Diff for /imach/src/imach.c between versions 1.16 and 1.96

version 1.16, 2002/02/20 17:12:32 version 1.96, 2003/07/15 15:38:55
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.96  2003/07/15 15:38:55  brouard
   individuals from different ages are interviewed on their health status    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   or degree of  disability. At least a second wave of interviews    rewritten within the same printf. Workaround: many printfs.
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.95  2003/07/08 07:54:34  brouard
   waves and are computed for each degree of severity of disability (number    * imach.c (Repository):
   of life states). More degrees you consider, more time is necessary to    (Repository): Using imachwizard code to output a more meaningful covariance
   reach the Maximum Likelihood of the parameters involved in the model.    matrix (cov(a12,c31) instead of numbers.
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.94  2003/06/27 13:00:02  brouard
   to be observed in state i at the first wave. Therefore the model is:    Just cleaning
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.93  2003/06/25 16:33:55  brouard
   age", you should modify the program where the markup    (Module): On windows (cygwin) function asctime_r doesn't
     *Covariates have to be included here again* invites you to do it.    exist so I changed back to asctime which exists.
   More covariates you add, less is the speed of the convergence.    (Module): Version 0.96b
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.92  2003/06/25 16:30:45  brouard
   delay between waves is not identical for each individual, or if some    (Module): On windows (cygwin) function asctime_r doesn't
   individual missed an interview, the information is not rounded or lost, but    exist so I changed back to asctime which exists.
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.91  2003/06/25 15:30:29  brouard
   observed in state i at age x+h conditional to the observed state i at age    * imach.c (Repository): Duplicated warning errors corrected.
   x. The delay 'h' can be split into an exact number (nh*stepm) of    (Repository): Elapsed time after each iteration is now output. It
   unobserved intermediate  states. This elementary transition (by month or    helps to forecast when convergence will be reached. Elapsed time
   quarter trimester, semester or year) is model as a multinomial logistic.    is stamped in powell.  We created a new html file for the graphs
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    concerning matrix of covariance. It has extension -cov.htm.
   and the contribution of each individual to the likelihood is simply hPijx.  
     Revision 1.90  2003/06/24 12:34:15  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Some bugs corrected for windows. Also, when
   of the life expectancies. It also computes the prevalence limits.    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.89  2003/06/24 12:30:52  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Some bugs corrected for windows. Also, when
   from the European Union.    mle=-1 a template is output in file "or"mypar.txt with the design
   It is copyrighted identically to a GNU software product, ie programme and    of the covariance matrix to be input.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.88  2003/06/23 17:54:56  brouard
   **********************************************************************/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    
 #include <math.h>    Revision 1.87  2003/06/18 12:26:01  brouard
 #include <stdio.h>    Version 0.96
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 #define MAXLINE 256    routine fileappend.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.85  2003/06/17 13:12:43  brouard
 #define windows    * imach.c (Repository): Check when date of death was earlier that
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    current date of interview. It may happen when the death was just
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    assuming that the date of death was just one stepm after the
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    interview.
     (Repository): Because some people have very long ID (first column)
 #define NINTERVMAX 8    we changed int to long in num[] and we added a new lvector for
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    memory allocation. But we also truncated to 8 characters (left
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    truncation)
 #define NCOVMAX 8 /* Maximum number of covariates */    (Repository): No more line truncation errors.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.84  2003/06/13 21:44:43  brouard
 #define AGESUP 130    * imach.c (Repository): Replace "freqsummary" at a correct
 #define AGEBASE 40    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
     parcimony.
 int nvar;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.83  2003/06/10 13:39:11  lievre
 int nlstate=2; /* Number of live states */    *** empty log message ***
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.82  2003/06/05 15:57:20  brouard
 int popbased=0;    Add log in  imach.c and  fullversion number is now printed.
   
 int *wav; /* Number of waves for this individuual 0 is possible */  */
 int maxwav; /* Maxim number of waves */  /*
 int jmin, jmax; /* min, max spacing between 2 waves */     Interpolated Markov Chain
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Short summary of the programme:
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    
 double jmean; /* Mean space between 2 waves */    This program computes Healthy Life Expectancies from
 double **oldm, **newm, **savm; /* Working pointers to matrices */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    first survey ("cross") where individuals from different ages are
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    interviewed on their health status or degree of disability (in the
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    case of a health survey which is our main interest) -2- at least a
 FILE *ficreseij;    second wave of interviews ("longitudinal") which measure each change
   char filerese[FILENAMELENGTH];    (if any) in individual health status.  Health expectancies are
  FILE  *ficresvij;    computed from the time spent in each health state according to a
   char fileresv[FILENAMELENGTH];    model. More health states you consider, more time is necessary to reach the
  FILE  *ficresvpl;    Maximum Likelihood of the parameters involved in the model.  The
   char fileresvpl[FILENAMELENGTH];    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define NR_END 1    conditional to be observed in state i at the first wave. Therefore
 #define FREE_ARG char*    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define FTOL 1.0e-10    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 #define NRANSI    where the markup *Covariates have to be included here again* invites
 #define ITMAX 200    you to do it.  More covariates you add, slower the
     convergence.
 #define TOL 2.0e-4  
     The advantage of this computer programme, compared to a simple
 #define CGOLD 0.3819660    multinomial logistic model, is clear when the delay between waves is not
 #define ZEPS 1.0e-10    identical for each individual. Also, if a individual missed an
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 #define GOLD 1.618034  
 #define GLIMIT 100.0    hPijx is the probability to be observed in state i at age x+h
 #define TINY 1.0e-20    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 static double maxarg1,maxarg2;    states. This elementary transition (by month, quarter,
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    semester or year) is modelled as a multinomial logistic.  The hPx
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    matrix is simply the matrix product of nh*stepm elementary matrices
      and the contribution of each individual to the likelihood is simply
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    hPijx.
 #define rint(a) floor(a+0.5)  
     Also this programme outputs the covariance matrix of the parameters but also
 static double sqrarg;    of the life expectancies. It also computes the stable prevalence. 
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 int imx;    This software have been partly granted by Euro-REVES, a concerted action
 int stepm;    from the European Union.
 /* Stepm, step in month: minimum step interpolation*/    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 int m,nb;    can be accessed at http://euroreves.ined.fr/imach .
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double **pmmij, ***probs, ***mobaverage;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 double *weight;    **********************************************************************/
 int **s; /* Status */  /*
 double *agedc, **covar, idx;    main
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    read parameterfile
     read datafile
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    concatwav
 double ftolhess; /* Tolerance for computing hessian */    freqsummary
     if (mle >= 1)
 /**************** split *************************/      mlikeli
 static  int split( char *path, char *dirc, char *name )    print results files
 {    if mle==1 
    char *s;                             /* pointer */       computes hessian
    int  l1, l2;                         /* length counters */    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
    l1 = strlen( path );                 /* length of path */    open gnuplot file
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    open html file
    s = strrchr( path, '\\' );           /* find last / */    stable prevalence
    if ( s == NULL ) {                   /* no directory, so use current */     for age prevalim()
 #if     defined(__bsd__)                /* get current working directory */    h Pij x
       extern char       *getwd( );    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
       if ( getwd( dirc ) == NULL ) {    health expectancies
 #else    Variance-covariance of DFLE
       extern char       *getcwd( );    prevalence()
      movingaverage()
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    varevsij() 
 #endif    if popbased==1 varevsij(,popbased)
          return( GLOCK_ERROR_GETCWD );    total life expectancies
       }    Variance of stable prevalence
       strcpy( name, path );             /* we've got it */   end
    } else {                             /* strip direcotry from path */  */
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */   
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #include <math.h>
       dirc[l1-l2] = 0;                  /* add zero */  #include <stdio.h>
    }  #include <stdlib.h>
    l1 = strlen( dirc );                 /* length of directory */  #include <unistd.h>
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */  #include <sys/time.h>
 }  #include <time.h>
   #include "timeval.h"
   
 /******************************************/  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 void replace(char *s, char*t)  
 {  #define MAXLINE 256
   int i;  #define GNUPLOTPROGRAM "gnuplot"
   int lg=20;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   i=0;  #define FILENAMELENGTH 132
   lg=strlen(t);  /*#define DEBUG*/
   for(i=0; i<= lg; i++) {  /*#define windows*/
     (s[i] = t[i]);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if (t[i]== '\\') s[i]='/';  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int nbocc(char *s, char occ)  
 {  #define NINTERVMAX 8
   int i,j=0;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   int lg=20;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   i=0;  #define NCOVMAX 8 /* Maximum number of covariates */
   lg=strlen(s);  #define MAXN 20000
   for(i=0; i<= lg; i++) {  #define YEARM 12. /* Number of months per year */
   if  (s[i] == occ ) j++;  #define AGESUP 130
   }  #define AGEBASE 40
   return j;  #ifdef unix
 }  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 void cutv(char *u,char *v, char*t, char occ)  #else
 {  #define DIRSEPARATOR '\\'
   int i,lg,j,p=0;  #define ODIRSEPARATOR '/'
   i=0;  #endif
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /* $Id$ */
   }  /* $State$ */
   
   lg=strlen(t);  char version[]="Imach version 0.96c, July 2003, INED-EUROREVES ";
   for(j=0; j<p; j++) {  char fullversion[]="$Revision$ $Date$"; 
     (u[j] = t[j]);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   }  int nvar;
      u[p]='\0';  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
    for(j=0; j<= lg; j++) {  int nlstate=2; /* Number of live states */
     if (j>=(p+1))(v[j-p-1] = t[j]);  int ndeath=1; /* Number of dead states */
   }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /********************** nrerror ********************/  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 void nrerror(char error_text[])  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   fprintf(stderr,"ERREUR ...\n");                     to the likelihood and the sum of weights (done by funcone)*/
   fprintf(stderr,"%s\n",error_text);  int mle, weightopt;
   exit(1);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /*********************** vector *******************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double *vector(int nl, int nh)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   double *v;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (!v) nrerror("allocation failure in vector");  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   return v-nl+NR_END;  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /************************ free vector ******************/  long ipmx; /* Number of contributions */
 void free_vector(double*v, int nl, int nh)  double sw; /* Sum of weights */
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /************************ivector *******************************/  FILE *fichtm, *fichtmcov; /* Html File */
 int *ivector(long nl,long nh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   int *v;  FILE  *ficresvij;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char fileresv[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  FILE  *ficresvpl;
   return v-nl+NR_END;  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /******************free ivector **************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char filelog[FILENAMELENGTH]; /* Log file */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char popfile[FILENAMELENGTH];
   int **m;  
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m) nrerror("allocation failure 1 in matrix()");  struct timezone tzp;
   m += NR_END;  extern int gettimeofday();
   m -= nrl;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
    long time_value;
    extern long time();
   /* allocate rows and set pointers to them */  char strcurr[80], strfor[80];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NR_END 1
   m[nrl] += NR_END;  #define FREE_ARG char*
   m[nrl] -= ncl;  #define FTOL 1.0e-10
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define NRANSI 
    #define ITMAX 200 
   /* return pointer to array of pointers to rows */  
   return m;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /****************** free_imatrix *************************/  #define ZEPS 1.0e-10 
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       int **m;  
       long nch,ncl,nrh,nrl;  #define GOLD 1.618034 
      /* free an int matrix allocated by imatrix() */  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /******************* matrix *******************************/    
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  int imx; 
   m -= nrl;  int stepm;
   /* Stepm, step in month: minimum step interpolation*/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int estepm;
   m[nrl] += NR_END;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl] -= ncl;  
   int m,nb;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  long *num;
   return m;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 /*************************free matrix ************************/  double dateintmean=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  double *weight;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **s; /* Status */
   free((FREE_ARG)(m+nrl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /******************* ma3x *******************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double ftolhess; /* Tolerance for computing hessian */
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /**************** split *************************/
   double ***m;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    char  *ss;                            /* pointer */
   if (!m) nrerror("allocation failure 1 in matrix()");    int   l1, l2;                         /* length counters */
   m += NR_END;  
   m -= nrl;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl] += NR_END;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl] -= ncl;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));        return( GLOCK_ERROR_GETCWD );
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      }
   m[nrl][ncl] += NR_END;      strcpy( name, path );               /* we've got it */
   m[nrl][ncl] -= nll;    } else {                              /* strip direcotry from path */
   for (j=ncl+1; j<=nch; j++)      ss++;                               /* after this, the filename */
     m[nrl][j]=m[nrl][j-1]+nlay;      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=nrl+1; i<=nrh; i++) {      strcpy( name, ss );         /* save file name */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for (j=ncl+1; j<=nch; j++)      dirc[l1-l2] = 0;                    /* add zero */
       m[i][j]=m[i][j-1]+nlay;    }
   }    l1 = strlen( dirc );                  /* length of directory */
   return m;    /*#ifdef windows
 }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
 /*************************free ma3x ************************/    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #endif
 {    */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    ss = strrchr( name, '.' );            /* find last / */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    ss++;
   free((FREE_ARG)(m+nrl-NR_END));    strcpy(ext,ss);                       /* save extension */
 }    l1= strlen( name);
     l2= strlen(ss)+1;
 /***************** f1dim *************************/    strncpy( finame, name, l1-l2);
 extern int ncom;    finame[l1-l2]= 0;
 extern double *pcom,*xicom;    return( 0 );                          /* we're done */
 extern double (*nrfunc)(double []);  }
    
 double f1dim(double x)  
 {  /******************************************/
   int j;  
   double f;  void replace_back_to_slash(char *s, char*t)
   double *xt;  {
      int i;
   xt=vector(1,ncom);    int lg=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    i=0;
   f=(*nrfunc)(xt);    lg=strlen(t);
   free_vector(xt,1,ncom);    for(i=0; i<= lg; i++) {
   return f;      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /*****************brent *************************/  }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  int nbocc(char *s, char occ)
   int iter;  {
   double a,b,d,etemp;    int i,j=0;
   double fu,fv,fw,fx;    int lg=20;
   double ftemp;    i=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    lg=strlen(s);
   double e=0.0;    for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
   a=(ax < cx ? ax : cx);    }
   b=(ax > cx ? ax : cx);    return j;
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  void cutv(char *u,char *v, char*t, char occ)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    /* cuts string t into u and v where u is ended by char occ excluding it
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     printf(".");fflush(stdout);       gives u="abcedf" and v="ghi2j" */
 #ifdef DEBUG    int i,lg,j,p=0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    i=0;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for(j=0; j<=strlen(t)-1; j++) {
 #endif      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    }
       *xmin=x;  
       return fx;    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     ftemp=fu;      (u[j] = t[j]);
     if (fabs(e) > tol1) {    }
       r=(x-w)*(fx-fv);       u[p]='\0';
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;     for(j=0; j<= lg; j++) {
       q=2.0*(q-r);      if (j>=(p+1))(v[j-p-1] = t[j]);
       if (q > 0.0) p = -p;    }
       q=fabs(q);  }
       etemp=e;  
       e=d;  /********************** nrerror ********************/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  void nrerror(char error_text[])
       else {  {
         d=p/q;    fprintf(stderr,"ERREUR ...\n");
         u=x+d;    fprintf(stderr,"%s\n",error_text);
         if (u-a < tol2 || b-u < tol2)    exit(EXIT_FAILURE);
           d=SIGN(tol1,xm-x);  }
       }  /*********************** vector *******************/
     } else {  double *vector(int nl, int nh)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    double *v;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     fu=(*f)(u);    if (!v) nrerror("allocation failure in vector");
     if (fu <= fx) {    return v-nl+NR_END;
       if (u >= x) a=x; else b=x;  }
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /************************ free vector ******************/
         } else {  void free_vector(double*v, int nl, int nh)
           if (u < x) a=u; else b=u;  {
           if (fu <= fw || w == x) {    free((FREE_ARG)(v+nl-NR_END));
             v=w;  }
             w=u;  
             fv=fw;  /************************ivector *******************************/
             fw=fu;  int *ivector(long nl,long nh)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    int *v;
             fv=fu;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           }    if (!v) nrerror("allocation failure in ivector");
         }    return v-nl+NR_END;
   }  }
   nrerror("Too many iterations in brent");  
   *xmin=x;  /******************free ivector **************************/
   return fx;  void free_ivector(int *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /************************lvector *******************************/
             double (*func)(double))  long *lvector(long nl,long nh)
 {  {
   double ulim,u,r,q, dum;    long *v;
   double fu;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      if (!v) nrerror("allocation failure in ivector");
   *fa=(*func)(*ax);    return v-nl+NR_END;
   *fb=(*func)(*bx);  }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /******************free lvector **************************/
       SHFT(dum,*fb,*fa,dum)  void free_lvector(long *v, long nl, long nh)
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    free((FREE_ARG)(v+nl-NR_END));
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /******************* imatrix *******************************/
     q=(*bx-*cx)*(*fb-*fa);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  { 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     if ((*bx-u)*(u-*cx) > 0.0) {    int **m; 
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {    /* allocate pointers to rows */ 
       fu=(*func)(u);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       if (fu < *fc) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m += NR_END; 
           SHFT(*fb,*fc,fu,(*func)(u))    m -= nrl; 
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    
       u=ulim;    /* allocate rows and set pointers to them */ 
       fu=(*func)(u);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     } else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       u=(*cx)+GOLD*(*cx-*bx);    m[nrl] += NR_END; 
       fu=(*func)(u);    m[nrl] -= ncl; 
     }    
     SHFT(*ax,*bx,*cx,u)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       SHFT(*fa,*fb,*fc,fu)    
       }    /* return pointer to array of pointers to rows */ 
 }    return m; 
   } 
 /*************** linmin ************************/  
   /****************** free_imatrix *************************/
 int ncom;  void free_imatrix(m,nrl,nrh,ncl,nch)
 double *pcom,*xicom;        int **m;
 double (*nrfunc)(double []);        long nch,ncl,nrh,nrl; 
         /* free an int matrix allocated by imatrix() */ 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double brent(double ax, double bx, double cx,    free((FREE_ARG) (m+nrl-NR_END)); 
                double (*f)(double), double tol, double *xmin);  } 
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /******************* matrix *******************************/
               double *fc, double (*func)(double));  double **matrix(long nrl, long nrh, long ncl, long nch)
   int j;  {
   double xx,xmin,bx,ax;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double fx,fb,fa;    double **m;
    
   ncom=n;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   pcom=vector(1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
   xicom=vector(1,n);    m += NR_END;
   nrfunc=func;    m -= nrl;
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     xicom[j]=xi[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
   ax=0.0;    m[nrl] -= ncl;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    return m;
 #ifdef DEBUG    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);     */
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /*************************free matrix ************************/
     p[j] += xi[j];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
   free_vector(xicom,1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free_vector(pcom,1,n);    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /*************** powell ************************/  /******************* ma3x *******************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
             double (*func)(double []))  {
 {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   void linmin(double p[], double xi[], int n, double *fret,    double ***m;
               double (*func)(double []));  
   int i,ibig,j;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double del,t,*pt,*ptt,*xit;    if (!m) nrerror("allocation failure 1 in matrix()");
   double fp,fptt;    m += NR_END;
   double *xits;    m -= nrl;
   pt=vector(1,n);  
   ptt=vector(1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   xit=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xits=vector(1,n);    m[nrl] += NR_END;
   *fret=(*func)(p);    m[nrl] -= ncl;
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     fp=(*fret);  
     ibig=0;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     del=0.0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl][ncl] += NR_END;
     for (i=1;i<=n;i++)    m[nrl][ncl] -= nll;
       printf(" %d %.12f",i, p[i]);    for (j=ncl+1; j<=nch; j++) 
     printf("\n");      m[nrl][j]=m[nrl][j-1]+nlay;
     for (i=1;i<=n;i++) {    
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for (i=nrl+1; i<=nrh; i++) {
       fptt=(*fret);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 #ifdef DEBUG      for (j=ncl+1; j<=nch; j++) 
       printf("fret=%lf \n",*fret);        m[i][j]=m[i][j-1]+nlay;
 #endif    }
       printf("%d",i);fflush(stdout);    return m; 
       linmin(p,xit,n,fret,func);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       if (fabs(fptt-(*fret)) > del) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         del=fabs(fptt-(*fret));    */
         ibig=i;  }
       }  
 #ifdef DEBUG  /*************************free ma3x ************************/
       printf("%d %.12e",i,(*fret));  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /*************** function subdirf ***********/
 #endif  char *subdirf(char fileres[])
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /* Caution optionfilefiname is hidden */
 #ifdef DEBUG    strcpy(tmpout,optionfilefiname);
       int k[2],l;    strcat(tmpout,"/"); /* Add to the right */
       k[0]=1;    strcat(tmpout,fileres);
       k[1]=-1;    return tmpout;
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /*************** function subdirf2 ***********/
       printf("\n");  char *subdirf2(char fileres[], char *preop)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /* Caution optionfilefiname is hidden */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
 #endif    return tmpout;
   }
   
       free_vector(xit,1,n);  /*************** function subdirf3 ***********/
       free_vector(xits,1,n);  char *subdirf3(char fileres[], char *preop, char *preop2)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    
       return;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    strcat(tmpout,"/");
     for (j=1;j<=n;j++) {    strcat(tmpout,preop);
       ptt[j]=2.0*p[j]-pt[j];    strcat(tmpout,preop2);
       xit[j]=p[j]-pt[j];    strcat(tmpout,fileres);
       pt[j]=p[j];    return tmpout;
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /***************** f1dim *************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  extern int ncom; 
       if (t < 0.0) {  extern double *pcom,*xicom;
         linmin(p,xit,n,fret,func);  extern double (*nrfunc)(double []); 
         for (j=1;j<=n;j++) {   
           xi[j][ibig]=xi[j][n];  double f1dim(double x) 
           xi[j][n]=xit[j];  { 
         }    int j; 
 #ifdef DEBUG    double f;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double *xt; 
         for(j=1;j<=n;j++)   
           printf(" %.12e",xit[j]);    xt=vector(1,ncom); 
         printf("\n");    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 #endif    f=(*nrfunc)(xt); 
       }    free_vector(xt,1,ncom); 
     }    return f; 
   }  } 
 }  
   /*****************brent *************************/
 /**** Prevalence limit ****************/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    int iter; 
 {    double a,b,d,etemp;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double fu,fv,fw,fx;
      matrix by transitions matrix until convergence is reached */    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   int i, ii,j,k;    double e=0.0; 
   double min, max, maxmin, maxmax,sumnew=0.;   
   double **matprod2();    a=(ax < cx ? ax : cx); 
   double **out, cov[NCOVMAX], **pmij();    b=(ax > cx ? ax : cx); 
   double **newm;    x=w=v=bx; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)      xm=0.5*(a+b); 
     for (j=1;j<=nlstate+ndeath;j++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
    cov[1]=1.;  #ifdef DEBUG
        printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     newm=savm;  #endif
     /* Covariates have to be included here again */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      cov[2]=agefin;        *xmin=x; 
          return fx; 
       for (k=1; k<=cptcovn;k++) {      } 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      ftemp=fu;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/      if (fabs(e) > tol1) { 
       }        r=(x-w)*(fx-fv); 
       for (k=1; k<=cptcovage;k++)        q=(x-v)*(fx-fw); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        p=(x-v)*q-(x-w)*r; 
       for (k=1; k<=cptcovprod;k++)        q=2.0*(q-r); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (q > 0.0) p = -p; 
         q=fabs(q); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        etemp=e; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
     savm=oldm;          d=p/q; 
     oldm=newm;          u=x+d; 
     maxmax=0.;          if (u-a < tol2 || b-u < tol2) 
     for(j=1;j<=nlstate;j++){            d=SIGN(tol1,xm-x); 
       min=1.;        } 
       max=0.;      } else { 
       for(i=1; i<=nlstate; i++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         sumnew=0;      } 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      fu=(*f)(u); 
         max=FMAX(max,prlim[i][j]);      if (fu <= fx) { 
         min=FMIN(min,prlim[i][j]);        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
       maxmin=max-min;          SHFT(fv,fw,fx,fu) 
       maxmax=FMAX(maxmax,maxmin);          } else { 
     }            if (u < x) a=u; else b=u; 
     if(maxmax < ftolpl){            if (fu <= fw || w == x) { 
       return prlim;              v=w; 
     }              w=u; 
   }              fv=fw; 
 }              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 /*************** transition probabilities ***************/              v=u; 
               fv=fu; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            } 
 {          } 
   double s1, s2;    } 
   /*double t34;*/    nrerror("Too many iterations in brent"); 
   int i,j,j1, nc, ii, jj;    *xmin=x; 
     return fx; 
     for(i=1; i<= nlstate; i++){  } 
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /****************** mnbrak ***********************/
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/              double (*func)(double)) 
       }  { 
       ps[i][j]=s2;    double ulim,u,r,q, dum;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double fu; 
     }   
     for(j=i+1; j<=nlstate+ndeath;j++){    *fa=(*func)(*ax); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *fb=(*func)(*bx); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if (*fb > *fa) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
       ps[i][j]=(s2);        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
   }    *fc=(*func)(*cx); 
     /*ps[3][2]=1;*/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   for(i=1; i<= nlstate; i++){      q=(*bx-*cx)*(*fb-*fa); 
      s1=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(j=1; j<i; j++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       s1+=exp(ps[i][j]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(j=i+1; j<=nlstate+ndeath; j++)      if ((*bx-u)*(u-*cx) > 0.0) { 
       s1+=exp(ps[i][j]);        fu=(*func)(u); 
     ps[i][i]=1./(s1+1.);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(j=1; j<i; j++)        fu=(*func)(u); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (fu < *fc) { 
     for(j=i+1; j<=nlstate+ndeath; j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            SHFT(*fb,*fc,fu,(*func)(u)) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            } 
   } /* end i */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else { 
       ps[ii][jj]=0;        u=(*cx)+GOLD*(*cx-*bx); 
       ps[ii][ii]=1;        fu=(*func)(u); 
     }      } 
   }      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
         } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /*************** linmin ************************/
    }  
     printf("\n ");  int ncom; 
     }  double *pcom,*xicom;
     printf("\n ");printf("%lf ",cov[2]);*/  double (*nrfunc)(double []); 
 /*   
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   goto end;*/  { 
     return ps;    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 /**************** Product of 2 matrices ******************/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    int j; 
 {    double xx,xmin,bx,ax; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double fx,fb,fa;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   
   /* in, b, out are matrice of pointers which should have been initialized    ncom=n; 
      before: only the contents of out is modified. The function returns    pcom=vector(1,n); 
      a pointer to pointers identical to out */    xicom=vector(1,n); 
   long i, j, k;    nrfunc=func; 
   for(i=nrl; i<= nrh; i++)    for (j=1;j<=n;j++) { 
     for(k=ncolol; k<=ncoloh; k++)      pcom[j]=p[j]; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      xicom[j]=xi[j]; 
         out[i][k] +=in[i][j]*b[j][k];    } 
     ax=0.0; 
   return out;    xx=1.0; 
 }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 /************* Higher Matrix Product ***************/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #endif
 {    for (j=1;j<=n;j++) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      xi[j] *= xmin; 
      duration (i.e. until      p[j] += xi[j]; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    free_vector(xicom,1,n); 
      (typically every 2 years instead of every month which is too big).    free_vector(pcom,1,n); 
      Model is determined by parameters x and covariates have to be  } 
      included manually here.  
   char *asc_diff_time(long time_sec, char ascdiff[])
      */  {
     long sec_left, days, hours, minutes;
   int i, j, d, h, k;    days = (time_sec) / (60*60*24);
   double **out, cov[NCOVMAX];    sec_left = (time_sec) % (60*60*24);
   double **newm;    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   /* Hstepm could be zero and should return the unit matrix */    minutes = (sec_left) /60;
   for (i=1;i<=nlstate+ndeath;i++)    sec_left = (sec_left) % (60);
     for (j=1;j<=nlstate+ndeath;j++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       oldm[i][j]=(i==j ? 1.0 : 0.0);    return ascdiff;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** powell ************************/
   for(h=1; h <=nhstepm; h++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for(d=1; d <=hstepm; d++){              double (*func)(double [])) 
       newm=savm;  { 
       /* Covariates have to be included here again */    void linmin(double p[], double xi[], int n, double *fret, 
       cov[1]=1.;                double (*func)(double [])); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    int i,ibig,j; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double del,t,*pt,*ptt,*xit;
       for (k=1; k<=cptcovage;k++)    double fp,fptt;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double *xits;
       for (k=1; k<=cptcovprod;k++)    int niterf, itmp;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     pt=vector(1,n); 
     ptt=vector(1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    xit=vector(1,n); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    xits=vector(1,n); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *fret=(*func)(p); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (j=1;j<=n;j++) pt[j]=p[j]; 
       savm=oldm;    for (*iter=1;;++(*iter)) { 
       oldm=newm;      fp=(*fret); 
     }      ibig=0; 
     for(i=1; i<=nlstate+ndeath; i++)      del=0.0; 
       for(j=1;j<=nlstate+ndeath;j++) {      last_time=curr_time;
         po[i][j][h]=newm[i][j];      (void) gettimeofday(&curr_time,&tzp);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
          */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   } /* end h */      for (i=1;i<=n;i++) {
   return po;        printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
       }
 /*************** log-likelihood *************/      printf("\n");
 double func( double *x)      fprintf(ficlog,"\n");
 {      fprintf(ficrespow,"\n");fflush(ficrespow);
   int i, ii, j, k, mi, d, kk;      if(*iter <=3){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        tm = *localtime(&curr_time.tv_sec);
   double **out;        strcpy(strcurr,asctime(&tmf));
   double sw; /* Sum of weights */  /*       asctime_r(&tm,strcurr); */
   double lli; /* Individual log likelihood */        forecast_time=curr_time;
   long ipmx;        itmp = strlen(strcurr);
   /*extern weight */        if(strcurr[itmp-1]=='\n')
   /* We are differentiating ll according to initial status */          strcurr[itmp-1]='\0';
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /*for(i=1;i<imx;i++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf(" %d\n",s[4][i]);        for(niterf=10;niterf<=30;niterf+=10){
   */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   cov[1]=1.;          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   for(k=1; k<=nlstate; k++) ll[k]=0.;          strcpy(strfor,asctime(&tmf));
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          itmp = strlen(strfor);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          if(strfor[itmp-1]=='\n')
     for(mi=1; mi<= wav[i]-1; mi++){          strfor[itmp-1]='\0';
       for (ii=1;ii<=nlstate+ndeath;ii++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(d=0; d<dh[mi][i]; d++){        }
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for (i=1;i<=n;i++) { 
         for (kk=1; kk<=cptcovage;kk++) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fptt=(*fret); 
         }  #ifdef DEBUG
                printf("fret=%lf \n",*fret);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"fret=%lf \n",*fret);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
         savm=oldm;        printf("%d",i);fflush(stdout);
         oldm=newm;        fprintf(ficlog,"%d",i);fflush(ficlog);
                linmin(p,xit,n,fret,func); 
                if (fabs(fptt-(*fret)) > del) { 
       } /* end mult */          del=fabs(fptt-(*fret)); 
                ibig=i; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  #ifdef DEBUG
       ipmx +=1;        printf("%d %.12e",i,(*fret));
       sw += weight[i];        fprintf(ficlog,"%d %.12e",i,(*fret));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for (j=1;j<=n;j++) {
     } /* end of wave */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   } /* end of individual */          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for(j=1;j<=n;j++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          printf(" p=%.12e",p[j]);
   return -l;          fprintf(ficlog," p=%.12e",p[j]);
 }        }
         printf("\n");
         fprintf(ficlog,"\n");
 /*********** Maximum Likelihood Estimation ***************/  #endif
       } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 {  #ifdef DEBUG
   int i,j, iter;        int k[2],l;
   double **xi,*delti;        k[0]=1;
   double fret;        k[1]=-1;
   xi=matrix(1,npar,1,npar);        printf("Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (j=1;j<=npar;j++)        for (j=1;j<=n;j++) {
       xi[i][j]=(i==j ? 1.0 : 0.0);          printf(" %.12e",p[j]);
   printf("Powell\n");          fprintf(ficlog," %.12e",p[j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);        }
         printf("\n");
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fprintf(ficlog,"\n");
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /**** Computes Hessian and covariance matrix ***/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          }
 {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double  **a,**y,*x,pd;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double **hess;        }
   int i, j,jk;  #endif
   int *indx;  
   
   double hessii(double p[], double delta, int theta, double delti[]);        free_vector(xit,1,n); 
   double hessij(double p[], double delti[], int i, int j);        free_vector(xits,1,n); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        free_vector(ptt,1,n); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        free_vector(pt,1,n); 
         return; 
   hess=matrix(1,npar,1,npar);      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   printf("\nCalculation of the hessian matrix. Wait...\n");      for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++){        ptt[j]=2.0*p[j]-pt[j]; 
     printf("%d",i);fflush(stdout);        xit[j]=p[j]-pt[j]; 
     hess[i][i]=hessii(p,ftolhess,i,delti);        pt[j]=p[j]; 
     /*printf(" %f ",p[i]);*/      } 
     /*printf(" %lf ",hess[i][i]);*/      fptt=(*func)(ptt); 
   }      if (fptt < fp) { 
          t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (i=1;i<=npar;i++) {        if (t < 0.0) { 
     for (j=1;j<=npar;j++)  {          linmin(p,xit,n,fret,func); 
       if (j>i) {          for (j=1;j<=n;j++) { 
         printf(".%d%d",i,j);fflush(stdout);            xi[j][ibig]=xi[j][n]; 
         hess[i][j]=hessij(p,delti,i,j);            xi[j][n]=xit[j]; 
         hess[j][i]=hess[i][j];              }
         /*printf(" %lf ",hess[i][j]);*/  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
   printf("\n");            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          }
            printf("\n");
   a=matrix(1,npar,1,npar);          fprintf(ficlog,"\n");
   y=matrix(1,npar,1,npar);  #endif
   x=vector(1,npar);        }
   indx=ivector(1,npar);      } 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  } 
   ludcmp(a,npar,indx,&pd);  
   /**** Prevalence limit (stable prevalence)  ****************/
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (i=1;i<=npar;i++){       matrix by transitions matrix until convergence is reached */
       matcov[i][j]=x[i];  
     }    int i, ii,j,k;
   }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   printf("\n#Hessian matrix#\n");    double **out, cov[NCOVMAX], **pmij();
   for (i=1;i<=npar;i++) {    double **newm;
     for (j=1;j<=npar;j++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
       printf("%.3e ",hess[i][j]);  
     }    for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)     cov[1]=1.;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];   
   ludcmp(a,npar,indx,&pd);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   /*  printf("\n#Hessian matrix recomputed#\n");      newm=savm;
       /* Covariates have to be included here again */
   for (j=1;j<=npar;j++) {       cov[2]=agefin;
     for (i=1;i<=npar;i++) x[i]=0;    
     x[j]=1;        for (k=1; k<=cptcovn;k++) {
     lubksb(a,npar,indx,x);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (i=1;i<=npar;i++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }        for (k=1; k<=cptcovprod;k++)
     printf("\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   free_matrix(a,1,npar,1,npar);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   free_matrix(y,1,npar,1,npar);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);      savm=oldm;
   free_matrix(hess,1,npar,1,npar);      oldm=newm;
       maxmax=0.;
       for(j=1;j<=nlstate;j++){
 }        min=1.;
         max=0.;
 /*************** hessian matrix ****************/        for(i=1; i<=nlstate; i++) {
 double hessii( double x[], double delta, int theta, double delti[])          sumnew=0;
 {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int i;          prlim[i][j]= newm[i][j]/(1-sumnew);
   int l=1, lmax=20;          max=FMAX(max,prlim[i][j]);
   double k1,k2;          min=FMIN(min,prlim[i][j]);
   double p2[NPARMAX+1];        }
   double res;        maxmin=max-min;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        maxmax=FMAX(maxmax,maxmin);
   double fx;      }
   int k=0,kmax=10;      if(maxmax < ftolpl){
   double l1;        return prlim;
       }
   fx=func(x);    }
   for (i=1;i<=npar;i++) p2[i]=x[i];  }
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  /*************** transition probabilities ***************/ 
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       delt = delta*(l1*k);  {
       p2[theta]=x[theta] +delt;    double s1, s2;
       k1=func(p2)-fx;    /*double t34;*/
       p2[theta]=x[theta]-delt;    int i,j,j1, nc, ii, jj;
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for(i=1; i<= nlstate; i++){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for(j=1; j<i;j++){
              for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 #ifdef DEBUG          /*s2 += param[i][j][nc]*cov[nc];*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 #endif          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        ps[i][j]=s2;
         k=kmax;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }      }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for(j=i+1; j<=nlstate+ndeath;j++){
         k=kmax; l=lmax*10.;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         delts=delt;        }
       }        ps[i][j]=s2;
     }      }
   }    }
   delti[theta]=delts;      /*ps[3][2]=1;*/
   return res;  
      for(i=1; i<= nlstate; i++){
 }       s1=0;
       for(j=1; j<i; j++)
 double hessij( double x[], double delti[], int thetai,int thetaj)        s1+=exp(ps[i][j]);
 {      for(j=i+1; j<=nlstate+ndeath; j++)
   int i;        s1+=exp(ps[i][j]);
   int l=1, l1, lmax=20;      ps[i][i]=1./(s1+1.);
   double k1,k2,k3,k4,res,fx;      for(j=1; j<i; j++)
   double p2[NPARMAX+1];        ps[i][j]= exp(ps[i][j])*ps[i][i];
   int k;      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   fx=func(x);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for (k=1; k<=2; k++) {    } /* end i */
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(jj=1; jj<= nlstate+ndeath; jj++){
     k1=func(p2)-fx;        ps[ii][jj]=0;
          ps[ii][ii]=1;
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k2=func(p2)-fx;  
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(jj=1; jj<= nlstate+ndeath; jj++){
     k3=func(p2)-fx;       printf("%lf ",ps[ii][jj]);
       }
     p2[thetai]=x[thetai]-delti[thetai]/k;      printf("\n ");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k4=func(p2)-fx;      printf("\n ");printf("%lf ",cov[2]);*/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  /*
 #ifdef DEBUG    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    goto end;*/
 #endif      return ps;
   }  }
   return res;  
 }  /**************** Product of 2 matrices ******************/
   
 /************** Inverse of matrix **************/  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   int i,imax,j,k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double big,dum,sum,temp;    /* in, b, out are matrice of pointers which should have been initialized 
   double *vv;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
   vv=vector(1,n);    long i, j, k;
   *d=1.0;    for(i=nrl; i<= nrh; i++)
   for (i=1;i<=n;i++) {      for(k=ncolol; k<=ncoloh; k++)
     big=0.0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for (j=1;j<=n;j++)          out[i][k] +=in[i][j]*b[j][k];
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    return out;
     vv[i]=1.0/big;  }
   }  
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /************* Higher Matrix Product ***************/
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       a[i][j]=sum;  {
     }    /* Computes the transition matrix starting at age 'age' over 
     big=0.0;       'nhstepm*hstepm*stepm' months (i.e. until
     for (i=j;i<=n;i++) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       sum=a[i][j];       nhstepm*hstepm matrices. 
       for (k=1;k<j;k++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         sum -= a[i][k]*a[k][j];       (typically every 2 years instead of every month which is too big 
       a[i][j]=sum;       for the memory).
       if ( (dum=vv[i]*fabs(sum)) >= big) {       Model is determined by parameters x and covariates have to be 
         big=dum;       included manually here. 
         imax=i;  
       }       */
     }  
     if (j != imax) {    int i, j, d, h, k;
       for (k=1;k<=n;k++) {    double **out, cov[NCOVMAX];
         dum=a[imax][k];    double **newm;
         a[imax][k]=a[j][k];  
         a[j][k]=dum;    /* Hstepm could be zero and should return the unit matrix */
       }    for (i=1;i<=nlstate+ndeath;i++)
       *d = -(*d);      for (j=1;j<=nlstate+ndeath;j++){
       vv[imax]=vv[j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (j != n) {    for(h=1; h <=nhstepm; h++){
       dum=1.0/(a[j][j]);      for(d=1; d <=hstepm; d++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        newm=savm;
     }        /* Covariates have to be included here again */
   }        cov[1]=1.;
   free_vector(vv,1,n);  /* Doesn't work */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 ;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 void lubksb(double **a, int n, int *indx, double b[])        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i,ii=0,ip,j;  
   double sum;  
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (i=1;i<=n;i++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     ip=indx[i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     sum=b[ip];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     b[ip]=b[i];        savm=oldm;
     if (ii)        oldm=newm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      }
     else if (sum) ii=i;      for(i=1; i<=nlstate+ndeath; i++)
     b[i]=sum;        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
   for (i=n;i>=1;i--) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     sum=b[i];           */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        }
     b[i]=sum/a[i][i];    } /* end h */
   }    return po;
 }  }
   
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)  /*************** log-likelihood *************/
 {  /* Some frequencies */  double func( double *x)
    {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    int i, ii, j, k, mi, d, kk;
   double ***freq; /* Frequencies */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double *pp;    double **out;
   double pos;    double sw; /* Sum of weights */
   FILE *ficresp;    double lli; /* Individual log likelihood */
   char fileresp[FILENAMELENGTH];    int s1, s2;
     double bbh, survp;
   pp=vector(1,nlstate);    long ipmx;
  probs= ma3x(1,130 ,1,8, 1,8);    /*extern weight */
   strcpy(fileresp,"p");    /* We are differentiating ll according to initial status */
   strcat(fileresp,fileres);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   if((ficresp=fopen(fileresp,"w"))==NULL) {    /*for(i=1;i<imx;i++) 
     printf("Problem with prevalence resultfile: %s\n", fileresp);      printf(" %d\n",s[4][i]);
     exit(0);    */
   }    cov[1]=1.;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   j=cptcoveff;    if(mle==1){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(k1=1; k1<=j;k1++){        for(mi=1; mi<= wav[i]-1; mi++){
    for(i1=1; i1<=ncodemax[k1];i1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
        j1++;            for (j=1;j<=nlstate+ndeath;j++){
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          scanf("%d", i);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (i=-1; i<=nlstate+ndeath; i++)              }
          for (jk=-1; jk<=nlstate+ndeath; jk++)            for(d=0; d<dh[mi][i]; d++){
            for(m=agemin; m <= agemax+3; m++)            newm=savm;
              freq[i][jk][m]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
        for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          bool=1;            }
          if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
            for (z1=1; z1<=cptcoveff; z1++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            savm=oldm;
                bool=0;            oldm=newm;
          }          } /* end mult */
           if (bool==1) {        
            for(m=fprev1; m<=lprev1; m++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
              if(agev[m][i]==0) agev[m][i]=agemax+1;          /* But now since version 0.9 we anticipate for bias and large stepm.
              if(agev[m][i]==1) agev[m][i]=agemax+2;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * the nearest (and in case of equal distance, to the lowest) interval but now
            }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
        }           * probability in order to take into account the bias as a fraction of the way
         if  (cptcovn>0) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
          fprintf(ficresp, "\n#********** Variable ");           * -stepm/2 to stepm/2 .
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * For stepm=1 the results are the same as for previous versions of Imach.
        fprintf(ficresp, "**********\n#");           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
        for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          s2=s[mw[mi+1][i]][i];
        fprintf(ficresp, "\n");          bbh=(double)bh[mi][i]/(double)stepm; 
                  /* bias is positive if real duration
   for(i=(int)agemin; i <= (int)agemax+3; i++){           * is higher than the multiple of stepm and negative otherwise.
     if(i==(int)agemax+3)           */
       printf("Total");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     else          if( s2 > nlstate){ 
       printf("Age %d", i);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     for(jk=1; jk <=nlstate ; jk++){               to the likelihood is the probability to die between last step unit time and current 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)               step unit time, which is also the differences between probability to die before dh 
         pp[jk] += freq[jk][m][i];               and probability to die before dh-stepm . 
     }               In version up to 0.92 likelihood was computed
     for(jk=1; jk <=nlstate ; jk++){          as if date of death was unknown. Death was treated as any other
       for(m=-1, pos=0; m <=0 ; m++)          health state: the date of the interview describes the actual state
         pos += freq[jk][m][i];          and not the date of a change in health state. The former idea was
       if(pp[jk]>=1.e-10)          to consider that at each interview the state was recorded
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          (healthy, disable or death) and IMaCh was corrected; but when we
       else          introduced the exact date of death then we should have modified
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          the contribution of an exact death to the likelihood. This new
     }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
      for(jk=1; jk <=nlstate ; jk++){          and month of death but the probability to survive from last
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          interview up to one month before death multiplied by the
         pp[jk] += freq[jk][m][i];          probability to die within a month. Thanks to Chris
      }          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
     for(jk=1,pos=0; jk <=nlstate ; jk++)          which slows down the processing. The difference can be up to 10%
       pos += pp[jk];          lower mortality.
     for(jk=1; jk <=nlstate ; jk++){            */
       if(pos>=1.e-5)            lli=log(out[s1][s2] - savm[s1][s2]);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          }else{
       else            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       if( i <= (int) agemax){          } 
         if(pos>=1.e-5){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          /*if(lli ==000.0)*/
           probs[i][jk][j1]= pp[jk]/pos;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          ipmx +=1;
         }          sw += weight[i];
       else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        } /* end of wave */
       }      } /* end of individual */
     }    }  else if(mle==2){
     for(jk=-1; jk <=nlstate+ndeath; jk++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(m=-1; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(mi=1; mi<= wav[i]-1; mi++){
     if(i <= (int) agemax)          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficresp,"\n");            for (j=1;j<=nlstate+ndeath;j++){
     printf("\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
  }          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
   fclose(ficresp);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(pp,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 }  /* End of Freq */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************ Prevalence ********************/            savm=oldm;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)            oldm=newm;
 {  /* Some frequencies */          } /* end mult */
          
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          s1=s[mw[mi][i]][i];
   double ***freq; /* Frequencies */          s2=s[mw[mi+1][i]][i];
   double *pp;          bbh=(double)bh[mi][i]/(double)stepm; 
   double pos;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
   pp=vector(1,nlstate);          sw += weight[i];
   probs= ma3x(1,130 ,1,8, 1,8);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      } /* end of individual */
   j1=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   j=cptcoveff;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
  for(k1=1; k1<=j;k1++){            for (j=1;j<=nlstate+ndeath;j++){
     for(i1=1; i1<=ncodemax[k1];i1++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       j1++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
       for (i=-1; i<=nlstate+ndeath; i++)            for(d=0; d<dh[mi][i]; d++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)              newm=savm;
           for(m=agemin; m <= agemax+3; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           freq[i][jk][m]=0;            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (i=1; i<=imx; i++) {            }
         bool=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if  (cptcovn>0) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (z1=1; z1<=cptcoveff; z1++)            savm=oldm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            oldm=newm;
               bool=0;          } /* end mult */
               }        
         if (bool==1) {          s1=s[mw[mi][i]][i];
           for(m=fprev1; m<=lprev1; m++){          s2=s[mw[mi+1][i]][i];
             if(agev[m][i]==0) agev[m][i]=agemax+1;          bbh=(double)bh[mi][i]/(double)stepm; 
             if(agev[m][i]==1) agev[m][i]=agemax+2;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ipmx +=1;
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
       }      } /* end of individual */
        for(i=(int)agemin; i <= (int)agemax+3; i++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pos=0; m <=0 ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
                  for(d=0; d<dh[mi][i]; d++){
          for(jk=1; jk <=nlstate ; jk++){            newm=savm;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
          }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                      }
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          for(jk=1; jk <=nlstate ; jk++){                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            if( i <= (int) agemax){            savm=oldm;
              if(pos>=1.e-5){            oldm=newm;
                probs[i][jk][j1]= pp[jk]/pos;          } /* end mult */
              }        
            }          s1=s[mw[mi][i]][i];
          }          s2=s[mw[mi+1][i]][i];
                    if( s2 > nlstate){ 
          }            lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }
            ipmx +=1;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          sw += weight[i];
   free_vector(pp,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 }  /* End of Freq */        } /* end of wave */
 /************* Waves Concatenation ***************/      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for(mi=1; mi<= wav[i]-1; mi++){
      Death is a valid wave (if date is known).          for (ii=1;ii<=nlstate+ndeath;ii++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (j=1;j<=nlstate+ndeath;j++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      */            }
           for(d=0; d<dh[mi][i]; d++){
   int i, mi, m;            newm=savm;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      double sum=0., jmean=0.;*/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int j, k=0,jk, ju, jl;            }
   double sum=0.;          
   jmin=1e+5;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmax=-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmean=0.;            savm=oldm;
   for(i=1; i<=imx; i++){            oldm=newm;
     mi=0;          } /* end mult */
     m=firstpass;        
     while(s[m][i] <= nlstate){          s1=s[mw[mi][i]][i];
       if(s[m][i]>=1)          s2=s[mw[mi+1][i]][i];
         mw[++mi][i]=m;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if(m >=lastpass)          ipmx +=1;
         break;          sw += weight[i];
       else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         m++;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     }/* end while */        } /* end of wave */
     if (s[m][i] > nlstate){      } /* end of individual */
       mi++;     /* Death is another wave */    } /* End of if */
       /* if(mi==0)  never been interviewed correctly before death */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
          /* Only death is a correct wave */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       mw[mi][i]=m;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     }    return -l;
   }
     wav[i]=mi;  
     if(mi==0)  /*************** log-likelihood *************/
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  double funcone( double *x)
   }  {
     /* Same as likeli but slower because of a lot of printf and if */
   for(i=1; i<=imx; i++){    int i, ii, j, k, mi, d, kk;
     for(mi=1; mi<wav[i];mi++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if (stepm <=0)    double **out;
         dh[mi][i]=1;    double lli; /* Individual log likelihood */
       else{    double llt;
         if (s[mw[mi+1][i]][i] > nlstate) {    int s1, s2;
           if (agedc[i] < 2*AGESUP) {    double bbh, survp;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    /*extern weight */
           if(j==0) j=1;  /* Survives at least one month after exam */    /* We are differentiating ll according to initial status */
           k=k+1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           if (j >= jmax) jmax=j;    /*for(i=1;i<imx;i++) 
           if (j <= jmin) jmin=j;      printf(" %d\n",s[4][i]);
           sum=sum+j;    */
           /* if (j<10) printf("j=%d num=%d ",j,i); */    cov[1]=1.;
           }  
         }    for(k=1; k<=nlstate; k++) ll[k]=0.;
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           k=k+1;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j >= jmax) jmax=j;      for(mi=1; mi<= wav[i]-1; mi++){
           else if (j <= jmin)jmin=j;        for (ii=1;ii<=nlstate+ndeath;ii++)
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         jk= j/stepm;          }
         jl= j -jk*stepm;        for(d=0; d<dh[mi][i]; d++){
         ju= j -(jk+1)*stepm;          newm=savm;
         if(jl <= -ju)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=jk;          for (kk=1; kk<=cptcovage;kk++) {
         else            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=jk+1;          }
         if(dh[mi][i]==0)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=1; /* At least one step */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }          savm=oldm;
     }          oldm=newm;
   }        } /* end mult */
   jmean=sum/k;        
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        s1=s[mw[mi][i]][i];
  }        s2=s[mw[mi+1][i]][i];
 /*********** Tricode ****************************/        bbh=(double)bh[mi][i]/(double)stepm; 
 void tricode(int *Tvar, int **nbcode, int imx)        /* bias is positive if real duration
 {         * is higher than the multiple of stepm and negative otherwise.
   int Ndum[20],ij=1, k, j, i;         */
   int cptcode=0;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   cptcoveff=0;          lli=log(out[s1][s2] - savm[s1][s2]);
          } else if (mle==1){
   for (k=0; k<19; k++) Ndum[k]=0;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (k=1; k<=7; k++) ncodemax[k]=0;        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        } else if(mle==3){  /* exponential inter-extrapolation */
     for (i=1; i<=imx; i++) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       ij=(int)(covar[Tvar[j]][i]);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       Ndum[ij]++;          lli=log(out[s1][s2]); /* Original formula */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       if (ij > cptcode) cptcode=ij;          lli=log(out[s1][s2]); /* Original formula */
     }        } /* End of if */
         ipmx +=1;
     for (i=0; i<=cptcode; i++) {        sw += weight[i];
       if(Ndum[i]!=0) ncodemax[j]++;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     ij=1;        if(globpr){
           fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
     for (i=1; i<=ncodemax[j]; i++) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for (k=0; k<=19; k++) {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         if (Ndum[k] != 0) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           nbcode[Tvar[j]][ij]=k;            llt +=ll[k]*gipmx/gsw;
           ij++;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         }          }
         if (ij > ncodemax[j]) break;          fprintf(ficresilk," %10.6f\n", -llt);
       }          }
     }      } /* end of wave */
   }      } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  for (k=0; k<19; k++) Ndum[k]=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  for (i=1; i<=ncovmodel-2; i++) {    if(globpr==0){ /* First time we count the contributions and weights */
       ij=Tvar[i];      gipmx=ipmx;
       Ndum[ij]++;      gsw=sw;
     }    }
     return -l;
  ij=1;  }
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncov)){  
      Tvaraff[ij]=i;  /*************** function likelione ***********/
      ij++;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    }  {
  }    /* This routine should help understanding what is done with 
         the selection of individuals/waves and
     cptcoveff=ij-1;       to check the exact contribution to the likelihood.
 }       Plotting could be done.
      */
 /*********** Health Expectancies ****************/    int k;
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    if(*globpri !=0){ /* Just counts and sums, no printings */
 {      strcpy(fileresilk,"ilk"); 
   /* Health expectancies */      strcat(fileresilk,fileres);
   int i, j, nhstepm, hstepm, h;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double age, agelim,hf;        printf("Problem with resultfile: %s\n", fileresilk);
   double ***p3mat;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
   fprintf(ficreseij,"# Health expectancies\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fprintf(ficreseij,"# Age");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   for(i=1; i<=nlstate;i++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for(j=1; j<=nlstate;j++)      for(k=1; k<=nlstate; k++) 
       fprintf(ficreseij," %1d-%1d",i,j);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficreseij,"\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   hstepm=1*YEARM; /*  Every j years of age (in month) */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    *fretone=(*funcone)(p);
     if(*globpri !=0){
   agelim=AGESUP;      fclose(ficresilk);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     /* nhstepm age range expressed in number of stepm */      fflush(fichtm); 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    } 
     /* Typically if 20 years = 20*12/6=40 stepm */    return;
     if (stepm >= YEARM) hstepm=1;  }
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  /*********** Maximum Likelihood Estimation ***************/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     int i,j, iter;
     for(i=1; i<=nlstate;i++)    double **xi;
       for(j=1; j<=nlstate;j++)    double fret;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    double fretone; /* Only one call to likelihood */
           eij[i][j][(int)age] +=p3mat[i][j][h];    char filerespow[FILENAMELENGTH];
         }    xi=matrix(1,npar,1,npar);
        for (i=1;i<=npar;i++)
     hf=1;      for (j=1;j<=npar;j++)
     if (stepm >= YEARM) hf=stepm/YEARM;        xi[i][j]=(i==j ? 1.0 : 0.0);
     fprintf(ficreseij,"%.0f",age );    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(i=1; i<=nlstate;i++)    strcpy(filerespow,"pow"); 
       for(j=1; j<=nlstate;j++){    strcat(filerespow,fileres);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", filerespow);
     fprintf(ficreseij,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
 /************ Variance ******************/        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fprintf(ficrespow,"\n");
 {  
   /* Variance of health expectancies */    powell(p,xi,npar,ftol,&iter,&fret,func);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    fclose(ficrespow);
   double **dnewm,**doldm;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int i, j, nhstepm, hstepm, h;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int k, cptcode;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double *xp;  
   double **gp, **gm;  }
   double ***gradg, ***trgradg;  
   double ***p3mat;  /**** Computes Hessian and covariance matrix ***/
   double age,agelim;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int theta;  {
     double  **a,**y,*x,pd;
    fprintf(ficresvij,"# Covariances of life expectancies\n");    double **hess;
   fprintf(ficresvij,"# Age");    int i, j,jk;
   for(i=1; i<=nlstate;i++)    int *indx;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double hessii(double p[], double delta, int theta, double delti[]);
   fprintf(ficresvij,"\n");    double hessij(double p[], double delti[], int i, int j);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   xp=vector(1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    hess=matrix(1,npar,1,npar);
    
   hstepm=1*YEARM; /* Every year of age */    printf("\nCalculation of the hessian matrix. Wait...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   agelim = AGESUP;    for (i=1;i<=npar;i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("%d",i);fflush(stdout);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"%d",i);fflush(ficlog);
     if (stepm >= YEARM) hstepm=1;      hess[i][i]=hessii(p,ftolhess,i,delti);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      /*printf(" %f ",p[i]);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*printf(" %lf ",hess[i][i]);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate);    
     gm=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
     for(theta=1; theta <=npar; theta++){        if (j>i) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */          printf(".%d%d",i,j);fflush(stdout);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            hess[j][i]=hess[i][j];    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /*printf(" %lf ",hess[i][j]);*/
         }
       if (popbased==1) {      }
         for(i=1; i<=nlstate;i++)    }
           prlim[i][i]=probs[(int)age][i][ij];    printf("\n");
       }    fprintf(ficlog,"\n");
        
       for(j=1; j<= nlstate; j++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(h=0; h<=nhstepm; h++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    a=matrix(1,npar,1,npar);
         }    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
        indx=ivector(1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    for (i=1;i<=npar;i++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      ludcmp(a,npar,indx,&pd);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     for (j=1;j<=npar;j++) {
       if (popbased==1) {      for (i=1;i<=npar;i++) x[i]=0;
         for(i=1; i<=nlstate;i++)      x[j]=1;
           prlim[i][i]=probs[(int)age][i][ij];      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){    }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\n#Hessian matrix#\n");
         }    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
       for(j=1; j<= nlstate; j++)        printf("%.3e ",hess[i][j]);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"%.3e ",hess[i][j]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }      printf("\n");
     } /* End theta */      fprintf(ficlog,"\n");
     }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     /* Recompute Inverse */
     for(h=0; h<=nhstepm; h++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         for(theta=1; theta <=npar; theta++)    ludcmp(a,npar,indx,&pd);
           trgradg[h][j][theta]=gradg[h][theta][j];  
     /*  printf("\n#Hessian matrix recomputed#\n");
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    for (j=1;j<=npar;j++) {
         vareij[i][j][(int)age] =0.;      for (i=1;i<=npar;i++) x[i]=0;
     for(h=0;h<=nhstepm;h++){      x[j]=1;
       for(k=0;k<=nhstepm;k++){      lubksb(a,npar,indx,x);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      for (i=1;i<=npar;i++){ 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        y[i][j]=x[i];
         for(i=1;i<=nlstate;i++)        printf("%.3e ",y[i][j]);
           for(j=1;j<=nlstate;j++)        fprintf(ficlog,"%.3e ",y[i][j]);
             vareij[i][j][(int)age] += doldm[i][j];      }
       }      printf("\n");
     }      fprintf(ficlog,"\n");
     h=1;    }
     if (stepm >= YEARM) h=stepm/YEARM;    */
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    free_matrix(a,1,npar,1,npar);
       for(j=1; j<=nlstate;j++){    free_matrix(y,1,npar,1,npar);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    free_vector(x,1,npar);
       }    free_ivector(indx,1,npar);
     fprintf(ficresvij,"\n");    free_matrix(hess,1,npar,1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*************** hessian matrix ****************/
   } /* End age */  double hessii( double x[], double delta, int theta, double delti[])
    {
   free_vector(xp,1,npar);    int i;
   free_matrix(doldm,1,nlstate,1,npar);    int l=1, lmax=20;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double k1,k2;
     double p2[NPARMAX+1];
 }    double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 /************ Variance of prevlim ******************/    double fx;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int k=0,kmax=10;
 {    double l1;
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fx=func(x);
   double **newm;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double **dnewm,**doldm;    for(l=0 ; l <=lmax; l++){
   int i, j, nhstepm, hstepm;      l1=pow(10,l);
   int k, cptcode;      delts=delt;
   double *xp;      for(k=1 ; k <kmax; k=k+1){
   double *gp, *gm;        delt = delta*(l1*k);
   double **gradg, **trgradg;        p2[theta]=x[theta] +delt;
   double age,agelim;        k1=func(p2)-fx;
   int theta;        p2[theta]=x[theta]-delt;
            k2=func(p2)-fx;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        /*res= (k1-2.0*fx+k2)/delt/delt; */
   fprintf(ficresvpl,"# Age");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   for(i=1; i<=nlstate;i++)        
       fprintf(ficresvpl," %1d-%1d",i,i);  #ifdef DEBUG
   fprintf(ficresvpl,"\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   xp=vector(1,npar);  #endif
   dnewm=matrix(1,nlstate,1,npar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   doldm=matrix(1,nlstate,1,nlstate);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            k=kmax;
   hstepm=1*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   agelim = AGESUP;          k=kmax; l=lmax*10.;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     if (stepm >= YEARM) hstepm=1;          delts=delt;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        }
     gradg=matrix(1,npar,1,nlstate);      }
     gp=vector(1,nlstate);    }
     gm=vector(1,nlstate);    delti[theta]=delts;
     return res; 
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  double hessij( double x[], double delti[], int thetai,int thetaj)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    int i;
         gp[i] = prlim[i][i];    int l=1, l1, lmax=20;
        double k1,k2,k3,k4,res,fx;
       for(i=1; i<=npar; i++) /* Computes gradient */    double p2[NPARMAX+1];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    fx=func(x);
         gm[i] = prlim[i][i];    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     } /* End theta */      k1=func(p2)-fx;
     
     trgradg =matrix(1,nlstate,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(j=1; j<=nlstate;j++)      k2=func(p2)-fx;
       for(theta=1; theta <=npar; theta++)    
         trgradg[j][theta]=gradg[theta][j];      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i=1;i<=nlstate;i++)      k3=func(p2)-fx;
       varpl[i][(int)age] =0.;    
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      p2[thetai]=x[thetai]-delti[thetai]/k;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(i=1;i<=nlstate;i++)      k4=func(p2)-fx;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
     fprintf(ficresvpl,"%.0f ",age );      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1; i<=nlstate;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  #endif
     fprintf(ficresvpl,"\n");    }
     free_vector(gp,1,nlstate);    return res;
     free_vector(gm,1,nlstate);  }
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);  /************** Inverse of matrix **************/
   } /* End age */  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   free_vector(xp,1,npar);    int i,imax,j,k; 
   free_matrix(doldm,1,nlstate,1,npar);    double big,dum,sum,temp; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    double *vv; 
    
 }    vv=vector(1,n); 
     *d=1.0; 
 /************ Variance of one-step probabilities  ******************/    for (i=1;i<=n;i++) { 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      big=0.0; 
 {      for (j=1;j<=n;j++) 
   int i, j;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   int k=0, cptcode;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double **dnewm,**doldm;      vv[i]=1.0/big; 
   double *xp;    } 
   double *gp, *gm;    for (j=1;j<=n;j++) { 
   double **gradg, **trgradg;      for (i=1;i<j;i++) { 
   double age,agelim, cov[NCOVMAX];        sum=a[i][j]; 
   int theta;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   char fileresprob[FILENAMELENGTH];        a[i][j]=sum; 
       } 
   strcpy(fileresprob,"prob");      big=0.0; 
   strcat(fileresprob,fileres);      for (i=j;i<=n;i++) { 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        sum=a[i][j]; 
     printf("Problem with resultfile: %s\n", fileresprob);        for (k=1;k<j;k++) 
   }          sum -= a[i][k]*a[k][j]; 
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   xp=vector(1,npar);          imax=i; 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        } 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      } 
        if (j != imax) { 
   cov[1]=1;        for (k=1;k<=n;k++) { 
   for (age=bage; age<=fage; age ++){          dum=a[imax][k]; 
     cov[2]=age;          a[imax][k]=a[j][k]; 
     gradg=matrix(1,npar,1,9);          a[j][k]=dum; 
     trgradg=matrix(1,9,1,npar);        } 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        *d = -(*d); 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        vv[imax]=vv[j]; 
          } 
     for(theta=1; theta <=npar; theta++){      indx[j]=imax; 
       for(i=1; i<=npar; i++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (j != n) { 
              dum=1.0/(a[j][j]); 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          } 
       k=0;    } 
       for(i=1; i<= (nlstate+ndeath); i++){    free_vector(vv,1,n);  /* Doesn't work */
         for(j=1; j<=(nlstate+ndeath);j++){  ;
            k=k+1;  } 
           gp[k]=pmmij[i][j];  
         }  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
     int i,ii=0,ip,j; 
       for(i=1; i<=npar; i++)    double sum; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   
        for (i=1;i<=n;i++) { 
       ip=indx[i]; 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      sum=b[ip]; 
       k=0;      b[ip]=b[i]; 
       for(i=1; i<=(nlstate+ndeath); i++){      if (ii) 
         for(j=1; j<=(nlstate+ndeath);j++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           k=k+1;      else if (sum) ii=i; 
           gm[k]=pmmij[i][j];      b[i]=sum; 
         }    } 
       }    for (i=n;i>=1;i--) { 
            sum=b[i]; 
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        b[i]=sum/a[i][i]; 
     }    } 
   } 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  
       for(theta=1; theta <=npar; theta++)  /************ Frequencies ********************/
       trgradg[j][theta]=gradg[theta][j];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
    {  /* Some frequencies */
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
      pmij(pmmij,cov,ncovmodel,x,nlstate);    double ***freq; /* Frequencies */
     double *pp, **prop;
      k=0;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      for(i=1; i<=(nlstate+ndeath); i++){    FILE *ficresp;
        for(j=1; j<=(nlstate+ndeath);j++){    char fileresp[FILENAMELENGTH];
          k=k+1;    
          gm[k]=pmmij[i][j];    pp=vector(1,nlstate);
         }    prop=matrix(1,nlstate,iagemin,iagemax+3);
      }    strcpy(fileresp,"p");
          strcat(fileresp,fileres);
      /*printf("\n%d ",(int)age);    if((ficresp=fopen(fileresp,"w"))==NULL) {
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
              fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
      }*/    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   fprintf(ficresprob,"\n%d ",(int)age);    
     j=cptcoveff;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    first=1;
   }  
     for(k1=1; k1<=j;k1++){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for(i1=1; i1<=ncodemax[k1];i1++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        j1++;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          scanf("%d", i);*/
 }        for (i=-1; i<=nlstate+ndeath; i++)  
  free_vector(xp,1,npar);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
 fclose(ficresprob);            for(m=iagemin; m <= iagemax+3; m++)
  exit(0);              freq[i][jk][m]=0;
 }  
       for (i=1; i<=nlstate; i++)  
 /***********************************************/        for(m=iagemin; m <= iagemax+3; m++)
 /**************** Main Program *****************/          prop[i][m]=0;
 /***********************************************/        
         dateintsum=0;
 /*int main(int argc, char *argv[])*/        k2cpt=0;
 int main()        for (i=1; i<=imx; i++) {
 {          bool=1;
           if  (cptcovn>0) {
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            for (z1=1; z1<=cptcoveff; z1++) 
   double agedeb, agefin,hf;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double agemin=1.e20, agemax=-1.e20;                bool=0;
           }
   double fret;          if (bool==1){
   double **xi,tmp,delta;            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   double dum; /* Dummy variable */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   double ***p3mat;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int *indx;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   char line[MAXLINE], linepar[MAXLINE];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   char title[MAXLINE];                if (m<lastpass) {
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   char filerest[FILENAMELENGTH];                }
   char fileregp[FILENAMELENGTH];                
   char popfile[FILENAMELENGTH];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];                  dateintsum=dateintsum+k2;
   int firstobs=1, lastobs=10;                  k2cpt++;
   int sdeb, sfin; /* Status at beginning and end */                }
   int c,  h , cpt,l;                /*}*/
   int ju,jl, mi;            }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        }
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;         
   int hstepm, nhstepm;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   int *popage;  
         if  (cptcovn>0) {
   double bage, fage, age, agelim, agebase;          fprintf(ficresp, "\n#********** Variable "); 
   double ftolpl=FTOL;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double **prlim;          fprintf(ficresp, "**********\n#");
   double *severity;        }
   double ***param; /* Matrix of parameters */        for(i=1; i<=nlstate;i++) 
   double  *p;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double **matcov; /* Matrix of covariance */        fprintf(ficresp, "\n");
   double ***delti3; /* Scale */        
   double *delti; /* Scale */        for(i=iagemin; i <= iagemax+3; i++){
   double ***eij, ***vareij;          if(i==iagemax+3){
   double **varpl; /* Variances of prevalence limits by age */            fprintf(ficlog,"Total");
   double *epj, vepp;          }else{
   double kk1, kk2;            if(first==1){
   double *popeffectif,*popcount;              first=0;
               printf("See log file for details...\n");
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";            }
   char *alph[]={"a","a","b","c","d","e"}, str[4];            fprintf(ficlog,"Age %d", i);
           }
           for(jk=1; jk <=nlstate ; jk++){
   char z[1]="c", occ;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 #include <sys/time.h>              pp[jk] += freq[jk][m][i]; 
 #include <time.h>          }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          for(jk=1; jk <=nlstate ; jk++){
   /* long total_usecs;            for(m=-1, pos=0; m <=0 ; m++)
   struct timeval start_time, end_time;              pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   printf("\nIMACH, Version 0.7");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   printf("\nEnter the parameter file name: ");            }else{
               if(first==1)
 #ifdef windows                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   scanf("%s",pathtot);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   getcwd(pathcd, size);            }
   /*cygwin_split_path(pathtot,path,optionfile);          }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 split(pathtot, path,optionfile);              pp[jk] += freq[jk][m][i];
   chdir(path);          }       
   replace(pathc,path);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 #endif            pos += pp[jk];
 #ifdef unix            posprop += prop[jk][i];
   scanf("%s",optionfile);          }
 #endif          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
 /*-------- arguments in the command line --------*/              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcpy(fileres,"r");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcat(fileres, optionfile);            }else{
               if(first==1)
   /*---------arguments file --------*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            }
     printf("Problem with optionfile %s\n",optionfile);            if( i <= iagemax){
     goto end;              if(pos>=1.e-5){
   }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   strcpy(filereso,"o");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   strcat(filereso,fileres);              }
   if((ficparo=fopen(filereso,"w"))==NULL) {              else
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   }            }
           }
   /* Reads comments: lines beginning with '#' */          
   while((c=getc(ficpar))=='#' && c!= EOF){          for(jk=-1; jk <=nlstate+ndeath; jk++)
     ungetc(c,ficpar);            for(m=-1; m <=nlstate+ndeath; m++)
     fgets(line, MAXLINE, ficpar);              if(freq[jk][m][i] !=0 ) {
     puts(line);              if(first==1)
     fputs(line,ficparo);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   ungetc(c,ficpar);              }
           if(i <= iagemax)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            fprintf(ficresp,"\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          if(first==1)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);            printf("Others in log...\n");
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficlog,"\n");
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);    dateintmean=dateintsum/k2cpt; 
   }   
   ungetc(c,ficpar);    fclose(ficresp);
      free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);    free_vector(pp,1,nlstate);
   fprintf(ficparo,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
  while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************ Prevalence ********************/
     puts(line);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     fputs(line,ficparo);  {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   ungetc(c,ficpar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         We still use firstpass and lastpass as another selection.
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);    */
   fprintf(ficparo,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);   
          int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      double ***freq; /* Frequencies */
 while((c=getc(ficpar))=='#' && c!= EOF){    double *pp, **prop;
     ungetc(c,ficpar);    double pos,posprop; 
     fgets(line, MAXLINE, ficpar);    double  y2; /* in fractional years */
     puts(line);    int iagemin, iagemax;
     fputs(line,ficparo);  
   }    iagemin= (int) agemin;
   ungetc(c,ficpar);    iagemax= (int) agemax;
      /*pp=vector(1,nlstate);*/
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   covar=matrix(0,NCOVMAX,1,n);    j1=0;
   cptcovn=0;    
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   ncovmodel=2+cptcovn;    
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   /* Read guess parameters */        j1++;
   /* Reads comments: lines beginning with '#' */        
   while((c=getc(ficpar))=='#' && c!= EOF){        for (i=1; i<=nlstate; i++)  
     ungetc(c,ficpar);          for(m=iagemin; m <= iagemax+3; m++)
     fgets(line, MAXLINE, ficpar);            prop[i][m]=0.0;
     puts(line);       
     fputs(line,ficparo);        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
   ungetc(c,ficpar);          if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++) 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for(i=1; i <=nlstate; i++)                bool=0;
     for(j=1; j <=nlstate+ndeath-1; j++){          } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          if (bool==1) { 
       fprintf(ficparo,"%1d%1d",i1,j1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       printf("%1d%1d",i,j);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       for(k=1; k<=ncovmodel;k++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         fscanf(ficpar," %lf",&param[i][j][k]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         printf(" %lf",param[i][j][k]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficparo," %lf",param[i][j][k]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fscanf(ficpar,"\n");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       printf("\n");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficparo,"\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
     }                } 
                }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            } /* end selection of waves */
           }
   p=param[1][1];        }
          for(i=iagemin; i <= iagemax+3; i++){  
   /* Reads comments: lines beginning with '#' */          
   while((c=getc(ficpar))=='#' && c!= EOF){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     ungetc(c,ficpar);            posprop += prop[jk][i]; 
     fgets(line, MAXLINE, ficpar);          } 
     puts(line);  
     fputs(line,ficparo);          for(jk=1; jk <=nlstate ; jk++){     
   }            if( i <=  iagemax){ 
   ungetc(c,ficpar);              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              } 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            } 
   for(i=1; i <=nlstate; i++){          }/* end jk */ 
     for(j=1; j <=nlstate+ndeath-1; j++){        }/* end i */ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      } /* end i1 */
       printf("%1d%1d",i,j);    } /* end k1 */
       fprintf(ficparo,"%1d%1d",i1,j1);    
       for(k=1; k<=ncovmodel;k++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);    /*free_vector(pp,1,nlstate);*/
         printf(" %le",delti3[i][j][k]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(ficparo," %le",delti3[i][j][k]);  }  /* End of prevalence */
       }  
       fscanf(ficpar,"\n");  /************* Waves Concatenation ***************/
       printf("\n");  
       fprintf(ficparo,"\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   delti=delti3[1][1];       Death is a valid wave (if date is known).
         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   /* Reads comments: lines beginning with '#' */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   while((c=getc(ficpar))=='#' && c!= EOF){       and mw[mi+1][i]. dh depends on stepm.
     ungetc(c,ficpar);       */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    int i, mi, m;
     fputs(line,ficparo);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
   ungetc(c,ficpar);    int first;
      int j, k=0,jk, ju, jl;
   matcov=matrix(1,npar,1,npar);    double sum=0.;
   for(i=1; i <=npar; i++){    first=0;
     fscanf(ficpar,"%s",&str);    jmin=1e+5;
     printf("%s",str);    jmax=-1;
     fprintf(ficparo,"%s",str);    jmean=0.;
     for(j=1; j <=i; j++){    for(i=1; i<=imx; i++){
       fscanf(ficpar," %le",&matcov[i][j]);      mi=0;
       printf(" %.5le",matcov[i][j]);      m=firstpass;
       fprintf(ficparo," %.5le",matcov[i][j]);      while(s[m][i] <= nlstate){
     }        if(s[m][i]>=1)
     fscanf(ficpar,"\n");          mw[++mi][i]=m;
     printf("\n");        if(m >=lastpass)
     fprintf(ficparo,"\n");          break;
   }        else
   for(i=1; i <=npar; i++)          m++;
     for(j=i+1;j<=npar;j++)      }/* end while */
       matcov[i][j]=matcov[j][i];      if (s[m][i] > nlstate){
            mi++;     /* Death is another wave */
   printf("\n");        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
         mw[mi][i]=m;
     /*-------- data file ----------*/      }
     if((ficres =fopen(fileres,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", fileres);goto end;      wav[i]=mi;
     }      if(mi==0){
     fprintf(ficres,"#%s\n",version);        nbwarn++;
            if(first==0){
     if((fic=fopen(datafile,"r"))==NULL)    {          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       printf("Problem with datafile: %s\n", datafile);goto end;          first=1;
     }        }
         if(first==1){
     n= lastobs;          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     severity = vector(1,maxwav);        }
     outcome=imatrix(1,maxwav+1,1,n);      } /* end mi==0 */
     num=ivector(1,n);    } /* End individuals */
     moisnais=vector(1,n);  
     annais=vector(1,n);    for(i=1; i<=imx; i++){
     moisdc=vector(1,n);      for(mi=1; mi<wav[i];mi++){
     andc=vector(1,n);        if (stepm <=0)
     agedc=vector(1,n);          dh[mi][i]=1;
     cod=ivector(1,n);        else{
     weight=vector(1,n);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            if (agedc[i] < 2*AGESUP) {
     mint=matrix(1,maxwav,1,n);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     anint=matrix(1,maxwav,1,n);              if(j==0) j=1;  /* Survives at least one month after exam */
     s=imatrix(1,maxwav+1,1,n);              else if(j<0){
     adl=imatrix(1,maxwav+1,1,n);                    nberr++;
     tab=ivector(1,NCOVMAX);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     ncodemax=ivector(1,8);                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     i=1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     while (fgets(line, MAXLINE, fic) != NULL)    {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       if ((i >= firstobs) && (i <=lastobs)) {              }
                      k=k+1;
         for (j=maxwav;j>=1;j--){              if (j >= jmax) jmax=j;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              if (j <= jmin) jmin=j;
           strcpy(line,stra);              sum=sum+j;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }            }
                  }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          else{
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            k=k+1;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for (j=ncov;j>=1;j--){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if(j<0){
         }              nberr++;
         num[i]=atol(stra);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                      fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            sum=sum+j;
           }
         i=i+1;          jk= j/stepm;
       }          jl= j -jk*stepm;
     }          ju= j -(jk+1)*stepm;
     /* printf("ii=%d", ij);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        scanf("%d",i);*/            if(jl==0){
   imx=i-1; /* Number of individuals */              dh[mi][i]=jk;
               bh[mi][i]=0;
   /* for (i=1; i<=imx; i++){            }else{ /* We want a negative bias in order to only have interpolation ie
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                    * at the price of an extra matrix product in likelihood */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              dh[mi][i]=jk+1;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              bh[mi][i]=ju;
     }            }
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          }else{
             if(jl <= -ju){
   /* Calculation of the number of parameter from char model*/              dh[mi][i]=jk;
   Tvar=ivector(1,15);              bh[mi][i]=jl;       /* bias is positive if real duration
   Tprod=ivector(1,15);                                   * is higher than the multiple of stepm and negative otherwise.
   Tvaraff=ivector(1,15);                                   */
   Tvard=imatrix(1,15,1,2);            }
   Tage=ivector(1,15);                  else{
                  dh[mi][i]=jk+1;
   if (strlen(model) >1){              bh[mi][i]=ju;
     j=0, j1=0, k1=1, k2=1;            }
     j=nbocc(model,'+');            if(dh[mi][i]==0){
     j1=nbocc(model,'*');              dh[mi][i]=1; /* At least one step */
     cptcovn=j+1;              bh[mi][i]=ju; /* At least one step */
     cptcovprod=j1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                }
              } /* end if mle */
     strcpy(modelsav,model);        }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      } /* end wave */
       printf("Error. Non available option model=%s ",model);    }
       goto end;    jmean=sum/k;
     }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for(i=(j+1); i>=1;i--){   }
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  /*********** Tricode ****************************/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  void tricode(int *Tvar, int **nbcode, int imx)
       /*scanf("%d",i);*/  {
       if (strchr(strb,'*')) {    
         cutv(strd,strc,strb,'*');    int Ndum[20],ij=1, k, j, i, maxncov=19;
         if (strcmp(strc,"age")==0) {    int cptcode=0;
           cptcovprod--;    cptcoveff=0; 
           cutv(strb,stre,strd,'V');   
           Tvar[i]=atoi(stre);    for (k=0; k<maxncov; k++) Ndum[k]=0;
           cptcovage++;    for (k=1; k<=7; k++) ncodemax[k]=0;
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         else if (strcmp(strd,"age")==0) {                                 modality*/ 
           cptcovprod--;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           cutv(strb,stre,strc,'V');        Ndum[ij]++; /*store the modality */
           Tvar[i]=atoi(stre);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           cptcovage++;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           Tage[cptcovage]=i;                                         Tvar[j]. If V=sex and male is 0 and 
         }                                         female is 1, then  cptcode=1.*/
         else {      }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncov+k1;      for (i=0; i<=cptcode; i++) {
           cutv(strb,strc,strd,'V');        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           Tprod[k1]=i;      }
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);      ij=1; 
           Tvar[cptcovn+k2]=Tvard[k1][1];      for (i=1; i<=ncodemax[j]; i++) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        for (k=0; k<= maxncov; k++) {
           for (k=1; k<=lastobs;k++)          if (Ndum[k] != 0) {
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            nbcode[Tvar[j]][ij]=k; 
           k1++;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           k2=k2+2;            
         }            ij++;
       }          }
       else {          if (ij > ncodemax[j]) break; 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        }  
        /*  scanf("%d",i);*/      } 
       cutv(strd,strc,strb,'V');    }  
       Tvar[i]=atoi(strc);  
       }   for (k=0; k< maxncov; k++) Ndum[k]=0;
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);   for (i=1; i<=ncovmodel-2; i++) { 
         scanf("%d",i);*/     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     }     ij=Tvar[i];
 }     Ndum[ij]++;
     }
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);   ij=1;
   scanf("%d ",i);*/   for (i=1; i<= maxncov; i++) {
     fclose(fic);     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
     /*  if(mle==1){*/       ij++;
     if (weightopt != 1) { /* Maximisation without weights*/     }
       for(i=1;i<=n;i++) weight[i]=1.0;   }
     }   
     /*-calculation of age at interview from date of interview and age at death -*/   cptcoveff=ij-1; /*Number of simple covariates*/
     agev=matrix(1,maxwav,1,imx);  }
   
    for (i=1; i<=imx; i++)  /*********** Health Expectancies ****************/
      for(m=2; (m<= maxwav); m++)  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
          anint[m][i]=9999;  
          s[m][i]=-1;  {
        }    /* Health expectancies */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     for (i=1; i<=imx; i++)  {    double age, agelim, hf;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double ***p3mat,***varhe;
       for(m=1; (m<= maxwav); m++){    double **dnewm,**doldm;
         if(s[m][i] >0){    double *xp;
           if (s[m][i] == nlstate+1) {    double **gp, **gm;
             if(agedc[i]>0)    double ***gradg, ***trgradg;
               if(moisdc[i]!=99 && andc[i]!=9999)    int theta;
               agev[m][i]=agedc[i];  
             else {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
               if (andc[i]!=9999){    xp=vector(1,npar);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    dnewm=matrix(1,nlstate*nlstate,1,npar);
               agev[m][i]=-1;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
               }    
             }    fprintf(ficreseij,"# Health expectancies\n");
           }    fprintf(ficreseij,"# Age");
           else if(s[m][i] !=9){ /* Should no more exist */    for(i=1; i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for(j=1; j<=nlstate;j++)
             if(mint[m][i]==99 || anint[m][i]==9999)        fprintf(ficreseij," %1d-%1d (SE)",i,j);
               agev[m][i]=1;    fprintf(ficreseij,"\n");
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];    if(estepm < stepm){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
             }    }
             else if(agev[m][i] >agemax){    else  hstepm=estepm;   
               agemax=agev[m][i];    /* We compute the life expectancy from trapezoids spaced every estepm months
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/     * This is mainly to measure the difference between two models: for example
             }     * if stepm=24 months pijx are given only every 2 years and by summing them
             /*agev[m][i]=anint[m][i]-annais[i];*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
             /*   agev[m][i] = age[i]+2*m;*/     * progression in between and thus overestimating or underestimating according
           }     * to the curvature of the survival function. If, for the same date, we 
           else { /* =9 */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             agev[m][i]=1;     * to compare the new estimate of Life expectancy with the same linear 
             s[m][i]=-1;     * hypothesis. A more precise result, taking into account a more precise
           }     * curvature will be obtained if estepm is as small as stepm. */
         }  
         else /*= 0 Unknown */    /* For example we decided to compute the life expectancy with the smallest unit */
           agev[m][i]=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
           nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
     for (i=1; i<=imx; i++)  {       and note for a fixed period like estepm months */
       for(m=1; (m<= maxwav); m++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         if (s[m][i] > (nlstate+ndeath)) {       survival function given by stepm (the optimization length). Unfortunately it
           printf("Error: Wrong value in nlstate or ndeath\n");         means that if the survival funtion is printed only each two years of age and if
           goto end;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
       }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_vector(severity,1,maxwav);      /* nhstepm age range expressed in number of stepm */
     free_imatrix(outcome,1,maxwav+1,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     free_vector(moisnais,1,n);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(annais,1,n);      /* if (stepm >= YEARM) hstepm=1;*/
     free_matrix(mint,1,maxwav,1,n);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     free_matrix(anint,1,maxwav,1,n);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(moisdc,1,n);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     free_vector(andc,1,n);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
      
     wav=ivector(1,imx);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       for(theta=1; theta <=npar; theta++){
       ncodemax[1]=1;        for(i=1; i<=npar; i++){ 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
              }
    codtab=imatrix(1,100,1,10);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    h=0;    
    m=pow(2,cptcoveff);        cptj=0;
          for(j=1; j<= nlstate; j++){
    for(k=1;k<=cptcoveff; k++){          for(i=1; i<=nlstate; i++){
      for(i=1; i <=(m/pow(2,k));i++){            cptj=cptj+1;
        for(j=1; j <= ncodemax[k]; j++){            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
            h++;            }
            if (h>m) h=1;codtab[h][k]=j;          }
          }        }
        }       
      }       
    }        for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    /*for(i=1; i <=m ;i++){        
      for(k=1; k <=cptcovn; k++){        cptj=0;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);        for(j=1; j<= nlstate; j++){
      }          for(i=1;i<=nlstate;i++){
      printf("\n");            cptj=cptj+1;
    }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    scanf("%d",i);*/  
                  gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
    /* Calculates basic frequencies. Computes observed prevalence at single age            }
        and prints on file fileres'p'. */          }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev);        }
         for(j=1; j<= nlstate*nlstate; j++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(h=0; h<=nhstepm-1; h++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       } 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     
        /* End theta */
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
        for(h=0; h<=nhstepm-1; h++)
     if(mle==1){        for(j=1; j<=nlstate*nlstate;j++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
           
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);       for(i=1;i<=nlstate*nlstate;i++)
    fprintf(ficres,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);        for(j=1;j<=nlstate*nlstate;j++)
    fprintf(ficres,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);          varhe[i][j][(int)age] =0.;
   
    jk=1;       printf("%d|",(int)age);fflush(stdout);
    fprintf(ficres,"# Parameters\n");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    printf("# Parameters\n");       for(h=0;h<=nhstepm-1;h++){
    for(i=1,jk=1; i <=nlstate; i++){        for(k=0;k<=nhstepm-1;k++){
      for(k=1; k <=(nlstate+ndeath); k++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
        if (k != i)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
          {          for(i=1;i<=nlstate*nlstate;i++)
            printf("%d%d ",i,k);            for(j=1;j<=nlstate*nlstate;j++)
            fprintf(ficres,"%1d%1d ",i,k);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);      }
              fprintf(ficres,"%f ",p[jk]);      /* Computing expectancies */
              jk++;      for(i=1; i<=nlstate;i++)
            }        for(j=1; j<=nlstate;j++)
            printf("\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
            fprintf(ficres,"\n");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
          }            
      }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    }  
  if(mle==1){          }
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */      fprintf(ficreseij,"%3.0f",age );
     hesscov(matcov, p, npar, delti, ftolhess, func);      cptj=0;
  }      for(i=1; i<=nlstate;i++)
     fprintf(ficres,"# Scales\n");        for(j=1; j<=nlstate;j++){
     printf("# Scales\n");          cptj++;
      for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       for(j=1; j <=nlstate+ndeath; j++){        }
         if (j!=i) {      fprintf(ficreseij,"\n");
           fprintf(ficres,"%1d%1d",i,j);     
           printf("%1d%1d",i,j);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           for(k=1; k<=ncovmodel;k++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
             printf(" %.5e",delti[jk]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             fprintf(ficres," %.5e",delti[jk]);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
             jk++;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }    }
           printf("\n");    printf("\n");
           fprintf(ficres,"\n");    fprintf(ficlog,"\n");
         }  
       }    free_vector(xp,1,npar);
       }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     k=1;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     fprintf(ficres,"# Covariance\n");  }
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){  /************ Variance ******************/
       /*  if (k>nlstate) k=1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
       i1=(i-1)/(ncovmodel*nlstate)+1;  {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    /* Variance of health expectancies */
       printf("%s%d%d",alph[k],i1,tab[i]);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       fprintf(ficres,"%3d",i);    /* double **newm;*/
       printf("%3d",i);    double **dnewm,**doldm;
       for(j=1; j<=i;j++){    double **dnewmp,**doldmp;
         fprintf(ficres," %.5e",matcov[i][j]);    int i, j, nhstepm, hstepm, h, nstepm ;
         printf(" %.5e",matcov[i][j]);    int k, cptcode;
       }    double *xp;
       fprintf(ficres,"\n");    double **gp, **gm;  /* for var eij */
       printf("\n");    double ***gradg, ***trgradg; /*for var eij */
       k++;    double **gradgp, **trgradgp; /* for var p point j */
     }    double *gpp, *gmp; /* for var p point j */
        double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3mat;
       ungetc(c,ficpar);    double age,agelim, hf;
       fgets(line, MAXLINE, ficpar);    double ***mobaverage;
       puts(line);    int theta;
       fputs(line,ficparo);    char digit[4];
     }    char digitp[25];
     ungetc(c,ficpar);  
      char fileresprobmorprev[FILENAMELENGTH];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
        if(popbased==1){
     if (fage <= 2) {      if(mobilav!=0)
       bage = agemin;        strcpy(digitp,"-populbased-mobilav-");
       fage = agemax;      else strcpy(digitp,"-populbased-nomobil-");
     }    }
     else 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      strcpy(digitp,"-stablbased-");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
     if (mobilav!=0) {
          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*------------ gnuplot -------------*/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 chdir(pathcd);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficgp=fopen("graph.plt","w"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with file graph.gp");goto end;      }
   }    }
 #ifdef windows  
   fprintf(ficgp,"cd \"%s\" \n",pathc);    strcpy(fileresprobmorprev,"prmorprev"); 
 #endif    sprintf(digit,"%-d",ij);
 m=pow(2,cptcoveff);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
  /* 1eme*/    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   for (cpt=1; cpt<= nlstate ; cpt ++) {    strcat(fileresprobmorprev,fileres);
    for (k1=1; k1<= m ; k1 ++) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
 #ifdef windows      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    }
 #endif    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 #ifdef unix    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 #endif    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 for (i=1; i<= nlstate ; i ++) {      fprintf(ficresprobmorprev," p.%-d SE",j);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(i=1; i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 }    }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresprobmorprev,"\n");
     for (i=1; i<= nlstate ; i ++) {    fprintf(ficgp,"\n# Routine varevsij");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 }  /*   } */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresvij,"# Age");
 }      for(i=1; i<=nlstate;i++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for(j=1; j<=nlstate;j++)
 #ifdef unix        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 fprintf(ficgp,"\nset ter gif small size 400,300");    fprintf(ficresvij,"\n");
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    xp=vector(1,npar);
    }    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
   /*2 eme*/    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        gpp=vector(nlstate+1,nlstate+ndeath);
     for (i=1; i<= nlstate+1 ; i ++) {    gmp=vector(nlstate+1,nlstate+ndeath);
       k=2*i;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {    if(estepm < stepm){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      printf ("Problem %d lower than %d\n",estepm, stepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      else  hstepm=estepm;   
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /* For example we decided to compute the life expectancy with the smallest unit */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       nhstepm is the number of hstepm from age to agelim 
       for (j=1; j<= nlstate+1 ; j ++) {       nstepm is the number of stepm from age to agelin. 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       Look at hpijx to understand the reason of that which relies in memory size
         else fprintf(ficgp," \%%*lf (\%%*lf)");       and note for a fixed period like k years */
 }      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficgp,"\" t\"\" w l 0,");       survival function given by stepm (the optimization length). Unfortunately it
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);       means that if the survival funtion is printed every two years of age and if
       for (j=1; j<= nlstate+1 ; j ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       results. So we changed our mind and took the option of the best precision.
   else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    agelim = AGESUP;
       else fprintf(ficgp,"\" t\"\" w l 0,");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /*3eme*/      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(cpt-1);      for(theta=1; theta <=npar; theta++){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       for (i=1; i< nlstate ; i ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        }
       }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }  
   }        if (popbased==1) {
            if(mobilav ==0){
   /* CV preval stat */            for(i=1; i<=nlstate;i++)
   for (k1=1; k1<= m ; k1 ++) {              prlim[i][i]=probs[(int)age][i][ij];
     for (cpt=1; cpt<nlstate ; cpt ++) {          }else{ /* mobilav */ 
       k=3;            for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++)          }
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    
              for(j=1; j<= nlstate; j++){
       l=3+(nlstate+ndeath)*cpt;          for(h=0; h<=nhstepm; h++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         l=3+(nlstate+ndeath)*cpt;          }
         fprintf(ficgp,"+$%d",l+i+1);        }
       }        /* This for computing probability of death (h=1 means
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);             computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);           as a weighted average of prlim.
     }        */
   }          for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   /* proba elementaires */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
    for(i=1,jk=1; i <=nlstate; i++){        }    
     for(k=1; k <=(nlstate+ndeath); k++){        /* end probability of death */
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           /*fprintf(ficgp,"%s",alph[1]);*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           jk++;   
           fprintf(ficgp,"\n");        if (popbased==1) {
         }          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
     }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   for(jk=1; jk <=m; jk++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          }
    i=1;        }
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;        for(j=1; j<= nlstate; j++){
      for(k=1; k<=(nlstate+ndeath); k++) {          for(h=0; h<=nhstepm; h++){
        if (k != k2){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 ij=1;          }
         for(j=3; j <=ncovmodel; j++) {        }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        /* This for computing probability of death (h=1 means
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);           computed over hstepm matrices product = hstepm*stepm months) 
             ij++;           as a weighted average of prlim.
           }        */
           else        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           fprintf(ficgp,")/(1");        }    
                /* end probability of death */
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        for(j=1; j<= nlstate; j++) /* vareij */
 ij=1;          for(h=0; h<=nhstepm; h++){
           for(j=3; j <=ncovmodel; j++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           else        }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
           }      } /* End theta */
           fprintf(ficgp,")");  
         }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for(h=0; h<=nhstepm; h++) /* veij */
         i=i+ncovmodel;        for(j=1; j<=nlstate;j++)
        }          for(theta=1; theta <=npar; theta++)
      }            trgradg[h][j][theta]=gradg[h][theta][j];
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
              trgradgp[j][theta]=gradgp[theta][j];
   fclose(ficgp);    
      
 chdir(path);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          for(i=1;i<=nlstate;i++)
     free_ivector(wav,1,imx);        for(j=1;j<=nlstate;j++)
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          vareij[i][j][(int)age] =0.;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
     free_ivector(num,1,n);      for(h=0;h<=nhstepm;h++){
     free_vector(agedc,1,n);        for(k=0;k<=nhstepm;k++){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     fclose(ficparo);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     fclose(ficres);          for(i=1;i<=nlstate;i++)
     /*  }*/            for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
    /*________fin mle=1_________*/        }
          }
     
        /* pptj */
     /* No more information from the sample is required now */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   /* Reads comments: lines beginning with '#' */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     ungetc(c,ficpar);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     fgets(line, MAXLINE, ficpar);          varppt[j][i]=doldmp[j][i];
     puts(line);      /* end ppptj */
     fputs(line,ficparo);      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   ungetc(c,ficpar);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      if (popbased==1) {
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        if(mobilav ==0){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          for(i=1; i<=nlstate;i++)
 /*--------- index.htm --------*/            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   strcpy(optionfilehtm,optionfile);          for(i=1; i<=nlstate;i++)
   strcat(optionfilehtm,".htm");            prlim[i][i]=mobaverage[(int)age][i][ij];
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }
     printf("Problem with %s \n",optionfilehtm);goto end;      }
   }               
       /* This for computing probability of death (h=1 means
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>         as a weighted average of prlim.
 Total number of observations=%d <br>      */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>      for(j=nlstate+1;j<=nlstate+ndeath;j++){
 <hr  size=\"2\" color=\"#EC5E5E\">        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 <li>Outputs files<br><br>\n          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      }    
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      /* end probability of death */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        for(i=1; i<=nlstate;i++){
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>        }
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>      } 
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      fprintf(ficresprobmorprev,"\n");
   
  fprintf(fichtm," <li>Graphs</li><p>");      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
  m=cptcoveff;        for(j=1; j<=nlstate;j++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
  j1=0;      fprintf(ficresvij,"\n");
  for(k1=1; k1<=m;k1++){      free_matrix(gp,0,nhstepm,1,nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){      free_matrix(gm,0,nhstepm,1,nlstate);
        j1++;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        if (cptcovn > 0) {      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          for (cpt=1; cpt<=cptcoveff;cpt++)    } /* End age */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    free_vector(gpp,nlstate+1,nlstate+ndeath);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_vector(gmp,nlstate+1,nlstate+ndeath);
        }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
        for(cpt=1; cpt<nlstate;cpt++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
        }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for(cpt=1; cpt<=nlstate;cpt++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 interval) in state (%d): v%s%d%d.gif <br>    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
      }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  */
      }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    free_vector(xp,1,npar);
 fprintf(fichtm,"\n</body>");    free_matrix(doldm,1,nlstate,1,nlstate);
    }    free_matrix(dnewm,1,nlstate,1,npar);
  }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 fclose(fichtm);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*--------------- Prevalence limit --------------*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficresprobmorprev);
   strcpy(filerespl,"pl");    fflush(ficgp);
   strcat(filerespl,fileres);    fflush(fichtm); 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  }  /* end varevsij */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }  /************ Variance of prevlim ******************/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   fprintf(ficrespl,"#Prevalence limit\n");  {
   fprintf(ficrespl,"#Age ");    /* Variance of prevalence limit */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   fprintf(ficrespl,"\n");    double **newm;
      double **dnewm,**doldm;
   prlim=matrix(1,nlstate,1,nlstate);    int i, j, nhstepm, hstepm;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int k, cptcode;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *xp;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *gp, *gm;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **gradg, **trgradg;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double age,agelim;
   k=0;    int theta;
   agebase=agemin;     
   agelim=agemax;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   ftolpl=1.e-10;    fprintf(ficresvpl,"# Age");
   i1=cptcoveff;    for(i=1; i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    xp=vector(1,npar);
         k=k+1;    dnewm=matrix(1,nlstate,1,npar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficrespl,"\n#******");    
         for(j=1;j<=cptcoveff;j++)    hstepm=1*YEARM; /* Every year of age */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         fprintf(ficrespl,"******\n");    agelim = AGESUP;
            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for (age=agebase; age<=agelim; age++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      if (stepm >= YEARM) hstepm=1;
           fprintf(ficrespl,"%.0f",age );      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           for(i=1; i<=nlstate;i++)      gradg=matrix(1,npar,1,nlstate);
           fprintf(ficrespl," %.5f", prlim[i][i]);      gp=vector(1,nlstate);
           fprintf(ficrespl,"\n");      gm=vector(1,nlstate);
         }  
       }      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient */
   fclose(ficrespl);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   /*------------- h Pij x at various ages ------------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          gp[i] = prlim[i][i];
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for(i=1; i<=npar; i++) /* Computes gradient */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   printf("Computing pij: result on file '%s' \n", filerespij);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          gm[i] = prlim[i][i];
   /*if (stepm<=24) stepsize=2;*/  
         for(i=1;i<=nlstate;i++)
   agelim=AGESUP;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   hstepm=stepsize*YEARM; /* Every year of age */      } /* End theta */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
        trgradg =matrix(1,nlstate,1,npar);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      for(j=1; j<=nlstate;j++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(theta=1; theta <=npar; theta++)
       k=k+1;          trgradg[j][theta]=gradg[theta][j];
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)      for(i=1;i<=nlstate;i++)
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        varpl[i][(int)age] =0.;
         fprintf(ficrespij,"******\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      for(i=1;i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvpl,"%.0f ",age );
           oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           fprintf(ficrespij,"# Age");      fprintf(ficresvpl,"\n");
           for(i=1; i<=nlstate;i++)      free_vector(gp,1,nlstate);
             for(j=1; j<=nlstate+ndeath;j++)      free_vector(gm,1,nlstate);
               fprintf(ficrespij," %1d-%1d",i,j);      free_matrix(gradg,1,npar,1,nlstate);
           fprintf(ficrespij,"\n");      free_matrix(trgradg,1,nlstate,1,npar);
           for (h=0; h<=nhstepm; h++){    } /* End age */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)    free_vector(xp,1,npar);
               for(j=1; j<=nlstate+ndeath;j++)    free_matrix(doldm,1,nlstate,1,npar);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    free_matrix(dnewm,1,nlstate,1,nlstate);
             fprintf(ficrespij,"\n");  
           }  }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");  /************ Variance of one-step probabilities  ******************/
         }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     }  {
   }    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    int k=0,l, cptcode;
     int first=1, first1;
   fclose(ficrespij);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
   /*---------- Forecasting ------------------*/    double *xp;
     double *gp, *gm;
   strcpy(fileresf,"f");    double **gradg, **trgradg;
   strcat(fileresf,fileres);    double **mu;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double age,agelim, cov[NCOVMAX];
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   }    int theta;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);    char fileresprobcor[FILENAMELENGTH];
   
  free_matrix(agev,1,maxwav,1,imx);    double ***varpij;
   /* Mobile average */  
     strcpy(fileresprob,"prob"); 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   if (mobilav==1) {      printf("Problem with resultfile: %s\n", fileresprob);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    }
       for (i=1; i<=nlstate;i++)    strcpy(fileresprobcov,"probcov"); 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    strcat(fileresprobcov,fileres);
           mobaverage[(int)agedeb][i][cptcod]=0.;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcov);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       for (i=1; i<=nlstate;i++){    }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    strcpy(fileresprobcor,"probcor"); 
           for (cpt=0;cpt<=4;cpt++){    strcat(fileresprobcor,fileres);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobcor);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         }    }
       }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if (stepm<=12) stepsize=1;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
   agelim=AGESUP;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficresprob,"# Age");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
   if (popforecast==1) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     if((ficpop=fopen(popfile,"r"))==NULL)    {    fprintf(ficresprobcov,"# Age");
       printf("Problem with population file : %s\n",popfile);goto end;  
     }  
     popage=ivector(0,AGESUP);    for(i=1; i<=nlstate;i++)
     popeffectif=vector(0,AGESUP);      for(j=1; j<=(nlstate+ndeath);j++){
     popcount=vector(0,AGESUP);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
     i=1;          fprintf(ficresprobcor," p%1d-%1d ",i,j);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)      }  
       {   /* fprintf(ficresprob,"\n");
         i=i+1;    fprintf(ficresprobcov,"\n");
       }    fprintf(ficresprobcor,"\n");
     imx=i;   */
     xp=vector(1,npar);
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   for(cptcov=1;cptcov<=i1;cptcov++){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    first=1;
       k=k+1;    fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficresf,"\n#****** ");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       for(j=1;j<=cptcoveff;j++) {    fprintf(fichtm,"\n");
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       fprintf(ficresf,"******\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");    file %s<br>\n",optionfilehtmcov);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       if (popforecast==1)  fprintf(ficresf," [Population]");  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       for (agedeb=fage; agedeb>=bage; agedeb--){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
        if (mobilav==1) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         for(j=1; j<=nlstate;j++)  standard deviations wide on each axis. <br>\
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         else {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           for(j=1; j<=nlstate;j++)  
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);    cov[1]=1;
         }      tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");    j1=0;
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);    for(t=1; t<=tj;t++){
       }      for(i1=1; i1<=ncodemax[t];i1++){ 
              j1++;
       for (cpt=1; cpt<=nforecast;cpt++) {        if  (cptcovn>0) {
         fprintf(ficresf,"\n");          fprintf(ficresprob, "\n#********** Variable "); 
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficresprob, "**********\n#\n");
         nhstepm = nhstepm/hstepm;          fprintf(ficresprobcov, "\n#********** Variable "); 
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
         oldm=oldms;savm=savms;          fprintf(ficgp, "\n#********** Variable "); 
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                          fprintf(ficgp, "**********\n#\n");
         for (h=0; h<=nhstepm; h++){          
                  
          if (h*hstepm/YEARM*stepm==cpt)          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                    fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                    
          for(j=1; j<=nlstate+ndeath;j++) {          fprintf(ficresprobcor, "\n#********** Variable ");    
            kk1=0.;kk2=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            for(i=1; i<=nlstate;i++) {                  fprintf(ficresprobcor, "**********\n#");    
              if (mobilav==1)        }
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];        
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];        for (age=bage; age<=fage; age ++){ 
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];          cov[2]=age;
             }          for (k=1; k<=cptcovn;k++) {
            if (h*hstepm/YEARM*stepm==cpt) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
              fprintf(ficresf," %.3f", kk1);          }
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            }          for (k=1; k<=cptcovprod;k++)
           }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }          
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                  trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }          gp=vector(1,(nlstate)*(nlstate+ndeath));
       }          gm=vector(1,(nlstate)*(nlstate+ndeath));
     }      
   }          for(theta=1; theta <=npar; theta++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=npar; i++)
   if (popforecast==1) {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     free_ivector(popage,0,AGESUP);            
     free_vector(popeffectif,0,AGESUP);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     free_vector(popcount,0,AGESUP);            
   }            k=0;
   free_imatrix(s,1,maxwav+1,1,n);            for(i=1; i<= (nlstate); i++){
   free_vector(weight,1,n);              for(j=1; j<=(nlstate+ndeath);j++){
   fclose(ficresf);                k=k+1;
   /*---------- Health expectancies and variances ------------*/                gp[k]=pmmij[i][j];
               }
   strcpy(filerest,"t");            }
   strcat(filerest,fileres);            
   if((ficrest=fopen(filerest,"w"))==NULL) {            for(i=1; i<=npar; i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   }      
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
   strcpy(filerese,"e");              for(j=1; j<=(nlstate+ndeath);j++){
   strcat(filerese,fileres);                k=k+1;
   if((ficreseij=fopen(filerese,"w"))==NULL) {                gm[k]=pmmij[i][j];
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              }
   }            }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
  strcpy(fileresv,"v");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   strcat(fileresv,fileres);          }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   }            for(theta=1; theta <=npar; theta++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              trgradg[j][theta]=gradg[theta][j];
           
   k=0;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   for(cptcov=1;cptcov<=i1;cptcov++){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       k=k+1;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficrest,"\n#****** ");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
       fprintf(ficreseij,"\n#****** ");          k=0;
       for(j=1;j<=cptcoveff;j++)          for(i=1; i<=(nlstate); i++){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficreseij,"******\n");              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
       fprintf(ficresvij,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficresvij,"******\n");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;          /*printf("\n%d ",(int)age);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       oldm=oldms;savm=savms;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            }*/
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          fprintf(ficresprob,"\n%d ",(int)age);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(ficresprobcov,"\n%d ",(int)age);
       fprintf(ficrest,"\n");          fprintf(ficresprobcor,"\n%d ",(int)age);
          
       hf=1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       if (stepm >= YEARM) hf=stepm/YEARM;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       epj=vector(1,nlstate+1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       for(age=bage; age <=fage ;age++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         if (popbased==1) {          }
           for(i=1; i<=nlstate;i++)          i=0;
             prlim[i][i]=probs[(int)age][i][k];          for (k=1; k<=(nlstate);k++){
         }            for (l=1; l<=(nlstate+ndeath);l++){ 
                      i=i++;
         fprintf(ficrest," %.0f",age);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {              for (j=1; j<=i;j++){
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           epj[nlstate+1] +=epj[j];              }
         }            }
         for(i=1, vepp=0.;i <=nlstate;i++)          }/* end of loop for state */
           for(j=1;j <=nlstate;j++)        } /* end of loop for age */
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        /* Confidence intervalle of pij  */
         for(j=1;j <=nlstate;j++){        /*
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          fprintf(ficgp,"\nset noparametric;unset label");
         }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficrest,"\n");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                  fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
  fclose(ficreseij);        first1=1;
  fclose(ficresvij);        for (k2=1; k2<=(nlstate);k2++){
   fclose(ficrest);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   fclose(ficpar);            if(l2==k2) continue;
   free_vector(epj,1,nlstate+1);            j=(k2-1)*(nlstate+ndeath)+l2;
   /*  scanf("%d ",i); */            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   /*------- Variance limit prevalence------*/                  if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
 strcpy(fileresvpl,"vpl");                if(i<=j) continue;
   strcat(fileresvpl,fileres);                for (age=bage; age<=fage; age ++){ 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                  if ((int)age %5==0){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     exit(0);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
  k=0;                    c12=cv12/sqrt(v1*v2);
  for(cptcov=1;cptcov<=i1;cptcov++){                    /* Computing eigen value of matrix of covariance */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      k=k+1;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      fprintf(ficresvpl,"\n#****** ");                    /* Eigen vectors */
      for(j=1;j<=cptcoveff;j++)                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    /*v21=sqrt(1.-v11*v11); *//* error */
      fprintf(ficresvpl,"******\n");                    v21=(lc1-v1)/cv12*v11;
                          v12=-v21;
      varpl=matrix(1,nlstate,(int) bage, (int) fage);                    v22=v11;
      oldm=oldms;savm=savms;                    tnalp=v21/v11;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    if(first1==1){
    }                      first1=0;
  }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
   fclose(ficresvpl);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   /*---------- End : free ----------------*/                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                      if(first==1){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                      first=0;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                      fprintf(ficgp,"\nset parametric;unset label");
                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_matrix(matcov,1,npar,1,npar);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_vector(delti,1,npar);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("End of Imach\n");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                    }else{
   /*printf("Total time was %d uSec.\n", total_usecs);*/                      first=0;
   /*------ End -----------*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  end:                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 #ifdef windows                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  chdir(pathcd);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 #endif                    }/* if first */
                    } /* age mod 5 */
  system("..\\gp37mgw\\wgnuplot graph.plt");                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 #ifdef windows                first=1;
   while (z[0] != 'q') {              } /*l12 */
     chdir(pathcd);            } /* k12 */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");          } /*l1 */
     scanf("%s",z);        }/* k1 */
     if (z[0] == 'c') system("./imach");      } /* loop covariates */
     else if (z[0] == 'e') {    }
       chdir(path);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       system(optionfilehtm);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     }    free_vector(xp,1,npar);
     else if (z[0] == 'q') exit(0);    fclose(ficresprob);
   }    fclose(ficresprobcov);
 #endif    fclose(ficresprobcor);
 }    fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){
             printf("%f ",p[jk]);
             fprintf(ficlog,"%f ",p[jk]);
             fprintf(ficres,"%f ",p[jk]);
             jk++; 
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   
   
   /* Just to have a covariance matrix which will be more understandable
      even is we still don't want to manage dictionary of variables
   */
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{
               if(mle>=1)
                 printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }else{
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             if(mle>=1)
               printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
     fflush(ficlog);
     fflush(ficres);
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(i=1;i<=AGESUP;i++)
       for(j=1;j<=NCOVMAX;j++)
         for(k=1;k<=NCOVMAX;k++)
           probs[i][j][k]=0.;
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.16  
changed lines
  Added in v.1.96


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>