Diff for /imach/src/imach.c between versions 1.16 and 1.128

version 1.16, 2002/02/20 17:12:32 version 1.128, 2006/06/30 13:02:05
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.128  2006/06/30 13:02:05  brouard
   individuals from different ages are interviewed on their health status    (Module): Clarifications on computing e.j
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.127  2006/04/28 18:11:50  brouard
   Health expectancies are computed from the transistions observed between    (Module): Yes the sum of survivors was wrong since
   waves and are computed for each degree of severity of disability (number    imach-114 because nhstepm was no more computed in the age
   of life states). More degrees you consider, more time is necessary to    loop. Now we define nhstepma in the age loop.
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): In order to speed up (in case of numerous covariates) we
   The simplest model is the multinomial logistic model where pij is    compute health expectancies (without variances) in a first step
   the probabibility to be observed in state j at the second wave conditional    and then all the health expectancies with variances or standard
   to be observed in state i at the first wave. Therefore the model is:    deviation (needs data from the Hessian matrices) which slows the
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    computation.
   is a covariate. If you want to have a more complex model than "constant and    In the future we should be able to stop the program is only health
   age", you should modify the program where the markup    expectancies and graph are needed without standard deviations.
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   The advantage that this computer programme claims, comes from that if the    imach-114 because nhstepm was no more computed in the age
   delay between waves is not identical for each individual, or if some    loop. Now we define nhstepma in the age loop.
   individual missed an interview, the information is not rounded or lost, but    Version 0.98h
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.125  2006/04/04 15:20:31  lievre
   observed in state i at age x+h conditional to the observed state i at age    Errors in calculation of health expectancies. Age was not initialized.
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Forecasting file added.
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.124  2006/03/22 17:13:53  lievre
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Parameters are printed with %lf instead of %f (more numbers after the comma).
   and the contribution of each individual to the likelihood is simply hPijx.    The log-likelihood is printed in the log file
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.123  2006/03/20 10:52:43  brouard
   of the life expectancies. It also computes the prevalence limits.    * imach.c (Module): <title> changed, corresponds to .htm file
      name. <head> headers where missing.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    * imach.c (Module): Weights can have a decimal point as for
   This software have been partly granted by Euro-REVES, a concerted action    English (a comma might work with a correct LC_NUMERIC environment,
   from the European Union.    otherwise the weight is truncated).
   It is copyrighted identically to a GNU software product, ie programme and    Modification of warning when the covariates values are not 0 or
   software can be distributed freely for non commercial use. Latest version    1.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.98g
   **********************************************************************/  
      Revision 1.122  2006/03/20 09:45:41  brouard
 #include <math.h>    (Module): Weights can have a decimal point as for
 #include <stdio.h>    English (a comma might work with a correct LC_NUMERIC environment,
 #include <stdlib.h>    otherwise the weight is truncated).
 #include <unistd.h>    Modification of warning when the covariates values are not 0 or
     1.
 #define MAXLINE 256    Version 0.98g
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.121  2006/03/16 17:45:01  lievre
 #define windows    * imach.c (Module): Comments concerning covariates added
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    not 1 month. Version 0.98f
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.120  2006/03/16 15:10:38  lievre
 #define NINTERVMAX 8    (Module): refinements in the computation of lli if
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    status=-2 in order to have more reliable computation if stepm is
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    not 1 month. Version 0.98f
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.119  2006/03/15 17:42:26  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Bug if status = -2, the loglikelihood was
 #define AGESUP 130    computed as likelihood omitting the logarithm. Version O.98e
 #define AGEBASE 40  
     Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 int nvar;    table of variances if popbased=1 .
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int npar=NPARMAX;    (Module): Function pstamp added
 int nlstate=2; /* Number of live states */    (Module): Version 0.98d
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.117  2006/03/14 17:16:22  brouard
 int popbased=0;    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int maxwav; /* Maxim number of waves */    (Module): Function pstamp added
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Version 0.98d
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.116  2006/03/06 10:29:27  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Variance-covariance wrong links and
 double jmean; /* Mean space between 2 waves */    varian-covariance of ej. is needed (Saito).
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.115  2006/02/27 12:17:45  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    (Module): One freematrix added in mlikeli! 0.98c
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.114  2006/02/26 12:57:58  brouard
   char filerese[FILENAMELENGTH];    (Module): Some improvements in processing parameter
  FILE  *ficresvij;    filename with strsep.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.113  2006/02/24 14:20:24  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 #define NR_END 1    allocation too.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define NRANSI  
 #define ITMAX 200    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define TOL 2.0e-4    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.110  2006/01/25 00:51:50  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Lots of cleaning and bugs added (Gompertz)
   
 #define GOLD 1.618034    Revision 1.109  2006/01/24 19:37:15  brouard
 #define GLIMIT 100.0    (Module): Comments (lines starting with a #) are allowed in data.
 #define TINY 1.0e-20  
     Revision 1.108  2006/01/19 18:05:42  lievre
 static double maxarg1,maxarg2;    Gnuplot problem appeared...
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    To be fixed
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.107  2006/01/19 16:20:37  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Test existence of gnuplot in imach path
 #define rint(a) floor(a+0.5)  
     Revision 1.106  2006/01/19 13:24:36  brouard
 static double sqrarg;    Some cleaning and links added in html output
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 int imx;  
 int stepm;    Revision 1.104  2005/09/30 16:11:43  lievre
 /* Stepm, step in month: minimum step interpolation*/    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 int m,nb;    that the person is alive, then we can code his/her status as -2
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (instead of missing=-1 in earlier versions) and his/her
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    contributions to the likelihood is 1 - Prob of dying from last
 double **pmmij, ***probs, ***mobaverage;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 double *weight;  
 int **s; /* Status */    Revision 1.103  2005/09/30 15:54:49  lievre
 double *agedc, **covar, idx;    (Module): sump fixed, loop imx fixed, and simplifications.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.102  2004/09/15 17:31:30  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Add the possibility to read data file including tab characters.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.101  2004/09/15 10:38:38  brouard
 /**************** split *************************/    Fix on curr_time
 static  int split( char *path, char *dirc, char *name )  
 {    Revision 1.100  2004/07/12 18:29:06  brouard
    char *s;                             /* pointer */    Add version for Mac OS X. Just define UNIX in Makefile
    int  l1, l2;                         /* length counters */  
     Revision 1.99  2004/06/05 08:57:40  brouard
    l1 = strlen( path );                 /* length of path */    *** empty log message ***
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.98  2004/05/16 15:05:56  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    New version 0.97 . First attempt to estimate force of mortality
 #if     defined(__bsd__)                /* get current working directory */    directly from the data i.e. without the need of knowing the health
       extern char       *getwd( );    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
       if ( getwd( dirc ) == NULL ) {    other analysis, in order to test if the mortality estimated from the
 #else    cross-longitudinal survey is different from the mortality estimated
       extern char       *getcwd( );    from other sources like vital statistic data.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    The same imach parameter file can be used but the option for mle should be -3.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Agnès, who wrote this part of the code, tried to keep most of the
       }    former routines in order to include the new code within the former code.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    The output is very simple: only an estimate of the intercept and of
       s++;                              /* after this, the filename */    the slope with 95% confident intervals.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Current limitations:
       strcpy( name, s );                /* save file name */    A) Even if you enter covariates, i.e. with the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       dirc[l1-l2] = 0;                  /* add zero */    B) There is no computation of Life Expectancy nor Life Table.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.97  2004/02/20 13:25:42  lievre
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Version 0.96d. Population forecasting command line is (temporarily)
    return( 0 );                         /* we're done */    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /******************************************/    rewritten within the same printf. Workaround: many printfs.
   
 void replace(char *s, char*t)    Revision 1.95  2003/07/08 07:54:34  brouard
 {    * imach.c (Repository):
   int i;    (Repository): Using imachwizard code to output a more meaningful covariance
   int lg=20;    matrix (cov(a12,c31) instead of numbers.
   i=0;  
   lg=strlen(t);    Revision 1.94  2003/06/27 13:00:02  brouard
   for(i=0; i<= lg; i++) {    Just cleaning
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.93  2003/06/25 16:33:55  brouard
   }    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 int nbocc(char *s, char occ)  
 {    Revision 1.92  2003/06/25 16:30:45  brouard
   int i,j=0;    (Module): On windows (cygwin) function asctime_r doesn't
   int lg=20;    exist so I changed back to asctime which exists.
   i=0;  
   lg=strlen(s);    Revision 1.91  2003/06/25 15:30:29  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository): Duplicated warning errors corrected.
   if  (s[i] == occ ) j++;    (Repository): Elapsed time after each iteration is now output. It
   }    helps to forecast when convergence will be reached. Elapsed time
   return j;    is stamped in powell.  We created a new html file for the graphs
 }    concerning matrix of covariance. It has extension -cov.htm.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.90  2003/06/24 12:34:15  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   int i,lg,j,p=0;    mle=-1 a template is output in file "or"mypar.txt with the design
   i=0;    of the covariance matrix to be input.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.89  2003/06/24 12:30:52  brouard
   }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   lg=strlen(t);    of the covariance matrix to be input.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.88  2003/06/23 17:54:56  brouard
   }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
      u[p]='\0';  
     Revision 1.87  2003/06/18 12:26:01  brouard
    for(j=0; j<= lg; j++) {    Version 0.96
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.86  2003/06/17 20:04:08  brouard
 }    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 /********************** nrerror ********************/  
     Revision 1.85  2003/06/17 13:12:43  brouard
 void nrerror(char error_text[])    * imach.c (Repository): Check when date of death was earlier that
 {    current date of interview. It may happen when the death was just
   fprintf(stderr,"ERREUR ...\n");    prior to the death. In this case, dh was negative and likelihood
   fprintf(stderr,"%s\n",error_text);    was wrong (infinity). We still send an "Error" but patch by
   exit(1);    assuming that the date of death was just one stepm after the
 }    interview.
 /*********************** vector *******************/    (Repository): Because some people have very long ID (first column)
 double *vector(int nl, int nh)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   double *v;    truncation)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Repository): No more line truncation errors.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /************************ free vector ******************/    many times. Probs is memory consuming and must be used with
 void free_vector(double*v, int nl, int nh)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  */
   if (!v) nrerror("allocation failure in ivector");  /*
   return v-nl+NR_END;     Interpolated Markov Chain
 }  
     Short summary of the programme:
 /******************free ivector **************************/    
 void free_ivector(int *v, long nl, long nh)    This program computes Healthy Life Expectancies from
 {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   free((FREE_ARG)(v+nl-NR_END));    first survey ("cross") where individuals from different ages are
 }    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 /******************* imatrix *******************************/    second wave of interviews ("longitudinal") which measure each change
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (if any) in individual health status.  Health expectancies are
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Maximum Likelihood of the parameters involved in the model.  The
   int **m;    simplest model is the multinomial logistic model where pij is the
      probability to be observed in state j at the second wave
   /* allocate pointers to rows */    conditional to be observed in state i at the first wave. Therefore
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if (!m) nrerror("allocation failure 1 in matrix()");    'age' is age and 'sex' is a covariate. If you want to have a more
   m += NR_END;    complex model than "constant and age", you should modify the program
   m -= nrl;    where the markup *Covariates have to be included here again* invites
      you to do it.  More covariates you add, slower the
      convergence.
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    The advantage of this computer programme, compared to a simple
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    multinomial logistic model, is clear when the delay between waves is not
   m[nrl] += NR_END;    identical for each individual. Also, if a individual missed an
   m[nrl] -= ncl;    intermediate interview, the information is lost, but taken into
      account using an interpolation or extrapolation.  
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      hPijx is the probability to be observed in state i at age x+h
   /* return pointer to array of pointers to rows */    conditional to the observed state i at age x. The delay 'h' can be
   return m;    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /****************** free_imatrix *************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 void free_imatrix(m,nrl,nrh,ncl,nch)    and the contribution of each individual to the likelihood is simply
       int **m;    hPijx.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the period (stable) prevalence. 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    
   free((FREE_ARG) (m+nrl-NR_END));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /******************* matrix *******************************/    from the European Union.
 double **matrix(long nrl, long nrh, long ncl, long nch)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    can be accessed at http://euroreves.ined.fr/imach .
   double **m;  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    **********************************************************************/
   m -= nrl;  /*
     main
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    read parameterfile
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    read datafile
   m[nrl] += NR_END;    concatwav
   m[nrl] -= ncl;    freqsummary
     if (mle >= 1)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      mlikeli
   return m;    print results files
 }    if mle==1 
        computes hessian
 /*************************free matrix ************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)        begin-prev-date,...
 {    open gnuplot file
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    open html file
   free((FREE_ARG)(m+nrl-NR_END));    period (stable) prevalence
 }     for age prevalim()
     h Pij x
 /******************* ma3x *******************************/    variance of p varprob
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Variance-covariance of DFLE
   double ***m;    prevalence()
      movingaverage()
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    varevsij() 
   if (!m) nrerror("allocation failure 1 in matrix()");    if popbased==1 varevsij(,popbased)
   m += NR_END;    total life expectancies
   m -= nrl;    Variance of period (stable) prevalence
    end
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  
    
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <math.h>
   #include <stdio.h>
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #include <stdlib.h>
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <string.h>
   m[nrl][ncl] += NR_END;  #include <unistd.h>
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  #include <limits.h>
     m[nrl][j]=m[nrl][j-1]+nlay;  #include <sys/types.h>
    #include <sys/stat.h>
   for (i=nrl+1; i<=nrh; i++) {  #include <errno.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  extern int errno;
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  /* #include <sys/time.h> */
   }  #include <time.h>
   return m;  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 /*************************free ma3x ************************/  /* #define _(String) gettext (String) */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  #define MAXLINE 256
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GNUPLOTPROGRAM "gnuplot"
   free((FREE_ARG)(m+nrl-NR_END));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /***************** f1dim *************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 extern int ncom;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double f1dim(double x)  
 {  #define NINTERVMAX 8
   int j;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   double f;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   double *xt;  #define NCOVMAX 8 /* Maximum number of covariates */
    #define MAXN 20000
   xt=vector(1,ncom);  #define YEARM 12. /* Number of months per year */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define AGESUP 130
   f=(*nrfunc)(xt);  #define AGEBASE 40
   free_vector(xt,1,ncom);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   return f;  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 /*****************brent *************************/  #define ODIRSEPARATOR '\\'
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #else
 {  #define DIRSEPARATOR '\\'
   int iter;  #define CHARSEPARATOR "\\"
   double a,b,d,etemp;  #define ODIRSEPARATOR '/'
   double fu,fv,fw,fx;  #endif
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /* $Id$ */
   double e=0.0;  /* $State$ */
    
   a=(ax < cx ? ax : cx);  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
   b=(ax > cx ? ax : cx);  char fullversion[]="$Revision$ $Date$"; 
   x=w=v=bx;  char strstart[80];
   fw=fv=fx=(*f)(x);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   for (iter=1;iter<=ITMAX;iter++) {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     xm=0.5*(a+b);  int nvar;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int npar=NPARMAX;
     printf(".");fflush(stdout);  int nlstate=2; /* Number of live states */
 #ifdef DEBUG  int ndeath=1; /* Number of dead states */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int popbased=0;
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int *wav; /* Number of waves for this individuual 0 is possible */
       *xmin=x;  int maxwav; /* Maxim number of waves */
       return fx;  int jmin, jmax; /* min, max spacing between 2 waves */
     }  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
     ftemp=fu;  int gipmx, gsw; /* Global variables on the number of contributions 
     if (fabs(e) > tol1) {                     to the likelihood and the sum of weights (done by funcone)*/
       r=(x-w)*(fx-fv);  int mle, weightopt;
       q=(x-v)*(fx-fw);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       p=(x-v)*q-(x-w)*r;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       q=2.0*(q-r);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       if (q > 0.0) p = -p;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       q=fabs(q);  double jmean; /* Mean space between 2 waves */
       etemp=e;  double **oldm, **newm, **savm; /* Working pointers to matrices */
       e=d;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *ficlog, *ficrespow;
       else {  int globpr; /* Global variable for printing or not */
         d=p/q;  double fretone; /* Only one call to likelihood */
         u=x+d;  long ipmx; /* Number of contributions */
         if (u-a < tol2 || b-u < tol2)  double sw; /* Sum of weights */
           d=SIGN(tol1,xm-x);  char filerespow[FILENAMELENGTH];
       }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     } else {  FILE *ficresilk;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     }  FILE *ficresprobmorprev;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  FILE *fichtm, *fichtmcov; /* Html File */
     fu=(*f)(u);  FILE *ficreseij;
     if (fu <= fx) {  char filerese[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  FILE *ficresstdeij;
       SHFT(v,w,x,u)  char fileresstde[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  FILE *ficrescveij;
         } else {  char filerescve[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  FILE  *ficresvij;
           if (fu <= fw || w == x) {  char fileresv[FILENAMELENGTH];
             v=w;  FILE  *ficresvpl;
             w=u;  char fileresvpl[FILENAMELENGTH];
             fv=fw;  char title[MAXLINE];
             fw=fu;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
           } else if (fu <= fv || v == x || v == w) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
             v=u;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
             fv=fu;  char command[FILENAMELENGTH];
           }  int  outcmd=0;
         }  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  
   *xmin=x;  char filelog[FILENAMELENGTH]; /* Log file */
   return fx;  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /****************** mnbrak ***********************/  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   double ulim,u,r,q, dum;  extern int gettimeofday();
   double fu;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
    long time_value;
   *fa=(*func)(*ax);  extern long time();
   *fb=(*func)(*bx);  char strcurr[80], strfor[80];
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  char *endptr;
       SHFT(dum,*fb,*fa,dum)  long lval;
       }  double dval;
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  #define NR_END 1
   while (*fb > *fc) {  #define FREE_ARG char*
     r=(*bx-*ax)*(*fb-*fc);  #define FTOL 1.0e-10
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define NRANSI 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define ITMAX 200 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  #define TOL 2.0e-4 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define CGOLD 0.3819660 
       fu=(*func)(u);  #define ZEPS 1.0e-10 
       if (fu < *fc) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  #define GOLD 1.618034 
           }  #define GLIMIT 100.0 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define TINY 1.0e-20 
       u=ulim;  
       fu=(*func)(u);  static double maxarg1,maxarg2;
     } else {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       u=(*cx)+GOLD*(*cx-*bx);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       fu=(*func)(u);    
     }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     SHFT(*ax,*bx,*cx,u)  #define rint(a) floor(a+0.5)
       SHFT(*fa,*fb,*fc,fu)  
       }  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /*************** linmin ************************/  int agegomp= AGEGOMP;
   
 int ncom;  int imx; 
 double *pcom,*xicom;  int stepm=1;
 double (*nrfunc)(double []);  /* Stepm, step in month: minimum step interpolation*/
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  int m,nb;
   double f1dim(double x);  long *num;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
               double *fc, double (*func)(double));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int j;  double **pmmij, ***probs;
   double xx,xmin,bx,ax;  double *ageexmed,*agecens;
   double fx,fb,fa;  double dateintmean=0;
    
   ncom=n;  double *weight;
   pcom=vector(1,n);  int **s; /* Status */
   xicom=vector(1,n);  double *agedc, **covar, idx;
   nrfunc=func;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (j=1;j<=n;j++) {  double *lsurv, *lpop, *tpop;
     pcom[j]=p[j];  
     xicom[j]=xi[j];  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   }  double ftolhess; /* Tolerance for computing hessian */
   ax=0.0;  
   xx=1.0;  /**************** split *************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #endif    */ 
   for (j=1;j<=n;j++) {    char  *ss;                            /* pointer */
     xi[j] *= xmin;    int   l1, l2;                         /* length counters */
     p[j] += xi[j];  
   }    l1 = strlen(path );                   /* length of path */
   free_vector(xicom,1,n);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   free_vector(pcom,1,n);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 /*************** powell ************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
             double (*func)(double []))      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   void linmin(double p[], double xi[], int n, double *fret,      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
               double (*func)(double []));        return( GLOCK_ERROR_GETCWD );
   int i,ibig,j;      }
   double del,t,*pt,*ptt,*xit;      /* got dirc from getcwd*/
   double fp,fptt;      printf(" DIRC = %s \n",dirc);
   double *xits;    } else {                              /* strip direcotry from path */
   pt=vector(1,n);      ss++;                               /* after this, the filename */
   ptt=vector(1,n);      l2 = strlen( ss );                  /* length of filename */
   xit=vector(1,n);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   xits=vector(1,n);      strcpy( name, ss );         /* save file name */
   *fret=(*func)(p);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for (j=1;j<=n;j++) pt[j]=p[j];      dirc[l1-l2] = 0;                    /* add zero */
   for (*iter=1;;++(*iter)) {      printf(" DIRC2 = %s \n",dirc);
     fp=(*fret);    }
     ibig=0;    /* We add a separator at the end of dirc if not exists */
     del=0.0;    l1 = strlen( dirc );                  /* length of directory */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if( dirc[l1-1] != DIRSEPARATOR ){
     for (i=1;i<=n;i++)      dirc[l1] =  DIRSEPARATOR;
       printf(" %d %.12f",i, p[i]);      dirc[l1+1] = 0; 
     printf("\n");      printf(" DIRC3 = %s \n",dirc);
     for (i=1;i<=n;i++) {    }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    ss = strrchr( name, '.' );            /* find last / */
       fptt=(*fret);    if (ss >0){
 #ifdef DEBUG      ss++;
       printf("fret=%lf \n",*fret);      strcpy(ext,ss);                     /* save extension */
 #endif      l1= strlen( name);
       printf("%d",i);fflush(stdout);      l2= strlen(ss)+1;
       linmin(p,xit,n,fret,func);      strncpy( finame, name, l1-l2);
       if (fabs(fptt-(*fret)) > del) {      finame[l1-l2]= 0;
         del=fabs(fptt-(*fret));    }
         ibig=i;  
       }    return( 0 );                          /* we're done */
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /******************************************/
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  void replace_back_to_slash(char *s, char*t)
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    int i;
       printf("\n");    int lg=0;
 #endif    i=0;
     }    lg=strlen(t);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    for(i=0; i<= lg; i++) {
 #ifdef DEBUG      (s[i] = t[i]);
       int k[2],l;      if (t[i]== '\\') s[i]='/';
       k[0]=1;    }
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  int nbocc(char *s, char occ)
         printf(" %.12e",p[j]);  {
       printf("\n");    int i,j=0;
       for(l=0;l<=1;l++) {    int lg=20;
         for (j=1;j<=n;j++) {    i=0;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    lg=strlen(s);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for(i=0; i<= lg; i++) {
         }    if  (s[i] == occ ) j++;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
       }    return j;
 #endif  }
   
   void cutv(char *u,char *v, char*t, char occ)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       free_vector(ptt,1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       free_vector(pt,1,n);       gives u="abcedf" and v="ghi2j" */
       return;    int i,lg,j,p=0;
     }    i=0;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    for(j=0; j<=strlen(t)-1; j++) {
     for (j=1;j<=n;j++) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       ptt[j]=2.0*p[j]-pt[j];    }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     fptt=(*func)(ptt);      (u[j] = t[j]);
     if (fptt < fp) {    }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);       u[p]='\0';
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);     for(j=0; j<= lg; j++) {
         for (j=1;j<=n;j++) {      if (j>=(p+1))(v[j-p-1] = t[j]);
           xi[j][ibig]=xi[j][n];    }
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /********************** nrerror ********************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  void nrerror(char error_text[])
           printf(" %.12e",xit[j]);  {
         printf("\n");    fprintf(stderr,"ERREUR ...\n");
 #endif    fprintf(stderr,"%s\n",error_text);
       }    exit(EXIT_FAILURE);
     }  }
   }  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
 /**** Prevalence limit ****************/    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  
   /************************ free vector ******************/
   int i, ii,j,k;  void free_vector(double*v, int nl, int nh)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    free((FREE_ARG)(v+nl-NR_END));
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    int *v;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /******************free ivector **************************/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  void free_ivector(int *v, long nl, long nh)
     newm=savm;  {
     /* Covariates have to be included here again */    free((FREE_ARG)(v+nl-NR_END));
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /************************lvector *******************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  long *lvector(long nl,long nh)
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  {
       }    long *v;
       for (k=1; k<=cptcovage;k++)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (!v) nrerror("allocation failure in ivector");
       for (k=1; k<=cptcovprod;k++)    return v-nl+NR_END;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /******************free lvector **************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  void free_lvector(long *v, long nl, long nh)
   {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    free((FREE_ARG)(v+nl-NR_END));
   }
     savm=oldm;  
     oldm=newm;  /******************* imatrix *******************************/
     maxmax=0.;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for(j=1;j<=nlstate;j++){       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       min=1.;  { 
       max=0.;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for(i=1; i<=nlstate; i++) {    int **m; 
         sumnew=0;    
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    /* allocate pointers to rows */ 
         prlim[i][j]= newm[i][j]/(1-sumnew);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         max=FMAX(max,prlim[i][j]);    if (!m) nrerror("allocation failure 1 in matrix()"); 
         min=FMIN(min,prlim[i][j]);    m += NR_END; 
       }    m -= nrl; 
       maxmin=max-min;    
       maxmax=FMAX(maxmax,maxmin);    
     }    /* allocate rows and set pointers to them */ 
     if(maxmax < ftolpl){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       return prlim;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     }    m[nrl] += NR_END; 
   }    m[nrl] -= ncl; 
 }    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 /*************** transition probabilities ***************/    
     /* return pointer to array of pointers to rows */ 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    return m; 
 {  } 
   double s1, s2;  
   /*double t34;*/  /****************** free_imatrix *************************/
   int i,j,j1, nc, ii, jj;  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
     for(i=1; i<= nlstate; i++){        long nch,ncl,nrh,nrl; 
     for(j=1; j<i;j++){       /* free an int matrix allocated by imatrix() */ 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  { 
         /*s2 += param[i][j][nc]*cov[nc];*/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG) (m+nrl-NR_END)); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /******************* matrix *******************************/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  double **matrix(long nrl, long nrh, long ncl, long nch)
     }  {
     for(j=i+1; j<=nlstate+ndeath;j++){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double **m;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       ps[i][j]=(s2);    m += NR_END;
     }    m -= nrl;
   }  
     /*ps[3][2]=1;*/    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for(i=1; i<= nlstate; i++){    m[nrl] += NR_END;
      s1=0;    m[nrl] -= ncl;
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=i+1; j<=nlstate+ndeath; j++)    return m;
       s1+=exp(ps[i][j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     ps[i][i]=1./(s1+1.);     */
     for(j=1; j<i; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /*************************free matrix ************************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  {
   } /* end i */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /******************* ma3x *******************************/
       ps[ii][ii]=1;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
   }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(jj=1; jj<= nlstate+ndeath; jj++){    if (!m) nrerror("allocation failure 1 in matrix()");
      printf("%lf ",ps[ii][jj]);    m += NR_END;
    }    m -= nrl;
     printf("\n ");  
     }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf("\n ");printf("%lf ",cov[2]);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*    m[nrl] += NR_END;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    m[nrl] -= ncl;
   goto end;*/  
     return ps;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /**************** Product of 2 matrices ******************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      m[nrl][j]=m[nrl][j-1]+nlay;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    
   /* in, b, out are matrice of pointers which should have been initialized    for (i=nrl+1; i<=nrh; i++) {
      before: only the contents of out is modified. The function returns      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
      a pointer to pointers identical to out */      for (j=ncl+1; j<=nch; j++) 
   long i, j, k;        m[i][j]=m[i][j-1]+nlay;
   for(i=nrl; i<= nrh; i++)    }
     for(k=ncolol; k<=ncoloh; k++)    return m; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         out[i][k] +=in[i][j]*b[j][k];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
   return out;  }
 }  
   /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /************* Higher Matrix Product ***************/  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  }
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*************** function subdirf ***********/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  char *subdirf(char fileres[])
      (typically every 2 years instead of every month which is too big).  {
      Model is determined by parameters x and covariates have to be    /* Caution optionfilefiname is hidden */
      included manually here.    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
      */    strcat(tmpout,fileres);
     return tmpout;
   int i, j, d, h, k;  }
   double **out, cov[NCOVMAX];  
   double **newm;  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   /* Hstepm could be zero and should return the unit matrix */  {
   for (i=1;i<=nlstate+ndeath;i++)    
     for (j=1;j<=nlstate+ndeath;j++){    /* Caution optionfilefiname is hidden */
       oldm[i][j]=(i==j ? 1.0 : 0.0);    strcpy(tmpout,optionfilefiname);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,fileres);
   for(h=1; h <=nhstepm; h++){    return tmpout;
     for(d=1; d <=hstepm; d++){  }
       newm=savm;  
       /* Covariates have to be included here again */  /*************** function subdirf3 ***********/
       cov[1]=1.;  char *subdirf3(char fileres[], char *preop, char *preop2)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    
       for (k=1; k<=cptcovage;k++)    /* Caution optionfilefiname is hidden */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,"/");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,preop);
     strcat(tmpout,preop2);
     strcat(tmpout,fileres);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    return tmpout;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /***************** f1dim *************************/
       savm=oldm;  extern int ncom; 
       oldm=newm;  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {  double f1dim(double x) 
         po[i][j][h]=newm[i][j];  { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    int j; 
          */    double f;
       }    double *xt; 
   } /* end h */   
   return po;    xt=vector(1,ncom); 
 }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /*************** log-likelihood *************/    return f; 
 double func( double *x)  } 
 {  
   int i, ii, j, k, mi, d, kk;  /*****************brent *************************/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double **out;  { 
   double sw; /* Sum of weights */    int iter; 
   double lli; /* Individual log likelihood */    double a,b,d,etemp;
   long ipmx;    double fu,fv,fw,fx;
   /*extern weight */    double ftemp;
   /* We are differentiating ll according to initial status */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double e=0.0; 
   /*for(i=1;i<imx;i++)   
     printf(" %d\n",s[4][i]);    a=(ax < cx ? ax : cx); 
   */    b=(ax > cx ? ax : cx); 
   cov[1]=1.;    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for (iter=1;iter<=ITMAX;iter++) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      xm=0.5*(a+b); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for(mi=1; mi<= wav[i]-1; mi++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (ii=1;ii<=nlstate+ndeath;ii++)      printf(".");fflush(stdout);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fprintf(ficlog,".");fflush(ficlog);
       for(d=0; d<dh[mi][i]; d++){  #ifdef DEBUG
         newm=savm;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         for (kk=1; kk<=cptcovage;kk++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #endif
         }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                *xmin=x; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        return fx; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      } 
         savm=oldm;      ftemp=fu;
         oldm=newm;      if (fabs(e) > tol1) { 
                r=(x-w)*(fx-fv); 
                q=(x-v)*(fx-fw); 
       } /* end mult */        p=(x-v)*q-(x-w)*r; 
              q=2.0*(q-r); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        if (q > 0.0) p = -p; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        q=fabs(q); 
       ipmx +=1;        etemp=e; 
       sw += weight[i];        e=d; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     } /* end of wave */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   } /* end of individual */        else { 
           d=p/q; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          u=x+d; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          if (u-a < tol2 || b-u < tol2) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            d=SIGN(tol1,xm-x); 
   return -l;        } 
 }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 /*********** Maximum Likelihood Estimation ***************/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      if (fu <= fx) { 
 {        if (u >= x) a=x; else b=x; 
   int i,j, iter;        SHFT(v,w,x,u) 
   double **xi,*delti;          SHFT(fv,fw,fx,fu) 
   double fret;          } else { 
   xi=matrix(1,npar,1,npar);            if (u < x) a=u; else b=u; 
   for (i=1;i<=npar;i++)            if (fu <= fw || w == x) { 
     for (j=1;j<=npar;j++)              v=w; 
       xi[i][j]=(i==j ? 1.0 : 0.0);              w=u; 
   printf("Powell\n");              fv=fw; 
   powell(p,xi,npar,ftol,&iter,&fret,func);              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));              v=u; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));              fv=fu; 
             } 
 }          } 
     } 
 /**** Computes Hessian and covariance matrix ***/    nrerror("Too many iterations in brent"); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    *xmin=x; 
 {    return fx; 
   double  **a,**y,*x,pd;  } 
   double **hess;  
   int i, j,jk;  /****************** mnbrak ***********************/
   int *indx;  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double hessii(double p[], double delta, int theta, double delti[]);              double (*func)(double)) 
   double hessij(double p[], double delti[], int i, int j);  { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double ulim,u,r,q, dum;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double fu; 
    
   hess=matrix(1,npar,1,npar);    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    if (*fb > *fa) { 
   for (i=1;i<=npar;i++){      SHFT(dum,*ax,*bx,dum) 
     printf("%d",i);fflush(stdout);        SHFT(dum,*fb,*fa,dum) 
     hess[i][i]=hessii(p,ftolhess,i,delti);        } 
     /*printf(" %f ",p[i]);*/    *cx=(*bx)+GOLD*(*bx-*ax); 
     /*printf(" %lf ",hess[i][i]);*/    *fc=(*func)(*cx); 
   }    while (*fb > *fc) { 
        r=(*bx-*ax)*(*fb-*fc); 
   for (i=1;i<=npar;i++) {      q=(*bx-*cx)*(*fb-*fa); 
     for (j=1;j<=npar;j++)  {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       if (j>i) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         printf(".%d%d",i,j);fflush(stdout);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         hess[i][j]=hessij(p,delti,i,j);      if ((*bx-u)*(u-*cx) > 0.0) { 
         hess[j][i]=hess[i][j];            fu=(*func)(u); 
         /*printf(" %lf ",hess[i][j]);*/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       }        fu=(*func)(u); 
     }        if (fu < *fc) { 
   }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   printf("\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
          u=ulim; 
   a=matrix(1,npar,1,npar);        fu=(*func)(u); 
   y=matrix(1,npar,1,npar);      } else { 
   x=vector(1,npar);        u=(*cx)+GOLD*(*cx-*bx); 
   indx=ivector(1,npar);        fu=(*func)(u); 
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      SHFT(*ax,*bx,*cx,u) 
   ludcmp(a,npar,indx,&pd);        SHFT(*fa,*fb,*fc,fu) 
         } 
   for (j=1;j<=npar;j++) {  } 
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** linmin ************************/
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  int ncom; 
       matcov[i][j]=x[i];  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
   }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   printf("\n#Hessian matrix#\n");  { 
   for (i=1;i<=npar;i++) {    double brent(double ax, double bx, double cx, 
     for (j=1;j<=npar;j++) {                 double (*f)(double), double tol, double *xmin); 
       printf("%.3e ",hess[i][j]);    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     printf("\n");                double *fc, double (*func)(double)); 
   }    int j; 
     double xx,xmin,bx,ax; 
   /* Recompute Inverse */    double fx,fb,fa;
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    ncom=n; 
   ludcmp(a,npar,indx,&pd);    pcom=vector(1,n); 
     xicom=vector(1,n); 
   /*  printf("\n#Hessian matrix recomputed#\n");    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   for (j=1;j<=npar;j++) {      pcom[j]=p[j]; 
     for (i=1;i<=npar;i++) x[i]=0;      xicom[j]=xi[j]; 
     x[j]=1;    } 
     lubksb(a,npar,indx,x);    ax=0.0; 
     for (i=1;i<=npar;i++){    xx=1.0; 
       y[i][j]=x[i];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       printf("%.3e ",y[i][j]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
     printf("\n");    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   */  #endif
     for (j=1;j<=n;j++) { 
   free_matrix(a,1,npar,1,npar);      xi[j] *= xmin; 
   free_matrix(y,1,npar,1,npar);      p[j] += xi[j]; 
   free_vector(x,1,npar);    } 
   free_ivector(indx,1,npar);    free_vector(xicom,1,n); 
   free_matrix(hess,1,npar,1,npar);    free_vector(pcom,1,n); 
   } 
   
 }  char *asc_diff_time(long time_sec, char ascdiff[])
   {
 /*************** hessian matrix ****************/    long sec_left, days, hours, minutes;
 double hessii( double x[], double delta, int theta, double delti[])    days = (time_sec) / (60*60*24);
 {    sec_left = (time_sec) % (60*60*24);
   int i;    hours = (sec_left) / (60*60) ;
   int l=1, lmax=20;    sec_left = (sec_left) %(60*60);
   double k1,k2;    minutes = (sec_left) /60;
   double p2[NPARMAX+1];    sec_left = (sec_left) % (60);
   double res;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    return ascdiff;
   double fx;  }
   int k=0,kmax=10;  
   double l1;  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   fx=func(x);              double (*func)(double [])) 
   for (i=1;i<=npar;i++) p2[i]=x[i];  { 
   for(l=0 ; l <=lmax; l++){    void linmin(double p[], double xi[], int n, double *fret, 
     l1=pow(10,l);                double (*func)(double [])); 
     delts=delt;    int i,ibig,j; 
     for(k=1 ; k <kmax; k=k+1){    double del,t,*pt,*ptt,*xit;
       delt = delta*(l1*k);    double fp,fptt;
       p2[theta]=x[theta] +delt;    double *xits;
       k1=func(p2)-fx;    int niterf, itmp;
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;    pt=vector(1,n); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    ptt=vector(1,n); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    xit=vector(1,n); 
          xits=vector(1,n); 
 #ifdef DEBUG    *fret=(*func)(p); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (j=1;j<=n;j++) pt[j]=p[j]; 
 #endif    for (*iter=1;;++(*iter)) { 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      fp=(*fret); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      ibig=0; 
         k=kmax;      del=0.0; 
       }      last_time=curr_time;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      (void) gettimeofday(&curr_time,&tzp);
         k=kmax; l=lmax*10.;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         delts=delt;     for (i=1;i<=n;i++) {
       }        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
   delti[theta]=delts;      }
   return res;      printf("\n");
        fprintf(ficlog,"\n");
 }      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 double hessij( double x[], double delti[], int thetai,int thetaj)        tm = *localtime(&curr_time.tv_sec);
 {        strcpy(strcurr,asctime(&tm));
   int i;  /*       asctime_r(&tm,strcurr); */
   int l=1, l1, lmax=20;        forecast_time=curr_time; 
   double k1,k2,k3,k4,res,fx;        itmp = strlen(strcurr);
   double p2[NPARMAX+1];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   int k;          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   fx=func(x);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (k=1; k<=2; k++) {        for(niterf=10;niterf<=30;niterf+=10){
     for (i=1;i<=npar;i++) p2[i]=x[i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     p2[thetai]=x[thetai]+delti[thetai]/k;          tmf = *localtime(&forecast_time.tv_sec);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*      asctime_r(&tmf,strfor); */
     k1=func(p2)-fx;          strcpy(strfor,asctime(&tmf));
            itmp = strlen(strfor);
     p2[thetai]=x[thetai]+delti[thetai]/k;          if(strfor[itmp-1]=='\n')
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          strfor[itmp-1]='\0';
     k2=func(p2)-fx;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
            fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k3=func(p2)-fx;      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     p2[thetai]=x[thetai]-delti[thetai]/k;        fptt=(*fret); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #ifdef DEBUG
     k4=func(p2)-fx;        printf("fret=%lf \n",*fret);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        fprintf(ficlog,"fret=%lf \n",*fret);
 #ifdef DEBUG  #endif
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        printf("%d",i);fflush(stdout);
 #endif        fprintf(ficlog,"%d",i);fflush(ficlog);
   }        linmin(p,xit,n,fret,func); 
   return res;        if (fabs(fptt-(*fret)) > del) { 
 }          del=fabs(fptt-(*fret)); 
           ibig=i; 
 /************** Inverse of matrix **************/        } 
 void ludcmp(double **a, int n, int *indx, double *d)  #ifdef DEBUG
 {        printf("%d %.12e",i,(*fret));
   int i,imax,j,k;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double big,dum,sum,temp;        for (j=1;j<=n;j++) {
   double *vv;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
            printf(" x(%d)=%.12e",j,xit[j]);
   vv=vector(1,n);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   *d=1.0;        }
   for (i=1;i<=n;i++) {        for(j=1;j<=n;j++) {
     big=0.0;          printf(" p=%.12e",p[j]);
     for (j=1;j<=n;j++)          fprintf(ficlog," p=%.12e",p[j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;        }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        printf("\n");
     vv[i]=1.0/big;        fprintf(ficlog,"\n");
   }  #endif
   for (j=1;j<=n;j++) {      } 
     for (i=1;i<j;i++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       sum=a[i][j];  #ifdef DEBUG
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        int k[2],l;
       a[i][j]=sum;        k[0]=1;
     }        k[1]=-1;
     big=0.0;        printf("Max: %.12e",(*func)(p));
     for (i=j;i<=n;i++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
       sum=a[i][j];        for (j=1;j<=n;j++) {
       for (k=1;k<j;k++)          printf(" %.12e",p[j]);
         sum -= a[i][k]*a[k][j];          fprintf(ficlog," %.12e",p[j]);
       a[i][j]=sum;        }
       if ( (dum=vv[i]*fabs(sum)) >= big) {        printf("\n");
         big=dum;        fprintf(ficlog,"\n");
         imax=i;        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     if (j != imax) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (k=1;k<=n;k++) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         dum=a[imax][k];          }
         a[imax][k]=a[j][k];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         a[j][k]=dum;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
       *d = -(*d);  #endif
       vv[imax]=vv[j];  
     }  
     indx[j]=imax;        free_vector(xit,1,n); 
     if (a[j][j] == 0.0) a[j][j]=TINY;        free_vector(xits,1,n); 
     if (j != n) {        free_vector(ptt,1,n); 
       dum=1.0/(a[j][j]);        free_vector(pt,1,n); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        return; 
     }      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   free_vector(vv,1,n);  /* Doesn't work */      for (j=1;j<=n;j++) { 
 ;        ptt[j]=2.0*p[j]-pt[j]; 
 }        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
 void lubksb(double **a, int n, int *indx, double b[])      } 
 {      fptt=(*func)(ptt); 
   int i,ii=0,ip,j;      if (fptt < fp) { 
   double sum;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          if (t < 0.0) { 
   for (i=1;i<=n;i++) {          linmin(p,xit,n,fret,func); 
     ip=indx[i];          for (j=1;j<=n;j++) { 
     sum=b[ip];            xi[j][ibig]=xi[j][n]; 
     b[ip]=b[i];            xi[j][n]=xit[j]; 
     if (ii)          }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  #ifdef DEBUG
     else if (sum) ii=i;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     b[i]=sum;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
   for (i=n;i>=1;i--) {            printf(" %.12e",xit[j]);
     sum=b[i];            fprintf(ficlog," %.12e",xit[j]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          }
     b[i]=sum/a[i][i];          printf("\n");
   }          fprintf(ficlog,"\n");
 }  #endif
         }
 /************ Frequencies ********************/      } 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)    } 
 {  /* Some frequencies */  } 
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /**** Prevalence limit (stable or period prevalence)  ****************/
   double ***freq; /* Frequencies */  
   double *pp;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double pos;  {
   FILE *ficresp;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   char fileresp[FILENAMELENGTH];       matrix by transitions matrix until convergence is reached */
   
   pp=vector(1,nlstate);    int i, ii,j,k;
  probs= ma3x(1,130 ,1,8, 1,8);    double min, max, maxmin, maxmax,sumnew=0.;
   strcpy(fileresp,"p");    double **matprod2();
   strcat(fileresp,fileres);    double **out, cov[NCOVMAX], **pmij();
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double **newm;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double agefin, delaymax=50 ; /* Max number of years to converge */
     exit(0);  
   }    for (ii=1;ii<=nlstate+ndeath;ii++)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (j=1;j<=nlstate+ndeath;j++){
   j1=0;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}     cov[1]=1.;
    
   for(k1=1; k1<=j;k1++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
    for(i1=1; i1<=ncodemax[k1];i1++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        j1++;      newm=savm;
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      /* Covariates have to be included here again */
          scanf("%d", i);*/       cov[2]=agefin;
         for (i=-1; i<=nlstate+ndeath; i++)      
          for (jk=-1; jk<=nlstate+ndeath; jk++)          for (k=1; k<=cptcovn;k++) {
            for(m=agemin; m <= agemax+3; m++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              freq[i][jk][m]=0;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
                }
        for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          bool=1;        for (k=1; k<=cptcovprod;k++)
          if  (cptcovn>0) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            for (z1=1; z1<=cptcoveff; z1++)  
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                bool=0;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           if (bool==1) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
            for(m=fprev1; m<=lprev1; m++){  
              if(agev[m][i]==0) agev[m][i]=agemax+1;      savm=oldm;
              if(agev[m][i]==1) agev[m][i]=agemax+2;      oldm=newm;
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      maxmax=0.;
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for(j=1;j<=nlstate;j++){
            }        min=1.;
          }        max=0.;
        }        for(i=1; i<=nlstate; i++) {
         if  (cptcovn>0) {          sumnew=0;
          fprintf(ficresp, "\n#********** Variable ");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          prlim[i][j]= newm[i][j]/(1-sumnew);
        fprintf(ficresp, "**********\n#");          max=FMAX(max,prlim[i][j]);
         }          min=FMIN(min,prlim[i][j]);
        for(i=1; i<=nlstate;i++)        }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        maxmin=max-min;
        fprintf(ficresp, "\n");        maxmax=FMAX(maxmax,maxmin);
              }
   for(i=(int)agemin; i <= (int)agemax+3; i++){      if(maxmax < ftolpl){
     if(i==(int)agemax+3)        return prlim;
       printf("Total");      }
     else    }
       printf("Age %d", i);  }
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*************** transition probabilities ***************/ 
         pp[jk] += freq[jk][m][i];  
     }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for(jk=1; jk <=nlstate ; jk++){  {
       for(m=-1, pos=0; m <=0 ; m++)    double s1, s2;
         pos += freq[jk][m][i];    /*double t34;*/
       if(pp[jk]>=1.e-10)    int i,j,j1, nc, ii, jj;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else      for(i=1; i<= nlstate; i++){
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=1; j<i;j++){
     }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
      for(jk=1; jk <=nlstate ; jk++){            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         pp[jk] += freq[jk][m][i];          }
      }          ps[i][j]=s2;
   /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     for(jk=1,pos=0; jk <=nlstate ; jk++)        }
       pos += pp[jk];        for(j=i+1; j<=nlstate+ndeath;j++){
     for(jk=1; jk <=nlstate ; jk++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       if(pos>=1.e-5)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       else          }
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ps[i][j]=s2;
       if( i <= (int) agemax){        }
         if(pos>=1.e-5){      }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      /*ps[3][2]=1;*/
           probs[i][jk][j1]= pp[jk]/pos;      
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for(i=1; i<= nlstate; i++){
         }        s1=0;
       else        for(j=1; j<i; j++)
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          s1+=exp(ps[i][j]);
       }        for(j=i+1; j<=nlstate+ndeath; j++)
     }          s1+=exp(ps[i][j]);
     for(jk=-1; jk <=nlstate+ndeath; jk++)        ps[i][i]=1./(s1+1.);
       for(m=-1; m <=nlstate+ndeath; m++)        for(j=1; j<i; j++)
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if(i <= (int) agemax)        for(j=i+1; j<=nlstate+ndeath; j++)
       fprintf(ficresp,"\n");          ps[i][j]= exp(ps[i][j])*ps[i][i];
     printf("\n");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     }      } /* end i */
     }      
  }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          for(jj=1; jj<= nlstate+ndeath; jj++){
   fclose(ficresp);          ps[ii][jj]=0;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ps[ii][ii]=1;
   free_vector(pp,1,nlstate);        }
       }
 }  /* End of Freq */      
   
 /************ Prevalence ********************/  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 {  /* Some frequencies */  /*         printf("ddd %lf ",ps[ii][jj]); */
    /*       } */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /*       printf("\n "); */
   double ***freq; /* Frequencies */  /*        } */
   double *pp;  /*        printf("\n ");printf("%lf ",cov[2]); */
   double pos;         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
   pp=vector(1,nlstate);        goto end;*/
   probs= ma3x(1,130 ,1,8, 1,8);      return ps;
    }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /**************** Product of 2 matrices ******************/
    
   j=cptcoveff;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
  for(k1=1; k1<=j;k1++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for(i1=1; i1<=ncodemax[k1];i1++){    /* in, b, out are matrice of pointers which should have been initialized 
       j1++;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
       for (i=-1; i<=nlstate+ndeath; i++)      long i, j, k;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      for(i=nrl; i<= nrh; i++)
           for(m=agemin; m <= agemax+3; m++)      for(k=ncolol; k<=ncoloh; k++)
           freq[i][jk][m]=0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
                out[i][k] +=in[i][j]*b[j][k];
       for (i=1; i<=imx; i++) {  
         bool=1;    return out;
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  /************* Higher Matrix Product ***************/
               }  
         if (bool==1) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           for(m=fprev1; m<=lprev1; m++){  {
             if(agev[m][i]==0) agev[m][i]=agemax+1;    /* Computes the transition matrix starting at age 'age' over 
             if(agev[m][i]==1) agev[m][i]=agemax+2;       'nhstepm*hstepm*stepm' months (i.e. until
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];       nhstepm*hstepm matrices. 
           }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         }       (typically every 2 years instead of every month which is too big 
       }       for the memory).
        for(i=(int)agemin; i <= (int)agemax+3; i++){       Model is determined by parameters x and covariates have to be 
         for(jk=1; jk <=nlstate ; jk++){       included manually here. 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];       */
         }  
         for(jk=1; jk <=nlstate ; jk++){    int i, j, d, h, k;
           for(m=-1, pos=0; m <=0 ; m++)    double **out, cov[NCOVMAX];
             pos += freq[jk][m][i];    double **newm;
         }  
            /* Hstepm could be zero and should return the unit matrix */
          for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=nlstate+ndeath;i++)
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (j=1;j<=nlstate+ndeath;j++){
              pp[jk] += freq[jk][m][i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
          }        po[i][j][0]=(i==j ? 1.0 : 0.0);
                }
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
          for(jk=1; jk <=nlstate ; jk++){                for(d=1; d <=hstepm; d++){
            if( i <= (int) agemax){        newm=savm;
              if(pos>=1.e-5){        /* Covariates have to be included here again */
                probs[i][jk][j1]= pp[jk]/pos;        cov[1]=1.;
              }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
            }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          }        for (k=1; k<=cptcovage;k++)
                    cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
    
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_vector(pp,1,nlstate);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
 }  /* End of Freq */        savm=oldm;
 /************* Waves Concatenation ***************/        oldm=newm;
       }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for(i=1; i<=nlstate+ndeath; i++)
 {        for(j=1;j<=nlstate+ndeath;j++) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          po[i][j][h]=newm[i][j];
      Death is a valid wave (if date is known).          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      /*printf("h=%d ",h);*/
      and mw[mi+1][i]. dh depends on stepm.    } /* end h */
      */  /*     printf("\n H=%d \n",h); */
     return po;
   int i, mi, m;  }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/  
   /*************** log-likelihood *************/
   int j, k=0,jk, ju, jl;  double func( double *x)
   double sum=0.;  {
   jmin=1e+5;    int i, ii, j, k, mi, d, kk;
   jmax=-1;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   jmean=0.;    double **out;
   for(i=1; i<=imx; i++){    double sw; /* Sum of weights */
     mi=0;    double lli; /* Individual log likelihood */
     m=firstpass;    int s1, s2;
     while(s[m][i] <= nlstate){    double bbh, survp;
       if(s[m][i]>=1)    long ipmx;
         mw[++mi][i]=m;    /*extern weight */
       if(m >=lastpass)    /* We are differentiating ll according to initial status */
         break;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       else    /*for(i=1;i<imx;i++) 
         m++;      printf(" %d\n",s[4][i]);
     }/* end while */    */
     if (s[m][i] > nlstate){    cov[1]=1.;
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    for(k=1; k<=nlstate; k++) ll[k]=0.;
          /* Only death is a correct wave */  
       mw[mi][i]=m;    if(mle==1){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     wav[i]=mi;        for(mi=1; mi<= wav[i]-1; mi++){
     if(mi==0)          for (ii=1;ii<=nlstate+ndeath;ii++)
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){            }
     for(mi=1; mi<wav[i];mi++){          for(d=0; d<dh[mi][i]; d++){
       if (stepm <=0)            newm=savm;
         dh[mi][i]=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else{            for (kk=1; kk<=cptcovage;kk++) {
         if (s[mw[mi+1][i]][i] > nlstate) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (agedc[i] < 2*AGESUP) {            }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if(j==0) j=1;  /* Survives at least one month after exam */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           k=k+1;            savm=oldm;
           if (j >= jmax) jmax=j;            oldm=newm;
           if (j <= jmin) jmin=j;          } /* end mult */
           sum=sum+j;        
           /* if (j<10) printf("j=%d num=%d ",j,i); */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           }          /* But now since version 0.9 we anticipate for bias at large stepm.
         }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         else{           * (in months) between two waves is not a multiple of stepm, we rounded to 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));           * the nearest (and in case of equal distance, to the lowest) interval but now
           k=k+1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           if (j >= jmax) jmax=j;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           else if (j <= jmin)jmin=j;           * probability in order to take into account the bias as a fraction of the way
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           sum=sum+j;           * -stepm/2 to stepm/2 .
         }           * For stepm=1 the results are the same as for previous versions of Imach.
         jk= j/stepm;           * For stepm > 1 the results are less biased than in previous versions. 
         jl= j -jk*stepm;           */
         ju= j -(jk+1)*stepm;          s1=s[mw[mi][i]][i];
         if(jl <= -ju)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk;          bbh=(double)bh[mi][i]/(double)stepm; 
         else          /* bias bh is positive if real duration
           dh[mi][i]=jk+1;           * is higher than the multiple of stepm and negative otherwise.
         if(dh[mi][i]==0)           */
           dh[mi][i]=1; /* At least one step */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          if( s2 > nlstate){ 
     }            /* i.e. if s2 is a death state and if the date of death is known 
   }               then the contribution to the likelihood is the probability to 
   jmean=sum/k;               die between last step unit time and current  step unit time, 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);               which is also equal to probability to die before dh 
  }               minus probability to die before dh-stepm . 
 /*********** Tricode ****************************/               In version up to 0.92 likelihood was computed
 void tricode(int *Tvar, int **nbcode, int imx)          as if date of death was unknown. Death was treated as any other
 {          health state: the date of the interview describes the actual state
   int Ndum[20],ij=1, k, j, i;          and not the date of a change in health state. The former idea was
   int cptcode=0;          to consider that at each interview the state was recorded
   cptcoveff=0;          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
   for (k=0; k<19; k++) Ndum[k]=0;          the contribution of an exact death to the likelihood. This new
   for (k=1; k<=7; k++) ncodemax[k]=0;          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          and month of death but the probability to survive from last
     for (i=1; i<=imx; i++) {          interview up to one month before death multiplied by the
       ij=(int)(covar[Tvar[j]][i]);          probability to die within a month. Thanks to Chris
       Ndum[ij]++;          Jackson for correcting this bug.  Former versions increased
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          mortality artificially. The bad side is that we add another loop
       if (ij > cptcode) cptcode=ij;          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
             */
     for (i=0; i<=cptcode; i++) {            lli=log(out[s1][s2] - savm[s1][s2]);
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  
     ij=1;          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for (i=1; i<=ncodemax[j]; i++) {            /*survp += out[s1][j]; */
       for (k=0; k<=19; k++) {            lli= log(survp);
         if (Ndum[k] != 0) {          }
           nbcode[Tvar[j]][ij]=k;          
           ij++;          else if  (s2==-4) { 
         }            for (j=3,survp=0. ; j<=nlstate; j++)  
         if (ij > ncodemax[j]) break;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }              lli= log(survp); 
     }          } 
   }    
           else if  (s2==-5) { 
  for (k=0; k<19; k++) Ndum[k]=0;            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
  for (i=1; i<=ncovmodel-2; i++) {            lli= log(survp); 
       ij=Tvar[i];          } 
       Ndum[ij]++;          
     }          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  ij=1;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
  for (i=1; i<=10; i++) {          } 
    if((Ndum[i]!=0) && (i<=ncov)){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
      Tvaraff[ij]=i;          /*if(lli ==000.0)*/
      ij++;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
    }          ipmx +=1;
  }          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     cptcoveff=ij-1;        } /* end of wave */
 }      } /* end of individual */
     }  else if(mle==2){
 /*********** Health Expectancies ****************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Health expectancies */            for (j=1;j<=nlstate+ndeath;j++){
   int i, j, nhstepm, hstepm, h;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim,hf;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;            }
            for(d=0; d<=dh[mi][i]; d++){
   fprintf(ficreseij,"# Health expectancies\n");            newm=savm;
   fprintf(ficreseij,"# Age");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
     for(j=1; j<=nlstate;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficreseij," %1d-%1d",i,j);            }
   fprintf(ficreseij,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=1*YEARM; /*  Every j years of age (in month) */            savm=oldm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            oldm=newm;
           } /* end mult */
   agelim=AGESUP;        
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s1=s[mw[mi][i]][i];
     /* nhstepm age range expressed in number of stepm */          s2=s[mw[mi+1][i]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          bbh=(double)bh[mi][i]/(double)stepm; 
     /* Typically if 20 years = 20*12/6=40 stepm */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if (stepm >= YEARM) hstepm=1;          ipmx +=1;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          sw += weight[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        } /* end of wave */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      } /* end of individual */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){            for (j=1;j<=nlstate+ndeath;j++){
           eij[i][j][(int)age] +=p3mat[i][j][h];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                }
     hf=1;          for(d=0; d<dh[mi][i]; d++){
     if (stepm >= YEARM) hf=stepm/YEARM;            newm=savm;
     fprintf(ficreseij,"%.0f",age );            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficreseij,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
   }            oldm=newm;
 }          } /* end mult */
         
 /************ Variance ******************/          s1=s[mw[mi][i]][i];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   /* Variance of health expectancies */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          ipmx +=1;
   double **newm;          sw += weight[i];
   double **dnewm,**doldm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, j, nhstepm, hstepm, h;        } /* end of wave */
   int k, cptcode;      } /* end of individual */
   double *xp;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double **gp, **gm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***gradg, ***trgradg;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***p3mat;        for(mi=1; mi<= wav[i]-1; mi++){
   double age,agelim;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int theta;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    fprintf(ficresvij,"# Covariances of life expectancies\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Age");            }
   for(i=1; i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
     for(j=1; j<=nlstate;j++)            newm=savm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresvij,"\n");            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   xp=vector(1,npar);            }
   dnewm=matrix(1,nlstate,1,npar);          
   doldm=matrix(1,nlstate,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=1*YEARM; /* Every year of age */            savm=oldm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            oldm=newm;
   agelim = AGESUP;          } /* end mult */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          s1=s[mw[mi][i]][i];
     if (stepm >= YEARM) hstepm=1;          s2=s[mw[mi+1][i]][i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          if( s2 > nlstate){ 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli=log(out[s1][s2] - savm[s1][s2]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          }else{
     gp=matrix(0,nhstepm,1,nlstate);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     gm=matrix(0,nhstepm,1,nlstate);          }
           ipmx +=1;
     for(theta=1; theta <=npar; theta++){          sw += weight[i];
       for(i=1; i<=npar; i++){ /* Computes gradient */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       }        } /* end of wave */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } /* end of individual */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if (popbased==1) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
           prlim[i][i]=probs[(int)age][i][ij];          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){            }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++) /* Computes gradient */            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
       if (popbased==1) {            oldm=newm;
         for(i=1; i<=nlstate;i++)          } /* end mult */
           prlim[i][i]=probs[(int)age][i][ij];        
       }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
       for(j=1; j<= nlstate; j++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(h=0; h<=nhstepm; h++){          ipmx +=1;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          sw += weight[i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }        } /* end of wave */
       } /* end of individual */
       for(j=1; j<= nlstate; j++)    } /* End of if */
         for(h=0; h<=nhstepm; h++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     } /* End theta */    return -l;
   }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
   /*************** log-likelihood *************/
     for(h=0; h<=nhstepm; h++)  double funcone( double *x)
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    /* Same as likeli but slower because of a lot of printf and if */
           trgradg[h][j][theta]=gradg[h][theta][j];    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for(i=1;i<=nlstate;i++)    double **out;
       for(j=1;j<=nlstate;j++)    double lli; /* Individual log likelihood */
         vareij[i][j][(int)age] =0.;    double llt;
     for(h=0;h<=nhstepm;h++){    int s1, s2;
       for(k=0;k<=nhstepm;k++){    double bbh, survp;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    /*extern weight */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* We are differentiating ll according to initial status */
         for(i=1;i<=nlstate;i++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(j=1;j<=nlstate;j++)    /*for(i=1;i<imx;i++) 
             vareij[i][j][(int)age] += doldm[i][j];      printf(" %d\n",s[4][i]);
       }    */
     }    cov[1]=1.;
     h=1;  
     if (stepm >= YEARM) h=stepm/YEARM;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate;j++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      for(mi=1; mi<= wav[i]-1; mi++){
       }        for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficresvij,"\n");          for (j=1;j<=nlstate+ndeath;j++){
     free_matrix(gp,0,nhstepm,1,nlstate);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gm,0,nhstepm,1,nlstate);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        for(d=0; d<dh[mi][i]; d++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          newm=savm;
   } /* End age */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(xp,1,npar);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_matrix(doldm,1,nlstate,1,npar);          }
   free_matrix(dnewm,1,nlstate,1,nlstate);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }          savm=oldm;
           oldm=newm;
 /************ Variance of prevlim ******************/        } /* end mult */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        
 {        s1=s[mw[mi][i]][i];
   /* Variance of prevalence limit */        s2=s[mw[mi+1][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        bbh=(double)bh[mi][i]/(double)stepm; 
   double **newm;        /* bias is positive if real duration
   double **dnewm,**doldm;         * is higher than the multiple of stepm and negative otherwise.
   int i, j, nhstepm, hstepm;         */
   int k, cptcode;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double *xp;          lli=log(out[s1][s2] - savm[s1][s2]);
   double *gp, *gm;        } else if  (s2==-2) {
   double **gradg, **trgradg;          for (j=1,survp=0. ; j<=nlstate; j++) 
   double age,agelim;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int theta;          lli= log(survp);
            }else if (mle==1){
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficresvpl,"# Age");        } else if(mle==2){
   for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       fprintf(ficresvpl," %1d-%1d",i,i);        } else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficresvpl,"\n");          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   xp=vector(1,npar);          lli=log(out[s1][s2]); /* Original formula */
   dnewm=matrix(1,nlstate,1,npar);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   doldm=matrix(1,nlstate,1,nlstate);          lli=log(out[s1][s2]); /* Original formula */
          } /* End of if */
   hstepm=1*YEARM; /* Every year of age */        ipmx +=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        sw += weight[i];
   agelim = AGESUP;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        if(globpr){
     if (stepm >= YEARM) hstepm=1;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   %11.6f %11.6f %11.6f ", \
     gradg=matrix(1,npar,1,nlstate);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     gp=vector(1,nlstate);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     gm=vector(1,nlstate);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     for(theta=1; theta <=npar; theta++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } /* end of wave */
       for(i=1;i<=nlstate;i++)    } /* end of individual */
         gp[i] = prlim[i][i];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=1; i<=npar; i++) /* Computes gradient */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if(globpr==0){ /* First time we count the contributions and weights */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      gipmx=ipmx;
       for(i=1;i<=nlstate;i++)      gsw=sw;
         gm[i] = prlim[i][i];    }
     return -l;
       for(i=1;i<=nlstate;i++)  }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */  
   /*************** function likelione ***********/
     trgradg =matrix(1,nlstate,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     for(j=1; j<=nlstate;j++)    /* This routine should help understanding what is done with 
       for(theta=1; theta <=npar; theta++)       the selection of individuals/waves and
         trgradg[j][theta]=gradg[theta][j];       to check the exact contribution to the likelihood.
        Plotting could be done.
     for(i=1;i<=nlstate;i++)     */
       varpl[i][(int)age] =0.;    int k;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    if(*globpri !=0){ /* Just counts and sums, no printings */
     for(i=1;i<=nlstate;i++)      strcpy(fileresilk,"ilk"); 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fprintf(ficresvpl,"%.0f ",age );        printf("Problem with resultfile: %s\n", fileresilk);
     for(i=1; i<=nlstate;i++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      }
     fprintf(ficresvpl,"\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     free_vector(gp,1,nlstate);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     free_vector(gm,1,nlstate);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     free_matrix(gradg,1,npar,1,nlstate);      for(k=1; k<=nlstate; k++) 
     free_matrix(trgradg,1,nlstate,1,npar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   } /* End age */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    *fretone=(*funcone)(p);
   free_matrix(dnewm,1,nlstate,1,nlstate);    if(*globpri !=0){
       fclose(ficresilk);
 }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
 /************ Variance of one-step probabilities  ******************/    } 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    return;
 {  }
   int i, j;  
   int k=0, cptcode;  
   double **dnewm,**doldm;  /*********** Maximum Likelihood Estimation ***************/
   double *xp;  
   double *gp, *gm;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double **gradg, **trgradg;  {
   double age,agelim, cov[NCOVMAX];    int i,j, iter;
   int theta;    double **xi;
   char fileresprob[FILENAMELENGTH];    double fret;
     double fretone; /* Only one call to likelihood */
   strcpy(fileresprob,"prob");    /*  char filerespow[FILENAMELENGTH];*/
   strcat(fileresprob,fileres);    xi=matrix(1,npar,1,npar);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    for (i=1;i<=npar;i++)
     printf("Problem with resultfile: %s\n", fileresprob);      for (j=1;j<=npar;j++)
   }        xi[i][j]=(i==j ? 1.0 : 0.0);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
   xp=vector(1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      printf("Problem with resultfile: %s\n", filerespow);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
   cov[1]=1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for (age=bage; age<=fage; age ++){    for (i=1;i<=nlstate;i++)
     cov[2]=age;      for(j=1;j<=nlstate+ndeath;j++)
     gradg=matrix(1,npar,1,9);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     trgradg=matrix(1,9,1,npar);    fprintf(ficrespow,"\n");
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    powell(p,xi,npar,ftol,&iter,&fret,func);
      
     for(theta=1; theta <=npar; theta++){    free_matrix(xi,1,npar,1,npar);
       for(i=1; i<=npar; i++)    fclose(ficrespow);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
          fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      
       k=0;  }
       for(i=1; i<= (nlstate+ndeath); i++){  
         for(j=1; j<=(nlstate+ndeath);j++){  /**** Computes Hessian and covariance matrix ***/
            k=k+1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           gp[k]=pmmij[i][j];  {
         }    double  **a,**y,*x,pd;
       }    double **hess;
     int i, j,jk;
       for(i=1; i<=npar; i++)    int *indx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
        double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       k=0;    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(i=1; i<=(nlstate+ndeath); i++){    double gompertz(double p[]);
         for(j=1; j<=(nlstate+ndeath);j++){    hess=matrix(1,npar,1,npar);
           k=k+1;  
           gm[k]=pmmij[i][j];    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
            printf("%d",i);fflush(stdout);
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      fprintf(ficlog,"%d",i);fflush(ficlog);
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];       
     }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      /*  printf(" %f ",p[i]);
       for(theta=1; theta <=npar; theta++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       trgradg[j][theta]=gradg[theta][j];    }
      
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++) {
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      for (j=1;j<=npar;j++)  {
         if (j>i) { 
      pmij(pmmij,cov,ncovmodel,x,nlstate);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      k=0;          hess[i][j]=hessij(p,delti,i,j,func,npar);
      for(i=1; i<=(nlstate+ndeath); i++){          
        for(j=1; j<=(nlstate+ndeath);j++){          hess[j][i]=hess[i][j];    
          k=k+1;          /*printf(" %lf ",hess[i][j]);*/
          gm[k]=pmmij[i][j];        }
         }      }
      }    }
          printf("\n");
      /*printf("\n%d ",(int)age);    fprintf(ficlog,"\n");
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
            printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    
      }*/    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   fprintf(ficresprob,"\n%d ",(int)age);    x=vector(1,npar);
     indx=ivector(1,npar);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    for (i=1;i<=npar;i++)
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    ludcmp(a,npar,indx,&pd);
   }  
     for (j=1;j<=npar;j++) {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<=npar;i++) x[i]=0;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      x[j]=1;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      lubksb(a,npar,indx,x);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1;i<=npar;i++){ 
 }        matcov[i][j]=x[i];
  free_vector(xp,1,npar);      }
 fclose(ficresprob);    }
  exit(0);  
 }    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
 /***********************************************/    for (i=1;i<=npar;i++) { 
 /**************** Main Program *****************/      for (j=1;j<=npar;j++) { 
 /***********************************************/        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
 /*int main(int argc, char *argv[])*/      }
 int main()      printf("\n");
 {      fprintf(ficlog,"\n");
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;    /* Recompute Inverse */
   double agemin=1.e20, agemax=-1.e20;    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double fret;    ludcmp(a,npar,indx,&pd);
   double **xi,tmp,delta;  
     /*  printf("\n#Hessian matrix recomputed#\n");
   double dum; /* Dummy variable */  
   double ***p3mat;    for (j=1;j<=npar;j++) {
   int *indx;      for (i=1;i<=npar;i++) x[i]=0;
   char line[MAXLINE], linepar[MAXLINE];      x[j]=1;
   char title[MAXLINE];      lubksb(a,npar,indx,x);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];      for (i=1;i<=npar;i++){ 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];        y[i][j]=x[i];
   char filerest[FILENAMELENGTH];        printf("%.3e ",y[i][j]);
   char fileregp[FILENAMELENGTH];        fprintf(ficlog,"%.3e ",y[i][j]);
   char popfile[FILENAMELENGTH];      }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      printf("\n");
   int firstobs=1, lastobs=10;      fprintf(ficlog,"\n");
   int sdeb, sfin; /* Status at beginning and end */    }
   int c,  h , cpt,l;    */
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    free_matrix(a,1,npar,1,npar);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    free_matrix(y,1,npar,1,npar);
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;    free_vector(x,1,npar);
   int hstepm, nhstepm;    free_ivector(indx,1,npar);
   int *popage;    free_matrix(hess,1,npar,1,npar);
   
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;  }
   double **prlim;  
   double *severity;  /*************** hessian matrix ****************/
   double ***param; /* Matrix of parameters */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double  *p;  {
   double **matcov; /* Matrix of covariance */    int i;
   double ***delti3; /* Scale */    int l=1, lmax=20;
   double *delti; /* Scale */    double k1,k2;
   double ***eij, ***vareij;    double p2[NPARMAX+1];
   double **varpl; /* Variances of prevalence limits by age */    double res;
   double *epj, vepp;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double kk1, kk2;    double fx;
   double *popeffectif,*popcount;    int k=0,kmax=10;
     double l1;
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   char z[1]="c", occ;      l1=pow(10,l);
 #include <sys/time.h>      delts=delt;
 #include <time.h>      for(k=1 ; k <kmax; k=k+1){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        delt = delta*(l1*k);
   /* long total_usecs;        p2[theta]=x[theta] +delt;
   struct timeval start_time, end_time;        k1=func(p2)-fx;
          p2[theta]=x[theta]-delt;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   printf("\nIMACH, Version 0.7");        
   printf("\nEnter the parameter file name: ");  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #ifdef windows        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   scanf("%s",pathtot);  #endif
   getcwd(pathcd, size);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   /*cygwin_split_path(pathtot,path,optionfile);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          k=kmax;
   /* cutv(path,optionfile,pathtot,'\\');*/        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 split(pathtot, path,optionfile);          k=kmax; l=lmax*10.;
   chdir(path);        }
   replace(pathc,path);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 #endif          delts=delt;
 #ifdef unix        }
   scanf("%s",optionfile);      }
 #endif    }
     delti[theta]=delts;
 /*-------- arguments in the command line --------*/    return res; 
     
   strcpy(fileres,"r");  }
   strcat(fileres, optionfile);  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   /*---------arguments file --------*/  {
     int i;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    int l=1, l1, lmax=20;
     printf("Problem with optionfile %s\n",optionfile);    double k1,k2,k3,k4,res,fx;
     goto end;    double p2[NPARMAX+1];
   }    int k;
   
   strcpy(filereso,"o");    fx=func(x);
   strcat(filereso,fileres);    for (k=1; k<=2; k++) {
   if((ficparo=fopen(filereso,"w"))==NULL) {      for (i=1;i<=npar;i++) p2[i]=x[i];
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){      p2[thetai]=x[thetai]+delti[thetai]/k;
     ungetc(c,ficpar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fgets(line, MAXLINE, ficpar);      k2=func(p2)-fx;
     puts(line);    
     fputs(line,ficparo);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   ungetc(c,ficpar);      k3=func(p2)-fx;
     
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      p2[thetai]=x[thetai]-delti[thetai]/k;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      k4=func(p2)-fx;
 while((c=getc(ficpar))=='#' && c!= EOF){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     ungetc(c,ficpar);  #ifdef DEBUG
     fgets(line, MAXLINE, ficpar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     puts(line);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fputs(line,ficparo);  #endif
   }    }
   ungetc(c,ficpar);    return res;
    }
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);  
   fprintf(ficparo,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);  /************** Inverse of matrix **************/
    void ludcmp(double **a, int n, int *indx, double *d) 
  while((c=getc(ficpar))=='#' && c!= EOF){  { 
     ungetc(c,ficpar);    int i,imax,j,k; 
     fgets(line, MAXLINE, ficpar);    double big,dum,sum,temp; 
     puts(line);    double *vv; 
     fputs(line,ficparo);   
   }    vv=vector(1,n); 
   ungetc(c,ficpar);    *d=1.0; 
      for (i=1;i<=n;i++) { 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);      big=0.0; 
   fprintf(ficparo,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);      for (j=1;j<=n;j++) 
              if ((temp=fabs(a[i][j])) > big) big=temp; 
        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 while((c=getc(ficpar))=='#' && c!= EOF){      vv[i]=1.0/big; 
     ungetc(c,ficpar);    } 
     fgets(line, MAXLINE, ficpar);    for (j=1;j<=n;j++) { 
     puts(line);      for (i=1;i<j;i++) { 
     fputs(line,ficparo);        sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   ungetc(c,ficpar);        a[i][j]=sum; 
        } 
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);      big=0.0; 
        for (i=j;i<=n;i++) { 
   covar=matrix(0,NCOVMAX,1,n);        sum=a[i][j]; 
   cptcovn=0;        for (k=1;k<j;k++) 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   ncovmodel=2+cptcovn;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          big=dum; 
            imax=i; 
   /* Read guess parameters */        } 
   /* Reads comments: lines beginning with '#' */      } 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (j != imax) { 
     ungetc(c,ficpar);        for (k=1;k<=n;k++) { 
     fgets(line, MAXLINE, ficpar);          dum=a[imax][k]; 
     puts(line);          a[imax][k]=a[j][k]; 
     fputs(line,ficparo);          a[j][k]=dum; 
   }        } 
   ungetc(c,ficpar);        *d = -(*d); 
          vv[imax]=vv[j]; 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      } 
     for(i=1; i <=nlstate; i++)      indx[j]=imax; 
     for(j=1; j <=nlstate+ndeath-1; j++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      if (j != n) { 
       fprintf(ficparo,"%1d%1d",i1,j1);        dum=1.0/(a[j][j]); 
       printf("%1d%1d",i,j);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(k=1; k<=ncovmodel;k++){      } 
         fscanf(ficpar," %lf",&param[i][j][k]);    } 
         printf(" %lf",param[i][j][k]);    free_vector(vv,1,n);  /* Doesn't work */
         fprintf(ficparo," %lf",param[i][j][k]);  ;
       }  } 
       fscanf(ficpar,"\n");  
       printf("\n");  void lubksb(double **a, int n, int *indx, double b[]) 
       fprintf(ficparo,"\n");  { 
     }    int i,ii=0,ip,j; 
      double sum; 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   
     for (i=1;i<=n;i++) { 
   p=param[1][1];      ip=indx[i]; 
        sum=b[ip]; 
   /* Reads comments: lines beginning with '#' */      b[ip]=b[i]; 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (ii) 
     ungetc(c,ficpar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     fgets(line, MAXLINE, ficpar);      else if (sum) ii=i; 
     puts(line);      b[i]=sum; 
     fputs(line,ficparo);    } 
   }    for (i=n;i>=1;i--) { 
   ungetc(c,ficpar);      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      b[i]=sum/a[i][i]; 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    } 
   for(i=1; i <=nlstate; i++){  } 
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  void pstamp(FILE *fichier)
       printf("%1d%1d",i,j);  {
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       for(k=1; k<=ncovmodel;k++){  }
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);  /************ Frequencies ********************/
         fprintf(ficparo," %le",delti3[i][j][k]);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       }  {  /* Some frequencies */
       fscanf(ficpar,"\n");    
       printf("\n");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       fprintf(ficparo,"\n");    int first;
     }    double ***freq; /* Frequencies */
   }    double *pp, **prop;
   delti=delti3[1][1];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      char fileresp[FILENAMELENGTH];
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    pp=vector(1,nlstate);
     ungetc(c,ficpar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fgets(line, MAXLINE, ficpar);    strcpy(fileresp,"p");
     puts(line);    strcat(fileresp,fileres);
     fputs(line,ficparo);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   }      printf("Problem with prevalence resultfile: %s\n", fileresp);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        exit(0);
   matcov=matrix(1,npar,1,npar);    }
   for(i=1; i <=npar; i++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     fscanf(ficpar,"%s",&str);    j1=0;
     printf("%s",str);    
     fprintf(ficparo,"%s",str);    j=cptcoveff;
     for(j=1; j <=i; j++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);    first=1;
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    for(k1=1; k1<=j;k1++){
     fscanf(ficpar,"\n");      for(i1=1; i1<=ncodemax[k1];i1++){
     printf("\n");        j1++;
     fprintf(ficparo,"\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   }          scanf("%d", i);*/
   for(i=1; i <=npar; i++)        for (i=-5; i<=nlstate+ndeath; i++)  
     for(j=i+1;j<=npar;j++)          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       matcov[i][j]=matcov[j][i];            for(m=iagemin; m <= iagemax+3; m++)
                  freq[i][jk][m]=0;
   printf("\n");  
       for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
     /*-------- data file ----------*/          prop[i][m]=0;
     if((ficres =fopen(fileres,"w"))==NULL) {        
       printf("Problem with resultfile: %s\n", fileres);goto end;        dateintsum=0;
     }        k2cpt=0;
     fprintf(ficres,"#%s\n",version);        for (i=1; i<=imx; i++) {
              bool=1;
     if((fic=fopen(datafile,"r"))==NULL)    {          if  (cptcovn>0) {
       printf("Problem with datafile: %s\n", datafile);goto end;            for (z1=1; z1<=cptcoveff; z1++) 
     }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     n= lastobs;          }
     severity = vector(1,maxwav);          if (bool==1){
     outcome=imatrix(1,maxwav+1,1,n);            for(m=firstpass; m<=lastpass; m++){
     num=ivector(1,n);              k2=anint[m][i]+(mint[m][i]/12.);
     moisnais=vector(1,n);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     annais=vector(1,n);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     moisdc=vector(1,n);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     andc=vector(1,n);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     agedc=vector(1,n);                if (m<lastpass) {
     cod=ivector(1,n);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     weight=vector(1,n);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                }
     mint=matrix(1,maxwav,1,n);                
     anint=matrix(1,maxwav,1,n);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     s=imatrix(1,maxwav+1,1,n);                  dateintsum=dateintsum+k2;
     adl=imatrix(1,maxwav+1,1,n);                      k2cpt++;
     tab=ivector(1,NCOVMAX);                }
     ncodemax=ivector(1,8);                /*}*/
             }
     i=1;          }
     while (fgets(line, MAXLINE, fic) != NULL)    {        }
       if ((i >= firstobs) && (i <=lastobs)) {         
                /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (j=maxwav;j>=1;j--){        pstamp(ficresp);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        if  (cptcovn>0) {
           strcpy(line,stra);          fprintf(ficresp, "\n#********** Variable "); 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresp, "**********\n#");
         }        }
                for(i=1; i<=nlstate;i++) 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresp, "\n");
         
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=iagemin; i <= iagemax+3; i++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          if(i==iagemax+3){
             fprintf(ficlog,"Total");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          }else{
         for (j=ncov;j>=1;j--){            if(first==1){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              first=0;
         }              printf("See log file for details...\n");
         num[i]=atol(stra);            }
                    fprintf(ficlog,"Age %d", i);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         i=i+1;              pp[jk] += freq[jk][m][i]; 
       }          }
     }          for(jk=1; jk <=nlstate ; jk++){
     /* printf("ii=%d", ij);            for(m=-1, pos=0; m <=0 ; m++)
        scanf("%d",i);*/              pos += freq[jk][m][i];
   imx=i-1; /* Number of individuals */            if(pp[jk]>=1.e-10){
               if(first==1){
   /* for (i=1; i<=imx; i++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            }else{
     }              if(first==1)
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* Calculation of the number of parameter from char model*/            }
   Tvar=ivector(1,15);          }
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);          for(jk=1; jk <=nlstate ; jk++){
   Tvard=imatrix(1,15,1,2);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   Tage=ivector(1,15);                    pp[jk] += freq[jk][m][i];
              }       
   if (strlen(model) >1){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     j=0, j1=0, k1=1, k2=1;            pos += pp[jk];
     j=nbocc(model,'+');            posprop += prop[jk][i];
     j1=nbocc(model,'*');          }
     cptcovn=j+1;          for(jk=1; jk <=nlstate ; jk++){
     cptcovprod=j1;            if(pos>=1.e-5){
                  if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     strcpy(modelsav,model);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            }else{
       printf("Error. Non available option model=%s ",model);              if(first==1)
       goto end;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                }
     for(i=(j+1); i>=1;i--){            if( i <= iagemax){
       cutv(stra,strb,modelsav,'+');              if(pos>=1.e-5){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
       /*scanf("%d",i);*/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       if (strchr(strb,'*')) {              }
         cutv(strd,strc,strb,'*');              else
         if (strcmp(strc,"age")==0) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           cptcovprod--;            }
           cutv(strb,stre,strd,'V');          }
           Tvar[i]=atoi(stre);          
           cptcovage++;          for(jk=-1; jk <=nlstate+ndeath; jk++)
             Tage[cptcovage]=i;            for(m=-1; m <=nlstate+ndeath; m++)
             /*printf("stre=%s ", stre);*/              if(freq[jk][m][i] !=0 ) {
         }              if(first==1)
         else if (strcmp(strd,"age")==0) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           cptcovprod--;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           cutv(strb,stre,strc,'V');              }
           Tvar[i]=atoi(stre);          if(i <= iagemax)
           cptcovage++;            fprintf(ficresp,"\n");
           Tage[cptcovage]=i;          if(first==1)
         }            printf("Others in log...\n");
         else {          fprintf(ficlog,"\n");
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=ncov+k1;      }
           cutv(strb,strc,strd,'V');    }
           Tprod[k1]=i;    dateintmean=dateintsum/k2cpt; 
           Tvard[k1][1]=atoi(strc);   
           Tvard[k1][2]=atoi(stre);    fclose(ficresp);
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_vector(pp,1,nlstate);
           for (k=1; k<=lastobs;k++)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    /* End of Freq */
           k1++;  }
           k2=k2+2;  
         }  /************ Prevalence ********************/
       }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       else {  {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        /*  scanf("%d",i);*/       in each health status at the date of interview (if between dateprev1 and dateprev2).
       cutv(strd,strc,strb,'V');       We still use firstpass and lastpass as another selection.
       Tvar[i]=atoi(strc);    */
       }   
       strcpy(modelsav,stra);      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double ***freq; /* Frequencies */
         scanf("%d",i);*/    double *pp, **prop;
     }    double pos,posprop; 
 }    double  y2; /* in fractional years */
      int iagemin, iagemax;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);    iagemin= (int) agemin;
   scanf("%d ",i);*/    iagemax= (int) agemax;
     fclose(fic);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  if(mle==1){*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     if (weightopt != 1) { /* Maximisation without weights*/    j1=0;
       for(i=1;i<=n;i++) weight[i]=1.0;    
     }    j=cptcoveff;
     /*-calculation of age at interview from date of interview and age at death -*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     agev=matrix(1,maxwav,1,imx);    
     for(k1=1; k1<=j;k1++){
    for (i=1; i<=imx; i++)      for(i1=1; i1<=ncodemax[k1];i1++){
      for(m=2; (m<= maxwav); m++)        j1++;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        
          anint[m][i]=9999;        for (i=1; i<=nlstate; i++)  
          s[m][i]=-1;          for(m=iagemin; m <= iagemax+3; m++)
        }            prop[i][m]=0.0;
           
     for (i=1; i<=imx; i++)  {        for (i=1; i<=imx; i++) { /* Each individual */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          bool=1;
       for(m=1; (m<= maxwav); m++){          if  (cptcovn>0) {
         if(s[m][i] >0){            for (z1=1; z1<=cptcoveff; z1++) 
           if (s[m][i] == nlstate+1) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             if(agedc[i]>0)                bool=0;
               if(moisdc[i]!=99 && andc[i]!=9999)          } 
               agev[m][i]=agedc[i];          if (bool==1) { 
             else {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               if (andc[i]!=9999){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               agev[m][i]=-1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           else if(s[m][i] !=9){ /* Should no more exist */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             if(mint[m][i]==99 || anint[m][i]==9999)                  prop[s[m][i]][iagemax+3] += weight[i]; 
               agev[m][i]=1;                } 
             else if(agev[m][i] <agemin){              }
               agemin=agev[m][i];            } /* end selection of waves */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          }
             }        }
             else if(agev[m][i] >agemax){        for(i=iagemin; i <= iagemax+3; i++){  
               agemax=agev[m][i];          
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             }            posprop += prop[jk][i]; 
             /*agev[m][i]=anint[m][i]-annais[i];*/          } 
             /*   agev[m][i] = age[i]+2*m;*/  
           }          for(jk=1; jk <=nlstate ; jk++){     
           else { /* =9 */            if( i <=  iagemax){ 
             agev[m][i]=1;              if(posprop>=1.e-5){ 
             s[m][i]=-1;                probs[i][jk][j1]= prop[jk][i]/posprop;
           }              } else
         }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
         else /*= 0 Unknown */            } 
           agev[m][i]=1;          }/* end jk */ 
       }        }/* end i */ 
          } /* end i1 */
     }    } /* end k1 */
     for (i=1; i<=imx; i++)  {    
       for(m=1; (m<= maxwav); m++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         if (s[m][i] > (nlstate+ndeath)) {    /*free_vector(pp,1,nlstate);*/
           printf("Error: Wrong value in nlstate or ndeath\n");      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           goto end;  }  /* End of prevalence */
         }  
       }  /************* Waves Concatenation ***************/
     }  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_vector(severity,1,maxwav);       Death is a valid wave (if date is known).
     free_imatrix(outcome,1,maxwav+1,1,n);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     free_vector(moisnais,1,n);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     free_vector(annais,1,n);       and mw[mi+1][i]. dh depends on stepm.
     free_matrix(mint,1,maxwav,1,n);       */
     free_matrix(anint,1,maxwav,1,n);  
     free_vector(moisdc,1,n);    int i, mi, m;
     free_vector(andc,1,n);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
        int first;
     wav=ivector(1,imx);    int j, k=0,jk, ju, jl;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    double sum=0.;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    first=0;
        jmin=1e+5;
     /* Concatenates waves */    jmax=-1;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    jmean=0.;
     for(i=1; i<=imx; i++){
       mi=0;
       Tcode=ivector(1,100);      m=firstpass;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      while(s[m][i] <= nlstate){
       ncodemax[1]=1;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          mw[++mi][i]=m;
              if(m >=lastpass)
    codtab=imatrix(1,100,1,10);          break;
    h=0;        else
    m=pow(2,cptcoveff);          m++;
        }/* end while */
    for(k=1;k<=cptcoveff; k++){      if (s[m][i] > nlstate){
      for(i=1; i <=(m/pow(2,k));i++){        mi++;     /* Death is another wave */
        for(j=1; j <= ncodemax[k]; j++){        /* if(mi==0)  never been interviewed correctly before death */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){           /* Only death is a correct wave */
            h++;        mw[mi][i]=m;
            if (h>m) h=1;codtab[h][k]=j;      }
          }  
        }      wav[i]=mi;
      }      if(mi==0){
    }        nbwarn++;
         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    /*for(i=1; i <=m ;i++){          first=1;
      for(k=1; k <=cptcovn; k++){        }
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);        if(first==1){
      }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
      printf("\n");        }
    }      } /* end mi==0 */
    scanf("%d",i);*/    } /* End individuals */
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    for(i=1; i<=imx; i++){
        and prints on file fileres'p'. */      for(mi=1; mi<wav[i];mi++){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev);        if (stepm <=0)
           dh[mi][i]=1;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        else{
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if (agedc[i] < 2*AGESUP) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              if(j==0) j=1;  /* Survives at least one month after exam */
                    else if(j<0){
     /* For Powell, parameters are in a vector p[] starting at p[1]                nberr++;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     if(mle==1){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }              }
                  k=k+1;
     /*--------- results files --------------*/              if (j >= jmax){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);                jmax=j;
    fprintf(ficres,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);                ijmax=i;
    fprintf(ficres,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);              }
               if (j <= jmin){
    jk=1;                jmin=j;
    fprintf(ficres,"# Parameters\n");                ijmin=i;
    printf("# Parameters\n");              }
    for(i=1,jk=1; i <=nlstate; i++){              sum=sum+j;
      for(k=1; k <=(nlstate+ndeath); k++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        if (k != i)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
          {            }
            printf("%d%d ",i,k);          }
            fprintf(ficres,"%1d%1d ",i,k);          else{
            for(j=1; j <=ncovmodel; j++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
              printf("%f ",p[jk]);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
              fprintf(ficres,"%f ",p[jk]);  
              jk++;            k=k+1;
            }            if (j >= jmax) {
            printf("\n");              jmax=j;
            fprintf(ficres,"\n");              ijmax=i;
          }            }
      }            else if (j <= jmin){
    }              jmin=j;
  if(mle==1){              ijmin=i;
     /* Computing hessian and covariance matrix */            }
     ftolhess=ftol; /* Usually correct */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     hesscov(matcov, p, npar, delti, ftolhess, func);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
  }            if(j<0){
     fprintf(ficres,"# Scales\n");              nberr++;
     printf("# Scales\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for(i=1,jk=1; i <=nlstate; i++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(j=1; j <=nlstate+ndeath; j++){            }
         if (j!=i) {            sum=sum+j;
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);          jk= j/stepm;
           for(k=1; k<=ncovmodel;k++){          jl= j -jk*stepm;
             printf(" %.5e",delti[jk]);          ju= j -(jk+1)*stepm;
             fprintf(ficres," %.5e",delti[jk]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             jk++;            if(jl==0){
           }              dh[mi][i]=jk;
           printf("\n");              bh[mi][i]=0;
           fprintf(ficres,"\n");            }else{ /* We want a negative bias in order to only have interpolation ie
         }                    * at the price of an extra matrix product in likelihood */
       }              dh[mi][i]=jk+1;
       }              bh[mi][i]=ju;
                }
     k=1;          }else{
     fprintf(ficres,"# Covariance\n");            if(jl <= -ju){
     printf("# Covariance\n");              dh[mi][i]=jk;
     for(i=1;i<=npar;i++){              bh[mi][i]=jl;       /* bias is positive if real duration
       /*  if (k>nlstate) k=1;                                   * is higher than the multiple of stepm and negative otherwise.
       i1=(i-1)/(ncovmodel*nlstate)+1;                                   */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            }
       printf("%s%d%d",alph[k],i1,tab[i]);*/            else{
       fprintf(ficres,"%3d",i);              dh[mi][i]=jk+1;
       printf("%3d",i);              bh[mi][i]=ju;
       for(j=1; j<=i;j++){            }
         fprintf(ficres," %.5e",matcov[i][j]);            if(dh[mi][i]==0){
         printf(" %.5e",matcov[i][j]);              dh[mi][i]=1; /* At least one step */
       }              bh[mi][i]=ju; /* At least one step */
       fprintf(ficres,"\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       printf("\n");            }
       k++;          } /* end if mle */
     }        }
          } /* end wave */
     while((c=getc(ficpar))=='#' && c!= EOF){    }
       ungetc(c,ficpar);    jmean=sum/k;
       fgets(line, MAXLINE, ficpar);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       puts(line);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fputs(line,ficparo);   }
     }  
     ungetc(c,ficpar);  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  {
        
     if (fage <= 2) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
       bage = agemin;    int cptcode=0;
       fage = agemax;    cptcoveff=0; 
     }   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    for (k=1; k<=7; k++) ncodemax[k]=0;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
          for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 /*------------ gnuplot -------------*/                                 modality*/ 
 chdir(pathcd);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   if((ficgp=fopen("graph.plt","w"))==NULL) {        Ndum[ij]++; /*store the modality */
     printf("Problem with file graph.gp");goto end;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 #ifdef windows                                         Tvar[j]. If V=sex and male is 0 and 
   fprintf(ficgp,"cd \"%s\" \n",pathc);                                         female is 1, then  cptcode=1.*/
 #endif      }
 m=pow(2,cptcoveff);  
        for (i=0; i<=cptcode; i++) {
  /* 1eme*/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      }
    for (k1=1; k1<= m ; k1 ++) {  
       ij=1; 
 #ifdef windows      for (i=1; i<=ncodemax[j]; i++) {
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);        for (k=0; k<= maxncov; k++) {
 #endif          if (Ndum[k] != 0) {
 #ifdef unix            nbcode[Tvar[j]][ij]=k; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 #endif            
             ij++;
 for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if (ij > ncodemax[j]) break; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }  
 }      } 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    }  
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   for (k=0; k< maxncov; k++) Ndum[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }   for (i=1; i<=ncovmodel-2; i++) { 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      for (i=1; i<= nlstate ; i ++) {     ij=Tvar[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     Ndum[ij]++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");   }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));   ij=1;
 #ifdef unix   for (i=1; i<= maxncov; i++) {
 fprintf(ficgp,"\nset ter gif small size 400,300");     if((Ndum[i]!=0) && (i<=ncovcol)){
 #endif       Tvaraff[ij]=i; /*For printing */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       ij++;
    }     }
   }   }
   /*2 eme*/   
    cptcoveff=ij-1; /*Number of simple covariates*/
   for (k1=1; k1<= m ; k1 ++) {  }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
      /*********** Health Expectancies ****************/
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* Health expectancies, no variances */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 }      int nhstepma, nstepma; /* Decreasing with age */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double age, agelim, hf;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double ***p3mat;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double eip;
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    pstamp(ficreseij);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 }      fprintf(ficreseij,"# Age");
       fprintf(ficgp,"\" t\"\" w l 0,");    for(i=1; i<=nlstate;i++){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(j=1; j<=nlstate;j++){
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficreseij," e%1d%1d ",i,j);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficreseij," e%1d. ",i);
 }      }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    fprintf(ficreseij,"\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   /*3eme*/    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   for (k1=1; k1<= m ; k1 ++) {     * This is mainly to measure the difference between two models: for example
     for (cpt=1; cpt<= nlstate ; cpt ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
       k=2+nlstate*(cpt-1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);     * progression in between and thus overestimating or underestimating according
       for (i=1; i< nlstate ; i ++) {     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
   }  
      /* For example we decided to compute the life expectancy with the smallest unit */
   /* CV preval stat */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   for (k1=1; k1<= m ; k1 ++) {       nhstepm is the number of hstepm from age to agelim 
     for (cpt=1; cpt<nlstate ; cpt ++) {       nstepm is the number of stepm from age to agelin. 
       k=3;       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);       and note for a fixed period like estepm months */
       for (i=1; i< nlstate ; i ++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficgp,"+$%d",k+i+1);       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       means that if the survival funtion is printed only each two years of age and if
             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       l=3+(nlstate+ndeath)*cpt;       results. So we changed our mind and took the option of the best precision.
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    */
       for (i=1; i< nlstate ; i ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    agelim=AGESUP;
       }    /* If stepm=6 months */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     }      
   }    /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* proba elementaires */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    for(i=1,jk=1; i <=nlstate; i++){    /* if (stepm >= YEARM) hstepm=1;*/
     for(k=1; k <=(nlstate+ndeath); k++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       if (k != i) {    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1; j <=ncovmodel; j++){  
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    for (age=bage; age<=fage; age ++){ 
           /*fprintf(ficgp,"%s",alph[1]);*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           jk++;      /* if (stepm >= YEARM) hstepm=1;*/
           fprintf(ficgp,"\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         }  
       }      /* If stepm=6 months */
     }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   for(jk=1; jk <=m; jk++) {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      
    i=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    for(k2=1; k2<=nlstate; k2++) {      
      k3=i;      printf("%d|",(int)age);fflush(stdout);
      for(k=1; k<=(nlstate+ndeath); k++) {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        if (k != k2){      
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      /* Computing expectancies */
 ij=1;      for(i=1; i<=nlstate;i++)
         for(j=3; j <=ncovmodel; j++) {        for(j=1; j<=nlstate;j++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             ij++;            
           }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           else  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
         }  
           fprintf(ficgp,")/(1");      fprintf(ficreseij,"%3.0f",age );
              for(i=1; i<=nlstate;i++){
         for(k1=1; k1 <=nlstate; k1++){          eip=0;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        for(j=1; j<=nlstate;j++){
 ij=1;          eip +=eij[i][j][(int)age];
           for(j=3; j <=ncovmodel; j++){          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        fprintf(ficreseij,"%9.4f", eip );
             ij++;      }
           }      fprintf(ficreseij,"\n");
           else      
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }
           }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficgp,")");    printf("\n");
         }    fprintf(ficlog,"\n");
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  }
         i=i+ncovmodel;  
        }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
      }  
    }  {
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    /* Covariances of health expectancies eij and of total life expectancies according
   }     to initial status i, ei. .
        */
   fclose(ficgp);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
        int nhstepma, nstepma; /* Decreasing with age */
 chdir(path);    double age, agelim, hf;
        double ***p3matp, ***p3matm, ***varhe;
     free_ivector(wav,1,imx);    double **dnewm,**doldm;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double *xp, *xm;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double **gp, **gm;
     free_ivector(num,1,n);    double ***gradg, ***trgradg;
     free_vector(agedc,1,n);    int theta;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  
     fclose(ficparo);    double eip, vip;
     fclose(ficres);  
     /*  }*/    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        xp=vector(1,npar);
    /*________fin mle=1_________*/    xm=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
     /* No more information from the sample is required now */    pstamp(ficresstdeij);
   /* Reads comments: lines beginning with '#' */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresstdeij,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++){
     fgets(line, MAXLINE, ficpar);      for(j=1; j<=nlstate;j++)
     puts(line);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     fputs(line,ficparo);      fprintf(ficresstdeij," e%1d. ",i);
   }    }
   ungetc(c,ficpar);    fprintf(ficresstdeij,"\n");
    
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    pstamp(ficrescveij);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    fprintf(ficrescveij,"# Age");
 /*--------- index.htm --------*/    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
   strcpy(optionfilehtm,optionfile);        cptj= (j-1)*nlstate+i;
   strcat(optionfilehtm,".htm");        for(i2=1; i2<=nlstate;i2++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(j2=1; j2<=nlstate;j2++){
     printf("Problem with %s \n",optionfilehtm);goto end;            cptj2= (j2-1)*nlstate+i2;
   }            if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">          }
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      }
 Total number of observations=%d <br>    fprintf(ficrescveij,"\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    
 <hr  size=\"2\" color=\"#EC5E5E\">    if(estepm < stepm){
 <li>Outputs files<br><br>\n      printf ("Problem %d lower than %d\n",estepm, stepm);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    else  hstepm=estepm;   
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    /* We compute the life expectancy from trapezoids spaced every estepm months
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>     * This is mainly to measure the difference between two models: for example
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>     * if stepm=24 months pijx are given only every 2 years and by summing them
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>     * we are calculating an estimate of the Life Expectancy assuming a linear 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>     * progression in between and thus overestimating or underestimating according
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>     * to the curvature of the survival function. If, for the same date, we 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>     * to compare the new estimate of Life expectancy with the same linear 
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
  fprintf(fichtm," <li>Graphs</li><p>");  
     /* For example we decided to compute the life expectancy with the smallest unit */
  m=cptcoveff;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
  j1=0;       Look at hpijx to understand the reason of that which relies in memory size
  for(k1=1; k1<=m;k1++){       and note for a fixed period like estepm months */
    for(i1=1; i1<=ncodemax[k1];i1++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        j1++;       survival function given by stepm (the optimization length). Unfortunately it
        if (cptcovn > 0) {       means that if the survival funtion is printed only each two years of age and if
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
          for (cpt=1; cpt<=cptcoveff;cpt++)       results. So we changed our mind and took the option of the best precision.
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    /* If stepm=6 months */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        /* nhstepm age range expressed in number of stepm */
        for(cpt=1; cpt<nlstate;cpt++){    agelim=AGESUP;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        }    /* if (stepm >= YEARM) hstepm=1;*/
     for(cpt=1; cpt<=nlstate;cpt++) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    
 interval) in state (%d): v%s%d%d.gif <br>    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    gp=matrix(0,nhstepm,1,nlstate*nlstate);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    for (age=bage; age<=fage; age ++){ 
 health expectancies in states (1) and (2): e%s%d.gif<br>      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 fprintf(fichtm,"\n</body>");      /* if (stepm >= YEARM) hstepm=1;*/
    }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
  }  
 fclose(fichtm);      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   /*--------------- Prevalence limit --------------*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   strcpy(filerespl,"pl");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      /* Computing  Variances of health expectancies */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   }         decrease memory allocation */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      for(theta=1; theta <=npar; theta++){
   fprintf(ficrespl,"#Prevalence limit\n");        for(i=1; i<=npar; i++){ 
   fprintf(ficrespl,"#Age ");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(ficrespl,"\n");        }
          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   prlim=matrix(1,nlstate,1,nlstate);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<= nlstate; j++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1; i<=nlstate; i++){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(h=0; h<=nhstepm-1; h++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   k=0;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   agebase=agemin;            }
   agelim=agemax;          }
   ftolpl=1.e-10;        }
   i1=cptcoveff;       
   if (cptcovn < 1){i1=1;}        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
   for(cptcov=1;cptcov<=i1;cptcov++){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
         k=k+1;      }/* End theta */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      
         fprintf(ficrespl,"\n#******");      
         for(j=1;j<=cptcoveff;j++)      for(h=0; h<=nhstepm-1; h++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<=nlstate*nlstate;j++)
         fprintf(ficrespl,"******\n");          for(theta=1; theta <=npar; theta++)
                    trgradg[h][j][theta]=gradg[h][theta][j];
         for (age=agebase; age<=agelim; age++){      
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );       for(ij=1;ij<=nlstate*nlstate;ij++)
           for(i=1; i<=nlstate;i++)        for(ji=1;ji<=nlstate*nlstate;ji++)
           fprintf(ficrespl," %.5f", prlim[i][i]);          varhe[ij][ji][(int)age] =0.;
           fprintf(ficrespl,"\n");  
         }       printf("%d|",(int)age);fflush(stdout);
       }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }       for(h=0;h<=nhstepm-1;h++){
   fclose(ficrespl);        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   /*------------- h Pij x at various ages ------------*/          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
            for(ij=1;ij<=nlstate*nlstate;ij++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            for(ji=1;ji<=nlstate*nlstate;ji++)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        }
   }      }
   printf("Computing pij: result on file '%s' \n", filerespij);  
        /* Computing expectancies */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /*if (stepm<=24) stepsize=2;*/      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   agelim=AGESUP;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   hstepm=stepsize*YEARM; /* Every year of age */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            
              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;      fprintf(ficresstdeij,"%3.0f",age );
         fprintf(ficrespij,"\n#****** ");      for(i=1; i<=nlstate;i++){
         for(j=1;j<=cptcoveff;j++)        eip=0.;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        vip=0.;
         fprintf(ficrespij,"******\n");        for(j=1; j<=nlstate;j++){
                  eip += eij[i][j][(int)age];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
           fprintf(ficrespij,"# Age");      fprintf(ficresstdeij,"\n");
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)      fprintf(ficrescveij,"%3.0f",age );
               fprintf(ficrespij," %1d-%1d",i,j);      for(i=1; i<=nlstate;i++)
           fprintf(ficrespij,"\n");        for(j=1; j<=nlstate;j++){
           for (h=0; h<=nhstepm; h++){          cptj= (j-1)*nlstate+i;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for(i2=1; i2<=nlstate;i2++)
             for(i=1; i<=nlstate;i++)            for(j2=1; j2<=nlstate;j2++){
               for(j=1; j<=nlstate+ndeath;j++)              cptj2= (j2-1)*nlstate+i2;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              if(cptj2 <= cptj)
             fprintf(ficrespij,"\n");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
           }            }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           fprintf(ficrespij,"\n");      fprintf(ficrescveij,"\n");
         }     
     }    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   fclose(ficrespij);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------- Forecasting ------------------*/    printf("\n");
     fprintf(ficlog,"\n");
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);    free_vector(xm,1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_vector(xp,1,npar);
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);  
   /************ Variance ******************/
  free_matrix(agev,1,maxwav,1,imx);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   /* Mobile average */  {
     /* Variance of health expectancies */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   if (mobilav==1) {    double **dnewm,**doldm;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **dnewmp,**doldmp;
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    int i, j, nhstepm, hstepm, h, nstepm ;
       for (i=1; i<=nlstate;i++)    int k, cptcode;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double *xp;
           mobaverage[(int)agedeb][i][cptcod]=0.;    double **gp, **gm;  /* for var eij */
        double ***gradg, ***trgradg; /*for var eij */
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    double **gradgp, **trgradgp; /* for var p point j */
       for (i=1; i<=nlstate;i++){    double *gpp, *gmp; /* for var p point j */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           for (cpt=0;cpt<=4;cpt++){    double ***p3mat;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double age,agelim, hf;
           }    double ***mobaverage;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    int theta;
         }    char digit[4];
       }    char digitp[25];
     }    
   }    char fileresprobmorprev[FILENAMELENGTH];
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if(popbased==1){
   if (stepm<=12) stepsize=1;      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   agelim=AGESUP;      else strcpy(digitp,"-populbased-nomobil-");
   hstepm=stepsize*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    else 
        strcpy(digitp,"-stablbased-");
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL)    {    if (mobilav!=0) {
       printf("Problem with population file : %s\n",popfile);goto end;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     popage=ivector(0,AGESUP);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     popeffectif=vector(0,AGESUP);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     popcount=vector(0,AGESUP);      }
     }
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    strcpy(fileresprobmorprev,"prmorprev"); 
       {    sprintf(digit,"%-d",ij);
         i=i+1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     imx=i;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       k=k+1;   
       fprintf(ficresf,"\n#****** ");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(j=1;j<=cptcoveff;j++) {    pstamp(ficresprobmorprev);
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficresf,"******\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      for(i=1; i<=nlstate;i++)
       if (popforecast==1)  fprintf(ficresf," [Population]");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
       for (agedeb=fage; agedeb>=bage; agedeb--){    fprintf(ficresprobmorprev,"\n");
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);    fprintf(ficgp,"\n# Routine varevsij");
        if (mobilav==1) {    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         for(j=1; j<=nlstate;j++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         }  /*   } */
         else {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(j=1; j<=nlstate;j++)    pstamp(ficresvij);
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         }      if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");    else
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       }    fprintf(ficresvij,"# Age");
          for(i=1; i<=nlstate;i++)
       for (cpt=1; cpt<=nforecast;cpt++) {      for(j=1; j<=nlstate;j++)
         fprintf(ficresf,"\n");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(ficresvij,"\n");
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
         nhstepm = nhstepm/hstepm;    xp=vector(1,npar);
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         oldm=oldms;savm=savms;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
                    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         for (h=0; h<=nhstepm; h++){    gpp=vector(nlstate+1,nlstate+ndeath);
            gmp=vector(nlstate+1,nlstate+ndeath);
          if (h*hstepm/YEARM*stepm==cpt)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);    
              if(estepm < stepm){
                printf ("Problem %d lower than %d\n",estepm, stepm);
          for(j=1; j<=nlstate+ndeath;j++) {    }
            kk1=0.;kk2=0;    else  hstepm=estepm;   
            for(i=1; i<=nlstate;i++) {            /* For example we decided to compute the life expectancy with the smallest unit */
              if (mobilav==1)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];       nhstepm is the number of hstepm from age to agelim 
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];       nstepm is the number of stepm from age to agelin. 
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];       Look at function hpijx to understand why (it is linked to memory size questions) */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
            if (h*hstepm/YEARM*stepm==cpt) {       survival function given by stepm (the optimization length). Unfortunately it
              fprintf(ficresf," %.3f", kk1);       means that if the survival funtion is printed every two years of age and if
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
            }       results. So we changed our mind and took the option of the best precision.
           }    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim = AGESUP;
            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gp=matrix(0,nhstepm,1,nlstate);
   if (popforecast==1) {      gm=matrix(0,nhstepm,1,nlstate);
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   free_imatrix(s,1,maxwav+1,1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_vector(weight,1,n);        }
   fclose(ficresf);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /*---------- Health expectancies and variances ------------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
   strcpy(filerest,"t");        if (popbased==1) {
   strcat(filerest,fileres);          if(mobilav ==0){
   if((ficrest=fopen(filerest,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   strcpy(filerese,"e");        }
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
  strcpy(fileresv,"v");        }
   strcat(fileresv,fileres);        /* This for computing probability of death (h=1 means
   if((ficresvij=fopen(fileresv,"w"))==NULL) {           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);           as a weighted average of prlim.
   }        */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   k=0;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   for(cptcov=1;cptcov<=i1;cptcov++){        }    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* end probability of death */
       k=k+1;  
       fprintf(ficrest,"\n#****** ");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       for(j=1;j<=cptcoveff;j++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficrest,"******\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
       fprintf(ficreseij,"\n#****** ");        if (popbased==1) {
       for(j=1;j<=cptcoveff;j++)          if(mobilav ==0){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"******\n");              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
       fprintf(ficresvij,"\n#****** ");            for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          }
       fprintf(ficresvij,"******\n");        }
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       oldm=oldms;savm=savms;          for(h=0; h<=nhstepm; h++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       oldm=oldms;savm=savms;          }
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        }
              /* This for computing probability of death (h=1 means
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");           computed over hstepm matrices product = hstepm*stepm months) 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);           as a weighted average of prlim.
       fprintf(ficrest,"\n");        */
                for(j=nlstate+1;j<=nlstate+ndeath;j++){
       hf=1;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       if (stepm >= YEARM) hf=stepm/YEARM;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       epj=vector(1,nlstate+1);        }    
       for(age=bage; age <=fage ;age++){        /* end probability of death */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {        for(j=1; j<= nlstate; j++) /* vareij */
           for(i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
             prlim[i][i]=probs[(int)age][i][k];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
          
         fprintf(ficrest," %.0f",age);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        }
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  
           }      } /* End theta */
           epj[nlstate+1] +=epj[j];  
         }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)      for(h=0; h<=nhstepm; h++) /* veij */
             vepp += vareij[i][j][(int)age];        for(j=1; j<=nlstate;j++)
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));          for(theta=1; theta <=npar; theta++)
         for(j=1;j <=nlstate;j++){            trgradg[h][j][theta]=gradg[h][theta][j];
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         fprintf(ficrest,"\n");        for(theta=1; theta <=npar; theta++)
       }          trgradgp[j][theta]=gradgp[theta][j];
     }    
   }  
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
  fclose(ficreseij);  
  fclose(ficresvij);      for(h=0;h<=nhstepm;h++){
   fclose(ficrest);        for(k=0;k<=nhstepm;k++){
   fclose(ficpar);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   free_vector(epj,1,nlstate+1);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   /*  scanf("%d ",i); */          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   /*------- Variance limit prevalence------*/                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
 strcpy(fileresvpl,"vpl");      }
   strcat(fileresvpl,fileres);    
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      /* pptj */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     exit(0);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
  k=0;      /* end ppptj */
  for(cptcov=1;cptcov<=i1;cptcov++){      /*  x centered again */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
      k=k+1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
      fprintf(ficresvpl,"\n#****** ");   
      for(j=1;j<=cptcoveff;j++)      if (popbased==1) {
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if(mobilav ==0){
      fprintf(ficresvpl,"******\n");          for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        }else{ /* mobilav */ 
      oldm=oldms;savm=savms;          for(i=1; i<=nlstate;i++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            prlim[i][i]=mobaverage[(int)age][i][ij];
    }        }
  }      }
                
   fclose(ficresvpl);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   /*---------- End : free ----------------*/         as a weighted average of prlim.
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
        /* end probability of death */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
   free_matrix(matcov,1,npar,1,npar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   free_vector(delti,1,npar);        }
        } 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresprobmorprev,"\n");
   
   printf("End of Imach\n");      fprintf(ficresvij,"%.0f ",age );
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   /*printf("Total time was %d uSec.\n", total_usecs);*/        }
   /*------ End -----------*/      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
  end:      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 #ifdef windows      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
  chdir(pathcd);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif    } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
  system("..\\gp37mgw\\wgnuplot graph.plt");    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 #ifdef windows    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   while (z[0] != 'q') {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     chdir(pathcd);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     scanf("%s",z);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     if (z[0] == 'c') system("./imach");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     else if (z[0] == 'e') {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       chdir(path);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       system(optionfilehtm);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     else if (z[0] == 'q') exit(0);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 #endif    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 }  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.16  
changed lines
  Added in v.1.128


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>