Diff for /imach/src/imach.c between versions 1.16 and 1.129

version 1.16, 2002/02/20 17:12:32 version 1.129, 2007/08/31 13:49:27
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.129  2007/08/31 13:49:27  lievre
   individuals from different ages are interviewed on their health status    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.128  2006/06/30 13:02:05  brouard
   Health expectancies are computed from the transistions observed between    (Module): Clarifications on computing e.j
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.127  2006/04/28 18:11:50  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): Yes the sum of survivors was wrong since
   The simplest model is the multinomial logistic model where pij is    imach-114 because nhstepm was no more computed in the age
   the probabibility to be observed in state j at the second wave conditional    loop. Now we define nhstepma in the age loop.
   to be observed in state i at the first wave. Therefore the model is:    (Module): In order to speed up (in case of numerous covariates) we
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    compute health expectancies (without variances) in a first step
   is a covariate. If you want to have a more complex model than "constant and    and then all the health expectancies with variances or standard
   age", you should modify the program where the markup    deviation (needs data from the Hessian matrices) which slows the
     *Covariates have to be included here again* invites you to do it.    computation.
   More covariates you add, less is the speed of the convergence.    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.126  2006/04/28 17:23:28  brouard
   individual missed an interview, the information is not rounded or lost, but    (Module): Yes the sum of survivors was wrong since
   taken into account using an interpolation or extrapolation.    imach-114 because nhstepm was no more computed in the age
   hPijx is the probability to be    loop. Now we define nhstepma in the age loop.
   observed in state i at age x+h conditional to the observed state i at age    Version 0.98h
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.125  2006/04/04 15:20:31  lievre
   quarter trimester, semester or year) is model as a multinomial logistic.    Errors in calculation of health expectancies. Age was not initialized.
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Forecasting file added.
   and the contribution of each individual to the likelihood is simply hPijx.  
     Revision 1.124  2006/03/22 17:13:53  lievre
   Also this programme outputs the covariance matrix of the parameters but also    Parameters are printed with %lf instead of %f (more numbers after the comma).
   of the life expectancies. It also computes the prevalence limits.    The log-likelihood is printed in the log file
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.123  2006/03/20 10:52:43  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Module): <title> changed, corresponds to .htm file
   This software have been partly granted by Euro-REVES, a concerted action    name. <head> headers where missing.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Module): Weights can have a decimal point as for
   software can be distributed freely for non commercial use. Latest version    English (a comma might work with a correct LC_NUMERIC environment,
   can be accessed at http://euroreves.ined.fr/imach .    otherwise the weight is truncated).
   **********************************************************************/    Modification of warning when the covariates values are not 0 or
      1.
 #include <math.h>    Version 0.98g
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.122  2006/03/20 09:45:41  brouard
 #include <unistd.h>    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define MAXLINE 256    otherwise the weight is truncated).
 #define FILENAMELENGTH 80    Modification of warning when the covariates values are not 0 or
 /*#define DEBUG*/    1.
 #define windows    Version 0.98g
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define NINTERVMAX 8    not 1 month. Version 0.98f
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.120  2006/03/16 15:10:38  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): refinements in the computation of lli if
 #define MAXN 20000    status=-2 in order to have more reliable computation if stepm is
 #define YEARM 12. /* Number of months per year */    not 1 month. Version 0.98f
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.118  2006/03/14 18:20:07  brouard
 int npar=NPARMAX;    (Module): varevsij Comments added explaining the second
 int nlstate=2; /* Number of live states */    table of variances if popbased=1 .
 int ndeath=1; /* Number of dead states */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Function pstamp added
 int popbased=0;    (Module): Version 0.98d
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.117  2006/03/14 17:16:22  brouard
 int maxwav; /* Maxim number of waves */    (Module): varevsij Comments added explaining the second
 int jmin, jmax; /* min, max spacing between 2 waves */    table of variances if popbased=1 .
 int mle, weightopt;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Function pstamp added
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Version 0.98d
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.116  2006/03/06 10:29:27  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Variance-covariance wrong links and
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    varian-covariance of ej. is needed (Saito).
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.115  2006/02/27 12:17:45  brouard
   char filerese[FILENAMELENGTH];    (Module): One freematrix added in mlikeli! 0.98c
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.114  2006/02/26 12:57:58  brouard
  FILE  *ficresvpl;    (Module): Some improvements in processing parameter
   char fileresvpl[FILENAMELENGTH];    filename with strsep.
   
 #define NR_END 1    Revision 1.113  2006/02/24 14:20:24  brouard
 #define FREE_ARG char*    (Module): Memory leaks checks with valgrind and:
 #define FTOL 1.0e-10    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 #define NRANSI  
 #define ITMAX 200    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define TOL 2.0e-4  
     Revision 1.111  2006/01/25 20:38:18  brouard
 #define CGOLD 0.3819660    (Module): Lots of cleaning and bugs added (Gompertz)
 #define ZEPS 1.0e-10    (Module): Comments can be added in data file. Missing date values
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    can be a simple dot '.'.
   
 #define GOLD 1.618034    Revision 1.110  2006/01/25 00:51:50  brouard
 #define GLIMIT 100.0    (Module): Lots of cleaning and bugs added (Gompertz)
 #define TINY 1.0e-20  
     Revision 1.109  2006/01/24 19:37:15  brouard
 static double maxarg1,maxarg2;    (Module): Comments (lines starting with a #) are allowed in data.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.108  2006/01/19 18:05:42  lievre
      Gnuplot problem appeared...
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    To be fixed
 #define rint(a) floor(a+0.5)  
     Revision 1.107  2006/01/19 16:20:37  brouard
 static double sqrarg;    Test existence of gnuplot in imach path
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 int imx;  
 int stepm;    Revision 1.105  2006/01/05 20:23:19  lievre
 /* Stepm, step in month: minimum step interpolation*/    *** empty log message ***
   
 int m,nb;    Revision 1.104  2005/09/30 16:11:43  lievre
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): sump fixed, loop imx fixed, and simplifications.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): If the status is missing at the last wave but we know
 double **pmmij, ***probs, ***mobaverage;    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 double *weight;    contributions to the likelihood is 1 - Prob of dying from last
 int **s; /* Status */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double *agedc, **covar, idx;    the healthy state at last known wave). Version is 0.98
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.103  2005/09/30 15:54:49  lievre
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): sump fixed, loop imx fixed, and simplifications.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.102  2004/09/15 17:31:30  brouard
 /**************** split *************************/    Add the possibility to read data file including tab characters.
 static  int split( char *path, char *dirc, char *name )  
 {    Revision 1.101  2004/09/15 10:38:38  brouard
    char *s;                             /* pointer */    Fix on curr_time
    int  l1, l2;                         /* length counters */  
     Revision 1.100  2004/07/12 18:29:06  brouard
    l1 = strlen( path );                 /* length of path */    Add version for Mac OS X. Just define UNIX in Makefile
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.99  2004/06/05 08:57:40  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    *** empty log message ***
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
       if ( getwd( dirc ) == NULL ) {    directly from the data i.e. without the need of knowing the health
 #else    state at each age, but using a Gompertz model: log u =a + b*age .
       extern char       *getcwd( );    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    cross-longitudinal survey is different from the mortality estimated
 #endif    from other sources like vital statistic data.
          return( GLOCK_ERROR_GETCWD );  
       }    The same imach parameter file can be used but the option for mle should be -3.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Agnès, who wrote this part of the code, tried to keep most of the
       s++;                              /* after this, the filename */    former routines in order to include the new code within the former code.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    The output is very simple: only an estimate of the intercept and of
       strcpy( name, s );                /* save file name */    the slope with 95% confident intervals.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Current limitations:
    }    A) Even if you enter covariates, i.e. with the
    l1 = strlen( dirc );                 /* length of directory */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    B) There is no computation of Life Expectancy nor Life Table.
    return( 0 );                         /* we're done */  
 }    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 /******************************************/  
     Revision 1.96  2003/07/15 15:38:55  brouard
 void replace(char *s, char*t)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   int i;  
   int lg=20;    Revision 1.95  2003/07/08 07:54:34  brouard
   i=0;    * imach.c (Repository):
   lg=strlen(t);    (Repository): Using imachwizard code to output a more meaningful covariance
   for(i=0; i<= lg; i++) {    matrix (cov(a12,c31) instead of numbers.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.94  2003/06/27 13:00:02  brouard
   }    Just cleaning
 }  
     Revision 1.93  2003/06/25 16:33:55  brouard
 int nbocc(char *s, char occ)    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   int i,j=0;    (Module): Version 0.96b
   int lg=20;  
   i=0;    Revision 1.92  2003/06/25 16:30:45  brouard
   lg=strlen(s);    (Module): On windows (cygwin) function asctime_r doesn't
   for(i=0; i<= lg; i++) {    exist so I changed back to asctime which exists.
   if  (s[i] == occ ) j++;  
   }    Revision 1.91  2003/06/25 15:30:29  brouard
   return j;    * imach.c (Repository): Duplicated warning errors corrected.
 }    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 void cutv(char *u,char *v, char*t, char occ)    is stamped in powell.  We created a new html file for the graphs
 {    concerning matrix of covariance. It has extension -cov.htm.
   int i,lg,j,p=0;  
   i=0;    Revision 1.90  2003/06/24 12:34:15  brouard
   for(j=0; j<=strlen(t)-1; j++) {    (Module): Some bugs corrected for windows. Also, when
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
   
   lg=strlen(t);    Revision 1.89  2003/06/24 12:30:52  brouard
   for(j=0; j<p; j++) {    (Module): Some bugs corrected for windows. Also, when
     (u[j] = t[j]);    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
      u[p]='\0';  
     Revision 1.88  2003/06/23 17:54:56  brouard
    for(j=0; j<= lg; j++) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.87  2003/06/18 12:26:01  brouard
 }    Version 0.96
   
 /********************** nrerror ********************/    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 void nrerror(char error_text[])    routine fileappend.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.85  2003/06/17 13:12:43  brouard
   fprintf(stderr,"%s\n",error_text);    * imach.c (Repository): Check when date of death was earlier that
   exit(1);    current date of interview. It may happen when the death was just
 }    prior to the death. In this case, dh was negative and likelihood
 /*********************** vector *******************/    was wrong (infinity). We still send an "Error" but patch by
 double *vector(int nl, int nh)    assuming that the date of death was just one stepm after the
 {    interview.
   double *v;    (Repository): Because some people have very long ID (first column)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    we changed int to long in num[] and we added a new lvector for
   if (!v) nrerror("allocation failure in vector");    memory allocation. But we also truncated to 8 characters (left
   return v-nl+NR_END;    truncation)
 }    (Repository): No more line truncation errors.
   
 /************************ free vector ******************/    Revision 1.84  2003/06/13 21:44:43  brouard
 void free_vector(double*v, int nl, int nh)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   free((FREE_ARG)(v+nl-NR_END));    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.82  2003/06/05 15:57:20  brouard
   if (!v) nrerror("allocation failure in ivector");    Add log in  imach.c and  fullversion number is now printed.
   return v-nl+NR_END;  
 }  */
   /*
 /******************free ivector **************************/     Interpolated Markov Chain
 void free_ivector(int *v, long nl, long nh)  
 {    Short summary of the programme:
   free((FREE_ARG)(v+nl-NR_END));    
 }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 /******************* imatrix *******************************/    first survey ("cross") where individuals from different ages are
 int **imatrix(long nrl, long nrh, long ncl, long nch)    interviewed on their health status or degree of disability (in the
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (if any) in individual health status.  Health expectancies are
   int **m;    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
   /* allocate pointers to rows */    Maximum Likelihood of the parameters involved in the model.  The
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    simplest model is the multinomial logistic model where pij is the
   if (!m) nrerror("allocation failure 1 in matrix()");    probability to be observed in state j at the second wave
   m += NR_END;    conditional to be observed in state i at the first wave. Therefore
   m -= nrl;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
      'age' is age and 'sex' is a covariate. If you want to have a more
      complex model than "constant and age", you should modify the program
   /* allocate rows and set pointers to them */    where the markup *Covariates have to be included here again* invites
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    you to do it.  More covariates you add, slower the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    convergence.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    The advantage of this computer programme, compared to a simple
      multinomial logistic model, is clear when the delay between waves is not
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    identical for each individual. Also, if a individual missed an
      intermediate interview, the information is lost, but taken into
   /* return pointer to array of pointers to rows */    account using an interpolation or extrapolation.  
   return m;  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /****************** free_imatrix *************************/    split into an exact number (nh*stepm) of unobserved intermediate
 void free_imatrix(m,nrl,nrh,ncl,nch)    states. This elementary transition (by month, quarter,
       int **m;    semester or year) is modelled as a multinomial logistic.  The hPx
       long nch,ncl,nrh,nrl;    matrix is simply the matrix product of nh*stepm elementary matrices
      /* free an int matrix allocated by imatrix() */    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Also this programme outputs the covariance matrix of the parameters but also
 }    of the life expectancies. It also computes the period (stable) prevalence. 
     
 /******************* matrix *******************************/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double **matrix(long nrl, long nrh, long ncl, long nch)             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    from the European Union.
   double **m;    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    can be accessed at http://euroreves.ined.fr/imach .
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m -= nrl;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    **********************************************************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*
   m[nrl] += NR_END;    main
   m[nrl] -= ncl;    read parameterfile
     read datafile
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    concatwav
   return m;    freqsummary
 }    if (mle >= 1)
       mlikeli
 /*************************free matrix ************************/    print results files
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if mle==1 
 {       computes hessian
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    read end of parameter file: agemin, agemax, bage, fage, estepm
   free((FREE_ARG)(m+nrl-NR_END));        begin-prev-date,...
 }    open gnuplot file
     open html file
 /******************* ma3x *******************************/    period (stable) prevalence
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)     for age prevalim()
 {    h Pij x
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    variance of p varprob
   double ***m;    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Variance-covariance of DFLE
   if (!m) nrerror("allocation failure 1 in matrix()");    prevalence()
   m += NR_END;     movingaverage()
   m -= nrl;    varevsij() 
     if popbased==1 varevsij(,popbased)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    total life expectancies
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Variance of period (stable) prevalence
   m[nrl] += NR_END;   end
   m[nrl] -= ncl;  */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));   
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <math.h>
   m[nrl][ncl] += NR_END;  #include <stdio.h>
   m[nrl][ncl] -= nll;  #include <stdlib.h>
   for (j=ncl+1; j<=nch; j++)  #include <string.h>
     m[nrl][j]=m[nrl][j-1]+nlay;  #include <unistd.h>
    
   for (i=nrl+1; i<=nrh; i++) {  #include <limits.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #include <sys/types.h>
     for (j=ncl+1; j<=nch; j++)  #include <sys/stat.h>
       m[i][j]=m[i][j-1]+nlay;  #include <errno.h>
   }  extern int errno;
   return m;  
 }  /* #include <sys/time.h> */
   #include <time.h>
 /*************************free ma3x ************************/  #include "timeval.h"
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  /* #include <libintl.h> */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /* #define _(String) gettext (String) */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /***************** f1dim *************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 extern int ncom;  #define FILENAMELENGTH 132
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double f1dim(double x)  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   int j;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   double f;  
   double *xt;  #define NINTERVMAX 8
    #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   xt=vector(1,ncom);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define NCOVMAX 8 /* Maximum number of covariates */
   f=(*nrfunc)(xt);  #define MAXN 20000
   free_vector(xt,1,ncom);  #define YEARM 12. /* Number of months per year */
   return f;  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /*****************brent *************************/  #ifdef UNIX
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   int iter;  #define ODIRSEPARATOR '\\'
   double a,b,d,etemp;  #else
   double fu,fv,fw,fx;  #define DIRSEPARATOR '\\'
   double ftemp;  #define CHARSEPARATOR "\\"
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define ODIRSEPARATOR '/'
   double e=0.0;  #endif
    
   a=(ax < cx ? ax : cx);  /* $Id$ */
   b=(ax > cx ? ax : cx);  /* $State$ */
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
   for (iter=1;iter<=ITMAX;iter++) {  char fullversion[]="$Revision$ $Date$"; 
     xm=0.5*(a+b);  char strstart[80];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     printf(".");fflush(stdout);  int nvar;
 #ifdef DEBUG  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int npar=NPARMAX;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int nlstate=2; /* Number of live states */
 #endif  int ndeath=1; /* Number of dead states */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       *xmin=x;  int popbased=0;
       return fx;  
     }  int *wav; /* Number of waves for this individuual 0 is possible */
     ftemp=fu;  int maxwav; /* Maxim number of waves */
     if (fabs(e) > tol1) {  int jmin, jmax; /* min, max spacing between 2 waves */
       r=(x-w)*(fx-fv);  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
       q=(x-v)*(fx-fw);  int gipmx, gsw; /* Global variables on the number of contributions 
       p=(x-v)*q-(x-w)*r;                     to the likelihood and the sum of weights (done by funcone)*/
       q=2.0*(q-r);  int mle, weightopt;
       if (q > 0.0) p = -p;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       q=fabs(q);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       etemp=e;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       e=d;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  double jmean; /* Mean space between 2 waves */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double **oldm, **newm, **savm; /* Working pointers to matrices */
       else {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         d=p/q;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         u=x+d;  FILE *ficlog, *ficrespow;
         if (u-a < tol2 || b-u < tol2)  int globpr; /* Global variable for printing or not */
           d=SIGN(tol1,xm-x);  double fretone; /* Only one call to likelihood */
       }  long ipmx; /* Number of contributions */
     } else {  double sw; /* Sum of weights */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerespow[FILENAMELENGTH];
     }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  FILE *ficresilk;
     fu=(*f)(u);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     if (fu <= fx) {  FILE *ficresprobmorprev;
       if (u >= x) a=x; else b=x;  FILE *fichtm, *fichtmcov; /* Html File */
       SHFT(v,w,x,u)  FILE *ficreseij;
         SHFT(fv,fw,fx,fu)  char filerese[FILENAMELENGTH];
         } else {  FILE *ficresstdeij;
           if (u < x) a=u; else b=u;  char fileresstde[FILENAMELENGTH];
           if (fu <= fw || w == x) {  FILE *ficrescveij;
             v=w;  char filerescve[FILENAMELENGTH];
             w=u;  FILE  *ficresvij;
             fv=fw;  char fileresv[FILENAMELENGTH];
             fw=fu;  FILE  *ficresvpl;
           } else if (fu <= fv || v == x || v == w) {  char fileresvpl[FILENAMELENGTH];
             v=u;  char title[MAXLINE];
             fv=fu;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
           }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   }  char command[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  int  outcmd=0;
   *xmin=x;  
   return fx;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /****************** mnbrak ***********************/  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char popfile[FILENAMELENGTH];
             double (*func)(double))  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double ulim,u,r,q, dum;  
   double fu;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
   *fa=(*func)(*ax);  extern int gettimeofday();
   *fb=(*func)(*bx);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   if (*fb > *fa) {  long time_value;
     SHFT(dum,*ax,*bx,dum)  extern long time();
       SHFT(dum,*fb,*fa,dum)  char strcurr[80], strfor[80];
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  char *endptr;
   *fc=(*func)(*cx);  long lval;
   while (*fb > *fc) {  double dval;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  #define NR_END 1
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define FREE_ARG char*
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define FTOL 1.0e-10
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  #define NRANSI 
       fu=(*func)(u);  #define ITMAX 200 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  #define TOL 2.0e-4 
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define CGOLD 0.3819660 
           SHFT(*fb,*fc,fu,(*func)(u))  #define ZEPS 1.0e-10 
           }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  #define GOLD 1.618034 
       fu=(*func)(u);  #define GLIMIT 100.0 
     } else {  #define TINY 1.0e-20 
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  static double maxarg1,maxarg2;
     }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     SHFT(*ax,*bx,*cx,u)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       SHFT(*fa,*fb,*fc,fu)    
       }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   
 /*************** linmin ************************/  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 int ncom;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 double *pcom,*xicom;  int agegomp= AGEGOMP;
 double (*nrfunc)(double []);  
    int imx; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int stepm=1;
 {  /* Stepm, step in month: minimum step interpolation*/
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  int estepm;
   double f1dim(double x);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  int m,nb;
   int j;  long *num;
   double xx,xmin,bx,ax;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double fx,fb,fa;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
   ncom=n;  double *ageexmed,*agecens;
   pcom=vector(1,n);  double dateintmean=0;
   xicom=vector(1,n);  
   nrfunc=func;  double *weight;
   for (j=1;j<=n;j++) {  int **s; /* Status */
     pcom[j]=p[j];  double *agedc, **covar, idx;
     xicom[j]=xi[j];  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  double *lsurv, *lpop, *tpop;
   ax=0.0;  
   xx=1.0;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double ftolhess; /* Tolerance for computing hessian */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  /**************** split *************************/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 #endif  {
   for (j=1;j<=n;j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     xi[j] *= xmin;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     p[j] += xi[j];    */ 
   }    char  *ss;                            /* pointer */
   free_vector(xicom,1,n);    int   l1, l2;                         /* length counters */
   free_vector(pcom,1,n);  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*************** powell ************************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    if ( ss == NULL ) {                   /* no directory, so determine current directory */
             double (*func)(double []))      strcpy( name, path );               /* we got the fullname name because no directory */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   void linmin(double p[], double xi[], int n, double *fret,        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
               double (*func)(double []));      /* get current working directory */
   int i,ibig,j;      /*    extern  char* getcwd ( char *buf , int len);*/
   double del,t,*pt,*ptt,*xit;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double fp,fptt;        return( GLOCK_ERROR_GETCWD );
   double *xits;      }
   pt=vector(1,n);      /* got dirc from getcwd*/
   ptt=vector(1,n);      printf(" DIRC = %s \n",dirc);
   xit=vector(1,n);    } else {                              /* strip direcotry from path */
   xits=vector(1,n);      ss++;                               /* after this, the filename */
   *fret=(*func)(p);      l2 = strlen( ss );                  /* length of filename */
   for (j=1;j<=n;j++) pt[j]=p[j];      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (*iter=1;;++(*iter)) {      strcpy( name, ss );         /* save file name */
     fp=(*fret);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     ibig=0;      dirc[l1-l2] = 0;                    /* add zero */
     del=0.0;      printf(" DIRC2 = %s \n",dirc);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    }
     for (i=1;i<=n;i++)    /* We add a separator at the end of dirc if not exists */
       printf(" %d %.12f",i, p[i]);    l1 = strlen( dirc );                  /* length of directory */
     printf("\n");    if( dirc[l1-1] != DIRSEPARATOR ){
     for (i=1;i<=n;i++) {      dirc[l1] =  DIRSEPARATOR;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      dirc[l1+1] = 0; 
       fptt=(*fret);      printf(" DIRC3 = %s \n",dirc);
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);    ss = strrchr( name, '.' );            /* find last / */
 #endif    if (ss >0){
       printf("%d",i);fflush(stdout);      ss++;
       linmin(p,xit,n,fret,func);      strcpy(ext,ss);                     /* save extension */
       if (fabs(fptt-(*fret)) > del) {      l1= strlen( name);
         del=fabs(fptt-(*fret));      l2= strlen(ss)+1;
         ibig=i;      strncpy( finame, name, l1-l2);
       }      finame[l1-l2]= 0;
 #ifdef DEBUG    }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    return( 0 );                          /* we're done */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  
       for(j=1;j<=n;j++)  /******************************************/
         printf(" p=%.12e",p[j]);  
       printf("\n");  void replace_back_to_slash(char *s, char*t)
 #endif  {
     }    int i;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    int lg=0;
 #ifdef DEBUG    i=0;
       int k[2],l;    lg=strlen(t);
       k[0]=1;    for(i=0; i<= lg; i++) {
       k[1]=-1;      (s[i] = t[i]);
       printf("Max: %.12e",(*func)(p));      if (t[i]== '\\') s[i]='/';
       for (j=1;j<=n;j++)    }
         printf(" %.12e",p[j]);  }
       printf("\n");  
       for(l=0;l<=1;l++) {  int nbocc(char *s, char occ)
         for (j=1;j<=n;j++) {  {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int i,j=0;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    int lg=20;
         }    i=0;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    lg=strlen(s);
       }    for(i=0; i<= lg; i++) {
 #endif    if  (s[i] == occ ) j++;
     }
     return j;
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  void cutv(char *u,char *v, char*t, char occ)
       free_vector(pt,1,n);  {
       return;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       gives u="abcedf" and v="ghi2j" */
     for (j=1;j<=n;j++) {    int i,lg,j,p=0;
       ptt[j]=2.0*p[j]-pt[j];    i=0;
       xit[j]=p[j]-pt[j];    for(j=0; j<=strlen(t)-1; j++) {
       pt[j]=p[j];      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }    }
     fptt=(*func)(ptt);  
     if (fptt < fp) {    lg=strlen(t);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    for(j=0; j<p; j++) {
       if (t < 0.0) {      (u[j] = t[j]);
         linmin(p,xit,n,fret,func);    }
         for (j=1;j<=n;j++) {       u[p]='\0';
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];     for(j=0; j<= lg; j++) {
         }      if (j>=(p+1))(v[j-p-1] = t[j]);
 #ifdef DEBUG    }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /********************** nrerror ********************/
         printf("\n");  
 #endif  void nrerror(char error_text[])
       }  {
     }    fprintf(stderr,"ERREUR ...\n");
   }    fprintf(stderr,"%s\n",error_text);
 }    exit(EXIT_FAILURE);
   }
 /**** Prevalence limit ****************/  /*********************** vector *******************/
   double *vector(int nl, int nh)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    double *v;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      matrix by transitions matrix until convergence is reached */    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /************************ free vector ******************/
   double **out, cov[NCOVMAX], **pmij();  void free_vector(double*v, int nl, int nh)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    free((FREE_ARG)(v+nl-NR_END));
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /************************ivector *******************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int *ivector(long nl,long nh)
     }  {
     int *v;
    cov[1]=1.;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return v-nl+NR_END;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /******************free ivector **************************/
      cov[2]=agefin;  void free_ivector(int *v, long nl, long nh)
    {
       for (k=1; k<=cptcovn;k++) {    free((FREE_ARG)(v+nl-NR_END));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  
       }  /************************lvector *******************************/
       for (k=1; k<=cptcovage;k++)  long *lvector(long nl,long nh)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    long *v;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    return v-nl+NR_END;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  }
   
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
     savm=oldm;  {
     oldm=newm;    free((FREE_ARG)(v+nl-NR_END));
     maxmax=0.;  }
     for(j=1;j<=nlstate;j++){  
       min=1.;  /******************* imatrix *******************************/
       max=0.;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       for(i=1; i<=nlstate; i++) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         sumnew=0;  { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    int **m; 
         max=FMAX(max,prlim[i][j]);    
         min=FMIN(min,prlim[i][j]);    /* allocate pointers to rows */ 
       }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       maxmin=max-min;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       maxmax=FMAX(maxmax,maxmin);    m += NR_END; 
     }    m -= nrl; 
     if(maxmax < ftolpl){    
       return prlim;    
     }    /* allocate rows and set pointers to them */ 
   }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 /*************** transition probabilities ***************/    m[nrl] -= ncl; 
     
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 {    
   double s1, s2;    /* return pointer to array of pointers to rows */ 
   /*double t34;*/    return m; 
   int i,j,j1, nc, ii, jj;  } 
   
     for(i=1; i<= nlstate; i++){  /****************** free_imatrix *************************/
     for(j=1; j<i;j++){  void free_imatrix(m,nrl,nrh,ncl,nch)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        int **m;
         /*s2 += param[i][j][nc]*cov[nc];*/        long nch,ncl,nrh,nrl; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       /* free an int matrix allocated by imatrix() */ 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  { 
       }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       ps[i][j]=s2;    free((FREE_ARG) (m+nrl-NR_END)); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /******************* matrix *******************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double **matrix(long nrl, long nrh, long ncl, long nch)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
       ps[i][j]=(s2);  
     }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
     /*ps[3][2]=1;*/    m += NR_END;
     m -= nrl;
   for(i=1; i<= nlstate; i++){  
      s1=0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=1; j<i; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       s1+=exp(ps[i][j]);    m[nrl] += NR_END;
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl] -= ncl;
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=1; j<i; j++)    return m;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     for(j=i+1; j<=nlstate+ndeath; j++)     */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       ps[ii][jj]=0;    free((FREE_ARG)(m+nrl-NR_END));
       ps[ii][ii]=1;  }
     }  
   }  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double ***m;
      printf("%lf ",ps[ii][jj]);  
    }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf("\n ");    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     printf("\n ");printf("%lf ",cov[2]);*/    m -= nrl;
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   goto end;*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     return ps;    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /**************** Product of 2 matrices ******************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    m[nrl][ncl] += NR_END;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    m[nrl][ncl] -= nll;
   /* in, b, out are matrice of pointers which should have been initialized    for (j=ncl+1; j<=nch; j++) 
      before: only the contents of out is modified. The function returns      m[nrl][j]=m[nrl][j-1]+nlay;
      a pointer to pointers identical to out */    
   long i, j, k;    for (i=nrl+1; i<=nrh; i++) {
   for(i=nrl; i<= nrh; i++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for(k=ncolol; k<=ncoloh; k++)      for (j=ncl+1; j<=nch; j++) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        m[i][j]=m[i][j-1]+nlay;
         out[i][k] +=in[i][j]*b[j][k];    }
     return m; 
   return out;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
   }
 /************* Higher Matrix Product ***************/  
   /*************************free ma3x ************************/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      duration (i.e. until    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    free((FREE_ARG)(m+nrl-NR_END));
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  }
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /*************** function subdirf ***********/
      included manually here.  char *subdirf(char fileres[])
   {
      */    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   int i, j, d, h, k;    strcat(tmpout,"/"); /* Add to the right */
   double **out, cov[NCOVMAX];    strcat(tmpout,fileres);
   double **newm;    return tmpout;
   }
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  /*************** function subdirf2 ***********/
     for (j=1;j<=nlstate+ndeath;j++){  char *subdirf2(char fileres[], char *preop)
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    
     }    /* Caution optionfilefiname is hidden */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcpy(tmpout,optionfilefiname);
   for(h=1; h <=nhstepm; h++){    strcat(tmpout,"/");
     for(d=1; d <=hstepm; d++){    strcat(tmpout,preop);
       newm=savm;    strcat(tmpout,fileres);
       /* Covariates have to be included here again */    return tmpout;
       cov[1]=1.;  }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*************** function subdirf3 ***********/
       for (k=1; k<=cptcovage;k++)  char *subdirf3(char fileres[], char *preop, char *preop2)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    strcat(tmpout,preop);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    strcat(tmpout,preop2);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    strcat(tmpout,fileres);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    return tmpout;
       savm=oldm;  }
       oldm=newm;  
     }  /***************** f1dim *************************/
     for(i=1; i<=nlstate+ndeath; i++)  extern int ncom; 
       for(j=1;j<=nlstate+ndeath;j++) {  extern double *pcom,*xicom;
         po[i][j][h]=newm[i][j];  extern double (*nrfunc)(double []); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);   
          */  double f1dim(double x) 
       }  { 
   } /* end h */    int j; 
   return po;    double f;
 }    double *xt; 
    
     xt=vector(1,ncom); 
 /*************** log-likelihood *************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 double func( double *x)    f=(*nrfunc)(xt); 
 {    free_vector(xt,1,ncom); 
   int i, ii, j, k, mi, d, kk;    return f; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  } 
   double **out;  
   double sw; /* Sum of weights */  /*****************brent *************************/
   double lli; /* Individual log likelihood */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   long ipmx;  { 
   /*extern weight */    int iter; 
   /* We are differentiating ll according to initial status */    double a,b,d,etemp;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double fu,fv,fw,fx;
   /*for(i=1;i<imx;i++)    double ftemp;
     printf(" %d\n",s[4][i]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   */    double e=0.0; 
   cov[1]=1.;   
     a=(ax < cx ? ax : cx); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    b=(ax > cx ? ax : cx); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    x=w=v=bx; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    fw=fv=fx=(*f)(x); 
     for(mi=1; mi<= wav[i]-1; mi++){    for (iter=1;iter<=ITMAX;iter++) { 
       for (ii=1;ii<=nlstate+ndeath;ii++)      xm=0.5*(a+b); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for(d=0; d<dh[mi][i]; d++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         newm=savm;      printf(".");fflush(stdout);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      fprintf(ficlog,".");fflush(ficlog);
         for (kk=1; kk<=cptcovage;kk++) {  #ifdef DEBUG
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
              /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         savm=oldm;        *xmin=x; 
         oldm=newm;        return fx; 
              } 
              ftemp=fu;
       } /* end mult */      if (fabs(e) > tol1) { 
              r=(x-w)*(fx-fv); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        q=(x-v)*(fx-fw); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        p=(x-v)*q-(x-w)*r; 
       ipmx +=1;        q=2.0*(q-r); 
       sw += weight[i];        if (q > 0.0) p = -p; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        q=fabs(q); 
     } /* end of wave */        etemp=e; 
   } /* end of individual */        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        else { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          d=p/q; 
   return -l;          u=x+d; 
 }          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
         } 
 /*********** Maximum Likelihood Estimation ***************/      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      } 
 {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   int i,j, iter;      fu=(*f)(u); 
   double **xi,*delti;      if (fu <= fx) { 
   double fret;        if (u >= x) a=x; else b=x; 
   xi=matrix(1,npar,1,npar);        SHFT(v,w,x,u) 
   for (i=1;i<=npar;i++)          SHFT(fv,fw,fx,fu) 
     for (j=1;j<=npar;j++)          } else { 
       xi[i][j]=(i==j ? 1.0 : 0.0);            if (u < x) a=u; else b=u; 
   printf("Powell\n");            if (fu <= fw || w == x) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);              v=w; 
               w=u; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));              fv=fw; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 }              v=u; 
               fv=fu; 
 /**** Computes Hessian and covariance matrix ***/            } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          } 
 {    } 
   double  **a,**y,*x,pd;    nrerror("Too many iterations in brent"); 
   double **hess;    *xmin=x; 
   int i, j,jk;    return fx; 
   int *indx;  } 
   
   double hessii(double p[], double delta, int theta, double delti[]);  /****************** mnbrak ***********************/
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   void ludcmp(double **a, int npar, int *indx, double *d) ;              double (*func)(double)) 
   { 
   hess=matrix(1,npar,1,npar);    double ulim,u,r,q, dum;
     double fu; 
   printf("\nCalculation of the hessian matrix. Wait...\n");   
   for (i=1;i<=npar;i++){    *fa=(*func)(*ax); 
     printf("%d",i);fflush(stdout);    *fb=(*func)(*bx); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    if (*fb > *fa) { 
     /*printf(" %f ",p[i]);*/      SHFT(dum,*ax,*bx,dum) 
     /*printf(" %lf ",hess[i][i]);*/        SHFT(dum,*fb,*fa,dum) 
   }        } 
      *cx=(*bx)+GOLD*(*bx-*ax); 
   for (i=1;i<=npar;i++) {    *fc=(*func)(*cx); 
     for (j=1;j<=npar;j++)  {    while (*fb > *fc) { 
       if (j>i) {      r=(*bx-*ax)*(*fb-*fc); 
         printf(".%d%d",i,j);fflush(stdout);      q=(*bx-*cx)*(*fb-*fa); 
         hess[i][j]=hessij(p,delti,i,j);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         hess[j][i]=hess[i][j];            (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         /*printf(" %lf ",hess[i][j]);*/      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       }      if ((*bx-u)*(u-*cx) > 0.0) { 
     }        fu=(*func)(u); 
   }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   printf("\n");        fu=(*func)(u); 
         if (fu < *fc) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
              SHFT(*fb,*fc,fu,(*func)(u)) 
   a=matrix(1,npar,1,npar);            } 
   y=matrix(1,npar,1,npar);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   x=vector(1,npar);        u=ulim; 
   indx=ivector(1,npar);        fu=(*func)(u); 
   for (i=1;i<=npar;i++)      } else { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        u=(*cx)+GOLD*(*cx-*bx); 
   ludcmp(a,npar,indx,&pd);        fu=(*func)(u); 
       } 
   for (j=1;j<=npar;j++) {      SHFT(*ax,*bx,*cx,u) 
     for (i=1;i<=npar;i++) x[i]=0;        SHFT(*fa,*fb,*fc,fu) 
     x[j]=1;        } 
     lubksb(a,npar,indx,x);  } 
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /*************** linmin ************************/
     }  
   }  int ncom; 
   double *pcom,*xicom;
   printf("\n#Hessian matrix#\n");  double (*nrfunc)(double []); 
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       printf("%.3e ",hess[i][j]);  { 
     }    double brent(double ax, double bx, double cx, 
     printf("\n");                 double (*f)(double), double tol, double *xmin); 
   }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /* Recompute Inverse */                double *fc, double (*func)(double)); 
   for (i=1;i<=npar;i++)    int j; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double xx,xmin,bx,ax; 
   ludcmp(a,npar,indx,&pd);    double fx,fb,fa;
    
   /*  printf("\n#Hessian matrix recomputed#\n");    ncom=n; 
     pcom=vector(1,n); 
   for (j=1;j<=npar;j++) {    xicom=vector(1,n); 
     for (i=1;i<=npar;i++) x[i]=0;    nrfunc=func; 
     x[j]=1;    for (j=1;j<=n;j++) { 
     lubksb(a,npar,indx,x);      pcom[j]=p[j]; 
     for (i=1;i<=npar;i++){      xicom[j]=xi[j]; 
       y[i][j]=x[i];    } 
       printf("%.3e ",y[i][j]);    ax=0.0; 
     }    xx=1.0; 
     printf("\n");    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   */  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   free_matrix(a,1,npar,1,npar);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   free_matrix(y,1,npar,1,npar);  #endif
   free_vector(x,1,npar);    for (j=1;j<=n;j++) { 
   free_ivector(indx,1,npar);      xi[j] *= xmin; 
   free_matrix(hess,1,npar,1,npar);      p[j] += xi[j]; 
     } 
     free_vector(xicom,1,n); 
 }    free_vector(pcom,1,n); 
   } 
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  char *asc_diff_time(long time_sec, char ascdiff[])
 {  {
   int i;    long sec_left, days, hours, minutes;
   int l=1, lmax=20;    days = (time_sec) / (60*60*24);
   double k1,k2;    sec_left = (time_sec) % (60*60*24);
   double p2[NPARMAX+1];    hours = (sec_left) / (60*60) ;
   double res;    sec_left = (sec_left) %(60*60);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    minutes = (sec_left) /60;
   double fx;    sec_left = (sec_left) % (60);
   int k=0,kmax=10;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double l1;    return ascdiff;
   }
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*************** powell ************************/
   for(l=0 ; l <=lmax; l++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     l1=pow(10,l);              double (*func)(double [])) 
     delts=delt;  { 
     for(k=1 ; k <kmax; k=k+1){    void linmin(double p[], double xi[], int n, double *fret, 
       delt = delta*(l1*k);                double (*func)(double [])); 
       p2[theta]=x[theta] +delt;    int i,ibig,j; 
       k1=func(p2)-fx;    double del,t,*pt,*ptt,*xit;
       p2[theta]=x[theta]-delt;    double fp,fptt;
       k2=func(p2)-fx;    double *xits;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    int niterf, itmp;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
          pt=vector(1,n); 
 #ifdef DEBUG    ptt=vector(1,n); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    xit=vector(1,n); 
 #endif    xits=vector(1,n); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    *fret=(*func)(p); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    for (j=1;j<=n;j++) pt[j]=p[j]; 
         k=kmax;    for (*iter=1;;++(*iter)) { 
       }      fp=(*fret); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      ibig=0; 
         k=kmax; l=lmax*10.;      del=0.0; 
       }      last_time=curr_time;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      (void) gettimeofday(&curr_time,&tzp);
         delts=delt;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   }     for (i=1;i<=n;i++) {
   delti[theta]=delts;        printf(" %d %.12f",i, p[i]);
   return res;        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(ficrespow," %.12lf", p[i]);
 }      }
       printf("\n");
 double hessij( double x[], double delti[], int thetai,int thetaj)      fprintf(ficlog,"\n");
 {      fprintf(ficrespow,"\n");fflush(ficrespow);
   int i;      if(*iter <=3){
   int l=1, l1, lmax=20;        tm = *localtime(&curr_time.tv_sec);
   double k1,k2,k3,k4,res,fx;        strcpy(strcurr,asctime(&tm));
   double p2[NPARMAX+1];  /*       asctime_r(&tm,strcurr); */
   int k;        forecast_time=curr_time; 
         itmp = strlen(strcurr);
   fx=func(x);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for (k=1; k<=2; k++) {          strcurr[itmp-1]='\0';
     for (i=1;i<=npar;i++) p2[i]=x[i];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(niterf=10;niterf<=30;niterf+=10){
     k1=func(p2)-fx;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*      asctime_r(&tmf,strfor); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          strcpy(strfor,asctime(&tmf));
     k2=func(p2)-fx;          itmp = strlen(strfor);
            if(strfor[itmp-1]=='\n')
     p2[thetai]=x[thetai]-delti[thetai]/k;          strfor[itmp-1]='\0';
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     k3=func(p2)-fx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for (i=1;i<=n;i++) { 
     k4=func(p2)-fx;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        fptt=(*fret); 
 #ifdef DEBUG  #ifdef DEBUG
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        printf("fret=%lf \n",*fret);
 #endif        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
   return res;        printf("%d",i);fflush(stdout);
 }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
 /************** Inverse of matrix **************/        if (fabs(fptt-(*fret)) > del) { 
 void ludcmp(double **a, int n, int *indx, double *d)          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   int i,imax,j,k;        } 
   double big,dum,sum,temp;  #ifdef DEBUG
   double *vv;        printf("%d %.12e",i,(*fret));
          fprintf(ficlog,"%d %.12e",i,(*fret));
   vv=vector(1,n);        for (j=1;j<=n;j++) {
   *d=1.0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (i=1;i<=n;i++) {          printf(" x(%d)=%.12e",j,xit[j]);
     big=0.0;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(j=1;j<=n;j++) {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          printf(" p=%.12e",p[j]);
     vv[i]=1.0/big;          fprintf(ficlog," p=%.12e",p[j]);
   }        }
   for (j=1;j<=n;j++) {        printf("\n");
     for (i=1;i<j;i++) {        fprintf(ficlog,"\n");
       sum=a[i][j];  #endif
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      } 
       a[i][j]=sum;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     }  #ifdef DEBUG
     big=0.0;        int k[2],l;
     for (i=j;i<=n;i++) {        k[0]=1;
       sum=a[i][j];        k[1]=-1;
       for (k=1;k<j;k++)        printf("Max: %.12e",(*func)(p));
         sum -= a[i][k]*a[k][j];        fprintf(ficlog,"Max: %.12e",(*func)(p));
       a[i][j]=sum;        for (j=1;j<=n;j++) {
       if ( (dum=vv[i]*fabs(sum)) >= big) {          printf(" %.12e",p[j]);
         big=dum;          fprintf(ficlog," %.12e",p[j]);
         imax=i;        }
       }        printf("\n");
     }        fprintf(ficlog,"\n");
     if (j != imax) {        for(l=0;l<=1;l++) {
       for (k=1;k<=n;k++) {          for (j=1;j<=n;j++) {
         dum=a[imax][k];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         a[imax][k]=a[j][k];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         a[j][k]=dum;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }          }
       *d = -(*d);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       vv[imax]=vv[j];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
     indx[j]=imax;  #endif
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  
       dum=1.0/(a[j][j]);        free_vector(xit,1,n); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
   }        free_vector(pt,1,n); 
   free_vector(vv,1,n);  /* Doesn't work */        return; 
 ;      } 
 }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 void lubksb(double **a, int n, int *indx, double b[])        ptt[j]=2.0*p[j]-pt[j]; 
 {        xit[j]=p[j]-pt[j]; 
   int i,ii=0,ip,j;        pt[j]=p[j]; 
   double sum;      } 
        fptt=(*func)(ptt); 
   for (i=1;i<=n;i++) {      if (fptt < fp) { 
     ip=indx[i];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     sum=b[ip];        if (t < 0.0) { 
     b[ip]=b[i];          linmin(p,xit,n,fret,func); 
     if (ii)          for (j=1;j<=n;j++) { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            xi[j][ibig]=xi[j][n]; 
     else if (sum) ii=i;            xi[j][n]=xit[j]; 
     b[i]=sum;          }
   }  #ifdef DEBUG
   for (i=n;i>=1;i--) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     sum=b[i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          for(j=1;j<=n;j++){
     b[i]=sum/a[i][i];            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
 }          }
           printf("\n");
 /************ Frequencies ********************/          fprintf(ficlog,"\n");
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)  #endif
 {  /* Some frequencies */        }
        } 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    } 
   double ***freq; /* Frequencies */  } 
   double *pp;  
   double pos;  /**** Prevalence limit (stable or period prevalence)  ****************/
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   pp=vector(1,nlstate);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
  probs= ma3x(1,130 ,1,8, 1,8);       matrix by transitions matrix until convergence is reached */
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);    int i, ii,j,k;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double min, max, maxmin, maxmax,sumnew=0.;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double **matprod2();
     exit(0);    double **out, cov[NCOVMAX], **pmij();
   }    double **newm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double agefin, delaymax=50 ; /* Max number of years to converge */
   j1=0;  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   j=cptcoveff;      for (j=1;j<=nlstate+ndeath;j++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   for(k1=1; k1<=j;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){     cov[1]=1.;
        j1++;   
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          scanf("%d", i);*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         for (i=-1; i<=nlstate+ndeath; i++)        newm=savm;
          for (jk=-1; jk<=nlstate+ndeath; jk++)        /* Covariates have to be included here again */
            for(m=agemin; m <= agemax+3; m++)       cov[2]=agefin;
              freq[i][jk][m]=0;    
                for (k=1; k<=cptcovn;k++) {
        for (i=1; i<=imx; i++) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          bool=1;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          if  (cptcovn>0) {        }
            for (z1=1; z1<=cptcoveff; z1++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for (k=1; k<=cptcovprod;k++)
                bool=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          }  
           if (bool==1) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
            for(m=fprev1; m<=lprev1; m++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
              if(agev[m][i]==0) agev[m][i]=agemax+1;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
              if(agev[m][i]==1) agev[m][i]=agemax+2;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      savm=oldm;
            }      oldm=newm;
          }      maxmax=0.;
        }      for(j=1;j<=nlstate;j++){
         if  (cptcovn>0) {        min=1.;
          fprintf(ficresp, "\n#********** Variable ");        max=0.;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=1; i<=nlstate; i++) {
        fprintf(ficresp, "**********\n#");          sumnew=0;
         }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
        for(i=1; i<=nlstate;i++)          prlim[i][j]= newm[i][j]/(1-sumnew);
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          max=FMAX(max,prlim[i][j]);
        fprintf(ficresp, "\n");          min=FMIN(min,prlim[i][j]);
                }
   for(i=(int)agemin; i <= (int)agemax+3; i++){        maxmin=max-min;
     if(i==(int)agemax+3)        maxmax=FMAX(maxmax,maxmin);
       printf("Total");      }
     else      if(maxmax < ftolpl){
       printf("Age %d", i);        return prlim;
     for(jk=1; jk <=nlstate ; jk++){      }
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }
         pp[jk] += freq[jk][m][i];  }
     }  
     for(jk=1; jk <=nlstate ; jk++){  /*************** transition probabilities ***************/ 
       for(m=-1, pos=0; m <=0 ; m++)  
         pos += freq[jk][m][i];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       if(pp[jk]>=1.e-10)  {
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double s1, s2;
       else    /*double t34;*/
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int i,j,j1, nc, ii, jj;
     }  
       for(i=1; i<= nlstate; i++){
      for(jk=1; jk <=nlstate ; jk++){        for(j=1; j<i;j++){
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         pp[jk] += freq[jk][m][i];            /*s2 += param[i][j][nc]*cov[nc];*/
      }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     for(jk=1,pos=0; jk <=nlstate ; jk++)          }
       pos += pp[jk];          ps[i][j]=s2;
     for(jk=1; jk <=nlstate ; jk++){  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       if(pos>=1.e-5)        }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(j=i+1; j<=nlstate+ndeath;j++){
       else          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       if( i <= (int) agemax){  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         if(pos>=1.e-5){          }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          ps[i][j]=s2;
           probs[i][jk][j1]= pp[jk]/pos;        }
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      }
         }      /*ps[3][2]=1;*/
       else      
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      for(i=1; i<= nlstate; i++){
       }        s1=0;
     }        for(j=1; j<i; j++)
     for(jk=-1; jk <=nlstate+ndeath; jk++)          s1+=exp(ps[i][j]);
       for(m=-1; m <=nlstate+ndeath; m++)        for(j=i+1; j<=nlstate+ndeath; j++)
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          s1+=exp(ps[i][j]);
     if(i <= (int) agemax)        ps[i][i]=1./(s1+1.);
       fprintf(ficresp,"\n");        for(j=1; j<i; j++)
     printf("\n");          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
  }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
        } /* end i */
   fclose(ficresp);      
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   free_vector(pp,1,nlstate);        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
 }  /* End of Freq */          ps[ii][ii]=1;
         }
 /************ Prevalence ********************/      }
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)      
 {  /* Some frequencies */  
    /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double ***freq; /* Frequencies */  /*         printf("ddd %lf ",ps[ii][jj]); */
   double *pp;  /*       } */
   double pos;  /*       printf("\n "); */
   /*        } */
   pp=vector(1,nlstate);  /*        printf("\n ");printf("%lf ",cov[2]); */
   probs= ma3x(1,130 ,1,8, 1,8);         /*
          for(i=1; i<= npar; i++) printf("%f ",x[i]);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        goto end;*/
   j1=0;      return ps;
    }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /**************** Product of 2 matrices ******************/
    
  for(k1=1; k1<=j;k1++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for(i1=1; i1<=ncodemax[k1];i1++){  {
       j1++;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (i=-1; i<=nlstate+ndeath; i++)      /* in, b, out are matrice of pointers which should have been initialized 
         for (jk=-1; jk<=nlstate+ndeath; jk++)         before: only the contents of out is modified. The function returns
           for(m=agemin; m <= agemax+3; m++)       a pointer to pointers identical to out */
           freq[i][jk][m]=0;    long i, j, k;
          for(i=nrl; i<= nrh; i++)
       for (i=1; i<=imx; i++) {      for(k=ncolol; k<=ncoloh; k++)
         bool=1;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         if  (cptcovn>0) {          out[i][k] +=in[i][j]*b[j][k];
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    return out;
               bool=0;  }
               }  
         if (bool==1) {  
           for(m=fprev1; m<=lprev1; m++){  /************* Higher Matrix Product ***************/
             if(agev[m][i]==0) agev[m][i]=agemax+1;  
             if(agev[m][i]==1) agev[m][i]=agemax+2;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  {
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* Computes the transition matrix starting at age 'age' over 
           }       'nhstepm*hstepm*stepm' months (i.e. until
         }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       }       nhstepm*hstepm matrices. 
        for(i=(int)agemin; i <= (int)agemax+3; i++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         for(jk=1; jk <=nlstate ; jk++){       (typically every 2 years instead of every month which is too big 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       for the memory).
             pp[jk] += freq[jk][m][i];       Model is determined by parameters x and covariates have to be 
         }       included manually here. 
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)       */
             pos += freq[jk][m][i];  
         }    int i, j, d, h, k;
            double **out, cov[NCOVMAX];
          for(jk=1; jk <=nlstate ; jk++){    double **newm;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];    /* Hstepm could be zero and should return the unit matrix */
          }    for (i=1;i<=nlstate+ndeath;i++)
                for (j=1;j<=nlstate+ndeath;j++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
          for(jk=1; jk <=nlstate ; jk++){                }
            if( i <= (int) agemax){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              if(pos>=1.e-5){    for(h=1; h <=nhstepm; h++){
                probs[i][jk][j1]= pp[jk]/pos;      for(d=1; d <=hstepm; d++){
              }        newm=savm;
            }        /* Covariates have to be included here again */
          }        cov[1]=1.;
                  cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 }  /* End of Freq */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 /************* Waves Concatenation ***************/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        savm=oldm;
 {        oldm=newm;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      }
      Death is a valid wave (if date is known).      for(i=1; i<=nlstate+ndeath; i++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for(j=1;j<=nlstate+ndeath;j++) {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          po[i][j][h]=newm[i][j];
      and mw[mi+1][i]. dh depends on stepm.          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
      */        }
       /*printf("h=%d ",h);*/
   int i, mi, m;    } /* end h */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /*     printf("\n H=%d \n",h); */
      double sum=0., jmean=0.;*/    return po;
   }
   int j, k=0,jk, ju, jl;  
   double sum=0.;  
   jmin=1e+5;  /*************** log-likelihood *************/
   jmax=-1;  double func( double *x)
   jmean=0.;  {
   for(i=1; i<=imx; i++){    int i, ii, j, k, mi, d, kk;
     mi=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     m=firstpass;    double **out;
     while(s[m][i] <= nlstate){    double sw; /* Sum of weights */
       if(s[m][i]>=1)    double lli; /* Individual log likelihood */
         mw[++mi][i]=m;    int s1, s2;
       if(m >=lastpass)    double bbh, survp;
         break;    long ipmx;
       else    /*extern weight */
         m++;    /* We are differentiating ll according to initial status */
     }/* end while */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     if (s[m][i] > nlstate){    /*for(i=1;i<imx;i++) 
       mi++;     /* Death is another wave */      printf(" %d\n",s[4][i]);
       /* if(mi==0)  never been interviewed correctly before death */    */
          /* Only death is a correct wave */    cov[1]=1.;
       mw[mi][i]=m;  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     wav[i]=mi;    if(mle==1){
     if(mi==0)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=imx; i++){            for (j=1;j<=nlstate+ndeath;j++){
     for(mi=1; mi<wav[i];mi++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (stepm <=0)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         dh[mi][i]=1;            }
       else{          for(d=0; d<dh[mi][i]; d++){
         if (s[mw[mi+1][i]][i] > nlstate) {            newm=savm;
           if (agedc[i] < 2*AGESUP) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            for (kk=1; kk<=cptcovage;kk++) {
           if(j==0) j=1;  /* Survives at least one month after exam */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=k+1;            }
           if (j >= jmax) jmax=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j <= jmin) jmin=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;            savm=oldm;
           /* if (j<10) printf("j=%d num=%d ",j,i); */            oldm=newm;
           }          } /* end mult */
         }        
         else{          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          /* But now since version 0.9 we anticipate for bias at large stepm.
           k=k+1;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           if (j >= jmax) jmax=j;           * (in months) between two waves is not a multiple of stepm, we rounded to 
           else if (j <= jmin)jmin=j;           * the nearest (and in case of equal distance, to the lowest) interval but now
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           sum=sum+j;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
         jk= j/stepm;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         jl= j -jk*stepm;           * -stepm/2 to stepm/2 .
         ju= j -(jk+1)*stepm;           * For stepm=1 the results are the same as for previous versions of Imach.
         if(jl <= -ju)           * For stepm > 1 the results are less biased than in previous versions. 
           dh[mi][i]=jk;           */
         else          s1=s[mw[mi][i]][i];
           dh[mi][i]=jk+1;          s2=s[mw[mi+1][i]][i];
         if(dh[mi][i]==0)          bbh=(double)bh[mi][i]/(double)stepm; 
           dh[mi][i]=1; /* At least one step */          /* bias bh is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
     }           */
   }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   jmean=sum/k;          if( s2 > nlstate){ 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            /* i.e. if s2 is a death state and if the date of death is known 
  }               then the contribution to the likelihood is the probability to 
 /*********** Tricode ****************************/               die between last step unit time and current  step unit time, 
 void tricode(int *Tvar, int **nbcode, int imx)               which is also equal to probability to die before dh 
 {               minus probability to die before dh-stepm . 
   int Ndum[20],ij=1, k, j, i;               In version up to 0.92 likelihood was computed
   int cptcode=0;          as if date of death was unknown. Death was treated as any other
   cptcoveff=0;          health state: the date of the interview describes the actual state
            and not the date of a change in health state. The former idea was
   for (k=0; k<19; k++) Ndum[k]=0;          to consider that at each interview the state was recorded
   for (k=1; k<=7; k++) ncodemax[k]=0;          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          the contribution of an exact death to the likelihood. This new
     for (i=1; i<=imx; i++) {          contribution is smaller and very dependent of the step unit
       ij=(int)(covar[Tvar[j]][i]);          stepm. It is no more the probability to die between last interview
       Ndum[ij]++;          and month of death but the probability to survive from last
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          interview up to one month before death multiplied by the
       if (ij > cptcode) cptcode=ij;          probability to die within a month. Thanks to Chris
     }          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
     for (i=0; i<=cptcode; i++) {          which slows down the processing. The difference can be up to 10%
       if(Ndum[i]!=0) ncodemax[j]++;          lower mortality.
     }            */
     ij=1;            lli=log(out[s1][s2] - savm[s1][s2]);
   
   
     for (i=1; i<=ncodemax[j]; i++) {          } else if  (s2==-2) {
       for (k=0; k<=19; k++) {            for (j=1,survp=0. ; j<=nlstate; j++) 
         if (Ndum[k] != 0) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           nbcode[Tvar[j]][ij]=k;            /*survp += out[s1][j]; */
           ij++;            lli= log(survp);
         }          }
         if (ij > ncodemax[j]) break;          
       }            else if  (s2==-4) { 
     }            for (j=3,survp=0. ; j<=nlstate; j++)  
   }                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
  for (k=0; k<19; k++) Ndum[k]=0;          } 
   
  for (i=1; i<=ncovmodel-2; i++) {          else if  (s2==-5) { 
       ij=Tvar[i];            for (j=1,survp=0. ; j<=2; j++)  
       Ndum[ij]++;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     }            lli= log(survp); 
           } 
  ij=1;          
  for (i=1; i<=10; i++) {          else{
    if((Ndum[i]!=0) && (i<=ncov)){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      Tvaraff[ij]=i;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      ij++;          } 
    }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
  }          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     cptcoveff=ij-1;          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Health Expectancies ****************/        } /* end of wave */
       } /* end of individual */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    }  else if(mle==2){
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Health expectancies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, j, nhstepm, hstepm, h;        for(mi=1; mi<= wav[i]-1; mi++){
   double age, agelim,hf;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***p3mat;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Health expectancies\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Age");            }
   for(i=1; i<=nlstate;i++)          for(d=0; d<=dh[mi][i]; d++){
     for(j=1; j<=nlstate;j++)            newm=savm;
       fprintf(ficreseij," %1d-%1d",i,j);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficreseij,"\n");            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   hstepm=1*YEARM; /*  Every j years of age (in month) */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   agelim=AGESUP;            savm=oldm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            oldm=newm;
     /* nhstepm age range expressed in number of stepm */          } /* end mult */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);        
     /* Typically if 20 years = 20*12/6=40 stepm */          s1=s[mw[mi][i]][i];
     if (stepm >= YEARM) hstepm=1;          s2=s[mw[mi+1][i]][i];
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          bbh=(double)bh[mi][i]/(double)stepm; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          ipmx +=1;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          sw += weight[i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
     for(i=1; i<=nlstate;i++)    }  else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1; j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           eij[i][j][(int)age] +=p3mat[i][j][h];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
     hf=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hf=stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"%.0f",age );            }
     for(i=1; i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<=nlstate;j++){            newm=savm;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficreseij,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************ Variance ******************/            oldm=newm;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          } /* end mult */
 {        
   /* Variance of health expectancies */          s1=s[mw[mi][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          s2=s[mw[mi+1][i]][i];
   double **newm;          bbh=(double)bh[mi][i]/(double)stepm; 
   double **dnewm,**doldm;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i, j, nhstepm, hstepm, h;          ipmx +=1;
   int k, cptcode;          sw += weight[i];
   double *xp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **gp, **gm;        } /* end of wave */
   double ***gradg, ***trgradg;      } /* end of individual */
   double ***p3mat;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double age,agelim;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int theta;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvij,"# Age");            for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            }
   fprintf(ficresvij,"\n");          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   xp=vector(1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dnewm=matrix(1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   doldm=matrix(1,nlstate,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   hstepm=1*YEARM; /* Every year of age */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   agelim = AGESUP;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            savm=oldm;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            oldm=newm;
     if (stepm >= YEARM) hstepm=1;          } /* end mult */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s1=s[mw[mi][i]][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          s2=s[mw[mi+1][i]][i];
     gp=matrix(0,nhstepm,1,nlstate);          if( s2 > nlstate){ 
     gm=matrix(0,nhstepm,1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
     for(theta=1; theta <=npar; theta++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          ipmx +=1;
       }          sw += weight[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
       if (popbased==1) {      } /* end of individual */
         for(i=1; i<=nlstate;i++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           prlim[i][i]=probs[(int)age][i][ij];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(h=0; h<=nhstepm; h++){            for (j=1;j<=nlstate+ndeath;j++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
       for(i=1; i<=npar; i++) /* Computes gradient */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (kk=1; kk<=cptcovage;kk++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
           
       if (popbased==1) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           prlim[i][i]=probs[(int)age][i][ij];            savm=oldm;
       }            oldm=newm;
           } /* end mult */
       for(j=1; j<= nlstate; j++){        
         for(h=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
       }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<= nlstate; j++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(h=0; h<=nhstepm; h++){        } /* end of wave */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      } /* end of individual */
         }    } /* End of if */
     } /* End theta */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
     for(h=0; h<=nhstepm; h++)  }
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)  /*************** log-likelihood *************/
           trgradg[h][j][theta]=gradg[h][theta][j];  double funcone( double *x)
   {
     for(i=1;i<=nlstate;i++)    /* Same as likeli but slower because of a lot of printf and if */
       for(j=1;j<=nlstate;j++)    int i, ii, j, k, mi, d, kk;
         vareij[i][j][(int)age] =0.;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for(h=0;h<=nhstepm;h++){    double **out;
       for(k=0;k<=nhstepm;k++){    double lli; /* Individual log likelihood */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double llt;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int s1, s2;
         for(i=1;i<=nlstate;i++)    double bbh, survp;
           for(j=1;j<=nlstate;j++)    /*extern weight */
             vareij[i][j][(int)age] += doldm[i][j];    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
     h=1;      printf(" %d\n",s[4][i]);
     if (stepm >= YEARM) h=stepm/YEARM;    */
     fprintf(ficresvij,"%.0f ",age );    cov[1]=1.;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresvij,"\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_matrix(gp,0,nhstepm,1,nlstate);      for(mi=1; mi<= wav[i]-1; mi++){
     free_matrix(gm,0,nhstepm,1,nlstate);        for (ii=1;ii<=nlstate+ndeath;ii++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for (j=1;j<=nlstate+ndeath;j++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   } /* End age */          }
          for(d=0; d<dh[mi][i]; d++){
   free_vector(xp,1,npar);          newm=savm;
   free_matrix(doldm,1,nlstate,1,npar);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(dnewm,1,nlstate,1,nlstate);          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Variance of prevlim ******************/                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          savm=oldm;
 {          oldm=newm;
   /* Variance of prevalence limit */        } /* end mult */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   double **newm;        s1=s[mw[mi][i]][i];
   double **dnewm,**doldm;        s2=s[mw[mi+1][i]][i];
   int i, j, nhstepm, hstepm;        bbh=(double)bh[mi][i]/(double)stepm; 
   int k, cptcode;        /* bias is positive if real duration
   double *xp;         * is higher than the multiple of stepm and negative otherwise.
   double *gp, *gm;         */
   double **gradg, **trgradg;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double age,agelim;          lli=log(out[s1][s2] - savm[s1][s2]);
   int theta;        } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficresvpl,"# Age");          lli= log(survp);
   for(i=1; i<=nlstate;i++)        }else if (mle==1){
       fprintf(ficresvpl," %1d-%1d",i,i);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficresvpl,"\n");        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   xp=vector(1,npar);        } else if(mle==3){  /* exponential inter-extrapolation */
   dnewm=matrix(1,nlstate,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   doldm=matrix(1,nlstate,1,nlstate);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
            lli=log(out[s1][s2]); /* Original formula */
   hstepm=1*YEARM; /* Every year of age */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          lli=log(out[s1][s2]); /* Original formula */
   agelim = AGESUP;        } /* End of if */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        ipmx +=1;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        sw += weight[i];
     if (stepm >= YEARM) hstepm=1;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     gradg=matrix(1,npar,1,nlstate);        if(globpr){
     gp=vector(1,nlstate);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     gm=vector(1,nlstate);   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for(theta=1; theta <=npar; theta++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(i=1; i<=npar; i++){ /* Computes gradient */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(i=1;i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
         gp[i] = prlim[i][i];        }
          } /* end of wave */
       for(i=1; i<=npar; i++) /* Computes gradient */    } /* end of individual */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=1;i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         gm[i] = prlim[i][i];    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
       for(i=1;i<=nlstate;i++)      gsw=sw;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }
     } /* End theta */    return -l;
   }
     trgradg =matrix(1,nlstate,1,npar);  
   
     for(j=1; j<=nlstate;j++)  /*************** function likelione ***********/
       for(theta=1; theta <=npar; theta++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         trgradg[j][theta]=gradg[theta][j];  {
     /* This routine should help understanding what is done with 
     for(i=1;i<=nlstate;i++)       the selection of individuals/waves and
       varpl[i][(int)age] =0.;       to check the exact contribution to the likelihood.
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);       Plotting could be done.
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);     */
     for(i=1;i<=nlstate;i++)    int k;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
     if(*globpri !=0){ /* Just counts and sums, no printings */
     fprintf(ficresvpl,"%.0f ",age );      strcpy(fileresilk,"ilk"); 
     for(i=1; i<=nlstate;i++)      strcat(fileresilk,fileres);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fprintf(ficresvpl,"\n");        printf("Problem with resultfile: %s\n", fileresilk);
     free_vector(gp,1,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     free_vector(gm,1,nlstate);      }
     free_matrix(gradg,1,npar,1,nlstate);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     free_matrix(trgradg,1,nlstate,1,npar);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   } /* End age */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
   free_vector(xp,1,npar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
   
 }    *fretone=(*funcone)(p);
     if(*globpri !=0){
 /************ Variance of one-step probabilities  ******************/      fclose(ficresilk);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 {      fflush(fichtm); 
   int i, j;    } 
   int k=0, cptcode;    return;
   double **dnewm,**doldm;  }
   double *xp;  
   double *gp, *gm;  
   double **gradg, **trgradg;  /*********** Maximum Likelihood Estimation ***************/
   double age,agelim, cov[NCOVMAX];  
   int theta;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   char fileresprob[FILENAMELENGTH];  {
     int i,j, iter;
   strcpy(fileresprob,"prob");    double **xi;
   strcat(fileresprob,fileres);    double fret;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double fretone; /* Only one call to likelihood */
     printf("Problem with resultfile: %s\n", fileresprob);    /*  char filerespow[FILENAMELENGTH];*/
   }    xi=matrix(1,npar,1,npar);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   xp=vector(1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    strcpy(filerespow,"pow"); 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    strcat(filerespow,fileres);
      if((ficrespow=fopen(filerespow,"w"))==NULL) {
   cov[1]=1;      printf("Problem with resultfile: %s\n", filerespow);
   for (age=bage; age<=fage; age ++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     cov[2]=age;    }
     gradg=matrix(1,npar,1,9);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     trgradg=matrix(1,9,1,npar);    for (i=1;i<=nlstate;i++)
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for(j=1;j<=nlstate+ndeath;j++)
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
        fprintf(ficrespow,"\n");
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
          free_matrix(xi,1,npar,1,npar);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    fclose(ficrespow);
        printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       k=0;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(i=1; i<= (nlstate+ndeath); i++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(j=1; j<=(nlstate+ndeath);j++){  
            k=k+1;  }
           gp[k]=pmmij[i][j];  
         }  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
       for(i=1; i<=npar; i++)    double  **a,**y,*x,pd;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double **hess;
        int i, j,jk;
     int *indx;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
       k=0;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for(i=1; i<=(nlstate+ndeath); i++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         for(j=1; j<=(nlstate+ndeath);j++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
           k=k+1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
           gm[k]=pmmij[i][j];    double gompertz(double p[]);
         }    hess=matrix(1,npar,1,npar);
       }  
          printf("\nCalculation of the hessian matrix. Wait...\n");
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      for (i=1;i<=npar;i++){
     }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)     
       for(theta=1; theta <=npar; theta++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       trgradg[j][theta]=gradg[theta][j];      
        /*  printf(" %f ",p[i]);
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    }
     
      pmij(pmmij,cov,ncovmodel,x,nlstate);    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
      k=0;        if (j>i) { 
      for(i=1; i<=(nlstate+ndeath); i++){          printf(".%d%d",i,j);fflush(stdout);
        for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
          k=k+1;          hess[i][j]=hessij(p,delti,i,j,func,npar);
          gm[k]=pmmij[i][j];          
         }          hess[j][i]=hess[i][j];    
      }          /*printf(" %lf ",hess[i][j]);*/
              }
      /*printf("\n%d ",(int)age);      }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    }
            printf("\n");
     fprintf(ficlog,"\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresprob,"\n%d ",(int)age);    
     a=matrix(1,npar,1,npar);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    y=matrix(1,npar,1,npar);
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    x=vector(1,npar);
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    indx=ivector(1,npar);
   }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    ludcmp(a,npar,indx,&pd);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (j=1;j<=npar;j++) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
  free_vector(xp,1,npar);      lubksb(a,npar,indx,x);
 fclose(ficresprob);      for (i=1;i<=npar;i++){ 
  exit(0);        matcov[i][j]=x[i];
 }      }
     }
 /***********************************************/  
 /**************** Main Program *****************/    printf("\n#Hessian matrix#\n");
 /***********************************************/    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
 /*int main(int argc, char *argv[])*/      for (j=1;j<=npar;j++) { 
 int main()        printf("%.3e ",hess[i][j]);
 {        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      printf("\n");
   double agedeb, agefin,hf;      fprintf(ficlog,"\n");
   double agemin=1.e20, agemax=-1.e20;    }
   
   double fret;    /* Recompute Inverse */
   double **xi,tmp,delta;    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double dum; /* Dummy variable */    ludcmp(a,npar,indx,&pd);
   double ***p3mat;  
   int *indx;    /*  printf("\n#Hessian matrix recomputed#\n");
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];    for (j=1;j<=npar;j++) {
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];      for (i=1;i<=npar;i++) x[i]=0;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];      x[j]=1;
   char filerest[FILENAMELENGTH];      lubksb(a,npar,indx,x);
   char fileregp[FILENAMELENGTH];      for (i=1;i<=npar;i++){ 
   char popfile[FILENAMELENGTH];        y[i][j]=x[i];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        printf("%.3e ",y[i][j]);
   int firstobs=1, lastobs=10;        fprintf(ficlog,"%.3e ",y[i][j]);
   int sdeb, sfin; /* Status at beginning and end */      }
   int c,  h , cpt,l;      printf("\n");
   int ju,jl, mi;      fprintf(ficlog,"\n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    */
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;  
   int hstepm, nhstepm;    free_matrix(a,1,npar,1,npar);
   int *popage;    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
   double bage, fage, age, agelim, agebase;    free_ivector(indx,1,npar);
   double ftolpl=FTOL;    free_matrix(hess,1,npar,1,npar);
   double **prlim;  
   double *severity;  
   double ***param; /* Matrix of parameters */  }
   double  *p;  
   double **matcov; /* Matrix of covariance */  /*************** hessian matrix ****************/
   double ***delti3; /* Scale */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double *delti; /* Scale */  {
   double ***eij, ***vareij;    int i;
   double **varpl; /* Variances of prevalence limits by age */    int l=1, lmax=20;
   double *epj, vepp;    double k1,k2;
   double kk1, kk2;    double p2[NPARMAX+1];
   double *popeffectif,*popcount;    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    double fx;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int k=0,kmax=10;
     double l1;
   
   char z[1]="c", occ;    fx=func(x);
 #include <sys/time.h>    for (i=1;i<=npar;i++) p2[i]=x[i];
 #include <time.h>    for(l=0 ; l <=lmax; l++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      l1=pow(10,l);
   /* long total_usecs;      delts=delt;
   struct timeval start_time, end_time;      for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
   printf("\nIMACH, Version 0.7");        k2=func(p2)-fx;
   printf("\nEnter the parameter file name: ");        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 #ifdef windows        
   scanf("%s",pathtot);  #ifdef DEBUG
   getcwd(pathcd, size);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /*cygwin_split_path(pathtot,path,optionfile);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  #endif
   /* cutv(path,optionfile,pathtot,'\\');*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 split(pathtot, path,optionfile);          k=kmax;
   chdir(path);        }
   replace(pathc,path);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 #endif          k=kmax; l=lmax*10.;
 #ifdef unix        }
   scanf("%s",optionfile);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 #endif          delts=delt;
         }
 /*-------- arguments in the command line --------*/      }
     }
   strcpy(fileres,"r");    delti[theta]=delts;
   strcat(fileres, optionfile);    return res; 
     
   /*---------arguments file --------*/  }
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     printf("Problem with optionfile %s\n",optionfile);  {
     goto end;    int i;
   }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
   strcpy(filereso,"o");    double p2[NPARMAX+1];
   strcat(filereso,fileres);    int k;
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    fx=func(x);
   }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   /* Reads comments: lines beginning with '#' */      p2[thetai]=x[thetai]+delti[thetai]/k;
   while((c=getc(ficpar))=='#' && c!= EOF){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     ungetc(c,ficpar);      k1=func(p2)-fx;
     fgets(line, MAXLINE, ficpar);    
     puts(line);      p2[thetai]=x[thetai]+delti[thetai]/k;
     fputs(line,ficparo);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k2=func(p2)-fx;
   ungetc(c,ficpar);    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      k3=func(p2)-fx;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    
 while((c=getc(ficpar))=='#' && c!= EOF){      p2[thetai]=x[thetai]-delti[thetai]/k;
     ungetc(c,ficpar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fgets(line, MAXLINE, ficpar);      k4=func(p2)-fx;
     puts(line);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     fputs(line,ficparo);  #ifdef DEBUG
   }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   ungetc(c,ficpar);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    #endif
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);    }
   fprintf(ficparo,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);    return res;
    }
  while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************** Inverse of matrix **************/
     fgets(line, MAXLINE, ficpar);  void ludcmp(double **a, int n, int *indx, double *d) 
     puts(line);  { 
     fputs(line,ficparo);    int i,imax,j,k; 
   }    double big,dum,sum,temp; 
   ungetc(c,ficpar);    double *vv; 
     
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);    vv=vector(1,n); 
   fprintf(ficparo,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);    *d=1.0; 
          for (i=1;i<=n;i++) { 
        big=0.0; 
 while((c=getc(ficpar))=='#' && c!= EOF){      for (j=1;j<=n;j++) 
     ungetc(c,ficpar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     fgets(line, MAXLINE, ficpar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     puts(line);      vv[i]=1.0/big; 
     fputs(line,ficparo);    } 
   }    for (j=1;j<=n;j++) { 
   ungetc(c,ficpar);      for (i=1;i<j;i++) { 
          sum=a[i][j]; 
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   covar=matrix(0,NCOVMAX,1,n);      } 
   cptcovn=0;      big=0.0; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
   ncovmodel=2+cptcovn;        for (k=1;k<j;k++) 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   /* Read guess parameters */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /* Reads comments: lines beginning with '#' */          big=dum; 
   while((c=getc(ficpar))=='#' && c!= EOF){          imax=i; 
     ungetc(c,ficpar);        } 
     fgets(line, MAXLINE, ficpar);      } 
     puts(line);      if (j != imax) { 
     fputs(line,ficparo);        for (k=1;k<=n;k++) { 
   }          dum=a[imax][k]; 
   ungetc(c,ficpar);          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        } 
     for(i=1; i <=nlstate; i++)        *d = -(*d); 
     for(j=1; j <=nlstate+ndeath-1; j++){        vv[imax]=vv[j]; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      } 
       fprintf(ficparo,"%1d%1d",i1,j1);      indx[j]=imax; 
       printf("%1d%1d",i,j);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(k=1; k<=ncovmodel;k++){      if (j != n) { 
         fscanf(ficpar," %lf",&param[i][j][k]);        dum=1.0/(a[j][j]); 
         printf(" %lf",param[i][j][k]);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         fprintf(ficparo," %lf",param[i][j][k]);      } 
       }    } 
       fscanf(ficpar,"\n");    free_vector(vv,1,n);  /* Doesn't work */
       printf("\n");  ;
       fprintf(ficparo,"\n");  } 
     }  
    void lubksb(double **a, int n, int *indx, double b[]) 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  { 
     int i,ii=0,ip,j; 
   p=param[1][1];    double sum; 
     
   /* Reads comments: lines beginning with '#' */    for (i=1;i<=n;i++) { 
   while((c=getc(ficpar))=='#' && c!= EOF){      ip=indx[i]; 
     ungetc(c,ficpar);      sum=b[ip]; 
     fgets(line, MAXLINE, ficpar);      b[ip]=b[i]; 
     puts(line);      if (ii) 
     fputs(line,ficparo);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   }      else if (sum) ii=i; 
   ungetc(c,ficpar);      b[i]=sum; 
     } 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (i=n;i>=1;i--) { 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      sum=b[i]; 
   for(i=1; i <=nlstate; i++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for(j=1; j <=nlstate+ndeath-1; j++){      b[i]=sum/a[i][i]; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    } 
       printf("%1d%1d",i,j);  } 
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){  void pstamp(FILE *fichier)
         fscanf(ficpar,"%le",&delti3[i][j][k]);  {
         printf(" %le",delti3[i][j][k]);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         fprintf(ficparo," %le",delti3[i][j][k]);  }
       }  
       fscanf(ficpar,"\n");  /************ Frequencies ********************/
       printf("\n");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       fprintf(ficparo,"\n");  {  /* Some frequencies */
     }    
   }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   delti=delti3[1][1];    int first;
      double ***freq; /* Frequencies */
   /* Reads comments: lines beginning with '#' */    double *pp, **prop;
   while((c=getc(ficpar))=='#' && c!= EOF){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     ungetc(c,ficpar);    char fileresp[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    
     puts(line);    pp=vector(1,nlstate);
     fputs(line,ficparo);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
   ungetc(c,ficpar);    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   matcov=matrix(1,npar,1,npar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   for(i=1; i <=npar; i++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     fscanf(ficpar,"%s",&str);      exit(0);
     printf("%s",str);    }
     fprintf(ficparo,"%s",str);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for(j=1; j <=i; j++){    j1=0;
       fscanf(ficpar," %le",&matcov[i][j]);    
       printf(" %.5le",matcov[i][j]);    j=cptcoveff;
       fprintf(ficparo," %.5le",matcov[i][j]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     }  
     fscanf(ficpar,"\n");    first=1;
     printf("\n");  
     fprintf(ficparo,"\n");    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
   for(i=1; i <=npar; i++)        j1++;
     for(j=i+1;j<=npar;j++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       matcov[i][j]=matcov[j][i];          scanf("%d", i);*/
            for (i=-5; i<=nlstate+ndeath; i++)  
   printf("\n");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
     /*-------- data file ----------*/  
     if((ficres =fopen(fileres,"w"))==NULL) {      for (i=1; i<=nlstate; i++)  
       printf("Problem with resultfile: %s\n", fileres);goto end;        for(m=iagemin; m <= iagemax+3; m++)
     }          prop[i][m]=0;
     fprintf(ficres,"#%s\n",version);        
            dateintsum=0;
     if((fic=fopen(datafile,"r"))==NULL)    {        k2cpt=0;
       printf("Problem with datafile: %s\n", datafile);goto end;        for (i=1; i<=imx; i++) {
     }          bool=1;
           if  (cptcovn>0) {
     n= lastobs;            for (z1=1; z1<=cptcoveff; z1++) 
     severity = vector(1,maxwav);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     outcome=imatrix(1,maxwav+1,1,n);                bool=0;
     num=ivector(1,n);          }
     moisnais=vector(1,n);          if (bool==1){
     annais=vector(1,n);            for(m=firstpass; m<=lastpass; m++){
     moisdc=vector(1,n);              k2=anint[m][i]+(mint[m][i]/12.);
     andc=vector(1,n);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     agedc=vector(1,n);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     cod=ivector(1,n);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     weight=vector(1,n);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                if (m<lastpass) {
     mint=matrix(1,maxwav,1,n);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     anint=matrix(1,maxwav,1,n);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     s=imatrix(1,maxwav+1,1,n);                }
     adl=imatrix(1,maxwav+1,1,n);                    
     tab=ivector(1,NCOVMAX);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     ncodemax=ivector(1,8);                  dateintsum=dateintsum+k2;
                   k2cpt++;
     i=1;                }
     while (fgets(line, MAXLINE, fic) != NULL)    {                /*}*/
       if ((i >= firstobs) && (i <=lastobs)) {            }
                  }
         for (j=maxwav;j>=1;j--){        }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);         
           strcpy(line,stra);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        pstamp(ficresp);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        if  (cptcovn>0) {
         }          fprintf(ficresp, "\n#********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresp, "**********\n#");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         for(i=1; i<=nlstate;i++) 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresp, "\n");
         
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=iagemin; i <= iagemax+3; i++){
         for (j=ncov;j>=1;j--){          if(i==iagemax+3){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"Total");
         }          }else{
         num[i]=atol(stra);            if(first==1){
                      first=0;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              printf("See log file for details...\n");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            }
             fprintf(ficlog,"Age %d", i);
         i=i+1;          }
       }          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     /* printf("ii=%d", ij);              pp[jk] += freq[jk][m][i]; 
        scanf("%d",i);*/          }
   imx=i-1; /* Number of individuals */          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   /* for (i=1; i<=imx; i++){              pos += freq[jk][m][i];
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            if(pp[jk]>=1.e-10){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              if(first==1){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }              }
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   /* Calculation of the number of parameter from char model*/              if(first==1)
   Tvar=ivector(1,15);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   Tprod=ivector(1,15);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   Tvaraff=ivector(1,15);            }
   Tvard=imatrix(1,15,1,2);          }
   Tage=ivector(1,15);        
              for(jk=1; jk <=nlstate ; jk++){
   if (strlen(model) >1){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     j=0, j1=0, k1=1, k2=1;              pp[jk] += freq[jk][m][i];
     j=nbocc(model,'+');          }       
     j1=nbocc(model,'*');          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     cptcovn=j+1;            pos += pp[jk];
     cptcovprod=j1;            posprop += prop[jk][i];
              }
              for(jk=1; jk <=nlstate ; jk++){
     strcpy(modelsav,model);            if(pos>=1.e-5){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              if(first==1)
       printf("Error. Non available option model=%s ",model);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       goto end;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }            }else{
                  if(first==1)
     for(i=(j+1); i>=1;i--){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       cutv(stra,strb,modelsav,'+');              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            if( i <= iagemax){
       /*scanf("%d",i);*/              if(pos>=1.e-5){
       if (strchr(strb,'*')) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         cutv(strd,strc,strb,'*');                /*probs[i][jk][j1]= pp[jk]/pos;*/
         if (strcmp(strc,"age")==0) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           cptcovprod--;              }
           cutv(strb,stre,strd,'V');              else
           Tvar[i]=atoi(stre);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           cptcovage++;            }
             Tage[cptcovage]=i;          }
             /*printf("stre=%s ", stre);*/          
         }          for(jk=-1; jk <=nlstate+ndeath; jk++)
         else if (strcmp(strd,"age")==0) {            for(m=-1; m <=nlstate+ndeath; m++)
           cptcovprod--;              if(freq[jk][m][i] !=0 ) {
           cutv(strb,stre,strc,'V');              if(first==1)
           Tvar[i]=atoi(stre);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           cptcovage++;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           Tage[cptcovage]=i;              }
         }          if(i <= iagemax)
         else {            fprintf(ficresp,"\n");
           cutv(strb,stre,strc,'V');          if(first==1)
           Tvar[i]=ncov+k1;            printf("Others in log...\n");
           cutv(strb,strc,strd,'V');          fprintf(ficlog,"\n");
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);      }
           Tvard[k1][2]=atoi(stre);    }
           Tvar[cptcovn+k2]=Tvard[k1][1];    dateintmean=dateintsum/k2cpt; 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   
           for (k=1; k<=lastobs;k++)    fclose(ficresp);
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           k1++;    free_vector(pp,1,nlstate);
           k2=k2+2;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         }    /* End of Freq */
       }  }
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  /************ Prevalence ********************/
        /*  scanf("%d",i);*/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       cutv(strd,strc,strb,'V');  {  
       Tvar[i]=atoi(strc);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
       strcpy(modelsav,stra);         We still use firstpass and lastpass as another selection.
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    */
         scanf("%d",i);*/   
     }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 }    double ***freq; /* Frequencies */
      double *pp, **prop;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double pos,posprop; 
   printf("cptcovprod=%d ", cptcovprod);    double  y2; /* in fractional years */
   scanf("%d ",i);*/    int iagemin, iagemax;
     fclose(fic);  
     iagemin= (int) agemin;
     /*  if(mle==1){*/    iagemax= (int) agemax;
     if (weightopt != 1) { /* Maximisation without weights*/    /*pp=vector(1,nlstate);*/
       for(i=1;i<=n;i++) weight[i]=1.0;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     /*-calculation of age at interview from date of interview and age at death -*/    j1=0;
     agev=matrix(1,maxwav,1,imx);    
     j=cptcoveff;
    for (i=1; i<=imx; i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      for(m=2; (m<= maxwav); m++)    
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    for(k1=1; k1<=j;k1++){
          anint[m][i]=9999;      for(i1=1; i1<=ncodemax[k1];i1++){
          s[m][i]=-1;        j1++;
        }        
            for (i=1; i<=nlstate; i++)  
     for (i=1; i<=imx; i++)  {          for(m=iagemin; m <= iagemax+3; m++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            prop[i][m]=0.0;
       for(m=1; (m<= maxwav); m++){       
         if(s[m][i] >0){        for (i=1; i<=imx; i++) { /* Each individual */
           if (s[m][i] == nlstate+1) {          bool=1;
             if(agedc[i]>0)          if  (cptcovn>0) {
               if(moisdc[i]!=99 && andc[i]!=9999)            for (z1=1; z1<=cptcoveff; z1++) 
               agev[m][i]=agedc[i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             else {                bool=0;
               if (andc[i]!=9999){          } 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          if (bool==1) { 
               agev[m][i]=-1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           else if(s[m][i] !=9){ /* Should no more exist */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             if(mint[m][i]==99 || anint[m][i]==9999)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
               agev[m][i]=1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             else if(agev[m][i] <agemin){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               agemin=agev[m][i];                  prop[s[m][i]][iagemax+3] += weight[i]; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                } 
             }              }
             else if(agev[m][i] >agemax){            } /* end selection of waves */
               agemax=agev[m][i];          }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }
             }        for(i=iagemin; i <= iagemax+3; i++){  
             /*agev[m][i]=anint[m][i]-annais[i];*/          
             /*   agev[m][i] = age[i]+2*m;*/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           }            posprop += prop[jk][i]; 
           else { /* =9 */          } 
             agev[m][i]=1;  
             s[m][i]=-1;          for(jk=1; jk <=nlstate ; jk++){     
           }            if( i <=  iagemax){ 
         }              if(posprop>=1.e-5){ 
         else /*= 0 Unknown */                probs[i][jk][j1]= prop[jk][i]/posprop;
           agev[m][i]=1;              } else
       }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
                } 
     }          }/* end jk */ 
     for (i=1; i<=imx; i++)  {        }/* end i */ 
       for(m=1; (m<= maxwav); m++){      } /* end i1 */
         if (s[m][i] > (nlstate+ndeath)) {    } /* end k1 */
           printf("Error: Wrong value in nlstate or ndeath\n");      
           goto end;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         }    /*free_vector(pp,1,nlstate);*/
       }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     }  }  /* End of prevalence */
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /************* Waves Concatenation ***************/
   
     free_vector(severity,1,maxwav);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_imatrix(outcome,1,maxwav+1,1,n);  {
     free_vector(moisnais,1,n);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_vector(annais,1,n);       Death is a valid wave (if date is known).
     free_matrix(mint,1,maxwav,1,n);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     free_matrix(anint,1,maxwav,1,n);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     free_vector(moisdc,1,n);       and mw[mi+1][i]. dh depends on stepm.
     free_vector(andc,1,n);       */
   
        int i, mi, m;
     wav=ivector(1,imx);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);       double sum=0., jmean=0.;*/
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    int first;
        int j, k=0,jk, ju, jl;
     /* Concatenates waves */    double sum=0.;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    first=0;
     jmin=1e+5;
     jmax=-1;
       Tcode=ivector(1,100);    jmean=0.;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    for(i=1; i<=imx; i++){
       ncodemax[1]=1;      mi=0;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      m=firstpass;
            while(s[m][i] <= nlstate){
    codtab=imatrix(1,100,1,10);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
    h=0;          mw[++mi][i]=m;
    m=pow(2,cptcoveff);        if(m >=lastpass)
            break;
    for(k=1;k<=cptcoveff; k++){        else
      for(i=1; i <=(m/pow(2,k));i++){          m++;
        for(j=1; j <= ncodemax[k]; j++){      }/* end while */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      if (s[m][i] > nlstate){
            h++;        mi++;     /* Death is another wave */
            if (h>m) h=1;codtab[h][k]=j;        /* if(mi==0)  never been interviewed correctly before death */
          }           /* Only death is a correct wave */
        }        mw[mi][i]=m;
      }      }
    }  
       wav[i]=mi;
       if(mi==0){
    /*for(i=1; i <=m ;i++){        nbwarn++;
      for(k=1; k <=cptcovn; k++){        if(first==0){
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
      }          first=1;
      printf("\n");        }
    }        if(first==1){
    scanf("%d",i);*/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
            }
    /* Calculates basic frequencies. Computes observed prevalence at single age      } /* end mi==0 */
        and prints on file fileres'p'. */    } /* End individuals */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev);  
     for(i=1; i<=imx; i++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(mi=1; mi<wav[i];mi++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (stepm <=0)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          dh[mi][i]=1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        else{
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                  if (agedc[i] < 2*AGESUP) {
     /* For Powell, parameters are in a vector p[] starting at p[1]              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              if(j==0) j=1;  /* Survives at least one month after exam */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              else if(j<0){
                 nberr++;
     if(mle==1){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                j=1; /* Temporary Dangerous patch */
     }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                    fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /*--------- results files --------------*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              }
    fprintf(ficres,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);              k=k+1;
    fprintf(ficres,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);              if (j >= jmax){
                 jmax=j;
    jk=1;                ijmax=i;
    fprintf(ficres,"# Parameters\n");              }
    printf("# Parameters\n");              if (j <= jmin){
    for(i=1,jk=1; i <=nlstate; i++){                jmin=j;
      for(k=1; k <=(nlstate+ndeath); k++){                ijmin=i;
        if (k != i)              }
          {              sum=sum+j;
            printf("%d%d ",i,k);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
            fprintf(ficres,"%1d%1d ",i,k);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
            for(j=1; j <=ncovmodel; j++){            }
              printf("%f ",p[jk]);          }
              fprintf(ficres,"%f ",p[jk]);          else{
              jk++;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
            }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
            printf("\n");  
            fprintf(ficres,"\n");            k=k+1;
          }            if (j >= jmax) {
      }              jmax=j;
    }              ijmax=i;
  if(mle==1){            }
     /* Computing hessian and covariance matrix */            else if (j <= jmin){
     ftolhess=ftol; /* Usually correct */              jmin=j;
     hesscov(matcov, p, npar, delti, ftolhess, func);              ijmin=i;
  }            }
     fprintf(ficres,"# Scales\n");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     printf("# Scales\n");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      for(i=1,jk=1; i <=nlstate; i++){            if(j<0){
       for(j=1; j <=nlstate+ndeath; j++){              nberr++;
         if (j!=i) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficres,"%1d%1d",i,j);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           printf("%1d%1d",i,j);            }
           for(k=1; k<=ncovmodel;k++){            sum=sum+j;
             printf(" %.5e",delti[jk]);          }
             fprintf(ficres," %.5e",delti[jk]);          jk= j/stepm;
             jk++;          jl= j -jk*stepm;
           }          ju= j -(jk+1)*stepm;
           printf("\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           fprintf(ficres,"\n");            if(jl==0){
         }              dh[mi][i]=jk;
       }              bh[mi][i]=0;
       }            }else{ /* We want a negative bias in order to only have interpolation ie
                        * at the price of an extra matrix product in likelihood */
     k=1;              dh[mi][i]=jk+1;
     fprintf(ficres,"# Covariance\n");              bh[mi][i]=ju;
     printf("# Covariance\n");            }
     for(i=1;i<=npar;i++){          }else{
       /*  if (k>nlstate) k=1;            if(jl <= -ju){
       i1=(i-1)/(ncovmodel*nlstate)+1;              dh[mi][i]=jk;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              bh[mi][i]=jl;       /* bias is positive if real duration
       printf("%s%d%d",alph[k],i1,tab[i]);*/                                   * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficres,"%3d",i);                                   */
       printf("%3d",i);            }
       for(j=1; j<=i;j++){            else{
         fprintf(ficres," %.5e",matcov[i][j]);              dh[mi][i]=jk+1;
         printf(" %.5e",matcov[i][j]);              bh[mi][i]=ju;
       }            }
       fprintf(ficres,"\n");            if(dh[mi][i]==0){
       printf("\n");              dh[mi][i]=1; /* At least one step */
       k++;              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                }
     while((c=getc(ficpar))=='#' && c!= EOF){          } /* end if mle */
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);      } /* end wave */
       puts(line);    }
       fputs(line,ficparo);    jmean=sum/k;
     }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     ungetc(c,ficpar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
      /*********** Tricode ****************************/
     if (fage <= 2) {  void tricode(int *Tvar, int **nbcode, int imx)
       bage = agemin;  {
       fage = agemax;    
     }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    cptcoveff=0; 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
        for (k=1; k<=7; k++) ncodemax[k]=0;
 /*------------ gnuplot -------------*/  
 chdir(pathcd);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   if((ficgp=fopen("graph.plt","w"))==NULL) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     printf("Problem with file graph.gp");goto end;                                 modality*/ 
   }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 #ifdef windows        Ndum[ij]++; /*store the modality */
   fprintf(ficgp,"cd \"%s\" \n",pathc);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 #endif        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 m=pow(2,cptcoveff);                                         Tvar[j]. If V=sex and male is 0 and 
                                           female is 1, then  cptcode=1.*/
  /* 1eme*/      }
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 #ifdef windows      }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  
 #endif      ij=1; 
 #ifdef unix      for (i=1; i<=ncodemax[j]; i++) {
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        for (k=0; k<= maxncov; k++) {
 #endif          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
 for (i=1; i<= nlstate ; i ++) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            
   else fprintf(ficgp," \%%*lf (\%%*lf)");            ij++;
 }          }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          if (ij > ncodemax[j]) break; 
     for (i=1; i<= nlstate ; i ++) {        }  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }  
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   for (i=1; i<=ncovmodel-2; i++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 }       ij=Tvar[i];
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));     Ndum[ij]++;
 #ifdef unix   }
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif   ij=1;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);   for (i=1; i<= maxncov; i++) {
    }     if((Ndum[i]!=0) && (i<=ncovcol)){
   }       Tvaraff[ij]=i; /*For printing */
   /*2 eme*/       ij++;
      }
   for (k1=1; k1<= m ; k1 ++) {   }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);   
       cptcoveff=ij-1; /*Number of simple covariates*/
     for (i=1; i<= nlstate+1 ; i ++) {  }
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  /*********** Health Expectancies ****************/
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /* Health expectancies, no variances */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    int nhstepma, nstepma; /* Decreasing with age */
       for (j=1; j<= nlstate+1 ; j ++) {    double age, agelim, hf;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***p3mat;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double eip;
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");    pstamp(ficreseij);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficreseij,"# Age");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=nlstate;i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=1; j<=nlstate;j++){
 }          fprintf(ficreseij," e%1d%1d ",i,j);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      }
       else fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficreseij," e%1d. ",i);
     }    }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    fprintf(ficreseij,"\n");
   }  
      
   /*3eme*/    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   for (k1=1; k1<= m ; k1 ++) {    }
     for (cpt=1; cpt<= nlstate ; cpt ++) {    else  hstepm=estepm;   
       k=2+nlstate*(cpt-1);    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);     * This is mainly to measure the difference between two models: for example
       for (i=1; i< nlstate ; i ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * to the curvature of the survival function. If, for the same date, we 
     }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   /* CV preval stat */     * curvature will be obtained if estepm is as small as stepm. */
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
       k=3;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);       nhstepm is the number of hstepm from age to agelim 
       for (i=1; i< nlstate ; i ++)       nstepm is the number of stepm from age to agelin. 
         fprintf(ficgp,"+$%d",k+i+1);       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       and note for a fixed period like estepm months */
          /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       l=3+(nlstate+ndeath)*cpt;       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       means that if the survival funtion is printed only each two years of age and if
       for (i=1; i< nlstate ; i ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         l=3+(nlstate+ndeath)*cpt;       results. So we changed our mind and took the option of the best precision.
         fprintf(ficgp,"+$%d",l+i+1);    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    agelim=AGESUP;
     }    /* If stepm=6 months */
   }        /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /* proba elementaires */      
    for(i=1,jk=1; i <=nlstate; i++){  /* nhstepm age range expressed in number of stepm */
     for(k=1; k <=(nlstate+ndeath); k++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       if (k != i) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         for(j=1; j <=ncovmodel; j++){    /* if (stepm >= YEARM) hstepm=1;*/
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           /*fprintf(ficgp,"%s",alph[1]);*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;    for (age=bage; age<=fage; age ++){ 
           fprintf(ficgp,"\n");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     }  
       /* If stepm=6 months */
   for(jk=1; jk <=m; jk++) {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
    i=1;      
    for(k2=1; k2<=nlstate; k2++) {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      k3=i;      
      for(k=1; k<=(nlstate+ndeath); k++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        if (k != k2){      
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      printf("%d|",(int)age);fflush(stdout);
 ij=1;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(j=3; j <=ncovmodel; j++) {      
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      /* Computing expectancies */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(i=1; i<=nlstate;i++)
             ij++;        for(j=1; j<=nlstate;j++)
           }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           else            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            
         }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           fprintf(ficgp,")/(1");  
                  }
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      fprintf(ficreseij,"%3.0f",age );
 ij=1;      for(i=1; i<=nlstate;i++){
           for(j=3; j <=ncovmodel; j++){        eip=0;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=1; j<=nlstate;j++){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          eip +=eij[i][j][(int)age];
             ij++;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           }        }
           else        fprintf(ficreseij,"%9.4f", eip );
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      }
           }      fprintf(ficreseij,"\n");
           fprintf(ficgp,")");      
         }    }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    printf("\n");
         i=i+ncovmodel;    fprintf(ficlog,"\n");
        }    
      }  }
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
      {
   fclose(ficgp);    /* Covariances of health expectancies eij and of total life expectancies according
         to initial status i, ei. .
 chdir(path);    */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     free_ivector(wav,1,imx);    int nhstepma, nstepma; /* Decreasing with age */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double age, agelim, hf;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double ***p3matp, ***p3matm, ***varhe;
     free_ivector(num,1,n);    double **dnewm,**doldm;
     free_vector(agedc,1,n);    double *xp, *xm;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    double **gp, **gm;
     fclose(ficparo);    double ***gradg, ***trgradg;
     fclose(ficres);    int theta;
     /*  }*/  
        double eip, vip;
    /*________fin mle=1_________*/  
        varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
      xm=vector(1,npar);
     /* No more information from the sample is required now */    dnewm=matrix(1,nlstate*nlstate,1,npar);
   /* Reads comments: lines beginning with '#' */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    pstamp(ficresstdeij);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     puts(line);    fprintf(ficresstdeij,"# Age");
     fputs(line,ficparo);    for(i=1; i<=nlstate;i++){
   }      for(j=1; j<=nlstate;j++)
   ungetc(c,ficpar);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
        fprintf(ficresstdeij," e%1d. ",i);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    fprintf(ficresstdeij,"\n");
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*--------- index.htm --------*/    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   strcpy(optionfilehtm,optionfile);    fprintf(ficrescveij,"# Age");
   strcat(optionfilehtm,".htm");    for(i=1; i<=nlstate;i++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      for(j=1; j<=nlstate;j++){
     printf("Problem with %s \n",optionfilehtm);goto end;        cptj= (j-1)*nlstate+i;
   }        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">            cptj2= (j2-1)*nlstate+i2;
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>            if(cptj2 <= cptj)
 Total number of observations=%d <br>              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          }
 <hr  size=\"2\" color=\"#EC5E5E\">      }
 <li>Outputs files<br><br>\n    fprintf(ficrescveij,"\n");
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    if(estepm < stepm){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      printf ("Problem %d lower than %d\n",estepm, stepm);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    else  hstepm=estepm;   
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    /* We compute the life expectancy from trapezoids spaced every estepm months
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>     * This is mainly to measure the difference between two models: for example
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>     * if stepm=24 months pijx are given only every 2 years and by summing them
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>     * we are calculating an estimate of the Life Expectancy assuming a linear 
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>     * progression in between and thus overestimating or underestimating according
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
  fprintf(fichtm," <li>Graphs</li><p>");     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
  m=cptcoveff;     * curvature will be obtained if estepm is as small as stepm. */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     /* For example we decided to compute the life expectancy with the smallest unit */
  j1=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  for(k1=1; k1<=m;k1++){       nhstepm is the number of hstepm from age to agelim 
    for(i1=1; i1<=ncodemax[k1];i1++){       nstepm is the number of stepm from age to agelin. 
        j1++;       Look at hpijx to understand the reason of that which relies in memory size
        if (cptcovn > 0) {       and note for a fixed period like estepm months */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
          for (cpt=1; cpt<=cptcoveff;cpt++)       survival function given by stepm (the optimization length). Unfortunately it
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);       means that if the survival funtion is printed only each two years of age and if
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        }       results. So we changed our mind and took the option of the best precision.
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    /* If stepm=6 months */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    /* nhstepm age range expressed in number of stepm */
        }    agelim=AGESUP;
     for(cpt=1; cpt<=nlstate;cpt++) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 interval) in state (%d): v%s%d%d.gif <br>    /* if (stepm >= YEARM) hstepm=1;*/
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      }    
      for(cpt=1; cpt<=nlstate;cpt++) {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    gp=matrix(0,nhstepm,1,nlstate*nlstate);
 health expectancies in states (1) and (2): e%s%d.gif<br>    gm=matrix(0,nhstepm,1,nlstate*nlstate);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  
 fprintf(fichtm,"\n</body>");    for (age=bage; age<=fage; age ++){ 
    }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
  }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 fclose(fichtm);      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   /*--------------- Prevalence limit --------------*/  
        /* If stepm=6 months */
   strcpy(filerespl,"pl");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   strcat(filerespl,fileres);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      /* Computing  Variances of health expectancies */
   fprintf(ficrespl,"#Prevalence limit\n");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   fprintf(ficrespl,"#Age ");         decrease memory allocation */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for(theta=1; theta <=npar; theta++){
   fprintf(ficrespl,"\n");        for(i=1; i<=npar; i++){ 
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   prlim=matrix(1,nlstate,1,nlstate);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1; j<= nlstate; j++){
   k=0;          for(i=1; i<=nlstate; i++){
   agebase=agemin;            for(h=0; h<=nhstepm-1; h++){
   agelim=agemax;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   ftolpl=1.e-10;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   i1=cptcoveff;            }
   if (cptcovn < 1){i1=1;}          }
         }
   for(cptcov=1;cptcov<=i1;cptcov++){       
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(ij=1; ij<= nlstate*nlstate; ij++)
         k=k+1;          for(h=0; h<=nhstepm-1; h++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         fprintf(ficrespl,"\n#******");          }
         for(j=1;j<=cptcoveff;j++)      }/* End theta */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
         fprintf(ficrespl,"******\n");      
              for(h=0; h<=nhstepm-1; h++)
         for (age=agebase; age<=agelim; age++){        for(j=1; j<=nlstate*nlstate;j++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(theta=1; theta <=npar; theta++)
           fprintf(ficrespl,"%.0f",age );            trgradg[h][j][theta]=gradg[h][theta][j];
           for(i=1; i<=nlstate;i++)      
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");       for(ij=1;ij<=nlstate*nlstate;ij++)
         }        for(ji=1;ji<=nlstate*nlstate;ji++)
       }          varhe[ij][ji][(int)age] =0.;
     }  
   fclose(ficrespl);       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /*------------- h Pij x at various ages ------------*/       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          for(ij=1;ij<=nlstate*nlstate;ij++)
   }            for(ji=1;ji<=nlstate*nlstate;ji++)
   printf("Computing pij: result on file '%s' \n", filerespij);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
          }
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   /*if (stepm<=24) stepsize=2;*/  
       /* Computing expectancies */
   agelim=AGESUP;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   hstepm=stepsize*YEARM; /* Every year of age */      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   k=0;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   for(cptcov=1;cptcov<=i1;cptcov++){            
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");          }
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficresstdeij,"%3.0f",age );
         fprintf(ficrespij,"******\n");      for(i=1; i<=nlstate;i++){
                eip=0.;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        vip=0.;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(j=1; j<=nlstate;j++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          eip += eij[i][j][(int)age];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           oldm=oldms;savm=savms;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           fprintf(ficrespij,"# Age");        }
           for(i=1; i<=nlstate;i++)        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
             for(j=1; j<=nlstate+ndeath;j++)      }
               fprintf(ficrespij," %1d-%1d",i,j);      fprintf(ficresstdeij,"\n");
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){      fprintf(ficrescveij,"%3.0f",age );
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      for(i=1; i<=nlstate;i++)
             for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++){
               for(j=1; j<=nlstate+ndeath;j++)          cptj= (j-1)*nlstate+i;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for(i2=1; i2<=nlstate;i2++)
             fprintf(ficrespij,"\n");            for(j2=1; j2<=nlstate;j2++){
           }              cptj2= (j2-1)*nlstate+i2;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(cptj2 <= cptj)
           fprintf(ficrespij,"\n");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         }            }
     }        }
   }      fprintf(ficrescveij,"\n");
      
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   fclose(ficrespij);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /*---------- Forecasting ------------------*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(fileresf,"f");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresf,fileres);    printf("\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficlog,"\n");
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;  
   }    free_vector(xm,1,npar);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  free_matrix(agev,1,maxwav,1,imx);  }
   /* Mobile average */  
   /************ Variance ******************/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   if (mobilav==1) {    /* Variance of health expectancies */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    /* double **newm;*/
       for (i=1; i<=nlstate;i++)    double **dnewm,**doldm;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double **dnewmp,**doldmp;
           mobaverage[(int)agedeb][i][cptcod]=0.;    int i, j, nhstepm, hstepm, h, nstepm ;
        int k, cptcode;
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    double *xp;
       for (i=1; i<=nlstate;i++){    double **gp, **gm;  /* for var eij */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double ***gradg, ***trgradg; /*for var eij */
           for (cpt=0;cpt<=4;cpt++){    double **gradgp, **trgradgp; /* for var p point j */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double *gpp, *gmp; /* for var p point j */
           }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double ***p3mat;
         }    double age,agelim, hf;
       }    double ***mobaverage;
     }      int theta;
   }    char digit[4];
     char digitp[25];
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    char fileresprobmorprev[FILENAMELENGTH];
   
   agelim=AGESUP;    if(popbased==1){
   hstepm=stepsize*YEARM; /* Every year of age */      if(mobilav!=0)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */        strcpy(digitp,"-populbased-mobilav-");
        else strcpy(digitp,"-populbased-nomobil-");
   if (popforecast==1) {    }
     if((ficpop=fopen(popfile,"r"))==NULL)    {    else 
       printf("Problem with population file : %s\n",popfile);goto end;      strcpy(digitp,"-stablbased-");
     }  
     popage=ivector(0,AGESUP);    if (mobilav!=0) {
     popeffectif=vector(0,AGESUP);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     popcount=vector(0,AGESUP);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     i=1;          printf(" Error in movingaverage mobilav=%d\n",mobilav);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)      }
       {    }
         i=i+1;  
       }    strcpy(fileresprobmorprev,"prmorprev"); 
     imx=i;    sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   for(cptcov=1;cptcov<=i1;cptcov++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       k=k+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficresf,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
       }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficresf,"******\n");    pstamp(ficresprobmorprev);
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       if (popforecast==1)  fprintf(ficresf," [Population]");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for (agedeb=fage; agedeb>=bage; agedeb--){      for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
        if (mobilav==1) {    }  
         for(j=1; j<=nlstate;j++)    fprintf(ficresprobmorprev,"\n");
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);    fprintf(ficgp,"\n# Routine varevsij");
         }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         else {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           for(j=1; j<=nlstate;j++)    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);  /*   } */
         }      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);    if(popbased==1)
       }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
          else
       for (cpt=1; cpt<=nforecast;cpt++) {      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
         fprintf(ficresf,"\n");    fprintf(ficresvij,"# Age");
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    for(i=1; i<=nlstate;i++)
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=1; j<=nlstate;j++)
         nhstepm = nhstepm/hstepm;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    fprintf(ficresvij,"\n");
   
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xp=vector(1,npar);
         oldm=oldms;savm=savms;    dnewm=matrix(1,nlstate,1,npar);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      doldm=matrix(1,nlstate,1,nlstate);
                    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         for (h=0; h<=nhstepm; h++){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          
          if (h*hstepm/YEARM*stepm==cpt)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);    gpp=vector(nlstate+1,nlstate+ndeath);
              gmp=vector(nlstate+1,nlstate+ndeath);
              trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          for(j=1; j<=nlstate+ndeath;j++) {    
            kk1=0.;kk2=0;    if(estepm < stepm){
            for(i=1; i<=nlstate;i++) {              printf ("Problem %d lower than %d\n",estepm, stepm);
              if (mobilav==1)    }
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];    else  hstepm=estepm;   
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];    /* For example we decided to compute the life expectancy with the smallest unit */
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             }       nhstepm is the number of hstepm from age to agelim 
            if (h*hstepm/YEARM*stepm==cpt) {       nstepm is the number of stepm from age to agelin. 
              fprintf(ficresf," %.3f", kk1);       Look at function hpijx to understand why (it is linked to memory size questions) */
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
            }       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed every two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
            */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (popforecast==1) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ivector(popage,0,AGESUP);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     free_vector(popeffectif,0,AGESUP);      gp=matrix(0,nhstepm,1,nlstate);
     free_vector(popcount,0,AGESUP);      gm=matrix(0,nhstepm,1,nlstate);
   }  
   free_imatrix(s,1,maxwav+1,1,n);  
   free_vector(weight,1,n);      for(theta=1; theta <=npar; theta++){
   fclose(ficresf);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   /*---------- Health expectancies and variances ------------*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   strcpy(filerest,"t");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcat(filerest,fileres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        if (popbased==1) {
   }          if(mobilav ==0){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   strcpy(filerese,"e");            for(i=1; i<=nlstate;i++)
   strcat(filerese,fileres);              prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficreseij=fopen(filerese,"w"))==NULL) {          }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        }
   }    
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
  strcpy(fileresv,"v");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   strcat(fileresv,fileres);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        }
   }        /* This for computing probability of death (h=1 means
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   k=0;        */
   for(cptcov=1;cptcov<=i1;cptcov++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       k=k+1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficrest,"\n#****** ");        }    
       for(j=1;j<=cptcoveff;j++)        /* end probability of death */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficreseij,"\n#****** ");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(j=1;j<=cptcoveff;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);   
       fprintf(ficreseij,"******\n");        if (popbased==1) {
           if(mobilav ==0){
       fprintf(ficresvij,"\n#****** ");            for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          }else{ /* mobilav */ 
       fprintf(ficresvij,"******\n");            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
       oldm=oldms;savm=savms;        }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       oldm=oldms;savm=savms;          for(h=0; h<=nhstepm; h++){
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        }
       fprintf(ficrest,"\n");        /* This for computing probability of death (h=1 means
                   computed over hstepm matrices product = hstepm*stepm months) 
       hf=1;           as a weighted average of prlim.
       if (stepm >= YEARM) hf=stepm/YEARM;        */
       epj=vector(1,nlstate+1);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(age=bage; age <=fage ;age++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         if (popbased==1) {        }    
           for(i=1; i<=nlstate;i++)        /* end probability of death */
             prlim[i][i]=probs[(int)age][i][k];  
         }        for(j=1; j<= nlstate; j++) /* vareij */
                  for(h=0; h<=nhstepm; h++){
         fprintf(ficrest," %.0f",age);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           epj[nlstate+1] +=epj[j];        }
         }  
         for(i=1, vepp=0.;i <=nlstate;i++)      } /* End theta */
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){      for(h=0; h<=nhstepm; h++) /* veij */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        for(j=1; j<=nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
         fprintf(ficrest,"\n");            trgradg[h][j][theta]=gradg[h][theta][j];
       }  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
                  trgradgp[j][theta]=gradgp[theta][j];
            
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  fclose(ficreseij);      for(i=1;i<=nlstate;i++)
  fclose(ficresvij);        for(j=1;j<=nlstate;j++)
   fclose(ficrest);          vareij[i][j][(int)age] =0.;
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);      for(h=0;h<=nhstepm;h++){
   /*  scanf("%d ",i); */        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   /*------- Variance limit prevalence------*/            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
 strcpy(fileresvpl,"vpl");            for(j=1;j<=nlstate;j++)
   strcat(fileresvpl,fileres);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      }
     exit(0);    
   }      /* pptj */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
  k=0;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
  for(cptcov=1;cptcov<=i1;cptcov++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          varppt[j][i]=doldmp[j][i];
      k=k+1;      /* end ppptj */
      fprintf(ficresvpl,"\n#****** ");      /*  x centered again */
      for(j=1;j<=cptcoveff;j++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
      fprintf(ficresvpl,"******\n");   
            if (popbased==1) {
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        if(mobilav ==0){
      oldm=oldms;savm=savms;          for(i=1; i<=nlstate;i++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            prlim[i][i]=probs[(int)age][i][ij];
    }        }else{ /* mobilav */ 
  }          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
   fclose(ficresvpl);        }
       }
   /*---------- End : free ----------------*/               
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      /* This for computing probability of death (h=1 means
           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);         as a weighted average of prlim.
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      }    
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      /* end probability of death */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   free_matrix(matcov,1,npar,1,npar);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_vector(delti,1,npar);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   printf("End of Imach\n");      } 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(ficresprobmorprev,"\n");
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      fprintf(ficresvij,"%.0f ",age );
   /*printf("Total time was %d uSec.\n", total_usecs);*/      for(i=1; i<=nlstate;i++)
   /*------ End -----------*/        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
  end:      fprintf(ficresvij,"\n");
 #ifdef windows      free_matrix(gp,0,nhstepm,1,nlstate);
  chdir(pathcd);      free_matrix(gm,0,nhstepm,1,nlstate);
 #endif      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
  system("..\\gp37mgw\\wgnuplot graph.plt");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
 #ifdef windows    free_vector(gpp,nlstate+1,nlstate+ndeath);
   while (z[0] != 'q') {    free_vector(gmp,nlstate+1,nlstate+ndeath);
     chdir(pathcd);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     scanf("%s",z);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     if (z[0] == 'c') system("./imach");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     else if (z[0] == 'e') {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       chdir(path);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       system(optionfilehtm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     else if (z[0] == 'q') exit(0);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 #endif    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.16  
changed lines
  Added in v.1.129


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>