,*fc,fu) 
   }        } 
   } 
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  /*************** linmin ************************/
       if (stepm <=0)  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
         dh[mi][i]=1;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
       else{  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
         if (s[mw[mi+1][i]][i] > nlstate) {  the value of func at the returned location p . This is actually all accomplished by calling the
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  routines mnbrak and brent .*/
           /*if ((j<0) || (j>28)) printf("j=%d num=%d ",j,i);*/  int ncom; 
           if(j==0) j=1;  /* Survives at least one month after exam */  double *pcom,*xicom;
           k=k+1;  double (*nrfunc)(double []); 
           if (j >= jmax) jmax=j;   
           else if (j <= jmin)jmin=j;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           sum=sum+j;  { 
         }    double brent(double ax, double bx, double cx, 
         else{                 double (*f)(double), double tol, double *xmin); 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double f1dim(double x); 
           /*if ((j<0) || (j>28)) printf("j=%d num=%d ",j,i);*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           k=k+1;                double *fc, double (*func)(double)); 
           if (j >= jmax) jmax=j;    int j; 
           else if (j <= jmin)jmin=j;    double xx,xmin,bx,ax; 
           sum=sum+j;    double fx,fb,fa;
         }   
         jk= j/stepm;    ncom=n; 
         jl= j -jk*stepm;    pcom=vector(1,n); 
         ju= j -(jk+1)*stepm;    xicom=vector(1,n); 
         if(jl <= -ju)    nrfunc=func; 
           dh[mi][i]=jk;    for (j=1;j<=n;j++) { 
         else      pcom[j]=p[j]; 
           dh[mi][i]=jk+1;      xicom[j]=xi[j]; 
         if(dh[mi][i]==0)    } 
           dh[mi][i]=1; /* At least one step */    ax=0.0; 
       }    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
   jmean=sum/k;  #ifdef DEBUG
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*********** Tricode ****************************/  #endif
 void tricode(int *Tvar, int **nbcode, int imx)    for (j=1;j<=n;j++) { 
 {      xi[j] *= xmin; 
   int Ndum[20],ij=1, k, j, i;      p[j] += xi[j]; 
   int cptcode=0;    } 
   cptcoveff=0;    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
   for (k=0; k<19; k++) Ndum[k]=0;  } 
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /*************** powell ************************/
     for (i=1; i<=imx; i++) {  /*
       ij=(int)(covar[Tvar[j]][i]);  Minimization of a function func of n variables. Input consists of an initial starting point
       Ndum[ij]++;  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
       if (ij > cptcode) cptcode=ij;  such that failure to decrease by more than this amount on one iteration signals doneness. On
     }  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   function value at p , and iter is the number of iterations taken. The routine linmin is used.
     for (i=0; i<=cptcode; i++) {   */
       if(Ndum[i]!=0) ncodemax[j]++;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
     ij=1;  { 
     void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
     for (i=1; i<=ncodemax[j]; i++) {    int i,ibig,j; 
       for (k=0; k<=19; k++) {    double del,t,*pt,*ptt,*xit;
         if (Ndum[k] != 0) {    double fp,fptt;
           nbcode[Tvar[j]][ij]=k;    double *xits;
           ij++;    int niterf, itmp;
         }  
         if (ij > ncodemax[j]) break;    pt=vector(1,n); 
       }      ptt=vector(1,n); 
     }    xit=vector(1,n); 
   }      xits=vector(1,n); 
     *fret=(*func)(p); 
  for (k=0; k<19; k++) Ndum[k]=0;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       rcurr_time = time(NULL);  
  for (i=1; i<=ncovmodel; i++) {    for (*iter=1;;++(*iter)) { 
       ij=Tvar[i];      fp=(*fret); 
       Ndum[ij]++;      ibig=0; 
     }      del=0.0; 
       rlast_time=rcurr_time;
  ij=1;      /* (void) gettimeofday(&curr_time,&tzp); */
  for (i=1; i<=10; i++) {      rcurr_time = time(NULL);  
    if((Ndum[i]!=0) && (i<=ncov)){      curr_time = *localtime(&rcurr_time);
      Tvaraff[ij]=i;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
      ij++;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
    }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
  }     for (i=1;i<=n;i++) {
          printf(" %d %.12f",i, p[i]);
     cptcoveff=ij-1;        fprintf(ficlog," %d %.12lf",i, p[i]);
 }        fprintf(ficrespow," %.12lf", p[i]);
       }
 /*********** Health Expectancies ****************/      printf("\n");
       fprintf(ficlog,"\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      fprintf(ficrespow,"\n");fflush(ficrespow);
 {      if(*iter <=3){
   /* Health expectancies */        tml = *localtime(&rcurr_time);
   int i, j, nhstepm, hstepm, h;        strcpy(strcurr,asctime(&tml));
   double age, agelim,hf;        rforecast_time=rcurr_time; 
   double ***p3mat;        itmp = strlen(strcurr);
          if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   fprintf(ficreseij,"# Health expectancies\n");          strcurr[itmp-1]='\0';
   fprintf(ficreseij,"# Age");        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   for(i=1; i<=nlstate;i++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     for(j=1; j<=nlstate;j++)        for(niterf=10;niterf<=30;niterf+=10){
       fprintf(ficreseij," %1d-%1d",i,j);          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
   fprintf(ficreseij,"\n");          forecast_time = *localtime(&rforecast_time);
           strcpy(strfor,asctime(&forecast_time));
   hstepm=1*YEARM; /*  Every j years of age (in month) */          itmp = strlen(strfor);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   agelim=AGESUP;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     /* nhstepm age range expressed in number of stepm */        }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);      }
     /* Typically if 20 years = 20*12/6=40 stepm */      for (i=1;i<=n;i++) { 
     if (stepm >= YEARM) hstepm=1;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        fptt=(*fret); 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUG
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    #endif
         printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
     for(i=1; i<=nlstate;i++)        linmin(p,xit,n,fret,func); 
       for(j=1; j<=nlstate;j++)        if (fabs(fptt-(*fret)) > del) { 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          del=fabs(fptt-(*fret)); 
           eij[i][j][(int)age] +=p3mat[i][j][h];          ibig=i; 
         }        } 
      #ifdef DEBUG
     hf=1;        printf("%d %.12e",i,(*fret));
     if (stepm >= YEARM) hf=stepm/YEARM;        fprintf(ficlog,"%d %.12e",i,(*fret));
     fprintf(ficreseij,"%.0f",age );        for (j=1;j<=n;j++) {
     for(i=1; i<=nlstate;i++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for(j=1; j<=nlstate;j++){          printf(" x(%d)=%.12e",j,xit[j]);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
     fprintf(ficreseij,"\n");        for(j=1;j<=n;j++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf(" p(%d)=%.12e",j,p[j]);
   }          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 }        }
         printf("\n");
 /************ Variance ******************/        fprintf(ficlog,"\n");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  #endif
 {      } /* end i */
   /* Variance of health expectancies */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  #ifdef DEBUG
   double **newm;        int k[2],l;
   double **dnewm,**doldm;        k[0]=1;
   int i, j, nhstepm, hstepm, h;        k[1]=-1;
   int k, cptcode;        printf("Max: %.12e",(*func)(p));
    double *xp;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double **gp, **gm;        for (j=1;j<=n;j++) {
   double ***gradg, ***trgradg;          printf(" %.12e",p[j]);
   double ***p3mat;          fprintf(ficlog," %.12e",p[j]);
   double age,agelim;        }
   int theta;        printf("\n");
         fprintf(ficlog,"\n");
    fprintf(ficresvij,"# Covariances of life expectancies\n");        for(l=0;l<=1;l++) {
   fprintf(ficresvij,"# Age");          for (j=1;j<=n;j++) {
   for(i=1; i<=nlstate;i++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for(j=1; j<=nlstate;j++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   fprintf(ficresvij,"\n");          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   xp=vector(1,npar);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);  #endif
    
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        free_vector(xit,1,n); 
   agelim = AGESUP;        free_vector(xits,1,n); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        free_vector(ptt,1,n); 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        free_vector(pt,1,n); 
     if (stepm >= YEARM) hstepm=1;        return; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
     gp=matrix(0,nhstepm,1,nlstate);        ptt[j]=2.0*p[j]-pt[j]; 
     gm=matrix(0,nhstepm,1,nlstate);        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
     for(theta=1; theta <=npar; theta++){      } 
       for(i=1; i<=npar; i++){ /* Computes gradient */      fptt=(*func)(ptt); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       }        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /* From x1 (P0) distance of x2 is at h and x3 is 2h */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
       for(j=1; j<= nlstate; j++){        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
         for(h=0; h<=nhstepm; h++){        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        /* Thus we compare delta(2h) with observed f1-f3 */
         }        /* or best gain on one ancient line 'del' with total  */
       }        /* gain f1-f2 = f1 - f2 - 'del' with del  */
            /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          t= t- del*SQR(fp-fptt);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
       for(j=1; j<= nlstate; j++){        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         for(h=0; h<=nhstepm; h++){  #ifdef DEBUG
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         }        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       for(j=1; j<= nlstate; j++)        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #endif
         }        if (t < 0.0) { /* Then we use it for last direction */
     } /* End theta */          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
           for (j=1;j<=n;j++) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
             xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
     for(h=0; h<=nhstepm; h++)          }
       for(j=1; j<=nlstate;j++)          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         for(theta=1; theta <=npar; theta++)          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           trgradg[h][j][theta]=gradg[h][theta][j];  
   #ifdef DEBUG
     for(i=1;i<=nlstate;i++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(j=1;j<=nlstate;j++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         vareij[i][j][(int)age] =0.;          for(j=1;j<=n;j++){
     for(h=0;h<=nhstepm;h++){            printf(" %.12e",xit[j]);
       for(k=0;k<=nhstepm;k++){            fprintf(ficlog," %.12e",xit[j]);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          printf("\n");
         for(i=1;i<=nlstate;i++)          fprintf(ficlog,"\n");
           for(j=1;j<=nlstate;j++)  #endif
             vareij[i][j][(int)age] += doldm[i][j];        } /* end of t negative */
       }      } /* end if (fptt < fp)  */
     }    } 
     h=1;  } 
     if (stepm >= YEARM) h=stepm/YEARM;  
     fprintf(ficresvij,"%.0f ",age );  /**** Prevalence limit (stable or period prevalence)  ****************/
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  {
       }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     fprintf(ficresvij,"\n");       matrix by transitions matrix until convergence is reached */
     free_matrix(gp,0,nhstepm,1,nlstate);    
     free_matrix(gm,0,nhstepm,1,nlstate);    int i, ii,j,k;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double min, max, maxmin, maxmax,sumnew=0.;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /* double **matprod2(); */ /* test */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **out, cov[NCOVMAX+1], **pmij();
   } /* End age */    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);    for (ii=1;ii<=nlstate+ndeath;ii++)
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }      }
     
 /************ Variance of prevlim ******************/    cov[1]=1.;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    
 {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* Variance of prevalence limit */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      newm=savm;
   double **newm;      /* Covariates have to be included here again */
   double **dnewm,**doldm;      cov[2]=agefin;
   int i, j, nhstepm, hstepm;      
   int k, cptcode;      for (k=1; k<=cptcovn;k++) {
   double *xp;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double *gp, *gm;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   double **gradg, **trgradg;      }
   double age,agelim;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   int theta;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
          /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      
   fprintf(ficresvpl,"# Age");      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for(i=1; i<=nlstate;i++)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       fprintf(ficresvpl," %1d-%1d",i,i);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   fprintf(ficresvpl,"\n");      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   xp=vector(1,npar);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   dnewm=matrix(1,nlstate,1,npar);      
   doldm=matrix(1,nlstate,1,nlstate);      savm=oldm;
        oldm=newm;
   hstepm=1*YEARM; /* Every year of age */      maxmax=0.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for(j=1;j<=nlstate;j++){
   agelim = AGESUP;        min=1.;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        max=0.;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(i=1; i<=nlstate; i++) {
     if (stepm >= YEARM) hstepm=1;          sumnew=0;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     gradg=matrix(1,npar,1,nlstate);          prlim[i][j]= newm[i][j]/(1-sumnew);
     gp=vector(1,nlstate);          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     gm=vector(1,nlstate);          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */        maxmin=max-min;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        maxmax=FMAX(maxmax,maxmin);
       }      } /* j loop */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if(maxmax < ftolpl){
       for(i=1;i<=nlstate;i++)        return prlim;
         gp[i] = prlim[i][i];      }
        } /* age loop */
       for(i=1; i<=npar; i++) /* Computes gradient */    return prlim; /* should not reach here */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /*************** transition probabilities ***************/ 
         gm[i] = prlim[i][i];  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for(i=1;i<=nlstate;i++)  {
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    /* According to parameters values stored in x and the covariate's values stored in cov,
     } /* End theta */       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
     trgradg =matrix(1,nlstate,1,npar);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
     for(j=1; j<=nlstate;j++)       ncth covariate in the global vector x is given by the formula:
       for(theta=1; theta <=npar; theta++)       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         trgradg[j][theta]=gradg[theta][j];       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     for(i=1;i<=nlstate;i++)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
       varpl[i][(int)age] =0.;       Outputs ps[i][j] the probability to be observed in j being in j according to
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    */
     for(i=1;i<=nlstate;i++)    double s1, lnpijopii;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /*double t34;*/
     int i,j, nc, ii, jj;
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)      for(i=1; i<= nlstate; i++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for(j=1; j<i;j++){
     fprintf(ficresvpl,"\n");          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     free_vector(gp,1,nlstate);            /*lnpijopii += param[i][j][nc]*cov[nc];*/
     free_vector(gm,1,nlstate);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
     free_matrix(gradg,1,npar,1,nlstate);  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);        for(j=i+1; j<=nlstate+ndeath;j++){
   free_matrix(dnewm,1,nlstate,1,nlstate);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 }            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 /***********************************************/        }
 /**************** Main Program *****************/      }
 /***********************************************/      
       for(i=1; i<= nlstate; i++){
 /*int main(int argc, char *argv[])*/        s1=0;
 int main()        for(j=1; j<i; j++){
 {          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        }
   double agedeb, agefin,hf;        for(j=i+1; j<=nlstate+ndeath; j++){
   double agemin=1.e20, agemax=-1.e20;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   double fret;        }
   double **xi,tmp,delta;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         ps[i][i]=1./(s1+1.);
   double dum; /* Dummy variable */        /* Computing other pijs */
   double ***p3mat;        for(j=1; j<i; j++)
   int *indx;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   char line[MAXLINE], linepar[MAXLINE];        for(j=i+1; j<=nlstate+ndeath; j++)
   char title[MAXLINE];          ps[i][j]= exp(ps[i][j])*ps[i][i];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      } /* end i */
   char filerest[FILENAMELENGTH];      
   char fileregp[FILENAMELENGTH];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(jj=1; jj<= nlstate+ndeath; jj++){
   int firstobs=1, lastobs=10;          ps[ii][jj]=0;
   int sdeb, sfin; /* Status at beginning and end */          ps[ii][ii]=1;
   int c,  h , cpt,l;        }
   int ju,jl, mi;      }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      
        /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   int hstepm, nhstepm;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double bage, fage, age, agelim, agebase;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   double ftolpl=FTOL;      /*   } */
   double **prlim;      /*   printf("\n "); */
   double *severity;      /* } */
   double ***param; /* Matrix of parameters */      /* printf("\n ");printf("%lf ",cov[2]);*/
   double  *p;      /*
   double **matcov; /* Matrix of covariance */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double ***delti3; /* Scale */        goto end;*/
   double *delti; /* Scale */      return ps;
   double ***eij, ***vareij;  }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  /**************** Product of 2 matrices ******************/
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   {
   char z[1]="c", occ;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 #include <sys/time.h>       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 #include <time.h>    /* in, b, out are matrice of pointers which should have been initialized 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       before: only the contents of out is modified. The function returns
   /* long total_usecs;       a pointer to pointers identical to out */
   struct timeval start_time, end_time;    int i, j, k;
      for(i=nrl; i<= nrh; i++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      for(k=ncolol; k<=ncoloh; k++){
         out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
   printf("\nIMACH, Version 0.64a");          out[i][k] +=in[i][j]*b[j][k];
   printf("\nEnter the parameter file name: ");      }
     return out;
 #ifdef windows  }
   scanf("%s",pathtot);  
   getcwd(pathcd, size);  
   /*cygwin_split_path(pathtot,path,optionfile);  /************* Higher Matrix Product ***************/
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
 split(pathtot, path,optionfile);    /* Computes the transition matrix starting at age 'age' over 
   chdir(path);       'nhstepm*hstepm*stepm' months (i.e. until
   replace(pathc,path);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 #endif       nhstepm*hstepm matrices. 
 #ifdef unix       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   scanf("%s",optionfile);       (typically every 2 years instead of every month which is too big 
 #endif       for the memory).
        Model is determined by parameters x and covariates have to be 
 /*-------- arguments in the command line --------*/       included manually here. 
   
   strcpy(fileres,"r");       */
   strcat(fileres, optionfile);  
     int i, j, d, h, k;
   /*---------arguments file --------*/    double **out, cov[NCOVMAX+1];
     double **newm;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    /* Hstepm could be zero and should return the unit matrix */
     goto end;    for (i=1;i<=nlstate+ndeath;i++)
   }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
   strcpy(filereso,"o");        po[i][j][0]=(i==j ? 1.0 : 0.0);
   strcat(filereso,fileres);      }
   if((ficparo=fopen(filereso,"w"))==NULL) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    for(h=1; h <=nhstepm; h++){
   }      for(d=1; d <=hstepm; d++){
         newm=savm;
   /* Reads comments: lines beginning with '#' */        /* Covariates have to be included here again */
   while((c=getc(ficpar))=='#' && c!= EOF){        cov[1]=1.;
     ungetc(c,ficpar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     fgets(line, MAXLINE, ficpar);        for (k=1; k<=cptcovn;k++) 
     puts(line);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     fputs(line,ficparo);        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   ungetc(c,ficpar);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   covar=matrix(0,NCOVMAX,1,n);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   cptcovn=0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        savm=oldm;
         oldm=newm;
   ncovmodel=2+cptcovn;      }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   /* Read guess parameters */          po[i][j][h]=newm[i][j];
   /* Reads comments: lines beginning with '#' */          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      /*printf("h=%d ",h);*/
     fgets(line, MAXLINE, ficpar);    } /* end h */
     puts(line);  /*     printf("\n H=%d \n",h); */
     fputs(line,ficparo);    return po;
   }  }
   ungetc(c,ficpar);  
    #ifdef NLOPT
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     for(i=1; i <=nlstate; i++)    double fret;
     for(j=1; j <=nlstate+ndeath-1; j++){    double *xt;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int j;
       fprintf(ficparo,"%1d%1d",i1,j1);    myfunc_data *d2 = (myfunc_data *) pd;
       printf("%1d%1d",i,j);  /* xt = (p1-1); */
       for(k=1; k<=ncovmodel;k++){    xt=vector(1,n); 
         fscanf(ficpar," %lf",&param[i][j][k]);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
       }    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
       fscanf(ficpar,"\n");    printf("Function = %.12lf ",fret);
       printf("\n");    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
       fprintf(ficparo,"\n");    printf("\n");
     }   free_vector(xt,1,n);
      return fret;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  }
   p=param[1][1];  #endif
    
   /* Reads comments: lines beginning with '#' */  /*************** log-likelihood *************/
   while((c=getc(ficpar))=='#' && c!= EOF){  double func( double *x)
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    int i, ii, j, k, mi, d, kk;
     puts(line);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     fputs(line,ficparo);    double **out;
   }    double sw; /* Sum of weights */
   ungetc(c,ficpar);    double lli; /* Individual log likelihood */
     int s1, s2;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double bbh, survp;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    long ipmx;
   for(i=1; i <=nlstate; i++){    /*extern weight */
     for(j=1; j <=nlstate+ndeath-1; j++){    /* We are differentiating ll according to initial status */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       printf("%1d%1d",i,j);    /*for(i=1;i<imx;i++) 
       fprintf(ficparo,"%1d%1d",i1,j1);      printf(" %d\n",s[4][i]);
       for(k=1; k<=ncovmodel;k++){    */
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    ++countcallfunc;
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    cov[1]=1.;
       fscanf(ficpar,"\n");  
       printf("\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
       fprintf(ficparo,"\n");  
     }    if(mle==1){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   delti=delti3[1][1];        /* Computes the values of the ncovmodel covariates of the model
             depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   /* Reads comments: lines beginning with '#' */           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   while((c=getc(ficpar))=='#' && c!= EOF){           to be observed in j being in i according to the model.
     ungetc(c,ficpar);         */
     fgets(line, MAXLINE, ficpar);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     puts(line);          cov[2+k]=covar[Tvar[k]][i];
     fputs(line,ficparo);        }
   }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   ungetc(c,ficpar);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
             has been calculated etc */
   matcov=matrix(1,npar,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i <=npar; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     fscanf(ficpar,"%s",&str);            for (j=1;j<=nlstate+ndeath;j++){
     printf("%s",str);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficparo,"%s",str);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j <=i; j++){            }
       fscanf(ficpar," %le",&matcov[i][j]);          for(d=0; d<dh[mi][i]; d++){
       printf(" %.5le",matcov[i][j]);            newm=savm;
       fprintf(ficparo," %.5le",matcov[i][j]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
     fscanf(ficpar,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     printf("\n");            }
     fprintf(ficparo,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i <=npar; i++)            savm=oldm;
     for(j=i+1;j<=npar;j++)            oldm=newm;
       matcov[i][j]=matcov[j][i];          } /* end mult */
            
   printf("\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
     /*-------- data file ----------*/           * (in months) between two waves is not a multiple of stepm, we rounded to 
     if((ficres =fopen(fileres,"w"))==NULL) {           * the nearest (and in case of equal distance, to the lowest) interval but now
       printf("Problem with resultfile: %s\n", fileres);goto end;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     fprintf(ficres,"#%s\n",version);           * probability in order to take into account the bias as a fraction of the way
               * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     if((fic=fopen(datafile,"r"))==NULL)    {           * -stepm/2 to stepm/2 .
       printf("Problem with datafile: %s\n", datafile);goto end;           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
            */
     n= lastobs;          s1=s[mw[mi][i]][i];
     severity = vector(1,maxwav);          s2=s[mw[mi+1][i]][i];
     outcome=imatrix(1,maxwav+1,1,n);          bbh=(double)bh[mi][i]/(double)stepm; 
     num=ivector(1,n);          /* bias bh is positive if real duration
     moisnais=vector(1,n);           * is higher than the multiple of stepm and negative otherwise.
     annais=vector(1,n);           */
     moisdc=vector(1,n);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     andc=vector(1,n);          if( s2 > nlstate){ 
     agedc=vector(1,n);            /* i.e. if s2 is a death state and if the date of death is known 
     cod=ivector(1,n);               then the contribution to the likelihood is the probability to 
     weight=vector(1,n);               die between last step unit time and current  step unit time, 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */               which is also equal to probability to die before dh 
     mint=matrix(1,maxwav,1,n);               minus probability to die before dh-stepm . 
     anint=matrix(1,maxwav,1,n);               In version up to 0.92 likelihood was computed
     s=imatrix(1,maxwav+1,1,n);          as if date of death was unknown. Death was treated as any other
     adl=imatrix(1,maxwav+1,1,n);              health state: the date of the interview describes the actual state
     tab=ivector(1,NCOVMAX);          and not the date of a change in health state. The former idea was
     ncodemax=ivector(1,8);          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
     i=1;          introduced the exact date of death then we should have modified
     while (fgets(line, MAXLINE, fic) != NULL)    {          the contribution of an exact death to the likelihood. This new
       if ((i >= firstobs) && (i <=lastobs)) {          contribution is smaller and very dependent of the step unit
                  stepm. It is no more the probability to die between last interview
         for (j=maxwav;j>=1;j--){          and month of death but the probability to survive from last
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          interview up to one month before death multiplied by the
           strcpy(line,stra);          probability to die within a month. Thanks to Chris
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          Jackson for correcting this bug.  Former versions increased
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
                  lower mortality.
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            lli=log(out[s1][s2] - savm[s1][s2]);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for (j=ncov;j>=1;j--){            /*survp += out[s1][j]; */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            lli= log(survp);
         }          }
         num[i]=atol(stra);          
           else if  (s2==-4) { 
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         i=i+1;            lli= log(survp); 
       }          } 
     }  
           else if  (s2==-5) { 
     /*scanf("%d",i);*/            for (j=1,survp=0. ; j<=2; j++)  
   imx=i-1; /* Number of individuals */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   /* Calculation of the number of parameter from char model*/          } 
   Tvar=ivector(1,15);          
   Tprod=ivector(1,15);          else{
   Tvaraff=ivector(1,15);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   Tvard=imatrix(1,15,1,2);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   Tage=ivector(1,15);                } 
              /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   if (strlen(model) >1){          /*if(lli ==000.0)*/
     j=0, j1=0, k1=1, k2=1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     j=nbocc(model,'+');          ipmx +=1;
     j1=nbocc(model,'*');          sw += weight[i];
     cptcovn=j+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     cptcovprod=j1;        } /* end of wave */
          } /* end of individual */
        }  else if(mle==2){
     strcpy(modelsav,model);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       printf("Error. Non available option model=%s ",model);        for(mi=1; mi<= wav[i]-1; mi++){
       goto end;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=(j+1); i>=1;i--){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       cutv(stra,strb,modelsav,'+');            }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          for(d=0; d<=dh[mi][i]; d++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            newm=savm;
       /*scanf("%d",i);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (strchr(strb,'*')) {            for (kk=1; kk<=cptcovage;kk++) {
         cutv(strd,strc,strb,'*');              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (strcmp(strc,"age")==0) {            }
           cptcovprod--;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           cutv(strb,stre,strd,'V');                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           Tvar[i]=atoi(stre);            savm=oldm;
           cptcovage++;            oldm=newm;
             Tage[cptcovage]=i;          } /* end mult */
             /*printf("stre=%s ", stre);*/        
         }          s1=s[mw[mi][i]][i];
         else if (strcmp(strd,"age")==0) {          s2=s[mw[mi+1][i]][i];
           cptcovprod--;          bbh=(double)bh[mi][i]/(double)stepm; 
           cutv(strb,stre,strc,'V');          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           Tvar[i]=atoi(stre);          ipmx +=1;
           cptcovage++;          sw += weight[i];
           Tage[cptcovage]=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
         else {      } /* end of individual */
           cutv(strb,stre,strc,'V');    }  else if(mle==3){  /* exponential inter-extrapolation */
           Tvar[i]=ncov+k1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           cutv(strb,strc,strd,'V');        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           Tprod[k1]=i;        for(mi=1; mi<= wav[i]-1; mi++){
           Tvard[k1][1]=atoi(strc);          for (ii=1;ii<=nlstate+ndeath;ii++)
           Tvard[k1][2]=atoi(stre);            for (j=1;j<=nlstate+ndeath;j++){
           Tvar[cptcovn+k2]=Tvard[k1][1];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (k=1; k<=lastobs;k++)            }
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          for(d=0; d<dh[mi][i]; d++){
           k1++;            newm=savm;
           k2=k2+2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else {            }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
        /*  scanf("%d",i);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       cutv(strd,strc,strb,'V');            savm=oldm;
       Tvar[i]=atoi(strc);            oldm=newm;
       }          } /* end mult */
       strcpy(modelsav,stra);          
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          s1=s[mw[mi][i]][i];
         scanf("%d",i);*/          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
 }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            ipmx +=1;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          sw += weight[i];
   printf("cptcovprod=%d ", cptcovprod);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   scanf("%d ",i);*/        } /* end of wave */
     fclose(fic);      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
     /*  if(mle==1){*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (weightopt != 1) { /* Maximisation without weights*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1;i<=n;i++) weight[i]=1.0;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
     /*-calculation of age at interview from date of interview and age at death -*/            for (j=1;j<=nlstate+ndeath;j++){
     agev=matrix(1,maxwav,1,imx);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=imx; i++)  {            }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(d=0; d<dh[mi][i]; d++){
       for(m=1; (m<= maxwav); m++){            newm=savm;
         if(s[m][i] >0){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if (s[m][i] == nlstate+1) {            for (kk=1; kk<=cptcovage;kk++) {
             if(agedc[i]>0)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if(moisdc[i]!=99 && andc[i]!=9999)            }
               agev[m][i]=agedc[i];          
             else {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if (andc[i]!=9999){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            savm=oldm;
               agev[m][i]=-1;            oldm=newm;
               }          } /* end mult */
             }        
           }          s1=s[mw[mi][i]][i];
           else if(s[m][i] !=9){ /* Should no more exist */          s2=s[mw[mi+1][i]][i];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          if( s2 > nlstate){ 
             if(mint[m][i]==99 || anint[m][i]==9999)            lli=log(out[s1][s2] - savm[s1][s2]);
               agev[m][i]=1;          }else{
             else if(agev[m][i] <agemin){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               agemin=agev[m][i];          }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          ipmx +=1;
             }          sw += weight[i];
             else if(agev[m][i] >agemax){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               agemax=agev[m][i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        } /* end of wave */
             }      } /* end of individual */
             /*agev[m][i]=anint[m][i]-annais[i];*/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             /*   agev[m][i] = age[i]+2*m;*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           else { /* =9 */        for(mi=1; mi<= wav[i]-1; mi++){
             agev[m][i]=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
             s[m][i]=-1;            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else /*= 0 Unknown */            }
           agev[m][i]=1;          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1; i<=imx; i++)  {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(m=1; (m<= maxwav); m++){            }
         if (s[m][i] > (nlstate+ndeath)) {          
           printf("Error: Wrong value in nlstate or ndeath\n");              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           goto end;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
       }            oldm=newm;
     }          } /* end mult */
         
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     free_vector(severity,1,maxwav);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     free_imatrix(outcome,1,maxwav+1,1,n);          ipmx +=1;
     free_vector(moisnais,1,n);          sw += weight[i];
     free_vector(annais,1,n);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(mint,1,maxwav,1,n);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     free_matrix(anint,1,maxwav,1,n);        } /* end of wave */
     free_vector(moisdc,1,n);      } /* end of individual */
     free_vector(andc,1,n);    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     wav=ivector(1,imx);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    return -l;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  }
      
     /* Concatenates waves */  /*************** log-likelihood *************/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  double funcone( double *x)
   {
     /* Same as likeli but slower because of a lot of printf and if */
       Tcode=ivector(1,100);    int i, ii, j, k, mi, d, kk;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       ncodemax[1]=1;    double **out;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double lli; /* Individual log likelihood */
          double llt;
    codtab=imatrix(1,100,1,10);    int s1, s2;
    h=0;    double bbh, survp;
    m=pow(2,cptcoveff);    /*extern weight */
      /* We are differentiating ll according to initial status */
    for(k=1;k<=cptcoveff; k++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      for(i=1; i <=(m/pow(2,k));i++){    /*for(i=1;i<imx;i++) 
        for(j=1; j <= ncodemax[k]; j++){      printf(" %d\n",s[4][i]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    */
            h++;    cov[1]=1.;
            if (h>m) h=1;codtab[h][k]=j;  
          }    for(k=1; k<=nlstate; k++) ll[k]=0.;
        }  
      }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
    /*for(i=1; i <=m ;i++){          for (j=1;j<=nlstate+ndeath;j++){
      for(k=1; k <=cptcovn; k++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
      }          }
      printf("\n");        for(d=0; d<dh[mi][i]; d++){
    }          newm=savm;
    scanf("%d",i);*/          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
    /* Calculates basic frequencies. Computes observed prevalence at single age            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        and prints on file fileres'p'. */          }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          savm=oldm;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          oldm=newm;
            } /* end mult */
     /* For Powell, parameters are in a vector p[] starting at p[1]        
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        s1=s[mw[mi][i]][i];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
     if(mle==1){        /* bias is positive if real duration
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);         * is higher than the multiple of stepm and negative otherwise.
     }         */
            if( s2 > nlstate && (mle <5) ){  /* Jackson */
     /*--------- results files --------------*/          lli=log(out[s1][s2] - savm[s1][s2]);
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
    jk=1;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    fprintf(ficres,"# Parameters\n");          lli= log(survp);
    printf("# Parameters\n");        }else if (mle==1){
    for(i=1,jk=1; i <=nlstate; i++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      for(k=1; k <=(nlstate+ndeath); k++){        } else if(mle==2){
        if (k != i)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          {        } else if(mle==3){  /* exponential inter-extrapolation */
            printf("%d%d ",i,k);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            fprintf(ficres,"%1d%1d ",i,k);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
            for(j=1; j <=ncovmodel; j++){          lli=log(out[s1][s2]); /* Original formula */
              printf("%f ",p[jk]);        } else{  /* mle=0 back to 1 */
              fprintf(ficres,"%f ",p[jk]);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              jk++;          /*lli=log(out[s1][s2]); */ /* Original formula */
            }        } /* End of if */
            printf("\n");        ipmx +=1;
            fprintf(ficres,"\n");        sw += weight[i];
          }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    }        if(globpr){
  if(mle==1){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     /* Computing hessian and covariance matrix */   %11.6f %11.6f %11.6f ", \
     ftolhess=ftol; /* Usually correct */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     hesscov(matcov, p, npar, delti, ftolhess, func);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
  }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     fprintf(ficres,"# Scales\n");            llt +=ll[k]*gipmx/gsw;
     printf("# Scales\n");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      for(i=1,jk=1; i <=nlstate; i++){          }
       for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficresilk," %10.6f\n", -llt);
         if (j!=i) {        }
           fprintf(ficres,"%1d%1d",i,j);      } /* end of wave */
           printf("%1d%1d",i,j);    } /* end of individual */
           for(k=1; k<=ncovmodel;k++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             printf(" %.5e",delti[jk]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             fprintf(ficres," %.5e",delti[jk]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             jk++;    if(globpr==0){ /* First time we count the contributions and weights */
           }      gipmx=ipmx;
           printf("\n");      gsw=sw;
           fprintf(ficres,"\n");    }
         }    return -l;
       }  }
       }  
      
     k=1;  /*************** function likelione ***********/
     fprintf(ficres,"# Covariance\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     printf("# Covariance\n");  {
     for(i=1;i<=npar;i++){    /* This routine should help understanding what is done with 
       /*  if (k>nlstate) k=1;       the selection of individuals/waves and
       i1=(i-1)/(ncovmodel*nlstate)+1;       to check the exact contribution to the likelihood.
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       Plotting could be done.
       printf("%s%d%d",alph[k],i1,tab[i]);*/     */
       fprintf(ficres,"%3d",i);    int k;
       printf("%3d",i);  
       for(j=1; j<=i;j++){    if(*globpri !=0){ /* Just counts and sums, no printings */
         fprintf(ficres," %.5e",matcov[i][j]);      strcpy(fileresilk,"ilk"); 
         printf(" %.5e",matcov[i][j]);      strcat(fileresilk,fileres);
       }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       fprintf(ficres,"\n");        printf("Problem with resultfile: %s\n", fileresilk);
       printf("\n");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       k++;      }
     }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
          fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     while((c=getc(ficpar))=='#' && c!= EOF){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       ungetc(c,ficpar);      for(k=1; k<=nlstate; k++) 
       fgets(line, MAXLINE, ficpar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       puts(line);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       fputs(line,ficparo);    }
     }  
     ungetc(c,ficpar);    *fretone=(*funcone)(p);
      if(*globpri !=0){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      fclose(ficresilk);
          fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     if (fage <= 2) {      fflush(fichtm); 
       bage = agemin;    } 
       fage = agemax;    return;
     }  }
   
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  /*********** Maximum Likelihood Estimation ***************/
   
      void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 /*------------ gnuplot -------------*/  {
 chdir(pathcd);    int i,j, iter=0;
   if((ficgp=fopen("graph.plt","w"))==NULL) {    double **xi;
     printf("Problem with file graph.gp");goto end;    double fret;
   }    double fretone; /* Only one call to likelihood */
 #ifdef windows    /*  char filerespow[FILENAMELENGTH];*/
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif  #ifdef NLOPT
 m=pow(2,cptcoveff);    int creturn;
      nlopt_opt opt;
  /* 1eme*/    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double *lb;
    for (k1=1; k1<= m ; k1 ++) {    double minf; /* the minimum objective value, upon return */
     double * p1; /* Shifted parameters from 0 instead of 1 */
 #ifdef windows    myfunc_data dinst, *d = &dinst;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  #endif
 #endif  
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    xi=matrix(1,npar,1,npar);
 #endif    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
 for (i=1; i<= nlstate ; i ++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(filerespow,"pow"); 
 }    strcat(filerespow,fileres);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for (i=1; i<= nlstate ; i ++) {      printf("Problem with resultfile: %s\n", filerespow);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    for (i=1;i<=nlstate;i++)
      for (i=1; i<= nlstate ; i ++) {      for(j=1;j<=nlstate+ndeath;j++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficrespow,"\n");
 }    #ifdef POWELL
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    powell(p,xi,npar,ftol,&iter,&fret,func);
 #ifdef unix  #endif
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif  #ifdef NLOPT
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  #ifdef NEWUOA
    }    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   }  #else
   /*2 eme*/    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   #endif
   for (k1=1; k1<= m ; k1 ++) {    lb=vector(0,npar-1);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
        nlopt_set_lower_bounds(opt, lb);
     for (i=1; i<= nlstate+1 ; i ++) {    nlopt_set_initial_step1(opt, 0.1);
       k=2*i;    
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
       for (j=1; j<= nlstate+1 ; j ++) {    d->function = func;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   else fprintf(ficgp," \%%*lf (\%%*lf)");    nlopt_set_min_objective(opt, myfunc, d);
 }      nlopt_set_xtol_rel(opt, ftol);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      printf("nlopt failed! %d\n",creturn); 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    else {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 }        iter=1; /* not equal */
       fprintf(ficgp,"\" t\"\" w l 0,");    }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    nlopt_destroy(opt);
       for (j=1; j<= nlstate+1 ; j ++) {  #endif
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(xi,1,npar,1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fclose(ficrespow);
 }      printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  }
   }  
    /**** Computes Hessian and covariance matrix ***/
   /*3eme*/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
   for (k1=1; k1<= m ; k1 ++) {    double  **a,**y,*x,pd;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double **hess;
       k=2+nlstate*(cpt-1);    int i, j;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    int *indx;
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     }    void ludcmp(double **a, int npar, int *indx, double *d) ;
   }    double gompertz(double p[]);
      hess=matrix(1,npar,1,npar);
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {    printf("\nCalculation of the hessian matrix. Wait...\n");
     for (cpt=1; cpt<nlstate ; cpt ++) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       k=3;    for (i=1;i<=npar;i++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);      printf("%d",i);fflush(stdout);
       for (i=1; i< nlstate ; i ++)      fprintf(ficlog,"%d",i);fflush(ficlog);
         fprintf(ficgp,"+$%d",k+i+1);     
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
            
       l=3+(nlstate+ndeath)*cpt;      /*  printf(" %f ",p[i]);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for (i=1; i< nlstate ; i ++) {    }
         l=3+(nlstate+ndeath)*cpt;    
         fprintf(ficgp,"+$%d",l+i+1);    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          if (j>i) { 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          printf(".%d%d",i,j);fflush(stdout);
     }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
   /* proba elementaires */          hess[j][i]=hess[i][j];    
    for(i=1,jk=1; i <=nlstate; i++){          /*printf(" %lf ",hess[i][j]);*/
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {      }
         for(j=1; j <=ncovmodel; j++){    }
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    printf("\n");
           /*fprintf(ficgp,"%s",alph[1]);*/    fprintf(ficlog,"\n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           fprintf(ficgp,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    
       }    a=matrix(1,npar,1,npar);
     }    y=matrix(1,npar,1,npar);
     }    x=vector(1,npar);
     indx=ivector(1,npar);
   for(jk=1; jk <=m; jk++) {    for (i=1;i<=npar;i++)
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
    i=1;    ludcmp(a,npar,indx,&pd);
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;    for (j=1;j<=npar;j++) {
      for(k=1; k<=(nlstate+ndeath); k++) {      for (i=1;i<=npar;i++) x[i]=0;
        if (k != k2){      x[j]=1;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      lubksb(a,npar,indx,x);
 ij=1;      for (i=1;i<=npar;i++){ 
         for(j=3; j <=ncovmodel; j++) {        matcov[i][j]=x[i];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    }
             ij++;  
           }    printf("\n#Hessian matrix#\n");
           else    fprintf(ficlog,"\n#Hessian matrix#\n");
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (i=1;i<=npar;i++) { 
         }      for (j=1;j<=npar;j++) { 
           fprintf(ficgp,")/(1");        printf("%.3e ",hess[i][j]);
                fprintf(ficlog,"%.3e ",hess[i][j]);
         for(k1=1; k1 <=nlstate; k1++){        }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      printf("\n");
 ij=1;      fprintf(ficlog,"\n");
           for(j=3; j <=ncovmodel; j++){    }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* Recompute Inverse */
             ij++;    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           else    ludcmp(a,npar,indx,&pd);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
           }    /*  printf("\n#Hessian matrix recomputed#\n");
           fprintf(ficgp,")");  
         }    for (j=1;j<=npar;j++) {
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      for (i=1;i<=npar;i++) x[i]=0;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      x[j]=1;
         i=i+ncovmodel;      lubksb(a,npar,indx,x);
        }      for (i=1;i<=npar;i++){ 
      }        y[i][j]=x[i];
    }        printf("%.3e ",y[i][j]);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
          printf("\n");
   fclose(ficgp);      fprintf(ficlog,"\n");
        }
 chdir(path);    */
     free_matrix(agev,1,maxwav,1,imx);  
     free_ivector(wav,1,imx);    free_matrix(a,1,npar,1,npar);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    free_matrix(y,1,npar,1,npar);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    free_vector(x,1,npar);
        free_ivector(indx,1,npar);
     free_imatrix(s,1,maxwav+1,1,n);    free_matrix(hess,1,npar,1,npar);
      
      
     free_ivector(num,1,n);  }
     free_vector(agedc,1,n);  
     free_vector(weight,1,n);  /*************** hessian matrix ****************/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     fclose(ficparo);  {
     fclose(ficres);    int i;
     /*  }*/    int l=1, lmax=20;
        double k1,k2;
    /*________fin mle=1_________*/    double p2[MAXPARM+1]; /* identical to x */
        double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      double fx;
     /* No more information from the sample is required now */    int k=0,kmax=10;
   /* Reads comments: lines beginning with '#' */    double l1;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    fx=func(x);
     fgets(line, MAXLINE, ficpar);    for (i=1;i<=npar;i++) p2[i]=x[i];
     puts(line);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     fputs(line,ficparo);      l1=pow(10,l);
   }      delts=delt;
   ungetc(c,ficpar);      for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        p2[theta]=x[theta] +delt;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        p2[theta]=x[theta]-delt;
 /*--------- index.htm --------*/        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   if((fichtm=fopen("index.htm","w"))==NULL)    {        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     printf("Problem with index.htm \n");goto end;        
   }  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64a </font> <hr size=\"2\" color=\"#EC5E5E\">        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>  #endif
 Total number of observations=%d <br>        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 <hr  size=\"2\" color=\"#EC5E5E\">          k=kmax;
 <li>Outputs files<br><br>\n        }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          k=kmax; l=lmax*10;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          delts=delt;
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        }
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    }
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    delti[theta]=delts;
     return res; 
  fprintf(fichtm," <li>Graphs</li><p>");    
   }
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
  j1=0;    int i;
  for(k1=1; k1<=m;k1++){    int l=1, lmax=20;
    for(i1=1; i1<=ncodemax[k1];i1++){    double k1,k2,k3,k4,res,fx;
        j1++;    double p2[MAXPARM+1];
        if (cptcovn > 0) {    int k;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)    fx=func(x);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    for (k=1; k<=2; k++) {
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for (i=1;i<=npar;i++) p2[i]=x[i];
        }      p2[thetai]=x[thetai]+delti[thetai]/k;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          k1=func(p2)-fx;
        for(cpt=1; cpt<nlstate;cpt++){    
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      p2[thetai]=x[thetai]+delti[thetai]/k;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        }      k2=func(p2)-fx;
     for(cpt=1; cpt<=nlstate;cpt++) {    
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      p2[thetai]=x[thetai]-delti[thetai]/k;
 interval) in state (%d): v%s%d%d.gif <br>      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        k3=func(p2)-fx;
      }    
      for(cpt=1; cpt<=nlstate;cpt++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      k4=func(p2)-fx;
      }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  #ifdef DEBUG
 health expectancies in states (1) and (2): e%s%d.gif<br>      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 fprintf(fichtm,"\n</body>");  #endif
    }    }
  }    return res;
 fclose(fichtm);  }
   
   /*--------------- Prevalence limit --------------*/  /************** Inverse of matrix **************/
    void ludcmp(double **a, int n, int *indx, double *d) 
   strcpy(filerespl,"pl");  { 
   strcat(filerespl,fileres);    int i,imax,j,k; 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    double big,dum,sum,temp; 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double *vv; 
   }   
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    vv=vector(1,n); 
   fprintf(ficrespl,"#Prevalence limit\n");    *d=1.0; 
   fprintf(ficrespl,"#Age ");    for (i=1;i<=n;i++) { 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      big=0.0; 
   fprintf(ficrespl,"\n");      for (j=1;j<=n;j++) 
          if ((temp=fabs(a[i][j])) > big) big=temp; 
   prlim=matrix(1,nlstate,1,nlstate);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      vv[i]=1.0/big; 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (j=1;j<=n;j++) { 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=1;i<j;i++) { 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        sum=a[i][j]; 
   k=0;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   agebase=agemin;        a[i][j]=sum; 
   agelim=agemax;      } 
   ftolpl=1.e-10;      big=0.0; 
   i1=cptcoveff;      for (i=j;i<=n;i++) { 
   if (cptcovn < 1){i1=1;}        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   for(cptcov=1;cptcov<=i1;cptcov++){          sum -= a[i][k]*a[k][j]; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        a[i][j]=sum; 
         k=k+1;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          big=dum; 
         fprintf(ficrespl,"\n#******");          imax=i; 
         for(j=1;j<=cptcoveff;j++)        } 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } 
         fprintf(ficrespl,"******\n");      if (j != imax) { 
                for (k=1;k<=n;k++) { 
         for (age=agebase; age<=agelim; age++){          dum=a[imax][k]; 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          a[imax][k]=a[j][k]; 
           fprintf(ficrespl,"%.0f",age );          a[j][k]=dum; 
           for(i=1; i<=nlstate;i++)        } 
           fprintf(ficrespl," %.5f", prlim[i][i]);        *d = -(*d); 
           fprintf(ficrespl,"\n");        vv[imax]=vv[j]; 
         }      } 
       }      indx[j]=imax; 
     }      if (a[j][j] == 0.0) a[j][j]=TINY; 
   fclose(ficrespl);      if (j != n) { 
   /*------------- h Pij x at various ages ------------*/        dum=1.0/(a[j][j]); 
          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      } 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    } 
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    free_vector(vv,1,n);  /* Doesn't work */
   }  ;
   printf("Computing pij: result on file '%s' \n", filerespij);  } 
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;  void lubksb(double **a, int n, int *indx, double b[]) 
   if (stepm<=24) stepsize=2;  { 
     int i,ii=0,ip,j; 
   agelim=AGESUP;    double sum; 
   hstepm=stepsize*YEARM; /* Every year of age */   
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    for (i=1;i<=n;i++) { 
        ip=indx[i]; 
   k=0;      sum=b[ip]; 
   for(cptcov=1;cptcov<=i1;cptcov++){      b[ip]=b[i]; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if (ii) 
       k=k+1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficrespij,"\n#****** ");      else if (sum) ii=i; 
         for(j=1;j<=cptcoveff;j++)      b[i]=sum; 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    } 
         fprintf(ficrespij,"******\n");    for (i=n;i>=1;i--) { 
              sum=b[i]; 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      b[i]=sum/a[i][i]; 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    } 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  } 
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    void pstamp(FILE *fichier)
           fprintf(ficrespij,"# Age");  {
           for(i=1; i<=nlstate;i++)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             for(j=1; j<=nlstate+ndeath;j++)  }
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");  /************ Frequencies ********************/
           for (h=0; h<=nhstepm; h++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  {  /* Some frequencies */
             for(i=1; i<=nlstate;i++)    
               for(j=1; j<=nlstate+ndeath;j++)    int i, m, jk, j1, bool, z1,j;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    int first;
             fprintf(ficrespij,"\n");    double ***freq; /* Frequencies */
           }    double *pp, **prop;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           fprintf(ficrespij,"\n");    char fileresp[FILENAMELENGTH];
         }    
     }    pp=vector(1,nlstate);
   }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
   fclose(ficrespij);    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   /*---------- Health expectancies and variances ------------*/      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   strcpy(filerest,"t");      exit(0);
   strcat(filerest,fileres);    }
   if((ficrest=fopen(filerest,"w"))==NULL) {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    j1=0;
   }    
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   strcpy(filerese,"e");    first=1;
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
   }    /*    j1++; */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
  strcpy(fileresv,"v");          scanf("%d", i);*/
   strcat(fileresv,fileres);        for (i=-5; i<=nlstate+ndeath; i++)  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            for(m=iagemin; m <= iagemax+3; m++)
   }              freq[i][jk][m]=0;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        
         for (i=1; i<=nlstate; i++)  
   k=0;          for(m=iagemin; m <= iagemax+3; m++)
   for(cptcov=1;cptcov<=i1;cptcov++){            prop[i][m]=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        
       k=k+1;        dateintsum=0;
       fprintf(ficrest,"\n#****** ");        k2cpt=0;
       for(j=1;j<=cptcoveff;j++)        for (i=1; i<=imx; i++) {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          bool=1;
       fprintf(ficrest,"******\n");          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             for (z1=1; z1<=cptcoveff; z1++)       
       fprintf(ficreseij,"\n#****** ");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
       for(j=1;j<=cptcoveff;j++)                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                bool=0;
       fprintf(ficreseij,"******\n");                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
       fprintf(ficresvij,"\n#****** ");                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
       for(j=1;j<=cptcoveff;j++)                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              } 
       fprintf(ficresvij,"******\n");          }
    
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          if (bool==1){
       oldm=oldms;savm=savms;            for(m=firstpass; m<=lastpass; m++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                k2=anint[m][i]+(mint[m][i]/12.);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       oldm=oldms;savm=savms;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                if (m<lastpass) {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficrest,"\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                        }
       hf=1;                
       if (stepm >= YEARM) hf=stepm/YEARM;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       epj=vector(1,nlstate+1);                  dateintsum=dateintsum+k2;
       for(age=bage; age <=fage ;age++){                  k2cpt++;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                }
         fprintf(ficrest," %.0f",age);                /*}*/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          }
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];        } /* end i */
           }         
           epj[nlstate+1] +=epj[j];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         }        pstamp(ficresp);
         for(i=1, vepp=0.;i <=nlstate;i++)        if  (cptcovn>0) {
           for(j=1;j <=nlstate;j++)          fprintf(ficresp, "\n#********** Variable "); 
             vepp += vareij[i][j][(int)age];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));          fprintf(ficresp, "**********\n#");
         for(j=1;j <=nlstate;j++){          fprintf(ficlog, "\n#********** Variable "); 
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficlog, "**********\n#");
         fprintf(ficrest,"\n");        }
       }        for(i=1; i<=nlstate;i++) 
     }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   }        fprintf(ficresp, "\n");
                
  fclose(ficreseij);        for(i=iagemin; i <= iagemax+3; i++){
  fclose(ficresvij);          if(i==iagemax+3){
   fclose(ficrest);            fprintf(ficlog,"Total");
   fclose(ficpar);          }else{
   free_vector(epj,1,nlstate+1);            if(first==1){
   /*  scanf("%d ",i); */              first=0;
               printf("See log file for details...\n");
   /*------- Variance limit prevalence------*/              }
             fprintf(ficlog,"Age %d", i);
 strcpy(fileresvpl,"vpl");          }
   strcat(fileresvpl,fileres);          for(jk=1; jk <=nlstate ; jk++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              pp[jk] += freq[jk][m][i]; 
     exit(0);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
  k=0;            if(pp[jk]>=1.e-10){
  for(cptcov=1;cptcov<=i1;cptcov++){              if(first==1){
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      k=k+1;              }
      fprintf(ficresvpl,"\n#****** ");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      for(j=1;j<=cptcoveff;j++)            }else{
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if(first==1)
      fprintf(ficresvpl,"******\n");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            }
      oldm=oldms;savm=savms;          }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
    }          for(jk=1; jk <=nlstate ; jk++){
  }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   fclose(ficresvpl);          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   /*---------- End : free ----------------*/            pos += pp[jk];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            posprop += prop[jk][i];
            }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(jk=1; jk <=nlstate ; jk++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            if(pos>=1.e-5){
                if(first==1)
                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            }else{
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);              if(first==1)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_matrix(matcov,1,npar,1,npar);            }
   free_vector(delti,1,npar);            if( i <= iagemax){
                if(pos>=1.e-5){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   printf("End of Imach\n");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              }
                else
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   /*printf("Total time was %d uSec.\n", total_usecs);*/            }
   /*------ End -----------*/          }
           
  end:          for(jk=-1; jk <=nlstate+ndeath; jk++)
 #ifdef windows            for(m=-1; m <=nlstate+ndeath; m++)
  chdir(pathcd);              if(freq[jk][m][i] !=0 ) {
 #endif              if(first==1)
  /*system("wgnuplot graph.plt");*/                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  system("../gp37mgw/wgnuplot graph.plt");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
 #ifdef windows          if(i <= iagemax)
   while (z[0] != 'q') {            fprintf(ficresp,"\n");
     chdir(pathcd);          if(first==1)
     printf("\nType e to edit output files, c to start again, and q for exiting: ");            printf("Others in log...\n");
     scanf("%s",z);          fprintf(ficlog,"\n");
     if (z[0] == 'c') system("./imach");        }
     else if (z[0] == 'e') {        /*}*/
       chdir(path);    }
       system("index.htm");    dateintmean=dateintsum/k2cpt; 
     }   
     else if (z[0] == 'q') exit(0);    fclose(ficresp);
   }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 #endif    free_vector(pp,1,nlstate);
 }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   }
   
   /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
    
     int i, m, jk, j1, bool, z1,j;
   
     double **prop;
     double posprop; 
     double  y2; /* in fractional years */
     int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
   
     iagemin= (int) agemin;
     iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     
     /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
         
         for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
        
         for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
           if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
           } 
           if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
               }
             } /* end selection of waves */
           }
         }
         for(i=iagemin; i <= iagemax+3; i++){  
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
           } 
           
           for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
               } else{
                 if(first==1){
                   first=0;
                   printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                 }
               }
             } 
           }/* end jk */ 
         }/* end i */ 
       /*} *//* end i1 */
     } /* end j1 */
     
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   
   /************* Waves Concatenation ***************/
   
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
        */
   
     int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
     int first;
     int j, k=0,jk, ju, jl;
     double sum=0.;
     first=0;
     jmin=100000;
     jmax=-1;
     jmean=0.;
     for(i=1; i<=imx; i++){
       mi=0;
       m=firstpass;
       while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
         if(m >=lastpass)
           break;
         else
           m++;
       }/* end while */
       if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
         mw[mi][i]=m;
       }
   
       wav[i]=mi;
       if(mi==0){
         nbwarn++;
         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
         }
         if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       } /* end mi==0 */
     } /* End individuals */
   
     for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
           dh[mi][i]=1;
         else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                 nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
               k=k+1;
               if (j >= jmax){
                 jmax=j;
                 ijmax=i;
               }
               if (j <= jmin){
                 jmin=j;
                 ijmin=i;
               }
               sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
           else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
             k=k+1;
             if (j >= jmax) {
               jmax=j;
               ijmax=i;
             }
             else if (j <= jmin){
               jmin=j;
               ijmin=i;
             }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
               nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
           }
           jk= j/stepm;
           jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
               dh[mi][i]=jk;
               bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
           }else{
             if(jl <= -ju){
               dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
                                    */
             }
             else{
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
           } /* end if mle */
         }
       } /* end wave */
     }
     jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   
   /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      * Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
      * nbcode[Tvar[j]][1]= 
     */
   
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
   
   
     cptcoveff=0; 
    
     for (k=-1; k < maxncov; k++) Ndum[k]=0;
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
     /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
       for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                       * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
           modmaxcovj=ij; 
         else if (ij < modmincovj) 
           modmincovj=ij; 
         if ((ij < -1) && (ij > NCOVMAX)){
           printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           exit(1);
         }else
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
       }
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       cptcode=modmaxcovj;
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
       for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
         printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
         if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
           ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       } /* Ndum[-1] number of undefined modalities */
   
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
       /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
          variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
       */
       ij=1; /* ij is similar to i but can jumps over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
           }
           if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
       } /* end of loop on modality */ 
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; 
    } 
   
    ij=1;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
        ij++;
      }else
          Tvaraff[ij]=0;
    }
    ij--;
    cptcoveff=ij; /*Number of total covariates*/
   
   }
   
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* #include <gnu/libc-version.h> */ /* Only on gnu */
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(". ");fprintf(ficlog,". ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
   #elif __unix__ // all unices, not all compilers
       // Unix
   #elif __linux__
       // linux
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   #include <stdint.h>
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit."); /* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
     printf(" 64-bit.");/* 64-bit */
   #else
    printf(" wtf-bit."); /* wtf */
   #endif
   
   struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf("GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, "GNU C version %d.\n", __GNUC_VERSION__);
   #endif
   #if defined(_MSC_VER)
      printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);
      fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);
   #endif
      
     /* printf("GNU libc version: %s\n", gnu_get_libc_version()); */
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.8  
changed lines
  Added in v.1.169


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>