Diff for /imach/src/imach.c between versions 1.16 and 1.82

version 1.16, 2002/02/20 17:12:32 version 1.82, 2003/06/05 15:57:20
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.82  2003/06/05 15:57:20  brouard
   individuals from different ages are interviewed on their health status    Add log in  imach.c and  fullversion number is now printed.
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.  */
   Health expectancies are computed from the transistions observed between  /*
   waves and are computed for each degree of severity of disability (number     Interpolated Markov Chain
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Short summary of the programme:
   The simplest model is the multinomial logistic model where pij is    
   the probabibility to be observed in state j at the second wave conditional    This program computes Healthy Life Expectancies from
   to be observed in state i at the first wave. Therefore the model is:    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    first survey ("cross") where individuals from different ages are
   is a covariate. If you want to have a more complex model than "constant and    interviewed on their health status or degree of disability (in the
   age", you should modify the program where the markup    case of a health survey which is our main interest) -2- at least a
     *Covariates have to be included here again* invites you to do it.    second wave of interviews ("longitudinal") which measure each change
   More covariates you add, less is the speed of the convergence.    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
   The advantage that this computer programme claims, comes from that if the    model. More health states you consider, more time is necessary to reach the
   delay between waves is not identical for each individual, or if some    Maximum Likelihood of the parameters involved in the model.  The
   individual missed an interview, the information is not rounded or lost, but    simplest model is the multinomial logistic model where pij is the
   taken into account using an interpolation or extrapolation.    probability to be observed in state j at the second wave
   hPijx is the probability to be    conditional to be observed in state i at the first wave. Therefore
   observed in state i at age x+h conditional to the observed state i at age    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   x. The delay 'h' can be split into an exact number (nh*stepm) of    'age' is age and 'sex' is a covariate. If you want to have a more
   unobserved intermediate  states. This elementary transition (by month or    complex model than "constant and age", you should modify the program
   quarter trimester, semester or year) is model as a multinomial logistic.    where the markup *Covariates have to be included here again* invites
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    you to do it.  More covariates you add, slower the
   and the contribution of each individual to the likelihood is simply hPijx.    convergence.
   
   Also this programme outputs the covariance matrix of the parameters but also    The advantage of this computer programme, compared to a simple
   of the life expectancies. It also computes the prevalence limits.    multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    intermediate interview, the information is lost, but taken into
            Institut national d'études démographiques, Paris.    account using an interpolation or extrapolation.  
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    hPijx is the probability to be observed in state i at age x+h
   It is copyrighted identically to a GNU software product, ie programme and    conditional to the observed state i at age x. The delay 'h' can be
   software can be distributed freely for non commercial use. Latest version    split into an exact number (nh*stepm) of unobserved intermediate
   can be accessed at http://euroreves.ined.fr/imach .    states. This elementary transition (by month, quarter,
   **********************************************************************/    semester or year) is modelled as a multinomial logistic.  The hPx
      matrix is simply the matrix product of nh*stepm elementary matrices
 #include <math.h>    and the contribution of each individual to the likelihood is simply
 #include <stdio.h>    hPijx.
 #include <stdlib.h>  
 #include <unistd.h>    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 #define MAXLINE 256    
 #define FILENAMELENGTH 80    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /*#define DEBUG*/             Institut national d'études démographiques, Paris.
 #define windows    This software have been partly granted by Euro-REVES, a concerted action
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    from the European Union.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    can be accessed at http://euroreves.ined.fr/imach .
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define NINTERVMAX 8    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    **********************************************************************/
 #define NCOVMAX 8 /* Maximum number of covariates */  /*
 #define MAXN 20000    main
 #define YEARM 12. /* Number of months per year */    read parameterfile
 #define AGESUP 130    read datafile
 #define AGEBASE 40    concatwav
     if (mle >= 1)
       mlikeli
 int nvar;    print results files
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    if mle==1 
 int npar=NPARMAX;       computes hessian
 int nlstate=2; /* Number of live states */    read end of parameter file: agemin, agemax, bage, fage, estepm
 int ndeath=1; /* Number of dead states */        begin-prev-date,...
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    open gnuplot file
 int popbased=0;    open html file
     stable prevalence
 int *wav; /* Number of waves for this individuual 0 is possible */     for age prevalim()
 int maxwav; /* Maxim number of waves */    h Pij x
 int jmin, jmax; /* min, max spacing between 2 waves */    variance of p varprob
 int mle, weightopt;    forecasting if prevfcast==1 prevforecast call prevalence()
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    health expectancies
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Variance-covariance of DFLE
 double jmean; /* Mean space between 2 waves */    prevalence()
 double **oldm, **newm, **savm; /* Working pointers to matrices */     movingaverage()
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    varevsij() 
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    if popbased==1 varevsij(,popbased)
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    total life expectancies
 FILE *ficreseij;    Variance of stable prevalence
   char filerese[FILENAMELENGTH];   end
  FILE  *ficresvij;  */
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];  
    
 #define NR_END 1  #include <math.h>
 #define FREE_ARG char*  #include <stdio.h>
 #define FTOL 1.0e-10  #include <stdlib.h>
   #include <unistd.h>
 #define NRANSI  
 #define ITMAX 200  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 #define TOL 2.0e-4  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 80
 #define CGOLD 0.3819660  /*#define DEBUG*/
 #define ZEPS 1.0e-10  #define windows
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define GOLD 1.618034  
 #define GLIMIT 100.0  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define TINY 1.0e-20  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 static double maxarg1,maxarg2;  #define NINTERVMAX 8
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define MAXN 20000
 #define rint(a) floor(a+0.5)  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 static double sqrarg;  #define AGEBASE 40
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #ifdef windows
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 int imx;  #else
 int stepm;  #define DIRSEPARATOR '/'
 /* Stepm, step in month: minimum step interpolation*/  #define ODIRSEPARATOR '\\'
   #endif
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /* $Id$ */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /* $State$ */
 double **pmmij, ***probs, ***mobaverage;  
   char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 double *weight;  char fullversion[]="$Revision$ $Date$"; 
 int **s; /* Status */  int erreur; /* Error number */
 double *agedc, **covar, idx;  int nvar;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int nlstate=2; /* Number of live states */
 double ftolhess; /* Tolerance for computing hessian */  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /**************** split *************************/  int popbased=0;
 static  int split( char *path, char *dirc, char *name )  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
    char *s;                             /* pointer */  int maxwav; /* Maxim number of waves */
    int  l1, l2;                         /* length counters */  int jmin, jmax; /* min, max spacing between 2 waves */
   int mle, weightopt;
    l1 = strlen( path );                 /* length of path */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    s = strrchr( path, '\\' );           /* find last / */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    if ( s == NULL ) {                   /* no directory, so use current */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #if     defined(__bsd__)                /* get current working directory */  double jmean; /* Mean space between 2 waves */
       extern char       *getwd( );  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       if ( getwd( dirc ) == NULL ) {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #else  FILE *ficlog, *ficrespow;
       extern char       *getcwd( );  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  FILE *fichtm; /* Html File */
 #endif  FILE *ficreseij;
          return( GLOCK_ERROR_GETCWD );  char filerese[FILENAMELENGTH];
       }  FILE  *ficresvij;
       strcpy( name, path );             /* we've got it */  char fileresv[FILENAMELENGTH];
    } else {                             /* strip direcotry from path */  FILE  *ficresvpl;
       s++;                              /* after this, the filename */  char fileresvpl[FILENAMELENGTH];
       l2 = strlen( s );                 /* length of filename */  char title[MAXLINE];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       strcpy( name, s );                /* save file name */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    }  char filelog[FILENAMELENGTH]; /* Log file */
    l1 = strlen( dirc );                 /* length of directory */  char filerest[FILENAMELENGTH];
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char fileregp[FILENAMELENGTH];
    return( 0 );                         /* we're done */  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   
 /******************************************/  #define NR_END 1
   #define FREE_ARG char*
 void replace(char *s, char*t)  #define FTOL 1.0e-10
 {  
   int i;  #define NRANSI 
   int lg=20;  #define ITMAX 200 
   i=0;  
   lg=strlen(t);  #define TOL 2.0e-4 
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  #define CGOLD 0.3819660 
     if (t[i]== '\\') s[i]='/';  #define ZEPS 1.0e-10 
   }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 int nbocc(char *s, char occ)  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   int i,j=0;  
   int lg=20;  static double maxarg1,maxarg2;
   i=0;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   lg=strlen(s);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for(i=0; i<= lg; i++) {    
   if  (s[i] == occ ) j++;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   }  #define rint(a) floor(a+0.5)
   return j;  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 void cutv(char *u,char *v, char*t, char occ)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  
   int i,lg,j,p=0;  int imx; 
   i=0;  int stepm;
   for(j=0; j<=strlen(t)-1; j++) {  /* Stepm, step in month: minimum step interpolation*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   lg=strlen(t);  
   for(j=0; j<p; j++) {  int m,nb;
     (u[j] = t[j]);  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
      u[p]='\0';  double **pmmij, ***probs;
   double dateintmean=0;
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  double *weight;
   }  int **s; /* Status */
 }  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 /********************** nrerror ********************/  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 void nrerror(char error_text[])  double ftolhess; /* Tolerance for computing hessian */
 {  
   fprintf(stderr,"ERREUR ...\n");  /**************** split *************************/
   fprintf(stderr,"%s\n",error_text);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   exit(1);  {
 }    char  *ss;                            /* pointer */
 /*********************** vector *******************/    int   l1, l2;                         /* length counters */
 double *vector(int nl, int nh)  
 {    l1 = strlen(path );                   /* length of path */
   double *v;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if (!v) nrerror("allocation failure in vector");    if ( ss == NULL ) {                   /* no directory, so use current */
   return v-nl+NR_END;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /************************ free vector ******************/      /*    extern  char* getcwd ( char *buf , int len);*/
 void free_vector(double*v, int nl, int nh)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   free((FREE_ARG)(v+nl-NR_END));      }
 }      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
 /************************ivector *******************************/      ss++;                               /* after this, the filename */
 int *ivector(long nl,long nh)      l2 = strlen( ss );                  /* length of filename */
 {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   int *v;      strcpy( name, ss );         /* save file name */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   if (!v) nrerror("allocation failure in ivector");      dirc[l1-l2] = 0;                    /* add zero */
   return v-nl+NR_END;    }
 }    l1 = strlen( dirc );                  /* length of directory */
   #ifdef windows
 /******************free ivector **************************/    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 void free_ivector(int *v, long nl, long nh)  #else
 {    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   free((FREE_ARG)(v+nl-NR_END));  #endif
 }    ss = strrchr( name, '.' );            /* find last / */
     ss++;
 /******************* imatrix *******************************/    strcpy(ext,ss);                       /* save extension */
 int **imatrix(long nrl, long nrh, long ncl, long nch)    l1= strlen( name);
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    l2= strlen(ss)+1;
 {    strncpy( finame, name, l1-l2);
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    finame[l1-l2]= 0;
   int **m;    return( 0 );                          /* we're done */
    }
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /******************************************/
   m += NR_END;  
   m -= nrl;  void replace(char *s, char*t)
    {
      int i;
   /* allocate rows and set pointers to them */    int lg=20;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    i=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    lg=strlen(t);
   m[nrl] += NR_END;    for(i=0; i<= lg; i++) {
   m[nrl] -= ncl;      (s[i] = t[i]);
        if (t[i]== '\\') s[i]='/';
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    }
    }
   /* return pointer to array of pointers to rows */  
   return m;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /****************** free_imatrix *************************/    int lg=20;
 void free_imatrix(m,nrl,nrh,ncl,nch)    i=0;
       int **m;    lg=strlen(s);
       long nch,ncl,nrh,nrl;    for(i=0; i<= lg; i++) {
      /* free an int matrix allocated by imatrix() */    if  (s[i] == occ ) j++;
 {    }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    return j;
   free((FREE_ARG) (m+nrl-NR_END));  }
 }  
   void cutv(char *u,char *v, char*t, char occ)
 /******************* matrix *******************************/  {
 double **matrix(long nrl, long nrh, long ncl, long nch)    /* cuts string t into u and v where u is ended by char occ excluding it
 {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;       gives u="abcedf" and v="ghi2j" */
   double **m;    int i,lg,j,p=0;
     i=0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(j=0; j<=strlen(t)-1; j++) {
   if (!m) nrerror("allocation failure 1 in matrix()");      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m += NR_END;    }
   m -= nrl;  
     lg=strlen(t);
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    for(j=0; j<p; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      (u[j] = t[j]);
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;       u[p]='\0';
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;     for(j=0; j<= lg; j++) {
   return m;      if (j>=(p+1))(v[j-p-1] = t[j]);
 }    }
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /********************** nrerror ********************/
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void nrerror(char error_text[])
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /******************* ma3x *******************************/    exit(EXIT_FAILURE);
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  /*********************** vector *******************/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double *vector(int nl, int nh)
   double ***m;  {
     double *v;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m += NR_END;    return v-nl+NR_END;
   m -= nrl;  }
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /************************ free vector ******************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void free_vector(double*v, int nl, int nh)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    free((FREE_ARG)(v+nl-NR_END));
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   /************************ivector *******************************/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char *cvector(long nl,long nh)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    char *v;
   m[nrl][ncl] -= nll;    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
   for (j=ncl+1; j<=nch; j++)    if (!v) nrerror("allocation failure in cvector");
     m[nrl][j]=m[nrl][j-1]+nlay;    return v-nl+NR_END;
    }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /******************free ivector **************************/
     for (j=ncl+1; j<=nch; j++)  void free_cvector(char *v, long nl, long nh)
       m[i][j]=m[i][j-1]+nlay;  {
   }    free((FREE_ARG)(v+nl-NR_END));
   return m;  }
 }  
   /************************ivector *******************************/
 /*************************free ma3x ************************/  int *ivector(long nl,long nh)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    int *v;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!v) nrerror("allocation failure in ivector");
   free((FREE_ARG)(m+nrl-NR_END));    return v-nl+NR_END;
 }  }
   
 /***************** f1dim *************************/  /******************free ivector **************************/
 extern int ncom;  void free_ivector(int *v, long nl, long nh)
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);    free((FREE_ARG)(v+nl-NR_END));
    }
 double f1dim(double x)  
 {  /******************* imatrix *******************************/
   int j;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double f;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double *xt;  { 
      long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   xt=vector(1,ncom);    int **m; 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);    /* allocate pointers to rows */ 
   free_vector(xt,1,ncom);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   return f;    if (!m) nrerror("allocation failure 1 in matrix()"); 
 }    m += NR_END; 
     m -= nrl; 
 /*****************brent *************************/    
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    
 {    /* allocate rows and set pointers to them */ 
   int iter;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double a,b,d,etemp;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double fu,fv,fw,fx;    m[nrl] += NR_END; 
   double ftemp;    m[nrl] -= ncl; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    
   double e=0.0;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
   a=(ax < cx ? ax : cx);    /* return pointer to array of pointers to rows */ 
   b=(ax > cx ? ax : cx);    return m; 
   x=w=v=bx;  } 
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /****************** free_imatrix *************************/
     xm=0.5*(a+b);  void free_imatrix(m,nrl,nrh,ncl,nch)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);        int **m;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/        long nch,ncl,nrh,nrl; 
     printf(".");fflush(stdout);       /* free an int matrix allocated by imatrix() */ 
 #ifdef DEBUG  { 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    free((FREE_ARG) (m+nrl-NR_END)); 
 #endif  } 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  /******************* matrix *******************************/
       return fx;  double **matrix(long nrl, long nrh, long ncl, long nch)
     }  {
     ftemp=fu;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     if (fabs(e) > tol1) {    double **m;
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       p=(x-v)*q-(x-w)*r;    if (!m) nrerror("allocation failure 1 in matrix()");
       q=2.0*(q-r);    m += NR_END;
       if (q > 0.0) p = -p;    m -= nrl;
       q=fabs(q);  
       etemp=e;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       e=d;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m[nrl] += NR_END;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] -= ncl;
       else {  
         d=p/q;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         u=x+d;    return m;
         if (u-a < tol2 || b-u < tol2)    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
           d=SIGN(tol1,xm-x);     */
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (fu <= fx) {    free((FREE_ARG)(m+nrl-NR_END));
       if (u >= x) a=x; else b=x;  }
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /******************* ma3x *******************************/
         } else {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           if (u < x) a=u; else b=u;  {
           if (fu <= fw || w == x) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
             v=w;    double ***m;
             w=u;  
             fv=fw;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             fw=fu;    if (!m) nrerror("allocation failure 1 in matrix()");
           } else if (fu <= fv || v == x || v == w) {    m += NR_END;
             v=u;    m -= nrl;
             fv=fu;  
           }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
   nrerror("Too many iterations in brent");    m[nrl] -= ncl;
   *xmin=x;  
   return fx;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /****************** mnbrak ***********************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m[nrl][ncl] -= nll;
             double (*func)(double))    for (j=ncl+1; j<=nch; j++) 
 {      m[nrl][j]=m[nrl][j-1]+nlay;
   double ulim,u,r,q, dum;    
   double fu;    for (i=nrl+1; i<=nrh; i++) {
        m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   *fa=(*func)(*ax);      for (j=ncl+1; j<=nch; j++) 
   *fb=(*func)(*bx);        m[i][j]=m[i][j-1]+nlay;
   if (*fb > *fa) {    }
     SHFT(dum,*ax,*bx,dum)    return m; 
       SHFT(dum,*fb,*fa,dum)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   *cx=(*bx)+GOLD*(*bx-*ax);    */
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /*************************free ma3x ************************/
     q=(*bx-*cx)*(*fb-*fa);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     ulim=(*bx)+GLIMIT*(*cx-*bx);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {    free((FREE_ARG)(m+nrl-NR_END));
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /***************** f1dim *************************/
       if (fu < *fc) {  extern int ncom; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  extern double *pcom,*xicom;
           SHFT(*fb,*fc,fu,(*func)(u))  extern double (*nrfunc)(double []); 
           }   
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double f1dim(double x) 
       u=ulim;  { 
       fu=(*func)(u);    int j; 
     } else {    double f;
       u=(*cx)+GOLD*(*cx-*bx);    double *xt; 
       fu=(*func)(u);   
     }    xt=vector(1,ncom); 
     SHFT(*ax,*bx,*cx,u)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       SHFT(*fa,*fb,*fc,fu)    f=(*nrfunc)(xt); 
       }    free_vector(xt,1,ncom); 
 }    return f; 
   } 
 /*************** linmin ************************/  
   /*****************brent *************************/
 int ncom;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 double *pcom,*xicom;  { 
 double (*nrfunc)(double []);    int iter; 
      double a,b,d,etemp;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    double fu,fv,fw,fx;
 {    double ftemp;
   double brent(double ax, double bx, double cx,    double p,q,r,tol1,tol2,u,v,w,x,xm; 
                double (*f)(double), double tol, double *xmin);    double e=0.0; 
   double f1dim(double x);   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    a=(ax < cx ? ax : cx); 
               double *fc, double (*func)(double));    b=(ax > cx ? ax : cx); 
   int j;    x=w=v=bx; 
   double xx,xmin,bx,ax;    fw=fv=fx=(*f)(x); 
   double fx,fb,fa;    for (iter=1;iter<=ITMAX;iter++) { 
        xm=0.5*(a+b); 
   ncom=n;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   pcom=vector(1,n);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   xicom=vector(1,n);      printf(".");fflush(stdout);
   nrfunc=func;      fprintf(ficlog,".");fflush(ficlog);
   for (j=1;j<=n;j++) {  #ifdef DEBUG
     pcom[j]=p[j];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     xicom[j]=xi[j];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   ax=0.0;  #endif
   xx=1.0;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        *xmin=x; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        return fx; 
 #ifdef DEBUG      } 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      ftemp=fu;
 #endif      if (fabs(e) > tol1) { 
   for (j=1;j<=n;j++) {        r=(x-w)*(fx-fv); 
     xi[j] *= xmin;        q=(x-v)*(fx-fw); 
     p[j] += xi[j];        p=(x-v)*q-(x-w)*r; 
   }        q=2.0*(q-r); 
   free_vector(xicom,1,n);        if (q > 0.0) p = -p; 
   free_vector(pcom,1,n);        q=fabs(q); 
 }        etemp=e; 
         e=d; 
 /*************** powell ************************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             double (*func)(double []))        else { 
 {          d=p/q; 
   void linmin(double p[], double xi[], int n, double *fret,          u=x+d; 
               double (*func)(double []));          if (u-a < tol2 || b-u < tol2) 
   int i,ibig,j;            d=SIGN(tol1,xm-x); 
   double del,t,*pt,*ptt,*xit;        } 
   double fp,fptt;      } else { 
   double *xits;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   pt=vector(1,n);      } 
   ptt=vector(1,n);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   xit=vector(1,n);      fu=(*f)(u); 
   xits=vector(1,n);      if (fu <= fx) { 
   *fret=(*func)(p);        if (u >= x) a=x; else b=x; 
   for (j=1;j<=n;j++) pt[j]=p[j];        SHFT(v,w,x,u) 
   for (*iter=1;;++(*iter)) {          SHFT(fv,fw,fx,fu) 
     fp=(*fret);          } else { 
     ibig=0;            if (u < x) a=u; else b=u; 
     del=0.0;            if (fu <= fw || w == x) { 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);              v=w; 
     for (i=1;i<=n;i++)              w=u; 
       printf(" %d %.12f",i, p[i]);              fv=fw; 
     printf("\n");              fw=fu; 
     for (i=1;i<=n;i++) {            } else if (fu <= fv || v == x || v == w) { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];              v=u; 
       fptt=(*fret);              fv=fu; 
 #ifdef DEBUG            } 
       printf("fret=%lf \n",*fret);          } 
 #endif    } 
       printf("%d",i);fflush(stdout);    nrerror("Too many iterations in brent"); 
       linmin(p,xit,n,fret,func);    *xmin=x; 
       if (fabs(fptt-(*fret)) > del) {    return fx; 
         del=fabs(fptt-(*fret));  } 
         ibig=i;  
       }  /****************** mnbrak ***********************/
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for (j=1;j<=n;j++) {              double (*func)(double)) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  { 
         printf(" x(%d)=%.12e",j,xit[j]);    double ulim,u,r,q, dum;
       }    double fu; 
       for(j=1;j<=n;j++)   
         printf(" p=%.12e",p[j]);    *fa=(*func)(*ax); 
       printf("\n");    *fb=(*func)(*bx); 
 #endif    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        SHFT(dum,*fb,*fa,dum) 
 #ifdef DEBUG        } 
       int k[2],l;    *cx=(*bx)+GOLD*(*bx-*ax); 
       k[0]=1;    *fc=(*func)(*cx); 
       k[1]=-1;    while (*fb > *fc) { 
       printf("Max: %.12e",(*func)(p));      r=(*bx-*ax)*(*fb-*fc); 
       for (j=1;j<=n;j++)      q=(*bx-*cx)*(*fb-*fa); 
         printf(" %.12e",p[j]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       printf("\n");        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       for(l=0;l<=1;l++) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         for (j=1;j<=n;j++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        fu=(*func)(u); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         }        fu=(*func)(u); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        if (fu < *fc) { 
       }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 #endif            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       free_vector(xit,1,n);        u=ulim; 
       free_vector(xits,1,n);        fu=(*func)(u); 
       free_vector(ptt,1,n);      } else { 
       free_vector(pt,1,n);        u=(*cx)+GOLD*(*cx-*bx); 
       return;        fu=(*func)(u); 
     }      } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      SHFT(*ax,*bx,*cx,u) 
     for (j=1;j<=n;j++) {        SHFT(*fa,*fb,*fc,fu) 
       ptt[j]=2.0*p[j]-pt[j];        } 
       xit[j]=p[j]-pt[j];  } 
       pt[j]=p[j];  
     }  /*************** linmin ************************/
     fptt=(*func)(ptt);  
     if (fptt < fp) {  int ncom; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double *pcom,*xicom;
       if (t < 0.0) {  double (*nrfunc)(double []); 
         linmin(p,xit,n,fret,func);   
         for (j=1;j<=n;j++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           xi[j][ibig]=xi[j][n];  { 
           xi[j][n]=xit[j];    double brent(double ax, double bx, double cx, 
         }                 double (*f)(double), double tol, double *xmin); 
 #ifdef DEBUG    double f1dim(double x); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         for(j=1;j<=n;j++)                double *fc, double (*func)(double)); 
           printf(" %.12e",xit[j]);    int j; 
         printf("\n");    double xx,xmin,bx,ax; 
 #endif    double fx,fb,fa;
       }   
     }    ncom=n; 
   }    pcom=vector(1,n); 
 }    xicom=vector(1,n); 
     nrfunc=func; 
 /**** Prevalence limit ****************/    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      xicom[j]=xi[j]; 
 {    } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    ax=0.0; 
      matrix by transitions matrix until convergence is reached */    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   int i, ii,j,k;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double min, max, maxmin, maxmax,sumnew=0.;  #ifdef DEBUG
   double **matprod2();    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **out, cov[NCOVMAX], **pmij();    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **newm;  #endif
   double agefin, delaymax=50 ; /* Max number of years to converge */    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
   for (ii=1;ii<=nlstate+ndeath;ii++)      p[j] += xi[j]; 
     for (j=1;j<=nlstate+ndeath;j++){    } 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
   } 
    cov[1]=1.;  
    /*************** powell ************************/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){              double (*func)(double [])) 
     newm=savm;  { 
     /* Covariates have to be included here again */    void linmin(double p[], double xi[], int n, double *fret, 
      cov[2]=agefin;                double (*func)(double [])); 
      int i,ibig,j; 
       for (k=1; k<=cptcovn;k++) {    double del,t,*pt,*ptt,*xit;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double fp,fptt;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    double *xits;
       }    pt=vector(1,n); 
       for (k=1; k<=cptcovage;k++)    ptt=vector(1,n); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    xit=vector(1,n); 
       for (k=1; k<=cptcovprod;k++)    xits=vector(1,n); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    for (*iter=1;;++(*iter)) { 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      fp=(*fret); 
       ibig=0; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      del=0.0; 
       printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     savm=oldm;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     oldm=newm;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     maxmax=0.;      for (i=1;i<=n;i++) {
     for(j=1;j<=nlstate;j++){        printf(" %d %.12f",i, p[i]);
       min=1.;        fprintf(ficlog," %d %.12lf",i, p[i]);
       max=0.;        fprintf(ficrespow," %.12lf", p[i]);
       for(i=1; i<=nlstate; i++) {      }
         sumnew=0;      printf("\n");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      fprintf(ficlog,"\n");
         prlim[i][j]= newm[i][j]/(1-sumnew);      fprintf(ficrespow,"\n");
         max=FMAX(max,prlim[i][j]);      for (i=1;i<=n;i++) { 
         min=FMIN(min,prlim[i][j]);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
       maxmin=max-min;  #ifdef DEBUG
       maxmax=FMAX(maxmax,maxmin);        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
     if(maxmax < ftolpl){  #endif
       return prlim;        printf("%d",i);fflush(stdout);
     }        fprintf(ficlog,"%d",i);fflush(ficlog);
   }        linmin(p,xit,n,fret,func); 
 }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 /*************** transition probabilities ***************/          ibig=i; 
         } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #ifdef DEBUG
 {        printf("%d %.12e",i,(*fret));
   double s1, s2;        fprintf(ficlog,"%d %.12e",i,(*fret));
   /*double t34;*/        for (j=1;j<=n;j++) {
   int i,j,j1, nc, ii, jj;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
     for(i=1; i<= nlstate; i++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for(j=1; j<i;j++){        }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        for(j=1;j<=n;j++) {
         /*s2 += param[i][j][nc]*cov[nc];*/          printf(" p=%.12e",p[j]);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          fprintf(ficlog," p=%.12e",p[j]);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        }
       }        printf("\n");
       ps[i][j]=s2;        fprintf(ficlog,"\n");
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #endif
     }      } 
     for(j=i+1; j<=nlstate+ndeath;j++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #ifdef DEBUG
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        int k[2],l;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        k[0]=1;
       }        k[1]=-1;
       ps[i][j]=(s2);        printf("Max: %.12e",(*func)(p));
     }        fprintf(ficlog,"Max: %.12e",(*func)(p));
   }        for (j=1;j<=n;j++) {
     /*ps[3][2]=1;*/          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   for(i=1; i<= nlstate; i++){        }
      s1=0;        printf("\n");
     for(j=1; j<i; j++)        fprintf(ficlog,"\n");
       s1+=exp(ps[i][j]);        for(l=0;l<=1;l++) {
     for(j=i+1; j<=nlstate+ndeath; j++)          for (j=1;j<=n;j++) {
       s1+=exp(ps[i][j]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     ps[i][i]=1./(s1+1.);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(j=1; j<i; j++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];          }
     for(j=i+1; j<=nlstate+ndeath; j++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       ps[i][j]= exp(ps[i][j])*ps[i][i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        }
   } /* end i */  #endif
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){        free_vector(xit,1,n); 
       ps[ii][jj]=0;        free_vector(xits,1,n); 
       ps[ii][ii]=1;        free_vector(ptt,1,n); 
     }        free_vector(pt,1,n); 
   }        return; 
       } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      for (j=1;j<=n;j++) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        ptt[j]=2.0*p[j]-pt[j]; 
      printf("%lf ",ps[ii][jj]);        xit[j]=p[j]-pt[j]; 
    }        pt[j]=p[j]; 
     printf("\n ");      } 
     }      fptt=(*func)(ptt); 
     printf("\n ");printf("%lf ",cov[2]);*/      if (fptt < fp) { 
 /*        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        if (t < 0.0) { 
   goto end;*/          linmin(p,xit,n,fret,func); 
     return ps;          for (j=1;j<=n;j++) { 
 }            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
 /**************** Product of 2 matrices ******************/          }
   #ifdef DEBUG
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          for(j=1;j<=n;j++){
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            printf(" %.12e",xit[j]);
   /* in, b, out are matrice of pointers which should have been initialized            fprintf(ficlog," %.12e",xit[j]);
      before: only the contents of out is modified. The function returns          }
      a pointer to pointers identical to out */          printf("\n");
   long i, j, k;          fprintf(ficlog,"\n");
   for(i=nrl; i<= nrh; i++)  #endif
     for(k=ncolol; k<=ncoloh; k++)        }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      } 
         out[i][k] +=in[i][j]*b[j][k];    } 
   } 
   return out;  
 }  /**** Prevalence limit (stable prevalence)  ****************/
   
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 /************* Higher Matrix Product ***************/  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )       matrix by transitions matrix until convergence is reached */
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    int i, ii,j,k;
      duration (i.e. until    double min, max, maxmin, maxmax,sumnew=0.;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double **matprod2();
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double **out, cov[NCOVMAX], **pmij();
      (typically every 2 years instead of every month which is too big).    double **newm;
      Model is determined by parameters x and covariates have to be    double agefin, delaymax=50 ; /* Max number of years to converge */
      included manually here.  
     for (ii=1;ii<=nlstate+ndeath;ii++)
      */      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, d, h, k;      }
   double **out, cov[NCOVMAX];  
   double **newm;     cov[1]=1.;
    
   /* Hstepm could be zero and should return the unit matrix */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=nlstate+ndeath;i++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (j=1;j<=nlstate+ndeath;j++){      newm=savm;
       oldm[i][j]=(i==j ? 1.0 : 0.0);      /* Covariates have to be included here again */
       po[i][j][0]=(i==j ? 1.0 : 0.0);       cov[2]=agefin;
     }    
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for (k=1; k<=cptcovn;k++) {
   for(h=1; h <=nhstepm; h++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for(d=1; d <=hstepm; d++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       newm=savm;        }
       /* Covariates have to be included here again */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       cov[1]=1.;        for (k=1; k<=cptcovprod;k++)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for (k=1; k<=cptcovprod;k++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
       savm=oldm;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      oldm=newm;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      maxmax=0.;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      for(j=1;j<=nlstate;j++){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        min=1.;
       savm=oldm;        max=0.;
       oldm=newm;        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
     for(i=1; i<=nlstate+ndeath; i++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(j=1;j<=nlstate+ndeath;j++) {          prlim[i][j]= newm[i][j]/(1-sumnew);
         po[i][j][h]=newm[i][j];          max=FMAX(max,prlim[i][j]);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          min=FMIN(min,prlim[i][j]);
          */        }
       }        maxmin=max-min;
   } /* end h */        maxmax=FMAX(maxmax,maxmin);
   return po;      }
 }      if(maxmax < ftolpl){
         return prlim;
       }
 /*************** log-likelihood *************/    }
 double func( double *x)  }
 {  
   int i, ii, j, k, mi, d, kk;  /*************** transition probabilities ***************/ 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double sw; /* Sum of weights */  {
   double lli; /* Individual log likelihood */    double s1, s2;
   long ipmx;    /*double t34;*/
   /*extern weight */    int i,j,j1, nc, ii, jj;
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for(i=1; i<= nlstate; i++){
   /*for(i=1;i<imx;i++)      for(j=1; j<i;j++){
     printf(" %d\n",s[4][i]);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   */          /*s2 += param[i][j][nc]*cov[nc];*/
   cov[1]=1.;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        ps[i][j]=s2;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     for(mi=1; mi<= wav[i]-1; mi++){      }
       for (ii=1;ii<=nlstate+ndeath;ii++)      for(j=i+1; j<=nlstate+ndeath;j++){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for(d=0; d<dh[mi][i]; d++){          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         newm=savm;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        }
         for (kk=1; kk<=cptcovage;kk++) {        ps[i][j]=s2;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
         }    }
              /*ps[3][2]=1;*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    for(i=1; i<= nlstate; i++){
         savm=oldm;       s1=0;
         oldm=newm;      for(j=1; j<i; j++)
                s1+=exp(ps[i][j]);
              for(j=i+1; j<=nlstate+ndeath; j++)
       } /* end mult */        s1+=exp(ps[i][j]);
            ps[i][i]=1./(s1+1.);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      for(j=1; j<i; j++)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        ps[i][j]= exp(ps[i][j])*ps[i][i];
       ipmx +=1;      for(j=i+1; j<=nlstate+ndeath; j++)
       sw += weight[i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end of wave */    } /* end i */
   } /* end of individual */  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      for(jj=1; jj<= nlstate+ndeath; jj++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        ps[ii][jj]=0;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        ps[ii][ii]=1;
   return -l;      }
 }    }
   
   
 /*********** Maximum Likelihood Estimation ***************/    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       printf("%lf ",ps[ii][jj]);
 {     }
   int i,j, iter;      printf("\n ");
   double **xi,*delti;      }
   double fret;      printf("\n ");printf("%lf ",cov[2]);*/
   xi=matrix(1,npar,1,npar);  /*
   for (i=1;i<=npar;i++)    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (j=1;j<=npar;j++)    goto end;*/
       xi[i][j]=(i==j ? 1.0 : 0.0);      return ps;
   printf("Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /**************** Product of 2 matrices ******************/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /**** Computes Hessian and covariance matrix ***/    /* in, b, out are matrice of pointers which should have been initialized 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))       before: only the contents of out is modified. The function returns
 {       a pointer to pointers identical to out */
   double  **a,**y,*x,pd;    long i, j, k;
   double **hess;    for(i=nrl; i<= nrh; i++)
   int i, j,jk;      for(k=ncolol; k<=ncoloh; k++)
   int *indx;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);    return out;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   
   hess=matrix(1,npar,1,npar);  /************* Higher Matrix Product ***************/
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (i=1;i<=npar;i++){  {
     printf("%d",i);fflush(stdout);    /* Computes the transition matrix starting at age 'age' over 
     hess[i][i]=hessii(p,ftolhess,i,delti);       'nhstepm*hstepm*stepm' months (i.e. until
     /*printf(" %f ",p[i]);*/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     /*printf(" %lf ",hess[i][i]);*/       nhstepm*hstepm matrices. 
   }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
   for (i=1;i<=npar;i++) {       for the memory).
     for (j=1;j<=npar;j++)  {       Model is determined by parameters x and covariates have to be 
       if (j>i) {       included manually here. 
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);       */
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/    int i, j, d, h, k;
       }    double **out, cov[NCOVMAX];
     }    double **newm;
   }  
   printf("\n");    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
   a=matrix(1,npar,1,npar);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   y=matrix(1,npar,1,npar);      }
   x=vector(1,npar);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   indx=ivector(1,npar);    for(h=1; h <=nhstepm; h++){
   for (i=1;i<=npar;i++)      for(d=1; d <=hstepm; d++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        newm=savm;
   ludcmp(a,npar,indx,&pd);        /* Covariates have to be included here again */
         cov[1]=1.;
   for (j=1;j<=npar;j++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (i=1;i<=npar;i++) x[i]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     x[j]=1;        for (k=1; k<=cptcovage;k++)
     lubksb(a,npar,indx,x);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (i=1;i<=npar;i++){        for (k=1; k<=cptcovprod;k++)
       matcov[i][j]=x[i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
   }  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   printf("\n#Hessian matrix#\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (i=1;i<=npar;i++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (j=1;j<=npar;j++) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("%.3e ",hess[i][j]);        savm=oldm;
     }        oldm=newm;
     printf("\n");      }
   }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   /* Recompute Inverse */          po[i][j][h]=newm[i][j];
   for (i=1;i<=npar;i++)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];           */
   ludcmp(a,npar,indx,&pd);        }
     } /* end h */
   /*  printf("\n#Hessian matrix recomputed#\n");    return po;
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** log-likelihood *************/
     lubksb(a,npar,indx,x);  double func( double *x)
     for (i=1;i<=npar;i++){  {
       y[i][j]=x[i];    int i, ii, j, k, mi, d, kk;
       printf("%.3e ",y[i][j]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
     printf("\n");    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
   */    int s1, s2;
     double bbh, survp;
   free_matrix(a,1,npar,1,npar);    long ipmx;
   free_matrix(y,1,npar,1,npar);    /*extern weight */
   free_vector(x,1,npar);    /* We are differentiating ll according to initial status */
   free_ivector(indx,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_matrix(hess,1,npar,1,npar);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     */
 }    cov[1]=1.;
   
 /*************** hessian matrix ****************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
 double hessii( double x[], double delta, int theta, double delti[])  
 {    if(mle==1){
   int i;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int l=1, lmax=20;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double k1,k2;        for(mi=1; mi<= wav[i]-1; mi++){
   double p2[NPARMAX+1];          for (ii=1;ii<=nlstate+ndeath;ii++)
   double res;            for (j=1;j<=nlstate+ndeath;j++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fx;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k=0,kmax=10;            }
   double l1;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   fx=func(x);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=1;i<=npar;i++) p2[i]=x[i];            for (kk=1; kk<=cptcovage;kk++) {
   for(l=0 ; l <=lmax; l++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     l1=pow(10,l);            }
     delts=delt;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(k=1 ; k <kmax; k=k+1){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       delt = delta*(l1*k);            savm=oldm;
       p2[theta]=x[theta] +delt;            oldm=newm;
       k1=func(p2)-fx;          } /* end mult */
       p2[theta]=x[theta]-delt;        
       k2=func(p2)-fx;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       /*res= (k1-2.0*fx+k2)/delt/delt; */          /* But now since version 0.9 we anticipate for bias and large stepm.
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                 * (in months) between two waves is not a multiple of stepm, we rounded to 
 #ifdef DEBUG           * the nearest (and in case of equal distance, to the lowest) interval but now
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 #endif           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           * probability in order to take into account the bias as a fraction of the way
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         k=kmax;           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           * For stepm > 1 the results are less biased than in previous versions. 
         k=kmax; l=lmax*10.;           */
       }          s1=s[mw[mi][i]][i];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          s2=s[mw[mi+1][i]][i];
         delts=delt;          bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias is positive if real duration
     }           * is higher than the multiple of stepm and negative otherwise.
   }           */
   delti[theta]=delts;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   return res;          if( s2 > nlstate){ 
              /* i.e. if s2 is a death state and if the date of death is known then the contribution
 }               to the likelihood is the probability to die between last step unit time and current 
                step unit time, which is also the differences between probability to die before dh 
 double hessij( double x[], double delti[], int thetai,int thetaj)               and probability to die before dh-stepm . 
 {               In version up to 0.92 likelihood was computed
   int i;          as if date of death was unknown. Death was treated as any other
   int l=1, l1, lmax=20;          health state: the date of the interview describes the actual state
   double k1,k2,k3,k4,res,fx;          and not the date of a change in health state. The former idea was
   double p2[NPARMAX+1];          to consider that at each interview the state was recorded
   int k;          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
   fx=func(x);          the contribution of an exact death to the likelihood. This new
   for (k=1; k<=2; k++) {          contribution is smaller and very dependent of the step unit
     for (i=1;i<=npar;i++) p2[i]=x[i];          stepm. It is no more the probability to die between last interview
     p2[thetai]=x[thetai]+delti[thetai]/k;          and month of death but the probability to survive from last
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          interview up to one month before death multiplied by the
     k1=func(p2)-fx;          probability to die within a month. Thanks to Chris
            Jackson for correcting this bug.  Former versions increased
     p2[thetai]=x[thetai]+delti[thetai]/k;          mortality artificially. The bad side is that we add another loop
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          which slows down the processing. The difference can be up to 10%
     k2=func(p2)-fx;          lower mortality.
              */
     p2[thetai]=x[thetai]-delti[thetai]/k;            lli=log(out[s1][s2] - savm[s1][s2]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          }else{
     k3=func(p2)-fx;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     p2[thetai]=x[thetai]-delti[thetai]/k;          } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     k4=func(p2)-fx;          /*if(lli ==000.0)*/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 #ifdef DEBUG          ipmx +=1;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          sw += weight[i];
 #endif          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   return res;      } /* end of individual */
 }    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /************** Inverse of matrix **************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void ludcmp(double **a, int n, int *indx, double *d)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   int i,imax,j,k;            for (j=1;j<=nlstate+ndeath;j++){
   double big,dum,sum,temp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *vv;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   vv=vector(1,n);          for(d=0; d<=dh[mi][i]; d++){
   *d=1.0;            newm=savm;
   for (i=1;i<=n;i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     big=0.0;            for (kk=1; kk<=cptcovage;kk++) {
     for (j=1;j<=n;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if ((temp=fabs(a[i][j])) > big) big=temp;            }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     vv[i]=1.0/big;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   for (j=1;j<=n;j++) {            oldm=newm;
     for (i=1;i<j;i++) {          } /* end mult */
       sum=a[i][j];        
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       a[i][j]=sum;          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     big=0.0;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     for (i=j;i<=n;i++) {           * the nearest (and in case of equal distance, to the lowest) interval but now
       sum=a[i][j];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for (k=1;k<j;k++)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         sum -= a[i][k]*a[k][j];           * probability in order to take into account the bias as a fraction of the way
       a[i][j]=sum;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * -stepm/2 to stepm/2 .
         big=dum;           * For stepm=1 the results are the same as for previous versions of Imach.
         imax=i;           * For stepm > 1 the results are less biased than in previous versions. 
       }           */
     }          s1=s[mw[mi][i]][i];
     if (j != imax) {          s2=s[mw[mi+1][i]][i];
       for (k=1;k<=n;k++) {          bbh=(double)bh[mi][i]/(double)stepm; 
         dum=a[imax][k];          /* bias is positive if real duration
         a[imax][k]=a[j][k];           * is higher than the multiple of stepm and negative otherwise.
         a[j][k]=dum;           */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       *d = -(*d);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       vv[imax]=vv[j];          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     indx[j]=imax;          /*if(lli ==000.0)*/
     if (a[j][j] == 0.0) a[j][j]=TINY;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     if (j != n) {          ipmx +=1;
       dum=1.0/(a[j][j]);          sw += weight[i];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }      } /* end of individual */
   free_vector(vv,1,n);  /* Doesn't work */    }  else if(mle==3){  /* exponential inter-extrapolation */
 ;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void lubksb(double **a, int n, int *indx, double b[])          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int i,ii=0,ip,j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double sum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   for (i=1;i<=n;i++) {          for(d=0; d<dh[mi][i]; d++){
     ip=indx[i];            newm=savm;
     sum=b[ip];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     b[ip]=b[i];            for (kk=1; kk<=cptcovage;kk++) {
     if (ii)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            }
     else if (sum) ii=i;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     b[i]=sum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   for (i=n;i>=1;i--) {            oldm=newm;
     sum=b[i];          } /* end mult */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        
     b[i]=sum/a[i][i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias and large stepm.
 }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
 /************ Frequencies ********************/           * the nearest (and in case of equal distance, to the lowest) interval but now
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 {  /* Some frequencies */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double ***freq; /* Frequencies */           * -stepm/2 to stepm/2 .
   double *pp;           * For stepm=1 the results are the same as for previous versions of Imach.
   double pos;           * For stepm > 1 the results are less biased than in previous versions. 
   FILE *ficresp;           */
   char fileresp[FILENAMELENGTH];          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   pp=vector(1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
  probs= ma3x(1,130 ,1,8, 1,8);          /* bias is positive if real duration
   strcpy(fileresp,"p");           * is higher than the multiple of stepm and negative otherwise.
   strcat(fileresp,fileres);           */
   if((ficresp=fopen(fileresp,"w"))==NULL) {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     printf("Problem with prevalence resultfile: %s\n", fileresp);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     exit(0);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   j1=0;          ipmx +=1;
           sw += weight[i];
   j=cptcoveff;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        } /* end of wave */
       } /* end of individual */
   for(k1=1; k1<=j;k1++){    }else{  /* ml=4 no inter-extrapolation */
    for(i1=1; i1<=ncodemax[k1];i1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        j1++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for(mi=1; mi<= wav[i]-1; mi++){
          scanf("%d", i);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (i=-1; i<=nlstate+ndeath; i++)              for (j=1;j<=nlstate+ndeath;j++){
          for (jk=-1; jk<=nlstate+ndeath; jk++)                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            for(m=agemin; m <= agemax+3; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              freq[i][jk][m]=0;            }
                  for(d=0; d<dh[mi][i]; d++){
        for (i=1; i<=imx; i++) {            newm=savm;
          bool=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          if  (cptcovn>0) {            for (kk=1; kk<=cptcovage;kk++) {
            for (z1=1; z1<=cptcoveff; z1++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            }
                bool=0;          
          }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (bool==1) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            for(m=fprev1; m<=lprev1; m++){            savm=oldm;
              if(agev[m][i]==0) agev[m][i]=agemax+1;            oldm=newm;
              if(agev[m][i]==1) agev[m][i]=agemax+2;          } /* end mult */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }          ipmx +=1;
          }          sw += weight[i];
        }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {        } /* end of wave */
          fprintf(ficresp, "\n#********** Variable ");      } /* end of individual */
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } /* End of if */
        fprintf(ficresp, "**********\n#");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
        for(i=1; i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    return -l;
        fprintf(ficresp, "\n");  }
          
   for(i=(int)agemin; i <= (int)agemax+3; i++){  
     if(i==(int)agemax+3)  /*********** Maximum Likelihood Estimation ***************/
       printf("Total");  
     else  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       printf("Age %d", i);  {
     for(jk=1; jk <=nlstate ; jk++){    int i,j, iter;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double **xi;
         pp[jk] += freq[jk][m][i];    double fret;
     }    char filerespow[FILENAMELENGTH];
     for(jk=1; jk <=nlstate ; jk++){    xi=matrix(1,npar,1,npar);
       for(m=-1, pos=0; m <=0 ; m++)    for (i=1;i<=npar;i++)
         pos += freq[jk][m][i];      for (j=1;j<=npar;j++)
       if(pp[jk]>=1.e-10)        xi[i][j]=(i==j ? 1.0 : 0.0);
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       else    strcpy(filerespow,"pow"); 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    strcat(filerespow,fileres);
     }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
      for(jk=1; jk <=nlstate ; jk++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }
         pp[jk] += freq[jk][m][i];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     for(jk=1,pos=0; jk <=nlstate ; jk++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       pos += pp[jk];    fprintf(ficrespow,"\n");
     for(jk=1; jk <=nlstate ; jk++){    powell(p,xi,npar,ftol,&iter,&fret,func);
       if(pos>=1.e-5)  
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    fclose(ficrespow);
       else    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if( i <= (int) agemax){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         if(pos>=1.e-5){  
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  }
           probs[i][jk][j1]= pp[jk]/pos;  
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  /**** Computes Hessian and covariance matrix ***/
         }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       else  {
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    double  **a,**y,*x,pd;
       }    double **hess;
     }    int i, j,jk;
     for(jk=-1; jk <=nlstate+ndeath; jk++)    int *indx;
       for(m=-1; m <=nlstate+ndeath; m++)  
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double hessii(double p[], double delta, int theta, double delti[]);
     if(i <= (int) agemax)    double hessij(double p[], double delti[], int i, int j);
       fprintf(ficresp,"\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
     printf("\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }  
     }    hess=matrix(1,npar,1,npar);
  }  
      printf("\nCalculation of the hessian matrix. Wait...\n");
   fclose(ficresp);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for (i=1;i<=npar;i++){
   free_vector(pp,1,nlstate);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
 }  /* End of Freq */      hess[i][i]=hessii(p,ftolhess,i,delti);
       /*printf(" %f ",p[i]);*/
 /************ Prevalence ********************/      /*printf(" %lf ",hess[i][i]);*/
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)    }
 {  /* Some frequencies */    
      for (i=1;i<=npar;i++) {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for (j=1;j<=npar;j++)  {
   double ***freq; /* Frequencies */        if (j>i) { 
   double *pp;          printf(".%d%d",i,j);fflush(stdout);
   double pos;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j);
   pp=vector(1,nlstate);          hess[j][i]=hess[i][j];    
   probs= ma3x(1,130 ,1,8, 1,8);          /*printf(" %lf ",hess[i][j]);*/
          }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      }
   j1=0;    }
      printf("\n");
   j=cptcoveff;    fprintf(ficlog,"\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  for(k1=1; k1<=j;k1++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(i1=1; i1<=ncodemax[k1];i1++){    
       j1++;    a=matrix(1,npar,1,npar);
      y=matrix(1,npar,1,npar);
       for (i=-1; i<=nlstate+ndeath; i++)      x=vector(1,npar);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      indx=ivector(1,npar);
           for(m=agemin; m <= agemax+3; m++)    for (i=1;i<=npar;i++)
           freq[i][jk][m]=0;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
          ludcmp(a,npar,indx,&pd);
       for (i=1; i<=imx; i++) {  
         bool=1;    for (j=1;j<=npar;j++) {
         if  (cptcovn>0) {      for (i=1;i<=npar;i++) x[i]=0;
           for (z1=1; z1<=cptcoveff; z1++)      x[j]=1;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      lubksb(a,npar,indx,x);
               bool=0;      for (i=1;i<=npar;i++){ 
               }        matcov[i][j]=x[i];
         if (bool==1) {      }
           for(m=fprev1; m<=lprev1; m++){    }
             if(agev[m][i]==0) agev[m][i]=agemax+1;  
             if(agev[m][i]==1) agev[m][i]=agemax+2;    printf("\n#Hessian matrix#\n");
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    fprintf(ficlog,"\n#Hessian matrix#\n");
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    for (i=1;i<=npar;i++) { 
           }      for (j=1;j<=npar;j++) { 
         }        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
        for(i=(int)agemin; i <= (int)agemax+3; i++){      }
         for(jk=1; jk <=nlstate ; jk++){      printf("\n");
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      fprintf(ficlog,"\n");
             pp[jk] += freq[jk][m][i];    }
         }  
         for(jk=1; jk <=nlstate ; jk++){    /* Recompute Inverse */
           for(m=-1, pos=0; m <=0 ; m++)    for (i=1;i<=npar;i++)
             pos += freq[jk][m][i];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         }    ludcmp(a,npar,indx,&pd);
          
          for(jk=1; jk <=nlstate ; jk++){    /*  printf("\n#Hessian matrix recomputed#\n");
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];    for (j=1;j<=npar;j++) {
          }      for (i=1;i<=npar;i++) x[i]=0;
                x[j]=1;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
          for(jk=1; jk <=nlstate ; jk++){                  y[i][j]=x[i];
            if( i <= (int) agemax){        printf("%.3e ",y[i][j]);
              if(pos>=1.e-5){        fprintf(ficlog,"%.3e ",y[i][j]);
                probs[i][jk][j1]= pp[jk]/pos;      }
              }      printf("\n");
            }      fprintf(ficlog,"\n");
          }    }
              */
          }  
     }    free_matrix(a,1,npar,1,npar);
   }    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
      free_ivector(indx,1,npar);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    free_matrix(hess,1,npar,1,npar);
   free_vector(pp,1,nlstate);  
    
 }  /* End of Freq */  }
 /************* Waves Concatenation ***************/  
   /*************** hessian matrix ****************/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  double hessii( double x[], double delta, int theta, double delti[])
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int i;
      Death is a valid wave (if date is known).    int l=1, lmax=20;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double k1,k2;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double p2[NPARMAX+1];
      and mw[mi+1][i]. dh depends on stepm.    double res;
      */    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   int i, mi, m;    int k=0,kmax=10;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double l1;
      double sum=0., jmean=0.;*/  
     fx=func(x);
   int j, k=0,jk, ju, jl;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double sum=0.;    for(l=0 ; l <=lmax; l++){
   jmin=1e+5;      l1=pow(10,l);
   jmax=-1;      delts=delt;
   jmean=0.;      for(k=1 ; k <kmax; k=k+1){
   for(i=1; i<=imx; i++){        delt = delta*(l1*k);
     mi=0;        p2[theta]=x[theta] +delt;
     m=firstpass;        k1=func(p2)-fx;
     while(s[m][i] <= nlstate){        p2[theta]=x[theta]-delt;
       if(s[m][i]>=1)        k2=func(p2)-fx;
         mw[++mi][i]=m;        /*res= (k1-2.0*fx+k2)/delt/delt; */
       if(m >=lastpass)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         break;        
       else  #ifdef DEBUG
         m++;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }/* end while */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     if (s[m][i] > nlstate){  #endif
       mi++;     /* Death is another wave */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       /* if(mi==0)  never been interviewed correctly before death */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
          /* Only death is a correct wave */          k=kmax;
       mw[mi][i]=m;        }
     }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
     wav[i]=mi;        }
     if(mi==0)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          delts=delt;
   }        }
       }
   for(i=1; i<=imx; i++){    }
     for(mi=1; mi<wav[i];mi++){    delti[theta]=delts;
       if (stepm <=0)    return res; 
         dh[mi][i]=1;    
       else{  }
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {  double hessij( double x[], double delti[], int thetai,int thetaj)
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  {
           if(j==0) j=1;  /* Survives at least one month after exam */    int i;
           k=k+1;    int l=1, l1, lmax=20;
           if (j >= jmax) jmax=j;    double k1,k2,k3,k4,res,fx;
           if (j <= jmin) jmin=j;    double p2[NPARMAX+1];
           sum=sum+j;    int k;
           /* if (j<10) printf("j=%d num=%d ",j,i); */  
           }    fx=func(x);
         }    for (k=1; k<=2; k++) {
         else{      for (i=1;i<=npar;i++) p2[i]=x[i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      p2[thetai]=x[thetai]+delti[thetai]/k;
           k=k+1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           if (j >= jmax) jmax=j;      k1=func(p2)-fx;
           else if (j <= jmin)jmin=j;    
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      p2[thetai]=x[thetai]+delti[thetai]/k;
           sum=sum+j;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k2=func(p2)-fx;
         jk= j/stepm;    
         jl= j -jk*stepm;      p2[thetai]=x[thetai]-delti[thetai]/k;
         ju= j -(jk+1)*stepm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         if(jl <= -ju)      k3=func(p2)-fx;
           dh[mi][i]=jk;    
         else      p2[thetai]=x[thetai]-delti[thetai]/k;
           dh[mi][i]=jk+1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         if(dh[mi][i]==0)      k4=func(p2)-fx;
           dh[mi][i]=1; /* At least one step */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       }  #ifdef DEBUG
     }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   jmean=sum/k;  #endif
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    }
  }    return res;
 /*********** Tricode ****************************/  }
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  /************** Inverse of matrix **************/
   int Ndum[20],ij=1, k, j, i;  void ludcmp(double **a, int n, int *indx, double *d) 
   int cptcode=0;  { 
   cptcoveff=0;    int i,imax,j,k; 
      double big,dum,sum,temp; 
   for (k=0; k<19; k++) Ndum[k]=0;    double *vv; 
   for (k=1; k<=7; k++) ncodemax[k]=0;   
     vv=vector(1,n); 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    *d=1.0; 
     for (i=1; i<=imx; i++) {    for (i=1;i<=n;i++) { 
       ij=(int)(covar[Tvar[j]][i]);      big=0.0; 
       Ndum[ij]++;      for (j=1;j<=n;j++) 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (ij > cptcode) cptcode=ij;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     }      vv[i]=1.0/big; 
     } 
     for (i=0; i<=cptcode; i++) {    for (j=1;j<=n;j++) { 
       if(Ndum[i]!=0) ncodemax[j]++;      for (i=1;i<j;i++) { 
     }        sum=a[i][j]; 
     ij=1;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       } 
     for (i=1; i<=ncodemax[j]; i++) {      big=0.0; 
       for (k=0; k<=19; k++) {      for (i=j;i<=n;i++) { 
         if (Ndum[k] != 0) {        sum=a[i][j]; 
           nbcode[Tvar[j]][ij]=k;        for (k=1;k<j;k++) 
           ij++;          sum -= a[i][k]*a[k][j]; 
         }        a[i][j]=sum; 
         if (ij > ncodemax[j]) break;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }            big=dum; 
     }          imax=i; 
   }          } 
       } 
  for (k=0; k<19; k++) Ndum[k]=0;      if (j != imax) { 
         for (k=1;k<=n;k++) { 
  for (i=1; i<=ncovmodel-2; i++) {          dum=a[imax][k]; 
       ij=Tvar[i];          a[imax][k]=a[j][k]; 
       Ndum[ij]++;          a[j][k]=dum; 
     }        } 
         *d = -(*d); 
  ij=1;        vv[imax]=vv[j]; 
  for (i=1; i<=10; i++) {      } 
    if((Ndum[i]!=0) && (i<=ncov)){      indx[j]=imax; 
      Tvaraff[ij]=i;      if (a[j][j] == 0.0) a[j][j]=TINY; 
      ij++;      if (j != n) { 
    }        dum=1.0/(a[j][j]); 
  }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        } 
     cptcoveff=ij-1;    } 
 }    free_vector(vv,1,n);  /* Doesn't work */
   ;
 /*********** Health Expectancies ****************/  } 
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  void lubksb(double **a, int n, int *indx, double b[]) 
 {  { 
   /* Health expectancies */    int i,ii=0,ip,j; 
   int i, j, nhstepm, hstepm, h;    double sum; 
   double age, agelim,hf;   
   double ***p3mat;    for (i=1;i<=n;i++) { 
        ip=indx[i]; 
   fprintf(ficreseij,"# Health expectancies\n");      sum=b[ip]; 
   fprintf(ficreseij,"# Age");      b[ip]=b[i]; 
   for(i=1; i<=nlstate;i++)      if (ii) 
     for(j=1; j<=nlstate;j++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficreseij," %1d-%1d",i,j);      else if (sum) ii=i; 
   fprintf(ficreseij,"\n");      b[i]=sum; 
     } 
   hstepm=1*YEARM; /*  Every j years of age (in month) */    for (i=n;i>=1;i--) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   agelim=AGESUP;      b[i]=sum/a[i][i]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    } 
     /* nhstepm age range expressed in number of stepm */  } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years = 20*12/6=40 stepm */  /************ Frequencies ********************/
     if (stepm >= YEARM) hstepm=1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  {  /* Some frequencies */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    int first;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double ***freq; /* Frequencies */
     double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for(i=1; i<=nlstate;i++)    FILE *ficresp;
       for(j=1; j<=nlstate;j++)    char fileresp[FILENAMELENGTH];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    
           eij[i][j][(int)age] +=p3mat[i][j][h];    pp=vector(1,nlstate);
         }    prop=matrix(1,nlstate,iagemin,iagemax+3);
        strcpy(fileresp,"p");
     hf=1;    strcat(fileresp,fileres);
     if (stepm >= YEARM) hf=stepm/YEARM;    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficreseij,"%.0f",age );      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for(j=1; j<=nlstate;j++){      exit(0);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    }
       }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     fprintf(ficreseij,"\n");    j1=0;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   }    j=cptcoveff;
 }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
 /************ Variance ******************/    first=1;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    for(k1=1; k1<=j;k1++){
   /* Variance of health expectancies */      for(i1=1; i1<=ncodemax[k1];i1++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        j1++;
   double **newm;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double **dnewm,**doldm;          scanf("%d", i);*/
   int i, j, nhstepm, hstepm, h;        for (i=-1; i<=nlstate+ndeath; i++)  
   int k, cptcode;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   double *xp;            for(m=iagemin; m <= iagemax+3; m++)
   double **gp, **gm;              freq[i][jk][m]=0;
   double ***gradg, ***trgradg;  
   double ***p3mat;      for (i=1; i<=nlstate; i++)  
   double age,agelim;        for(m=iagemin; m <= iagemax+3; m++)
   int theta;          prop[i][m]=0;
         
    fprintf(ficresvij,"# Covariances of life expectancies\n");        dateintsum=0;
   fprintf(ficresvij,"# Age");        k2cpt=0;
   for(i=1; i<=nlstate;i++)        for (i=1; i<=imx; i++) {
     for(j=1; j<=nlstate;j++)          bool=1;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          if  (cptcovn>0) {
   fprintf(ficresvij,"\n");            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   xp=vector(1,npar);                bool=0;
   dnewm=matrix(1,nlstate,1,npar);          }
   doldm=matrix(1,nlstate,1,nlstate);          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
   hstepm=1*YEARM; /* Every year of age */              k2=anint[m][i]+(mint[m][i]/12.);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              if ((k2>=dateprev1) && (k2<=dateprev2)) {
   agelim = AGESUP;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     if (stepm >= YEARM) hstepm=1;                if (m<lastpass) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                }
     gp=matrix(0,nhstepm,1,nlstate);                
     gm=matrix(0,nhstepm,1,nlstate);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     for(theta=1; theta <=npar; theta++){                  k2cpt++;
       for(i=1; i<=npar; i++){ /* Computes gradient */                }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              }
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
          
       if (popbased==1) {        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1; j<= nlstate; j++){          fprintf(ficresp, "**********\n#");
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         }        fprintf(ficresp, "\n");
       }        
            for(i=iagemin; i <= iagemax+3; i++){
       for(i=1; i<=npar; i++) /* Computes gradient */          if(i==iagemax+3){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            fprintf(ficlog,"Total");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            if(first==1){
               first=0;
       if (popbased==1) {              printf("See log file for details...\n");
         for(i=1; i<=nlstate;i++)            }
           prlim[i][i]=probs[(int)age][i][ij];            fprintf(ficlog,"Age %d", i);
       }          }
           for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for(h=0; h<=nhstepm; h++){              pp[jk] += freq[jk][m][i]; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pos=0; m <=0 ; m++)
       }              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
       for(j=1; j<= nlstate; j++)              if(first==1){
         for(h=0; h<=nhstepm; h++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              }
         }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     } /* End theta */            }else{
               if(first==1)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(h=0; h<=nhstepm; h++)            }
       for(j=1; j<=nlstate;j++)          }
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for(i=1;i<=nlstate;i++)              pp[jk] += freq[jk][m][i];
       for(j=1;j<=nlstate;j++)          }       
         vareij[i][j][(int)age] =0.;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     for(h=0;h<=nhstepm;h++){            pos += pp[jk];
       for(k=0;k<=nhstepm;k++){            posprop += prop[jk][i];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for(jk=1; jk <=nlstate ; jk++){
         for(i=1;i<=nlstate;i++)            if(pos>=1.e-5){
           for(j=1;j<=nlstate;j++)              if(first==1)
             vareij[i][j][(int)age] += doldm[i][j];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }            }else{
     h=1;              if(first==1)
     if (stepm >= YEARM) h=stepm/YEARM;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficresvij,"%.0f ",age );              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){            if( i <= iagemax){
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);              if(pos>=1.e-5){
       }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     fprintf(ficresvij,"\n");                probs[i][jk][j1]= pp[jk]/pos;
     free_matrix(gp,0,nhstepm,1,nlstate);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     free_matrix(gm,0,nhstepm,1,nlstate);              }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              else
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   } /* End age */          }
            
   free_vector(xp,1,npar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   free_matrix(doldm,1,nlstate,1,npar);            for(m=-1; m <=nlstate+ndeath; m++)
   free_matrix(dnewm,1,nlstate,1,nlstate);              if(freq[jk][m][i] !=0 ) {
               if(first==1)
 }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 /************ Variance of prevlim ******************/              }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          if(i <= iagemax)
 {            fprintf(ficresp,"\n");
   /* Variance of prevalence limit */          if(first==1)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            printf("Others in log...\n");
   double **newm;          fprintf(ficlog,"\n");
   double **dnewm,**doldm;        }
   int i, j, nhstepm, hstepm;      }
   int k, cptcode;    }
   double *xp;    dateintmean=dateintsum/k2cpt; 
   double *gp, *gm;   
   double **gradg, **trgradg;    fclose(ficresp);
   double age,agelim;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   int theta;    free_vector(pp,1,nlstate);
        free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    /* End of Freq */
   fprintf(ficresvpl,"# Age");  }
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);  /************ Prevalence ********************/
   fprintf(ficresvpl,"\n");  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   xp=vector(1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   dnewm=matrix(1,nlstate,1,npar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   doldm=matrix(1,nlstate,1,nlstate);       We still use firstpass and lastpass as another selection.
      */
   hstepm=1*YEARM; /* Every year of age */   
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   agelim = AGESUP;    double ***freq; /* Frequencies */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double *pp, **prop;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double pos,posprop; 
     if (stepm >= YEARM) hstepm=1;    double  y2; /* in fractional years */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int iagemin, iagemax;
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);    iagemin= (int) agemin;
     gm=vector(1,nlstate);    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
     for(theta=1; theta <=npar; theta++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    j1=0;
       }    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    j=cptcoveff;
       for(i=1;i<=nlstate;i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         gp[i] = prlim[i][i];    
        for(k1=1; k1<=j;k1++){
       for(i=1; i<=npar; i++) /* Computes gradient */      for(i1=1; i1<=ncodemax[k1];i1++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        j1++;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
       for(i=1;i<=nlstate;i++)        for (i=1; i<=nlstate; i++)  
         gm[i] = prlim[i][i];          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
       for(i=1;i<=nlstate;i++)       
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        for (i=1; i<=imx; i++) { /* Each individual */
     } /* End theta */          bool=1;
           if  (cptcovn>0) {
     trgradg =matrix(1,nlstate,1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for(j=1; j<=nlstate;j++)                bool=0;
       for(theta=1; theta <=npar; theta++)          } 
         trgradg[j][theta]=gradg[theta][j];          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     for(i=1;i<=nlstate;i++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       varpl[i][(int)age] =0.;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(i=1;i<=nlstate;i++)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     fprintf(ficresvpl,"%.0f ",age );                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(i=1; i<=nlstate;i++)                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                } 
     fprintf(ficresvpl,"\n");              }
     free_vector(gp,1,nlstate);            } /* end selection of waves */
     free_vector(gm,1,nlstate);          }
     free_matrix(gradg,1,npar,1,nlstate);        }
     free_matrix(trgradg,1,nlstate,1,npar);        for(i=iagemin; i <= iagemax+3; i++){  
   } /* End age */          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   free_vector(xp,1,npar);            posprop += prop[jk][i]; 
   free_matrix(doldm,1,nlstate,1,npar);          } 
   free_matrix(dnewm,1,nlstate,1,nlstate);  
           for(jk=1; jk <=nlstate ; jk++){     
 }            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
 /************ Variance of one-step probabilities  ******************/                probs[i][jk][j1]= prop[jk][i]/posprop;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)              } 
 {            } 
   int i, j;          }/* end jk */ 
   int k=0, cptcode;        }/* end i */ 
   double **dnewm,**doldm;      } /* end i1 */
   double *xp;    } /* end k1 */
   double *gp, *gm;    
   double **gradg, **trgradg;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double age,agelim, cov[NCOVMAX];    /*free_vector(pp,1,nlstate);*/
   int theta;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   char fileresprob[FILENAMELENGTH];  }  /* End of prevalence */
   
   strcpy(fileresprob,"prob");  /************* Waves Concatenation ***************/
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     printf("Problem with resultfile: %s\n", fileresprob);  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);       Death is a valid wave (if date is known).
         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   xp=vector(1,npar);       and mw[mi+1][i]. dh depends on stepm.
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      int i, mi, m;
   cov[1]=1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   for (age=bage; age<=fage; age ++){       double sum=0., jmean=0.;*/
     cov[2]=age;    int first;
     gradg=matrix(1,npar,1,9);    int j, k=0,jk, ju, jl;
     trgradg=matrix(1,9,1,npar);    double sum=0.;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    first=0;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    jmin=1e+5;
        jmax=-1;
     for(theta=1; theta <=npar; theta++){    jmean=0.;
       for(i=1; i<=npar; i++)    for(i=1; i<=imx; i++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      mi=0;
            m=firstpass;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      while(s[m][i] <= nlstate){
            if(s[m][i]>=1)
       k=0;          mw[++mi][i]=m;
       for(i=1; i<= (nlstate+ndeath); i++){        if(m >=lastpass)
         for(j=1; j<=(nlstate+ndeath);j++){          break;
            k=k+1;        else
           gp[k]=pmmij[i][j];          m++;
         }      }/* end while */
       }      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
       for(i=1; i<=npar; i++)        /* if(mi==0)  never been interviewed correctly before death */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);           /* Only death is a correct wave */
            mw[mi][i]=m;
       }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
       k=0;      wav[i]=mi;
       for(i=1; i<=(nlstate+ndeath); i++){      if(mi==0){
         for(j=1; j<=(nlstate+ndeath);j++){        if(first==0){
           k=k+1;          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
           gm[k]=pmmij[i][j];          first=1;
         }        }
       }        if(first==1){
                fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        } /* end mi==0 */
     }    } /* End individuals */
   
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    for(i=1; i<=imx; i++){
       for(theta=1; theta <=npar; theta++)      for(mi=1; mi<wav[i];mi++){
       trgradg[j][theta]=gradg[theta][j];        if (stepm <=0)
            dh[mi][i]=1;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        else{
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
      pmij(pmmij,cov,ncovmodel,x,nlstate);            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             if(j==0) j=1;  /* Survives at least one month after exam */
      k=0;            k=k+1;
      for(i=1; i<=(nlstate+ndeath); i++){            if (j >= jmax) jmax=j;
        for(j=1; j<=(nlstate+ndeath);j++){            if (j <= jmin) jmin=j;
          k=k+1;            sum=sum+j;
          gm[k]=pmmij[i][j];            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      }            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  }
      /*printf("\n%d ",(int)age);          }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          else{
                    j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            k=k+1;
      }*/            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
   fprintf(ficresprob,"\n%d ",(int)age);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            sum=sum+j;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          }
   }          jk= j/stepm;
           jl= j -jk*stepm;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          ju= j -(jk+1)*stepm;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          if(mle <=1){ 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            if(jl==0){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              dh[mi][i]=jk;
 }              bh[mi][i]=0;
  free_vector(xp,1,npar);            }else{ /* We want a negative bias in order to only have interpolation ie
 fclose(ficresprob);                    * at the price of an extra matrix product in likelihood */
  exit(0);              dh[mi][i]=jk+1;
 }              bh[mi][i]=ju;
             }
 /***********************************************/          }else{
 /**************** Main Program *****************/            if(jl <= -ju){
 /***********************************************/              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
 /*int main(int argc, char *argv[])*/                                   * is higher than the multiple of stepm and negative otherwise.
 int main()                                   */
 {            }
             else{
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              dh[mi][i]=jk+1;
   double agedeb, agefin,hf;              bh[mi][i]=ju;
   double agemin=1.e20, agemax=-1.e20;            }
             if(dh[mi][i]==0){
   double fret;              dh[mi][i]=1; /* At least one step */
   double **xi,tmp,delta;              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   double dum; /* Dummy variable */            }
   double ***p3mat;          }
   int *indx;        } /* end if mle */
   char line[MAXLINE], linepar[MAXLINE];      } /* end wave */
   char title[MAXLINE];    }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    jmean=sum/k;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   char filerest[FILENAMELENGTH];    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   char fileregp[FILENAMELENGTH];   }
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  /*********** Tricode ****************************/
   int firstobs=1, lastobs=10;  void tricode(int *Tvar, int **nbcode, int imx)
   int sdeb, sfin; /* Status at beginning and end */  {
   int c,  h , cpt,l;    
   int ju,jl, mi;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    int cptcode=0;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    cptcoveff=0; 
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;   
   int hstepm, nhstepm;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   int *popage;    for (k=1; k<=7; k++) ncodemax[k]=0;
   
   double bage, fage, age, agelim, agebase;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   double ftolpl=FTOL;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   double **prlim;                                 modality*/ 
   double *severity;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   double ***param; /* Matrix of parameters */        Ndum[ij]++; /*store the modality */
   double  *p;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   double **matcov; /* Matrix of covariance */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   double ***delti3; /* Scale */                                         Tvar[j]. If V=sex and male is 0 and 
   double *delti; /* Scale */                                         female is 1, then  cptcode=1.*/
   double ***eij, ***vareij;      }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;      for (i=0; i<=cptcode; i++) {
   double kk1, kk2;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   double *popeffectif,*popcount;      }
   
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";      ij=1; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   char z[1]="c", occ;            nbcode[Tvar[j]][ij]=k; 
 #include <sys/time.h>            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 #include <time.h>            
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            ij++;
   /* long total_usecs;          }
   struct timeval start_time, end_time;          if (ij > ncodemax[j]) break; 
          }  
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      } 
     }  
   
   printf("\nIMACH, Version 0.7");   for (k=0; k< maxncov; k++) Ndum[k]=0;
   printf("\nEnter the parameter file name: ");  
    for (i=1; i<=ncovmodel-2; i++) { 
 #ifdef windows     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   scanf("%s",pathtot);     ij=Tvar[i];
   getcwd(pathcd, size);     Ndum[ij]++;
   /*cygwin_split_path(pathtot,path,optionfile);   }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/   ij=1;
    for (i=1; i<= maxncov; i++) {
 split(pathtot, path,optionfile);     if((Ndum[i]!=0) && (i<=ncovcol)){
   chdir(path);       Tvaraff[ij]=i; /*For printing */
   replace(pathc,path);       ij++;
 #endif     }
 #ifdef unix   }
   scanf("%s",optionfile);   
 #endif   cptcoveff=ij-1; /*Number of simple covariates*/
   }
 /*-------- arguments in the command line --------*/  
   /*********** Health Expectancies ****************/
   strcpy(fileres,"r");  
   strcat(fileres, optionfile);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   
   /*---------arguments file --------*/  {
     /* Health expectancies */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     printf("Problem with optionfile %s\n",optionfile);    double age, agelim, hf;
     goto end;    double ***p3mat,***varhe;
   }    double **dnewm,**doldm;
     double *xp;
   strcpy(filereso,"o");    double **gp, **gm;
   strcat(filereso,fileres);    double ***gradg, ***trgradg;
   if((ficparo=fopen(filereso,"w"))==NULL) {    int theta;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   /* Reads comments: lines beginning with '#' */    dnewm=matrix(1,nlstate*nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    fprintf(ficreseij,"# Health expectancies\n");
     puts(line);    fprintf(ficreseij,"# Age");
     fputs(line,ficparo);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
   ungetc(c,ficpar);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficreseij,"\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    if(estepm < stepm){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      printf ("Problem %d lower than %d\n",estepm, stepm);
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     fgets(line, MAXLINE, ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
     puts(line);     * This is mainly to measure the difference between two models: for example
     fputs(line,ficparo);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   ungetc(c,ficpar);     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fprintf(ficparo,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
  while((c=getc(ficpar))=='#' && c!= EOF){     * curvature will be obtained if estepm is as small as stepm. */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
     puts(line);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     fputs(line,ficparo);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   ungetc(c,ficpar);       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficparo,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);       survival function given by stepm (the optimization length). Unfortunately it
             means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 while((c=getc(ficpar))=='#' && c!= EOF){       results. So we changed our mind and took the option of the best precision.
     ungetc(c,ficpar);    */
     fgets(line, MAXLINE, ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     puts(line);  
     fputs(line,ficparo);    agelim=AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   ungetc(c,ficpar);      /* nhstepm age range expressed in number of stepm */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   covar=matrix(0,NCOVMAX,1,n);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   cptcovn=0;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
   ncovmodel=2+cptcovn;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /* Read guess parameters */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /* Reads comments: lines beginning with '#' */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     puts(line);  
     fputs(line,ficparo);      /* Computing Variances of health expectancies */
   }  
   ungetc(c,ficpar);       for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for(i=1; i <=nlstate; i++)        }
     for(j=1; j <=nlstate+ndeath-1; j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       fprintf(ficparo,"%1d%1d",i1,j1);        cptj=0;
       printf("%1d%1d",i,j);        for(j=1; j<= nlstate; j++){
       for(k=1; k<=ncovmodel;k++){          for(i=1; i<=nlstate; i++){
         fscanf(ficpar," %lf",&param[i][j][k]);            cptj=cptj+1;
         printf(" %lf",param[i][j][k]);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         fprintf(ficparo," %lf",param[i][j][k]);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       }            }
       fscanf(ficpar,"\n");          }
       printf("\n");        }
       fprintf(ficparo,"\n");       
     }       
          for(i=1; i<=npar; i++) 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   p=param[1][1];        
          cptj=0;
   /* Reads comments: lines beginning with '#' */        for(j=1; j<= nlstate; j++){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1;i<=nlstate;i++){
     ungetc(c,ficpar);            cptj=cptj+1;
     fgets(line, MAXLINE, ficpar);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     puts(line);  
     fputs(line,ficparo);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
   ungetc(c,ficpar);          }
         }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(j=1; j<= nlstate*nlstate; j++)
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for(h=0; h<=nhstepm-1; h++){
   for(i=1; i <=nlstate; i++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);       } 
       printf("%1d%1d",i,j);     
       fprintf(ficparo,"%1d%1d",i1,j1);  /* End theta */
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);       for(h=0; h<=nhstepm-1; h++)
       }        for(j=1; j<=nlstate*nlstate;j++)
       fscanf(ficpar,"\n");          for(theta=1; theta <=npar; theta++)
       printf("\n");            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficparo,"\n");       
     }  
   }       for(i=1;i<=nlstate*nlstate;i++)
   delti=delti3[1][1];        for(j=1;j<=nlstate*nlstate;j++)
            varhe[i][j][(int)age] =0.;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){       printf("%d|",(int)age);fflush(stdout);
     ungetc(c,ficpar);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fgets(line, MAXLINE, ficpar);       for(h=0;h<=nhstepm-1;h++){
     puts(line);        for(k=0;k<=nhstepm-1;k++){
     fputs(line,ficparo);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   ungetc(c,ficpar);          for(i=1;i<=nlstate*nlstate;i++)
              for(j=1;j<=nlstate*nlstate;j++)
   matcov=matrix(1,npar,1,npar);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   for(i=1; i <=npar; i++){        }
     fscanf(ficpar,"%s",&str);      }
     printf("%s",str);      /* Computing expectancies */
     fprintf(ficparo,"%s",str);      for(i=1; i<=nlstate;i++)
     for(j=1; j <=i; j++){        for(j=1; j<=nlstate;j++)
       fscanf(ficpar," %le",&matcov[i][j]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       printf(" %.5le",matcov[i][j]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       fprintf(ficparo," %.5le",matcov[i][j]);            
     }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fscanf(ficpar,"\n");  
     printf("\n");          }
     fprintf(ficparo,"\n");  
   }      fprintf(ficreseij,"%3.0f",age );
   for(i=1; i <=npar; i++)      cptj=0;
     for(j=i+1;j<=npar;j++)      for(i=1; i<=nlstate;i++)
       matcov[i][j]=matcov[j][i];        for(j=1; j<=nlstate;j++){
              cptj++;
   printf("\n");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
       fprintf(ficreseij,"\n");
     /*-------- data file ----------*/     
     if((ficres =fopen(fileres,"w"))==NULL) {      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       printf("Problem with resultfile: %s\n", fileres);goto end;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     fprintf(ficres,"#%s\n",version);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if((fic=fopen(datafile,"r"))==NULL)    {    }
       printf("Problem with datafile: %s\n", datafile);goto end;    printf("\n");
     }    fprintf(ficlog,"\n");
   
     n= lastobs;    free_vector(xp,1,npar);
     severity = vector(1,maxwav);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     outcome=imatrix(1,maxwav+1,1,n);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     num=ivector(1,n);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     moisnais=vector(1,n);  }
     annais=vector(1,n);  
     moisdc=vector(1,n);  /************ Variance ******************/
     andc=vector(1,n);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     agedc=vector(1,n);  {
     cod=ivector(1,n);    /* Variance of health expectancies */
     weight=vector(1,n);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /* double **newm;*/
     mint=matrix(1,maxwav,1,n);    double **dnewm,**doldm;
     anint=matrix(1,maxwav,1,n);    double **dnewmp,**doldmp;
     s=imatrix(1,maxwav+1,1,n);    int i, j, nhstepm, hstepm, h, nstepm ;
     adl=imatrix(1,maxwav+1,1,n);        int k, cptcode;
     tab=ivector(1,NCOVMAX);    double *xp;
     ncodemax=ivector(1,8);    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     i=1;    double **gradgp, **trgradgp; /* for var p point j */
     while (fgets(line, MAXLINE, fic) != NULL)    {    double *gpp, *gmp; /* for var p point j */
       if ((i >= firstobs) && (i <=lastobs)) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
            double ***p3mat;
         for (j=maxwav;j>=1;j--){    double age,agelim, hf;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double ***mobaverage;
           strcpy(line,stra);    int theta;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    char digit[4];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    char digitp[25];
         }  
            char fileresprobmorprev[FILENAMELENGTH];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    if(popbased==1){
       if(mobilav!=0)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        strcpy(digitp,"-populbased-mobilav-");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      else strcpy(digitp,"-populbased-nomobil-");
     }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    else 
         for (j=ncov;j>=1;j--){      strcpy(digitp,"-stablbased-");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    if (mobilav!=0) {
         num[i]=atol(stra);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
              if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
         i=i+1;    }
       }  
     }    strcpy(fileresprobmorprev,"prmorprev"); 
     /* printf("ii=%d", ij);    sprintf(digit,"%-d",ij);
        scanf("%d",i);*/    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   imx=i-1; /* Number of individuals */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   /* for (i=1; i<=imx; i++){    strcat(fileresprobmorprev,fileres);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }    }
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /* Calculation of the number of parameter from char model*/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   Tvar=ivector(1,15);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   Tprod=ivector(1,15);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   Tvaraff=ivector(1,15);      fprintf(ficresprobmorprev," p.%-d SE",j);
   Tvard=imatrix(1,15,1,2);      for(i=1; i<=nlstate;i++)
   Tage=ivector(1,15);              fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
        }  
   if (strlen(model) >1){    fprintf(ficresprobmorprev,"\n");
     j=0, j1=0, k1=1, k2=1;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     j=nbocc(model,'+');      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
     j1=nbocc(model,'*');      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     cptcovn=j+1;      exit(0);
     cptcovprod=j1;    }
        else{
          fprintf(ficgp,"\n# Routine varevsij");
     strcpy(modelsav,model);    }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       printf("Error. Non available option model=%s ",model);      printf("Problem with html file: %s\n", optionfilehtm);
       goto end;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     }      exit(0);
        }
     for(i=(j+1); i>=1;i--){    else{
       cutv(stra,strb,modelsav,'+');      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    }
       /*scanf("%d",i);*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
         if (strcmp(strc,"age")==0) {    fprintf(ficresvij,"# Age");
           cptcovprod--;    for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strd,'V');      for(j=1; j<=nlstate;j++)
           Tvar[i]=atoi(stre);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           cptcovage++;    fprintf(ficresvij,"\n");
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
         else if (strcmp(strd,"age")==0) {    doldm=matrix(1,nlstate,1,nlstate);
           cptcovprod--;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           cutv(strb,stre,strc,'V');    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tvar[i]=atoi(stre);  
           cptcovage++;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           Tage[cptcovage]=i;    gpp=vector(nlstate+1,nlstate+ndeath);
         }    gmp=vector(nlstate+1,nlstate+ndeath);
         else {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           cutv(strb,stre,strc,'V');    
           Tvar[i]=ncov+k1;    if(estepm < stepm){
           cutv(strb,strc,strd,'V');      printf ("Problem %d lower than %d\n",estepm, stepm);
           Tprod[k1]=i;    }
           Tvard[k1][1]=atoi(strc);    else  hstepm=estepm;   
           Tvard[k1][2]=atoi(stre);    /* For example we decided to compute the life expectancy with the smallest unit */
           Tvar[cptcovn+k2]=Tvard[k1][1];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       nhstepm is the number of hstepm from age to agelim 
           for (k=1; k<=lastobs;k++)       nstepm is the number of stepm from age to agelin. 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       Look at hpijx to understand the reason of that which relies in memory size
           k1++;       and note for a fixed period like k years */
           k2=k2+2;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed every two years of age and if
       else {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/       results. So we changed our mind and took the option of the best precision.
        /*  scanf("%d",i);*/    */
       cutv(strd,strc,strb,'V');    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       Tvar[i]=atoi(strc);    agelim = AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       strcpy(modelsav,stra);        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         scanf("%d",i);*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 }      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/      for(theta=1; theta <=npar; theta++){
     fclose(fic);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
     /*  if(mle==1){*/        }
     if (weightopt != 1) { /* Maximisation without weights*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(i=1;i<=n;i++) weight[i]=1.0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }  
     /*-calculation of age at interview from date of interview and age at death -*/        if (popbased==1) {
     agev=matrix(1,maxwav,1,imx);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
    for (i=1; i<=imx; i++)              prlim[i][i]=probs[(int)age][i][ij];
      for(m=2; (m<= maxwav); m++)          }else{ /* mobilav */ 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for(i=1; i<=nlstate;i++)
          anint[m][i]=9999;              prlim[i][i]=mobaverage[(int)age][i][ij];
          s[m][i]=-1;          }
        }        }
        
     for (i=1; i<=imx; i++)  {        for(j=1; j<= nlstate; j++){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(h=0; h<=nhstepm; h++){
       for(m=1; (m<= maxwav); m++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         if(s[m][i] >0){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           if (s[m][i] == nlstate+1) {          }
             if(agedc[i]>0)        }
               if(moisdc[i]!=99 && andc[i]!=9999)        /* This for computing probability of death (h=1 means
               agev[m][i]=agedc[i];           computed over hstepm matrices product = hstepm*stepm months) 
             else {           as a weighted average of prlim.
               if (andc[i]!=9999){        */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               agev[m][i]=-1;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
               }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
             }        }    
           }        /* end probability of death */
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
             if(mint[m][i]==99 || anint[m][i]==9999)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               agev[m][i]=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             else if(agev[m][i] <agemin){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               agemin=agev[m][i];   
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        if (popbased==1) {
             }          if(mobilav ==0){
             else if(agev[m][i] >agemax){            for(i=1; i<=nlstate;i++)
               agemax=agev[m][i];              prlim[i][i]=probs[(int)age][i][ij];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          }else{ /* mobilav */ 
             }            for(i=1; i<=nlstate;i++)
             /*agev[m][i]=anint[m][i]-annais[i];*/              prlim[i][i]=mobaverage[(int)age][i][ij];
             /*   agev[m][i] = age[i]+2*m;*/          }
           }        }
           else { /* =9 */  
             agev[m][i]=1;        for(j=1; j<= nlstate; j++){
             s[m][i]=-1;          for(h=0; h<=nhstepm; h++){
           }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         else /*= 0 Unknown */          }
           agev[m][i]=1;        }
       }        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
     }           as a weighted average of prlim.
     for (i=1; i<=imx; i++)  {        */
       for(m=1; (m<= maxwav); m++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         if (s[m][i] > (nlstate+ndeath)) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           printf("Error: Wrong value in nlstate or ndeath\n");             gmp[j] += prlim[i][i]*p3mat[i][j][1];
           goto end;        }    
         }        /* end probability of death */
       }  
     }        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     free_vector(moisnais,1,n);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     free_vector(annais,1,n);        }
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n);      } /* End theta */
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
          for(h=0; h<=nhstepm; h++) /* veij */
     wav=ivector(1,imx);        for(j=1; j<=nlstate;j++)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          for(theta=1; theta <=npar; theta++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            trgradg[h][j][theta]=gradg[h][theta][j];
      
     /* Concatenates waves */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       ncodemax[1]=1;      for(i=1;i<=nlstate;i++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] =0.;
    codtab=imatrix(1,100,1,10);  
    h=0;      for(h=0;h<=nhstepm;h++){
    m=pow(2,cptcoveff);        for(k=0;k<=nhstepm;k++){
            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
    for(k=1;k<=cptcoveff; k++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
      for(i=1; i <=(m/pow(2,k));i++){          for(i=1;i<=nlstate;i++)
        for(j=1; j <= ncodemax[k]; j++){            for(j=1;j<=nlstate;j++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
            h++;        }
            if (h>m) h=1;codtab[h][k]=j;      }
          }    
        }      /* pptj */
      }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
    }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
    /*for(i=1; i <=m ;i++){          varppt[j][i]=doldmp[j][i];
      for(k=1; k <=cptcovn; k++){      /* end ppptj */
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);      /*  x centered again */
      }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
      printf("\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    }   
    scanf("%d",i);*/      if (popbased==1) {
            if(mobilav ==0){
    /* Calculates basic frequencies. Computes observed prevalence at single age          for(i=1; i<=nlstate;i++)
        and prints on file fileres'p'. */            prlim[i][i]=probs[(int)age][i][ij];
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev);        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prlim[i][i]=mobaverage[(int)age][i][ij];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      /* This for computing probability of death (h=1 means
               computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     /* For Powell, parameters are in a vector p[] starting at p[1]         as a weighted average of prlim.
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     if(mle==1){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      }    
     }      /* end probability of death */
      
     /*--------- results files --------------*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
    fprintf(ficres,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
    fprintf(ficres,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
    jk=1;        }
    fprintf(ficres,"# Parameters\n");      } 
    printf("# Parameters\n");      fprintf(ficresprobmorprev,"\n");
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){      fprintf(ficresvij,"%.0f ",age );
        if (k != i)      for(i=1; i<=nlstate;i++)
          {        for(j=1; j<=nlstate;j++){
            printf("%d%d ",i,k);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
            fprintf(ficres,"%1d%1d ",i,k);        }
            for(j=1; j <=ncovmodel; j++){      fprintf(ficresvij,"\n");
              printf("%f ",p[jk]);      free_matrix(gp,0,nhstepm,1,nlstate);
              fprintf(ficres,"%f ",p[jk]);      free_matrix(gm,0,nhstepm,1,nlstate);
              jk++;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
            }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
            printf("\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            fprintf(ficres,"\n");    } /* End age */
          }    free_vector(gpp,nlstate+1,nlstate+ndeath);
      }    free_vector(gmp,nlstate+1,nlstate+ndeath);
    }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
  if(mle==1){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* Computing hessian and covariance matrix */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     ftolhess=ftol; /* Usually correct */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     hesscov(matcov, p, npar, delti, ftolhess, func);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
  }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficres,"# Scales\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("# Scales\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
         if (j!=i) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
           fprintf(ficres,"%1d%1d",i,j);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
           printf("%1d%1d",i,j);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
           for(k=1; k<=ncovmodel;k++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             printf(" %.5e",delti[jk]);  */
             fprintf(ficres," %.5e",delti[jk]);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
             jk++;  
           }    free_vector(xp,1,npar);
           printf("\n");    free_matrix(doldm,1,nlstate,1,nlstate);
           fprintf(ficres,"\n");    free_matrix(dnewm,1,nlstate,1,npar);
         }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     k=1;    fclose(ficresprobmorprev);
     fprintf(ficres,"# Covariance\n");    fclose(ficgp);
     printf("# Covariance\n");    fclose(fichtm);
     for(i=1;i<=npar;i++){  }  
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;  /************ Variance of prevlim ******************/
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
       printf("%s%d%d",alph[k],i1,tab[i]);*/  {
       fprintf(ficres,"%3d",i);    /* Variance of prevalence limit */
       printf("%3d",i);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       for(j=1; j<=i;j++){    double **newm;
         fprintf(ficres," %.5e",matcov[i][j]);    double **dnewm,**doldm;
         printf(" %.5e",matcov[i][j]);    int i, j, nhstepm, hstepm;
       }    int k, cptcode;
       fprintf(ficres,"\n");    double *xp;
       printf("\n");    double *gp, *gm;
       k++;    double **gradg, **trgradg;
     }    double age,agelim;
        int theta;
     while((c=getc(ficpar))=='#' && c!= EOF){     
       ungetc(c,ficpar);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       fgets(line, MAXLINE, ficpar);    fprintf(ficresvpl,"# Age");
       puts(line);    for(i=1; i<=nlstate;i++)
       fputs(line,ficparo);        fprintf(ficresvpl," %1d-%1d",i,i);
     }    fprintf(ficresvpl,"\n");
     ungetc(c,ficpar);  
      xp=vector(1,npar);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    dnewm=matrix(1,nlstate,1,npar);
        doldm=matrix(1,nlstate,1,nlstate);
     if (fage <= 2) {    
       bage = agemin;    hstepm=1*YEARM; /* Every year of age */
       fage = agemax;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     }    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          gradg=matrix(1,npar,1,nlstate);
 /*------------ gnuplot -------------*/      gp=vector(1,nlstate);
 chdir(pathcd);      gm=vector(1,nlstate);
   if((ficgp=fopen("graph.plt","w"))==NULL) {  
     printf("Problem with file graph.gp");goto end;      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient */
 #ifdef windows          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficgp,"cd \"%s\" \n",pathc);        }
 #endif        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 m=pow(2,cptcoveff);        for(i=1;i<=nlstate;i++)
            gp[i] = prlim[i][i];
  /* 1eme*/      
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for(i=1; i<=npar; i++) /* Computes gradient */
    for (k1=1; k1<= m ; k1 ++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 #ifdef windows        for(i=1;i<=nlstate;i++)
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          gm[i] = prlim[i][i];
 #endif  
 #ifdef unix        for(i=1;i<=nlstate;i++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 #endif      } /* End theta */
   
 for (i=1; i<= nlstate ; i ++) {      trgradg =matrix(1,nlstate,1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=1; j<=nlstate;j++)
 }        for(theta=1; theta <=npar; theta++)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          trgradg[j][theta]=gradg[theta][j];
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(i=1;i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        varpl[i][(int)age] =0.;
 }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      for (i=1; i<= nlstate ; i ++) {      for(i=1;i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        fprintf(ficresvpl,"%.0f ",age );
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for(i=1; i<=nlstate;i++)
 #ifdef unix        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 fprintf(ficgp,"\nset ter gif small size 400,300");      fprintf(ficresvpl,"\n");
 #endif      free_vector(gp,1,nlstate);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      free_vector(gm,1,nlstate);
    }      free_matrix(gradg,1,npar,1,nlstate);
   }      free_matrix(trgradg,1,nlstate,1,npar);
   /*2 eme*/    } /* End age */
   
   for (k1=1; k1<= m ; k1 ++) {    free_vector(xp,1,npar);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    free_matrix(doldm,1,nlstate,1,npar);
        free_matrix(dnewm,1,nlstate,1,nlstate);
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /************ Variance of one-step probabilities  ******************/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }      int i, j=0,  i1, k1, l1, t, tj;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int k2, l2, j1,  z1;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    int k=0,l, cptcode;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    int first=1, first1;
       for (j=1; j<= nlstate+1 ; j ++) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp;
 }      double *gp, *gm;
       fprintf(ficgp,"\" t\"\" w l 0,");    double **gradg, **trgradg;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double **mu;
       for (j=1; j<= nlstate+1 ; j ++) {    double age,agelim, cov[NCOVMAX];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int theta;
 }      char fileresprob[FILENAMELENGTH];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    char fileresprobcov[FILENAMELENGTH];
       else fprintf(ficgp,"\" t\"\" w l 0,");    char fileresprobcor[FILENAMELENGTH];
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    double ***varpij;
   }  
      strcpy(fileresprob,"prob"); 
   /*3eme*/    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   for (k1=1; k1<= m ; k1 ++) {      printf("Problem with resultfile: %s\n", fileresprob);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       k=2+nlstate*(cpt-1);    }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    strcpy(fileresprobcov,"probcov"); 
       for (i=1; i< nlstate ; i ++) {    strcat(fileresprobcov,fileres);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }    }
   }    strcpy(fileresprobcor,"probcor"); 
      strcat(fileresprobcor,fileres);
   /* CV preval stat */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   for (k1=1; k1<= m ; k1 ++) {      printf("Problem with resultfile: %s\n", fileresprobcor);
     for (cpt=1; cpt<nlstate ; cpt ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       k=3;    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for (i=1; i< nlstate ; i ++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficgp,"+$%d",k+i+1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
          printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       l=3+(nlstate+ndeath)*cpt;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    
       for (i=1; i< nlstate ; i ++) {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         l=3+(nlstate+ndeath)*cpt;    fprintf(ficresprob,"# Age");
         fprintf(ficgp,"+$%d",l+i+1);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       }    fprintf(ficresprobcov,"# Age");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficresprobcov,"# Age");
     }  
   }    
     for(i=1; i<=nlstate;i++)
   /* proba elementaires */      for(j=1; j<=(nlstate+ndeath);j++){
    for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       if (k != i) {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         for(j=1; j <=ncovmodel; j++){      }  
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/   /* fprintf(ficresprob,"\n");
           /*fprintf(ficgp,"%s",alph[1]);*/    fprintf(ficresprobcov,"\n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fprintf(ficresprobcor,"\n");
           jk++;   */
           fprintf(ficgp,"\n");   xp=vector(1,npar);
         }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   for(jk=1; jk <=m; jk++) {    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
    i=1;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
    for(k2=1; k2<=nlstate; k2++) {      exit(0);
      k3=i;    }
      for(k=1; k<=(nlstate+ndeath); k++) {    else{
        if (k != k2){      fprintf(ficgp,"\n# Routine varprob");
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    }
 ij=1;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
         for(j=3; j <=ncovmodel; j++) {      printf("Problem with html file: %s\n", optionfilehtm);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      exit(0);
             ij++;    }
           }    else{
           else      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      fprintf(fichtm,"\n");
         }  
           fprintf(ficgp,")/(1");      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
              fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         for(k1=1; k1 <=nlstate; k1++){        fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;    }
           for(j=3; j <=ncovmodel; j++){  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    cov[1]=1;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    tj=cptcoveff;
             ij++;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           }    j1=0;
           else    for(t=1; t<=tj;t++){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for(i1=1; i1<=ncodemax[t];i1++){ 
           }        j1++;
           fprintf(ficgp,")");        if  (cptcovn>0) {
         }          fprintf(ficresprob, "\n#********** Variable "); 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          fprintf(ficresprob, "**********\n#\n");
         i=i+ncovmodel;          fprintf(ficresprobcov, "\n#********** Variable "); 
        }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficresprobcov, "**********\n#\n");
    }          
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          fprintf(ficgp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficgp, "**********\n#\n");
   fclose(ficgp);          
              
 chdir(path);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_ivector(wav,1,imx);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficresprobcor, "\n#********** Variable ");    
     free_ivector(num,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(agedc,1,n);          fprintf(ficresprobcor, "**********\n#");    
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        }
     fclose(ficparo);        
     fclose(ficres);        for (age=bage; age<=fage; age ++){ 
     /*  }*/          cov[2]=age;
              for (k=1; k<=cptcovn;k++) {
    /*________fin mle=1_________*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
              }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++)
     /* No more information from the sample is required now */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /* Reads comments: lines beginning with '#' */          
   while((c=getc(ficpar))=='#' && c!= EOF){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     ungetc(c,ficpar);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fgets(line, MAXLINE, ficpar);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     puts(line);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);      
   }          for(theta=1; theta <=npar; theta++){
   ungetc(c,ficpar);            for(i=1; i<=npar; i++)
                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            
 /*--------- index.htm --------*/            k=0;
             for(i=1; i<= (nlstate); i++){
   strcpy(optionfilehtm,optionfile);              for(j=1; j<=(nlstate+ndeath);j++){
   strcat(optionfilehtm,".htm");                k=k+1;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                gp[k]=pmmij[i][j];
     printf("Problem with %s \n",optionfilehtm);goto end;              }
   }            }
             
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">            for(i=1; i<=npar; i++)
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 Total number of observations=%d <br>      
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 <hr  size=\"2\" color=\"#EC5E5E\">            k=0;
 <li>Outputs files<br><br>\n            for(i=1; i<=(nlstate); i++){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              for(j=1; j<=(nlstate+ndeath);j++){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>                k=k+1;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>                gm[k]=pmmij[i][j];
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>              }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>            }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>       
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>          }
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>  
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
  fprintf(fichtm," <li>Graphs</li><p>");              trgradg[j][theta]=gradg[theta][j];
           
  m=cptcoveff;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  j1=0;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  for(k1=1; k1<=m;k1++){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    for(i1=1; i1<=ncodemax[k1];i1++){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        j1++;  
        if (cptcovn > 0) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          
          for (cpt=1; cpt<=cptcoveff;cpt++)          k=0;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          for(i=1; i<=(nlstate); i++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            for(j=1; j<=(nlstate+ndeath);j++){
        }              k=k+1;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              mu[k][(int) age]=pmmij[i][j];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                }
        for(cpt=1; cpt<nlstate;cpt++){          }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
        }              varpij[i][j][(int)age] = doldm[i][j];
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          /*printf("\n%d ",(int)age);
 interval) in state (%d): v%s%d%d.gif <br>            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      for(cpt=1; cpt<=nlstate;cpt++) {            }*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          fprintf(ficresprob,"\n%d ",(int)age);
      }          fprintf(ficresprobcov,"\n%d ",(int)age);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          fprintf(ficresprobcor,"\n%d ",(int)age);
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 fprintf(fichtm,"\n</body>");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
    }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 fclose(fichtm);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   /*--------------- Prevalence limit --------------*/          i=0;
            for (k=1; k<=(nlstate);k++){
   strcpy(filerespl,"pl");            for (l=1; l<=(nlstate+ndeath);l++){ 
   strcat(filerespl,fileres);              i=i++;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   }              for (j=1; j<=i;j++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fprintf(ficrespl,"#Prevalence limit\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   fprintf(ficrespl,"#Age ");              }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            }
   fprintf(ficrespl,"\n");          }/* end of loop for state */
          } /* end of loop for age */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* Confidence intervalle of pij  */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nset noparametric;unset label");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   k=0;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   agebase=agemin;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   agelim=agemax;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   ftolpl=1.e-10;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   i1=cptcoveff;        */
   if (cptcovn < 1){i1=1;}  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   for(cptcov=1;cptcov<=i1;cptcov++){        first1=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (k2=1; k2<=(nlstate);k2++){
         k=k+1;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            if(l2==k2) continue;
         fprintf(ficrespl,"\n#******");            j=(k2-1)*(nlstate+ndeath)+l2;
         for(j=1;j<=cptcoveff;j++)            for (k1=1; k1<=(nlstate);k1++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         fprintf(ficrespl,"******\n");                if(l1==k1) continue;
                        i=(k1-1)*(nlstate+ndeath)+l1;
         for (age=agebase; age<=agelim; age++){                if(i<=j) continue;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                for (age=bage; age<=fage; age ++){ 
           fprintf(ficrespl,"%.0f",age );                  if ((int)age %5==0){
           for(i=1; i<=nlstate;i++)                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficrespl," %.5f", prlim[i][i]);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficrespl,"\n");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    mu1=mu[i][(int) age]/stepm*YEARM ;
       }                    mu2=mu[j][(int) age]/stepm*YEARM;
     }                    c12=cv12/sqrt(v1*v2);
   fclose(ficrespl);                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /*------------- h Pij x at various ages ------------*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      /* Eigen vectors */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    /*v21=sqrt(1.-v11*v11); *//* error */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                    v21=(lc1-v1)/cv12*v11;
   }                    v12=-v21;
   printf("Computing pij: result on file '%s' \n", filerespij);                    v22=v11;
                      tnalp=v21/v11;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    if(first1==1){
   /*if (stepm<=24) stepsize=2;*/                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   agelim=AGESUP;                    }
   hstepm=stepsize*YEARM; /* Every year of age */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                    /*printf(fignu*/
                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   k=0;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   for(cptcov=1;cptcov<=i1;cptcov++){                    if(first==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      first=0;
       k=k+1;                      fprintf(ficgp,"\nset parametric;unset label");
         fprintf(ficrespij,"\n#****** ");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
         fprintf(ficrespij,"******\n");                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                              fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           oldm=oldms;savm=savms;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           fprintf(ficrespij,"# Age");                    }else{
           for(i=1; i<=nlstate;i++)                      first=0;
             for(j=1; j<=nlstate+ndeath;j++)                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
               fprintf(ficrespij," %1d-%1d",i,j);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           fprintf(ficrespij,"\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           for (h=0; h<=nhstepm; h++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             for(i=1; i<=nlstate;i++)                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               for(j=1; j<=nlstate+ndeath;j++)                    }/* if first */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                  } /* age mod 5 */
             fprintf(ficrespij,"\n");                } /* end loop age */
           }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                first=1;
           fprintf(ficrespij,"\n");              } /*l12 */
         }            } /* k12 */
     }          } /*l1 */
   }        }/* k1 */
       } /* loop covariates */
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   fclose(ficrespij);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
   /*---------- Forecasting ------------------*/    fclose(ficresprob);
     fclose(ficresprobcov);
   strcpy(fileresf,"f");    fclose(ficresprobcor);
   strcat(fileresf,fileres);    fclose(ficgp);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fclose(fichtm);
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;  }
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   /******************* Printing html file ***********/
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
  free_matrix(agev,1,maxwav,1,imx);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   /* Mobile average */                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   if (mobilav==1) {    /*char optionfilehtm[FILENAMELENGTH];*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      printf("Problem with %s \n",optionfilehtm), exit(0);
       for (i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    }
           mobaverage[(int)agedeb][i][cptcod]=0.;  
         fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
     for (agedeb=bage+4; agedeb<=fage; agedeb++){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
       for (i=1; i<=nlstate;i++){   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
           for (cpt=0;cpt<=4;cpt++){   - Life expectancies by age and initial health status (estepm=%2d months): 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];     <a href=\"e%s\">e%s</a> <br>\n</li>", \
           }    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       }  
     }     m=cptcoveff;
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;   jj1=0;
   if (stepm<=12) stepsize=1;   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   agelim=AGESUP;       jj1++;
   hstepm=stepsize*YEARM; /* Every year of age */       if (cptcovn > 0) {
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   if (popforecast==1) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     if((ficpop=fopen(popfile,"r"))==NULL)    {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       printf("Problem with population file : %s\n",popfile);goto end;       }
     }       /* Pij */
     popage=ivector(0,AGESUP);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
     popeffectif=vector(0,AGESUP);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
     popcount=vector(0,AGESUP);       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
     i=1;    <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)         /* Stable prevalence in each health state */
       {         for(cpt=1; cpt<nlstate;cpt++){
         i=i+1;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
       }  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     imx=i;         }
         for(cpt=1; cpt<=nlstate;cpt++) {
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   }  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
   for(cptcov=1;cptcov<=i1;cptcov++){       fprintf(fichtm,"\n<br>- Total life expectancy by age and
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  health expectancies in states (1) and (2): e%s%d.png<br>
       k=k+1;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
       fprintf(ficresf,"\n#****** ");     } /* end i1 */
       for(j=1;j<=cptcoveff;j++) {   }/* End k1 */
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"</ul>");
       }  
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
       if (popforecast==1)  fprintf(ficresf," [Population]");   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
       for (agedeb=fage; agedeb>=bage; agedeb--){   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
        if (mobilav==1) {   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
         for(j=1; j<=nlstate;j++)   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);  
         }  /*  if(popforecast==1) fprintf(fichtm,"\n */
         else {  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           for(j=1; j<=nlstate;j++)  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);  /*      <br>",fileres,fileres,fileres,fileres); */
         }    /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);  
       }   m=cptcoveff;
         if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       for (cpt=1; cpt<=nforecast;cpt++) {  
         fprintf(ficresf,"\n");   jj1=0;
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   for(k1=1; k1<=m;k1++){
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     for(i1=1; i1<=ncodemax[k1];i1++){
         nhstepm = nhstepm/hstepm;       jj1++;
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         for (cpt=1; cpt<=cptcoveff;cpt++) 
         oldm=oldms;savm=savms;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                       }
         for (h=0; h<=nhstepm; h++){       for(cpt=1; cpt<=nlstate;cpt++) {
                 fprintf(fichtm,"<br>- Observed and period prevalence (with confident
          if (h*hstepm/YEARM*stepm==cpt)  interval) in state (%d): v%s%d%d.png <br>
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
                 }
               } /* end i1 */
          for(j=1; j<=nlstate+ndeath;j++) {   }/* End k1 */
            kk1=0.;kk2=0;   fprintf(fichtm,"</ul>");
            for(i=1; i<=nlstate;i++) {          fclose(fichtm);
              if (mobilav==1)  }
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];  
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];  /******************* Gnuplot file **************/
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
             }  
            if (h*hstepm/YEARM*stepm==cpt) {    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
              fprintf(ficresf," %.3f", kk1);    int ng;
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
            }      printf("Problem with file %s",optionfilegnuplot);
           }      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
         }    }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
            /*#ifdef windows */
       }      fprintf(ficgp,"cd \"%s\" \n",pathc);
       }      /*#endif */
     }  m=pow(2,cptcoveff);
   }    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   /* 1eme*/
   if (popforecast==1) {    for (cpt=1; cpt<= nlstate ; cpt ++) {
     free_ivector(popage,0,AGESUP);     for (k1=1; k1<= m ; k1 ++) {
     free_vector(popeffectif,0,AGESUP);       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     free_vector(popcount,0,AGESUP);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   }  
   free_imatrix(s,1,maxwav+1,1,n);       for (i=1; i<= nlstate ; i ++) {
   free_vector(weight,1,n);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficresf);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   /*---------- Health expectancies and variances ------------*/       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
   strcpy(filerest,"t");       for (i=1; i<= nlstate ; i ++) {
   strcat(filerest,fileres);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficrest=fopen(filerest,"w"))==NULL) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       } 
   }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(filerese,"e");       }  
   strcat(filerese,fileres);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
   if((ficreseij=fopen(filerese,"w"))==NULL) {     }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }    /*2 eme*/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    
     for (k1=1; k1<= m ; k1 ++) { 
  strcpy(fileresv,"v");      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
   strcat(fileresv,fileres);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      for (i=1; i<= nlstate+1 ; i ++) {
   }        k=2*i;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   k=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }   
       k=k+1;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fprintf(ficrest,"\n#****** ");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficrest,"******\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficreseij,"\n#****** ");        }   
       for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
       fprintf(ficreseij,"******\n");        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresvij,"\n#****** ");          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1;j<=cptcoveff;j++)        }   
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       fprintf(ficresvij,"******\n");        else fprintf(ficgp,"\" t\"\" w l 0,");
       }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;    
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      /*3eme*/
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    for (k1=1; k1<= m ; k1 ++) { 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for (cpt=1; cpt<= nlstate ; cpt ++) {
              k=2+nlstate*(2*cpt-2);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
       fprintf(ficrest,"\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       hf=1;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       if (stepm >= YEARM) hf=stepm/YEARM;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       epj=vector(1,nlstate+1);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for(age=bage; age <=fage ;age++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          
         if (popbased==1) {        */
           for(i=1; i<=nlstate;i++)        for (i=1; i< nlstate ; i ++) {
             prlim[i][i]=probs[(int)age][i][k];          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
         }          
                } 
         fprintf(ficrest," %.0f",age);      }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    /* CV preval stable (period) */
           }    for (k1=1; k1<= m ; k1 ++) { 
           epj[nlstate+1] +=epj[j];      for (cpt=1; cpt<=nlstate ; cpt ++) {
         }        k=3;
         for(i=1, vepp=0.;i <=nlstate;i++)        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           for(j=1;j <=nlstate;j++)        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
             vepp += vareij[i][j][(int)age];        
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        for (i=1; i<= nlstate ; i ++)
         for(j=1;j <=nlstate;j++){          fprintf(ficgp,"+$%d",k+i+1);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         }        
         fprintf(ficrest,"\n");        l=3+(nlstate+ndeath)*cpt;
       }        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
     }        for (i=1; i< nlstate ; i ++) {
   }          l=3+(nlstate+ndeath)*cpt;
                  fprintf(ficgp,"+$%d",l+i+1);
                }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
  fclose(ficreseij);    }  
  fclose(ficresvij);    
   fclose(ficrest);    /* proba elementaires */
   fclose(ficpar);    for(i=1,jk=1; i <=nlstate; i++){
   free_vector(epj,1,nlstate+1);      for(k=1; k <=(nlstate+ndeath); k++){
   /*  scanf("%d ",i); */        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
   /*------- Variance limit prevalence------*/              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
 strcpy(fileresvpl,"vpl");            fprintf(ficgp,"\n");
   strcat(fileresvpl,fileres);          }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      }
     exit(0);     }
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
  k=0;         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
  for(cptcov=1;cptcov<=i1;cptcov++){         if (ng==2)
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
      k=k+1;         else
      fprintf(ficresvpl,"\n#****** ");           fprintf(ficgp,"\nset title \"Probability\"\n");
      for(j=1;j<=cptcoveff;j++)         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         i=1;
      fprintf(ficresvpl,"******\n");         for(k2=1; k2<=nlstate; k2++) {
                 k3=i;
      varpl=matrix(1,nlstate,(int) bage, (int) fage);           for(k=1; k<=(nlstate+ndeath); k++) {
      oldm=oldms;savm=savms;             if (k != k2){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);               if(ng==2)
    }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
  }               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   fclose(ficresvpl);               ij=1;
                for(j=3; j <=ncovmodel; j++) {
   /*---------- End : free ----------------*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                     ij++;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                 }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                 else
                     fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                 }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);               fprintf(ficgp,")/(1");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);               
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);               for(k1=1; k1 <=nlstate; k1++){   
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   ij=1;
   free_matrix(matcov,1,npar,1,npar);                 for(j=3; j <=ncovmodel; j++){
   free_vector(delti,1,npar);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                       fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                     ij++;
                    }
   printf("End of Imach\n");                   else
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                 fprintf(ficgp,")");
   /*printf("Total time was %d uSec.\n", total_usecs);*/               }
   /*------ End -----------*/               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
  end:             }
 #ifdef windows           } /* end k */
  chdir(pathcd);         } /* end k2 */
 #endif       } /* end jk */
       } /* end ng */
  system("..\\gp37mgw\\wgnuplot graph.plt");     fclose(ficgp); 
   }  /* end gnuplot */
 #ifdef windows  
   while (z[0] != 'q') {  
     chdir(pathcd);  /*************** Moving average **************/
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    int i, cpt, cptcod;
     else if (z[0] == 'e') {    int modcovmax =1;
       chdir(path);    int mobilavrange, mob;
       system(optionfilehtm);    double age;
     }  
     else if (z[0] == 'q') exit(0);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   }                             a covariate has 2 modalities */
 #endif    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 }  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.16  
changed lines
  Added in v.1.82


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>