Diff for /imach/src/imach.c between versions 1.33 and 1.171

version 1.33, 2002/03/12 22:13:38 version 1.171, 2014/12/23 13:26:59
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.171  2014/12/23 13:26:59  brouard
      Summary: Back from Visual C
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Still problem with utsname.h on Windows
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.170  2014/12/23 11:17:12  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: Cleaning some \%% back to %%
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.169  2014/12/22 23:08:31  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: 0.98p
   simplest model is the multinomial logistic model where pij is the  
   probabibility to be observed in state j at the second wave    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.168  2014/12/22 15:17:42  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Summary: update
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.167  2014/12/22 13:50:56  brouard
   you to do it.  More covariates you add, slower the    Summary: Testing uname and compiler version and if compiled 32 or 64
   convergence.  
     Testing on Linux 64
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.166  2014/12/22 11:40:47  brouard
   identical for each individual. Also, if a individual missed an    *** empty log message ***
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    * imach.c (Module): Merging 1.61 to 1.162
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.164  2014/12/16 10:52:11  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    * imach.c (Module): Merging 1.61 to 1.162
   hPijx.  
     Revision 1.163  2014/12/16 10:30:11  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Module): Merging 1.61 to 1.162
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.162  2014/09/25 11:43:39  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: temporary backup 0.99!
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.1  2014/09/16 11:06:58  brouard
   from the European Union.    Summary: With some code (wrong) for nlopt
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Author:
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.161  2014/09/15 20:41:41  brouard
      Summary: Problem with macro SQR on Intel compiler
 #include <math.h>  
 #include <stdio.h>    Revision 1.160  2014/09/02 09:24:05  brouard
 #include <stdlib.h>    *** empty log message ***
 #include <unistd.h>  
     Revision 1.159  2014/09/01 10:34:10  brouard
 #define MAXLINE 256    Summary: WIN32
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    Author: Brouard
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.158  2014/08/27 17:11:51  brouard
 #define windows    *** empty log message ***
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Author: Brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     In order to compile on Visual studio, time.h is now correct and time_t
 #define NINTERVMAX 8    and tm struct should be used. difftime should be used but sometimes I
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    just make the differences in raw time format (time(&now).
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Trying to suppress #ifdef LINUX
 #define NCOVMAX 8 /* Maximum number of covariates */    Add xdg-open for __linux in order to open default browser.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.156  2014/08/25 20:10:10  brouard
 #define AGESUP 130    *** empty log message ***
 #define AGEBASE 40  
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
 int erreur; /* Error number */    Author: Brouard
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.154  2014/06/20 17:32:08  brouard
 int npar=NPARMAX;    Summary: Outputs now all graphs of convergence to period prevalence
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.153  2014/06/20 16:45:46  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: If 3 live state, convergence to period prevalence on same graph
 int popbased=0;    Author: Brouard
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.152  2014/06/18 17:54:09  brouard
 int maxwav; /* Maxim number of waves */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.151  2014/06/18 16:43:30  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    *** empty log message ***
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.150  2014/06/18 16:42:35  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Author: brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.149  2014/06/18 15:51:14  brouard
 FILE *ficreseij;    Summary: Some fixes in parameter files errors
   char filerese[FILENAMELENGTH];    Author: Nicolas Brouard
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.148  2014/06/17 17:38:48  brouard
  FILE  *ficresvpl;    Summary: Nothing new
   char fileresvpl[FILENAMELENGTH];    Author: Brouard
   
 #define NR_END 1    Just a new packaging for OS/X version 0.98nS
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
 #define NRANSI  
 #define ITMAX 200    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
 #define TOL 2.0e-4    Author: Brouard
   
 #define CGOLD 0.3819660    Merge, before building revised version.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
 #define GOLD 1.618034    Author: Nicolas Brouard
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
 static double maxarg1,maxarg2;    improve the code.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    No more memory valgrind error but a lot has to be done in order to
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    continue the work of splitting the code into subroutines.
      Also, decodemodel has been improved. Tricode is still not
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    optimal. nbcode should be improved. Documentation has been added in
 #define rint(a) floor(a+0.5)    the source code.
   
 static double sqrarg;    Revision 1.143  2014/01/26 09:45:38  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int imx;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.141  2014/01/26 02:42:01  brouard
 double dateintmean=0;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 double *weight;    Revision 1.140  2011/09/02 10:37:54  brouard
 int **s; /* Status */    Summary: times.h is ok with mingw32 now.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.138  2010/04/30 18:19:40  brouard
 /**************** split *************************/    *** empty log message ***
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.137  2010/04/29 18:11:38  brouard
    char *s;                             /* pointer */    (Module): Checking covariates for more complex models
    int  l1, l2;                         /* length counters */    than V1+V2. A lot of change to be done. Unstable.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.136  2010/04/26 20:30:53  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): merging some libgsl code. Fixing computation
 #ifdef windows    of likelione (using inter/intrapolation if mle = 0) in order to
    s = strrchr( path, '\\' );           /* find last / */    get same likelihood as if mle=1.
 #else    Some cleaning of code and comments added.
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.135  2009/10/29 15:33:14  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.133  2009/07/06 10:21:25  brouard
       extern char       *getcwd( );    just nforces
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.132  2009/07/06 08:22:05  brouard
 #endif    Many tings
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.131  2009/06/20 16:22:47  brouard
       strcpy( name, path );             /* we've got it */    Some dimensions resccaled
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.130  2009/05/26 06:44:34  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): Max Covariate is now set to 20 instead of 8. A
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    lot of cleaning with variables initialized to 0. Trying to make
       strcpy( name, s );                /* save file name */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.129  2007/08/31 13:49:27  lievre
    }    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.128  2006/06/30 13:02:05  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): Clarifications on computing e.j
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.127  2006/04/28 18:11:50  brouard
 #endif    (Module): Yes the sum of survivors was wrong since
    s = strrchr( name, '.' );            /* find last / */    imach-114 because nhstepm was no more computed in the age
    s++;    loop. Now we define nhstepma in the age loop.
    strcpy(ext,s);                       /* save extension */    (Module): In order to speed up (in case of numerous covariates) we
    l1= strlen( name);    compute health expectancies (without variances) in a first step
    l2= strlen( s)+1;    and then all the health expectancies with variances or standard
    strncpy( finame, name, l1-l2);    deviation (needs data from the Hessian matrices) which slows the
    finame[l1-l2]= 0;    computation.
    return( 0 );                         /* we're done */    In the future we should be able to stop the program is only health
 }    expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
 /******************************************/    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 void replace(char *s, char*t)    loop. Now we define nhstepma in the age loop.
 {    Version 0.98h
   int i;  
   int lg=20;    Revision 1.125  2006/04/04 15:20:31  lievre
   i=0;    Errors in calculation of health expectancies. Age was not initialized.
   lg=strlen(t);    Forecasting file added.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.124  2006/03/22 17:13:53  lievre
     if (t[i]== '\\') s[i]='/';    Parameters are printed with %lf instead of %f (more numbers after the comma).
   }    The log-likelihood is printed in the log file
 }  
     Revision 1.123  2006/03/20 10:52:43  brouard
 int nbocc(char *s, char occ)    * imach.c (Module): <title> changed, corresponds to .htm file
 {    name. <head> headers where missing.
   int i,j=0;  
   int lg=20;    * imach.c (Module): Weights can have a decimal point as for
   i=0;    English (a comma might work with a correct LC_NUMERIC environment,
   lg=strlen(s);    otherwise the weight is truncated).
   for(i=0; i<= lg; i++) {    Modification of warning when the covariates values are not 0 or
   if  (s[i] == occ ) j++;    1.
   }    Version 0.98g
   return j;  
 }    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 void cutv(char *u,char *v, char*t, char occ)    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
   int i,lg,j,p=0;    Modification of warning when the covariates values are not 0 or
   i=0;    1.
   for(j=0; j<=strlen(t)-1; j++) {    Version 0.98g
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
   lg=strlen(t);  
   for(j=0; j<p; j++) {    * imach.c (Module): refinements in the computation of lli if
     (u[j] = t[j]);    status=-2 in order to have more reliable computation if stepm is
   }    not 1 month. Version 0.98f
      u[p]='\0';  
     Revision 1.120  2006/03/16 15:10:38  lievre
    for(j=0; j<= lg; j++) {    (Module): refinements in the computation of lli if
     if (j>=(p+1))(v[j-p-1] = t[j]);    status=-2 in order to have more reliable computation if stepm is
   }    not 1 month. Version 0.98f
 }  
     Revision 1.119  2006/03/15 17:42:26  brouard
 /********************** nrerror ********************/    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 void nrerror(char error_text[])  
 {    Revision 1.118  2006/03/14 18:20:07  brouard
   fprintf(stderr,"ERREUR ...\n");    (Module): varevsij Comments added explaining the second
   fprintf(stderr,"%s\n",error_text);    table of variances if popbased=1 .
   exit(1);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 }    (Module): Function pstamp added
 /*********************** vector *******************/    (Module): Version 0.98d
 double *vector(int nl, int nh)  
 {    Revision 1.117  2006/03/14 17:16:22  brouard
   double *v;    (Module): varevsij Comments added explaining the second
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    table of variances if popbased=1 .
   if (!v) nrerror("allocation failure in vector");    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   return v-nl+NR_END;    (Module): Function pstamp added
 }    (Module): Version 0.98d
   
 /************************ free vector ******************/    Revision 1.116  2006/03/06 10:29:27  brouard
 void free_vector(double*v, int nl, int nh)    (Module): Variance-covariance wrong links and
 {    varian-covariance of ej. is needed (Saito).
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.114  2006/02/26 12:57:58  brouard
 {    (Module): Some improvements in processing parameter
   int *v;    filename with strsep.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.113  2006/02/24 14:20:24  brouard
   return v-nl+NR_END;    (Module): Memory leaks checks with valgrind and:
 }    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.112  2006/01/30 09:55:26  brouard
 {    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /******************* imatrix *******************************/    (Module): Comments can be added in data file. Missing date values
 int **imatrix(long nrl, long nrh, long ncl, long nch)    can be a simple dot '.'.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.110  2006/01/25 00:51:50  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Lots of cleaning and bugs added (Gompertz)
   int **m;  
      Revision 1.109  2006/01/24 19:37:15  brouard
   /* allocate pointers to rows */    (Module): Comments (lines starting with a #) are allowed in data.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.108  2006/01/19 18:05:42  lievre
   m += NR_END;    Gnuplot problem appeared...
   m -= nrl;    To be fixed
    
      Revision 1.107  2006/01/19 16:20:37  brouard
   /* allocate rows and set pointers to them */    Test existence of gnuplot in imach path
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.106  2006/01/19 13:24:36  brouard
   m[nrl] += NR_END;    Some cleaning and links added in html output
   m[nrl] -= ncl;  
      Revision 1.105  2006/01/05 20:23:19  lievre
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    *** empty log message ***
    
   /* return pointer to array of pointers to rows */    Revision 1.104  2005/09/30 16:11:43  lievre
   return m;    (Module): sump fixed, loop imx fixed, and simplifications.
 }    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 /****************** free_imatrix *************************/    (instead of missing=-1 in earlier versions) and his/her
 void free_imatrix(m,nrl,nrh,ncl,nch)    contributions to the likelihood is 1 - Prob of dying from last
       int **m;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       long nch,ncl,nrh,nrl;    the healthy state at last known wave). Version is 0.98
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.103  2005/09/30 15:54:49  lievre
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    (Module): sump fixed, loop imx fixed, and simplifications.
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.101  2004/09/15 10:38:38  brouard
 {    Fix on curr_time
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.99  2004/06/05 08:57:40  brouard
   m += NR_END;    *** empty log message ***
   m -= nrl;  
     Revision 1.98  2004/05/16 15:05:56  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    New version 0.97 . First attempt to estimate force of mortality
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    directly from the data i.e. without the need of knowing the health
   m[nrl] += NR_END;    state at each age, but using a Gompertz model: log u =a + b*age .
   m[nrl] -= ncl;    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    cross-longitudinal survey is different from the mortality estimated
   return m;    from other sources like vital statistic data.
 }  
     The same imach parameter file can be used but the option for mle should be -3.
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Agnès, who wrote this part of the code, tried to keep most of the
 {    former routines in order to include the new code within the former code.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    The output is very simple: only an estimate of the intercept and of
 }    the slope with 95% confident intervals.
   
 /******************* ma3x *******************************/    Current limitations:
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    B) There is no computation of Life Expectancy nor Life Table.
   double ***m;  
     Revision 1.97  2004/02/20 13:25:42  lievre
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Version 0.96d. Population forecasting command line is (temporarily)
   if (!m) nrerror("allocation failure 1 in matrix()");    suppressed.
   m += NR_END;  
   m -= nrl;    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    rewritten within the same printf. Workaround: many printfs.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.95  2003/07/08 07:54:34  brouard
   m[nrl] -= ncl;    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    matrix (cov(a12,c31) instead of numbers.
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Revision 1.94  2003/06/27 13:00:02  brouard
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Just cleaning
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.93  2003/06/25 16:33:55  brouard
   for (j=ncl+1; j<=nch; j++)    (Module): On windows (cygwin) function asctime_r doesn't
     m[nrl][j]=m[nrl][j-1]+nlay;    exist so I changed back to asctime which exists.
      (Module): Version 0.96b
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.92  2003/06/25 16:30:45  brouard
     for (j=ncl+1; j<=nch; j++)    (Module): On windows (cygwin) function asctime_r doesn't
       m[i][j]=m[i][j-1]+nlay;    exist so I changed back to asctime which exists.
   }  
   return m;    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 /*************************free ma3x ************************/    helps to forecast when convergence will be reached. Elapsed time
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    is stamped in powell.  We created a new html file for the graphs
 {    concerning matrix of covariance. It has extension -cov.htm.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.90  2003/06/24 12:34:15  brouard
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.89  2003/06/24 12:30:52  brouard
 extern double *pcom,*xicom;    (Module): Some bugs corrected for windows. Also, when
 extern double (*nrfunc)(double []);    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
 double f1dim(double x)  
 {    Revision 1.88  2003/06/23 17:54:56  brouard
   int j;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   double f;  
   double *xt;    Revision 1.87  2003/06/18 12:26:01  brouard
      Version 0.96
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.86  2003/06/17 20:04:08  brouard
   f=(*nrfunc)(xt);    (Module): Change position of html and gnuplot routines and added
   free_vector(xt,1,ncom);    routine fileappend.
   return f;  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 /*****************brent *************************/    current date of interview. It may happen when the death was just
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   int iter;    assuming that the date of death was just one stepm after the
   double a,b,d,etemp;    interview.
   double fu,fv,fw,fx;    (Repository): Because some people have very long ID (first column)
   double ftemp;    we changed int to long in num[] and we added a new lvector for
   double p,q,r,tol1,tol2,u,v,w,x,xm;    memory allocation. But we also truncated to 8 characters (left
   double e=0.0;    truncation)
      (Repository): No more line truncation errors.
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    Revision 1.84  2003/06/13 21:44:43  brouard
   x=w=v=bx;    * imach.c (Repository): Replace "freqsummary" at a correct
   fw=fv=fx=(*f)(x);    place. It differs from routine "prevalence" which may be called
   for (iter=1;iter<=ITMAX;iter++) {    many times. Probs is memory consuming and must be used with
     xm=0.5*(a+b);    parcimony.
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    Revision 1.83  2003/06/10 13:39:11  lievre
 #ifdef DEBUG    *** empty log message ***
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Revision 1.82  2003/06/05 15:57:20  brouard
 #endif    Add log in  imach.c and  fullversion number is now printed.
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  */
       return fx;  /*
     }     Interpolated Markov Chain
     ftemp=fu;  
     if (fabs(e) > tol1) {    Short summary of the programme:
       r=(x-w)*(fx-fv);    
       q=(x-v)*(fx-fw);    This program computes Healthy Life Expectancies from
       p=(x-v)*q-(x-w)*r;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       q=2.0*(q-r);    first survey ("cross") where individuals from different ages are
       if (q > 0.0) p = -p;    interviewed on their health status or degree of disability (in the
       q=fabs(q);    case of a health survey which is our main interest) -2- at least a
       etemp=e;    second wave of interviews ("longitudinal") which measure each change
       e=d;    (if any) in individual health status.  Health expectancies are
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    computed from the time spent in each health state according to a
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    model. More health states you consider, more time is necessary to reach the
       else {    Maximum Likelihood of the parameters involved in the model.  The
         d=p/q;    simplest model is the multinomial logistic model where pij is the
         u=x+d;    probability to be observed in state j at the second wave
         if (u-a < tol2 || b-u < tol2)    conditional to be observed in state i at the first wave. Therefore
           d=SIGN(tol1,xm-x);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       }    'age' is age and 'sex' is a covariate. If you want to have a more
     } else {    complex model than "constant and age", you should modify the program
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    where the markup *Covariates have to be included here again* invites
     }    you to do it.  More covariates you add, slower the
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    convergence.
     fu=(*f)(u);  
     if (fu <= fx) {    The advantage of this computer programme, compared to a simple
       if (u >= x) a=x; else b=x;    multinomial logistic model, is clear when the delay between waves is not
       SHFT(v,w,x,u)    identical for each individual. Also, if a individual missed an
         SHFT(fv,fw,fx,fu)    intermediate interview, the information is lost, but taken into
         } else {    account using an interpolation or extrapolation.  
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {    hPijx is the probability to be observed in state i at age x+h
             v=w;    conditional to the observed state i at age x. The delay 'h' can be
             w=u;    split into an exact number (nh*stepm) of unobserved intermediate
             fv=fw;    states. This elementary transition (by month, quarter,
             fw=fu;    semester or year) is modelled as a multinomial logistic.  The hPx
           } else if (fu <= fv || v == x || v == w) {    matrix is simply the matrix product of nh*stepm elementary matrices
             v=u;    and the contribution of each individual to the likelihood is simply
             fv=fu;    hPijx.
           }  
         }    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the period (stable) prevalence. 
   nrerror("Too many iterations in brent");    
   *xmin=x;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   return fx;             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /****************** mnbrak ***********************/    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    can be accessed at http://euroreves.ined.fr/imach .
             double (*func)(double))  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   double ulim,u,r,q, dum;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   double fu;    
      **********************************************************************/
   *fa=(*func)(*ax);  /*
   *fb=(*func)(*bx);    main
   if (*fb > *fa) {    read parameterfile
     SHFT(dum,*ax,*bx,dum)    read datafile
       SHFT(dum,*fb,*fa,dum)    concatwav
       }    freqsummary
   *cx=(*bx)+GOLD*(*bx-*ax);    if (mle >= 1)
   *fc=(*func)(*cx);      mlikeli
   while (*fb > *fc) {    print results files
     r=(*bx-*ax)*(*fb-*fc);    if mle==1 
     q=(*bx-*cx)*(*fb-*fa);       computes hessian
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    read end of parameter file: agemin, agemax, bage, fage, estepm
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        begin-prev-date,...
     ulim=(*bx)+GLIMIT*(*cx-*bx);    open gnuplot file
     if ((*bx-u)*(u-*cx) > 0.0) {    open html file
       fu=(*func)(u);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     } else if ((*cx-u)*(u-ulim) > 0.0) {     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
       fu=(*func)(u);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       if (fu < *fc) {      freexexit2 possible for memory heap.
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    h Pij x                         | pij_nom  ficrestpij
           }     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       u=ulim;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       fu=(*func)(u);  
     } else {         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       u=(*cx)+GOLD*(*cx-*bx);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       fu=(*func)(u);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     }     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     SHFT(*ax,*bx,*cx,u)     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       SHFT(*fa,*fb,*fc,fu)  
       }    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /*************** linmin ************************/    prevalence()
      movingaverage()
 int ncom;    varevsij() 
 double *pcom,*xicom;    if popbased==1 varevsij(,popbased)
 double (*nrfunc)(double []);    total life expectancies
      Variance of period (stable) prevalence
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   end
 {  */
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  #define POWELL /* Instead of NLOPT */
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #include <math.h>
               double *fc, double (*func)(double));  #include <stdio.h>
   int j;  #include <stdlib.h>
   double xx,xmin,bx,ax;  #include <string.h>
   double fx,fb,fa;  
    #ifdef _WIN32
   ncom=n;  #include <io.h>
   pcom=vector(1,n);  #else
   xicom=vector(1,n);  #include <unistd.h>
   nrfunc=func;  #endif
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  #include <limits.h>
     xicom[j]=xi[j];  #include <sys/types.h>
   }  
   ax=0.0;  #if defined(__GNUC__)
   xx=1.0;  #include <sys/utsname.h> /* Doesn't work on Windows */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #endif
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  #include <sys/stat.h>
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #include <errno.h>
 #endif  /* extern int errno; */
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /* #ifdef LINUX */
     p[j] += xi[j];  /* #include <time.h> */
   }  /* #include "timeval.h" */
   free_vector(xicom,1,n);  /* #else */
   free_vector(pcom,1,n);  /* #include <sys/time.h> */
 }  /* #endif */
   
 /*************** powell ************************/  #include <time.h>
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  #ifdef GSL
 {  #include <gsl/gsl_errno.h>
   void linmin(double p[], double xi[], int n, double *fret,  #include <gsl/gsl_multimin.h>
               double (*func)(double []));  #endif
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  #ifdef NLOPT
   double *xits;  #include <nlopt.h>
   pt=vector(1,n);  typedef struct {
   ptt=vector(1,n);    double (* function)(double [] );
   xit=vector(1,n);  } myfunc_data ;
   xits=vector(1,n);  #endif
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /* #include <libintl.h> */
   for (*iter=1;;++(*iter)) {  /* #define _(String) gettext (String) */
     fp=(*fret);  
     ibig=0;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define GNUPLOTPROGRAM "gnuplot"
     for (i=1;i<=n;i++)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       printf(" %d %.12f",i, p[i]);  #define FILENAMELENGTH 132
     printf("\n");  
     for (i=1;i<=n;i++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       fptt=(*fret);  
 #ifdef DEBUG  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       printf("fret=%lf \n",*fret);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 #endif  
       printf("%d",i);fflush(stdout);  #define NINTERVMAX 8
       linmin(p,xit,n,fret,func);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       if (fabs(fptt-(*fret)) > del) {  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         del=fabs(fptt-(*fret));  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
         ibig=i;  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       }  #define MAXN 20000
 #ifdef DEBUG  #define YEARM 12. /**< Number of months per year */
       printf("%d %.12e",i,(*fret));  #define AGESUP 130
       for (j=1;j<=n;j++) {  #define AGEBASE 40
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
         printf(" x(%d)=%.12e",j,xit[j]);  #ifdef _WIN32
       }  #define DIRSEPARATOR '\\'
       for(j=1;j<=n;j++)  #define CHARSEPARATOR "\\"
         printf(" p=%.12e",p[j]);  #define ODIRSEPARATOR '/'
       printf("\n");  #else
 #endif  #define DIRSEPARATOR '/'
     }  #define CHARSEPARATOR "/"
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define ODIRSEPARATOR '\\'
 #ifdef DEBUG  #endif
       int k[2],l;  
       k[0]=1;  /* $Id$ */
       k[1]=-1;  /* $State$ */
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
         printf(" %.12e",p[j]);  char fullversion[]="$Revision$ $Date$"; 
       printf("\n");  char strstart[80];
       for(l=0;l<=1;l++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         for (j=1;j<=n;j++) {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int nvar=0, nforce=0; /* Number of variables, number of forces */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 #endif  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
   int cptcoveff=0; /* Total number of covariates to vary for printing results */
       free_vector(xit,1,n);  int cptcov=0; /* Working variable */
       free_vector(xits,1,n);  int npar=NPARMAX;
       free_vector(ptt,1,n);  int nlstate=2; /* Number of live states */
       free_vector(pt,1,n);  int ndeath=1; /* Number of dead states */
       return;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     }  int popbased=0;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  int *wav; /* Number of waves for this individuual 0 is possible */
       ptt[j]=2.0*p[j]-pt[j];  int maxwav=0; /* Maxim number of waves */
       xit[j]=p[j]-pt[j];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       pt[j]=p[j];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     }  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     fptt=(*func)(ptt);                     to the likelihood and the sum of weights (done by funcone)*/
     if (fptt < fp) {  int mle=1, weightopt=0;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       if (t < 0.0) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         linmin(p,xit,n,fret,func);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         for (j=1;j<=n;j++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
           xi[j][ibig]=xi[j][n];  int countcallfunc=0;  /* Count the number of calls to func */
           xi[j][n]=xit[j];  double jmean=1; /* Mean space between 2 waves */
         }  double **matprod2(); /* test */
 #ifdef DEBUG  double **oldm, **newm, **savm; /* Working pointers to matrices */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         for(j=1;j<=n;j++)  /*FILE *fic ; */ /* Used in readdata only */
           printf(" %.12e",xit[j]);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         printf("\n");  FILE *ficlog, *ficrespow;
 #endif  int globpr=0; /* Global variable for printing or not */
       }  double fretone; /* Only one call to likelihood */
     }  long ipmx=0; /* Number of contributions */
   }  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /**** Prevalence limit ****************/  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  FILE *ficreseij;
      matrix by transitions matrix until convergence is reached */  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
   int i, ii,j,k;  char fileresstde[FILENAMELENGTH];
   double min, max, maxmin, maxmax,sumnew=0.;  FILE *ficrescveij;
   double **matprod2();  char filerescve[FILENAMELENGTH];
   double **out, cov[NCOVMAX], **pmij();  FILE  *ficresvij;
   double **newm;  char fileresv[FILENAMELENGTH];
   double agefin, delaymax=50 ; /* Max number of years to converge */  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   for (ii=1;ii<=nlstate+ndeath;ii++)  char title[MAXLINE];
     for (j=1;j<=nlstate+ndeath;j++){  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
    cov[1]=1.;  int  outcmd=0;
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  char filelog[FILENAMELENGTH]; /* Log file */
     /* Covariates have to be included here again */  char filerest[FILENAMELENGTH];
      cov[2]=agefin;  char fileregp[FILENAMELENGTH];
    char popfile[FILENAMELENGTH];
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  
       }  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       for (k=1; k<=cptcovage;k++)  /* struct timezone tzp; */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /* extern int gettimeofday(); */
       for (k=1; k<=cptcovprod;k++)  struct tm tml, *gmtime(), *localtime();
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   extern time_t time();
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  struct tm tm;
   
     savm=oldm;  char strcurr[80], strfor[80];
     oldm=newm;  
     maxmax=0.;  char *endptr;
     for(j=1;j<=nlstate;j++){  long lval;
       min=1.;  double dval;
       max=0.;  
       for(i=1; i<=nlstate; i++) {  #define NR_END 1
         sumnew=0;  #define FREE_ARG char*
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #define FTOL 1.0e-10
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  #define NRANSI 
         min=FMIN(min,prlim[i][j]);  #define ITMAX 200 
       }  
       maxmin=max-min;  #define TOL 2.0e-4 
       maxmax=FMAX(maxmax,maxmin);  
     }  #define CGOLD 0.3819660 
     if(maxmax < ftolpl){  #define ZEPS 1.0e-10 
       return prlim;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     }  
   }  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /*************** transition probabilities ***************/  
   static double maxarg1,maxarg2;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double s1, s2;    
   /*double t34;*/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   int i,j,j1, nc, ii, jj;  #define rint(a) floor(a+0.5)
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     for(i=1; i<= nlstate; i++){  /* #define mytinydouble 1.0e-16 */
     for(j=1; j<i;j++){  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
         /*s2 += param[i][j][nc]*cov[nc];*/  /* static double dsqrarg; */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  static double sqrarg;
       }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       ps[i][j]=s2;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  int agegomp= AGEGOMP;
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  int imx; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int stepm=1;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* Stepm, step in month: minimum step interpolation*/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  int estepm;
       ps[i][j]=s2;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }  
   }  int m,nb;
     /*ps[3][2]=1;*/  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for(i=1; i<= nlstate; i++){  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
      s1=0;  double **pmmij, ***probs;
     for(j=1; j<i; j++)  double *ageexmed,*agecens;
       s1+=exp(ps[i][j]);  double dateintmean=0;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  double *weight;
     ps[i][i]=1./(s1+1.);  int **s; /* Status */
     for(j=1; j<i; j++)  double *agedc;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     for(j=i+1; j<=nlstate+ndeath; j++)                    * covar=matrix(0,NCOVMAX,1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double  idx; 
   } /* end i */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int *Ndum; /** Freq of modality (tricode */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     for(jj=1; jj<= nlstate+ndeath; jj++){  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       ps[ii][jj]=0;  double *lsurv, *lpop, *tpop;
       ps[ii][ii]=1;  
     }  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   }  double ftolhess; /**< Tolerance for computing hessian */
   
   /**************** split *************************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
      printf("%lf ",ps[ii][jj]);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
    }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     printf("\n ");    */ 
     }    char  *ss;                            /* pointer */
     printf("\n ");printf("%lf ",cov[2]);*/    int   l1, l2;                         /* length counters */
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    l1 = strlen(path );                   /* length of path */
   goto end;*/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     return ps;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 /**************** Product of 2 matrices ******************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        return( GLOCK_ERROR_GETCWD );
   /* in, b, out are matrice of pointers which should have been initialized      }
      before: only the contents of out is modified. The function returns      /* got dirc from getcwd*/
      a pointer to pointers identical to out */      printf(" DIRC = %s \n",dirc);
   long i, j, k;    } else {                              /* strip direcotry from path */
   for(i=nrl; i<= nrh; i++)      ss++;                               /* after this, the filename */
     for(k=ncolol; k<=ncoloh; k++)      l2 = strlen( ss );                  /* length of filename */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         out[i][k] +=in[i][j]*b[j][k];      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   return out;      dirc[l1-l2] = 0;                    /* add zero */
 }      printf(" DIRC2 = %s \n",dirc);
     }
     /* We add a separator at the end of dirc if not exists */
 /************* Higher Matrix Product ***************/    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      dirc[l1] =  DIRSEPARATOR;
 {      dirc[l1+1] = 0; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      printf(" DIRC3 = %s \n",dirc);
      duration (i.e. until    }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    ss = strrchr( name, '.' );            /* find last / */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    if (ss >0){
      (typically every 2 years instead of every month which is too big).      ss++;
      Model is determined by parameters x and covariates have to be      strcpy(ext,ss);                     /* save extension */
      included manually here.      l1= strlen( name);
       l2= strlen(ss)+1;
      */      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
   int i, j, d, h, k;    }
   double **out, cov[NCOVMAX];  
   double **newm;    return( 0 );                          /* we're done */
   }
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /******************************************/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  void replace_back_to_slash(char *s, char*t)
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int i;
   for(h=1; h <=nhstepm; h++){    int lg=0;
     for(d=1; d <=hstepm; d++){    i=0;
       newm=savm;    lg=strlen(t);
       /* Covariates have to be included here again */    for(i=0; i<= lg; i++) {
       cov[1]=1.;      (s[i] = t[i]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      if (t[i]== '\\') s[i]='/';
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  char *trimbb(char *out, char *in)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
     s=out;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    while (*in != '\0'){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        in++;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      }
       savm=oldm;      *out++ = *in++;
       oldm=newm;    }
     }    *out='\0';
     for(i=1; i<=nlstate+ndeath; i++)    return s;
       for(j=1;j<=nlstate+ndeath;j++) {  }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  char *cutl(char *blocc, char *alocc, char *in, char occ)
          */  {
       }    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   } /* end h */       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   return po;       gives blocc="abcdef2ghi" and alocc="j".
 }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     */
     char *s, *t;
 /*************** log-likelihood *************/    t=in;s=in;
 double func( double *x)    while ((*in != occ) && (*in != '\0')){
 {      *alocc++ = *in++;
   int i, ii, j, k, mi, d, kk;    }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    if( *in == occ){
   double **out;      *(alocc)='\0';
   double sw; /* Sum of weights */      s=++in;
   double lli; /* Individual log likelihood */    }
   long ipmx;   
   /*extern weight */    if (s == t) {/* occ not found */
   /* We are differentiating ll according to initial status */      *(alocc-(in-s))='\0';
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      in=s;
   /*for(i=1;i<imx;i++)    }
     printf(" %d\n",s[4][i]);    while ( *in != '\0'){
   */      *blocc++ = *in++;
   cov[1]=1.;    }
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    *blocc='\0';
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    return t;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
     for(mi=1; mi<= wav[i]-1; mi++){  char *cutv(char *blocc, char *alocc, char *in, char occ)
       for (ii=1;ii<=nlstate+ndeath;ii++)  {
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       for(d=0; d<dh[mi][i]; d++){       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         newm=savm;       gives blocc="abcdef2ghi" and alocc="j".
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
         for (kk=1; kk<=cptcovage;kk++) {    */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    char *s, *t;
         }    t=in;s=in;
            while (*in != '\0'){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      while( *in == occ){
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        *blocc++ = *in++;
         savm=oldm;        s=in;
         oldm=newm;      }
              *blocc++ = *in++;
            }
       } /* end mult */    if (s == t) /* occ not found */
            *(blocc-(in-s))='\0';
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    else
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      *(blocc-(in-s)-1)='\0';
       ipmx +=1;    in=s;
       sw += weight[i];    while ( *in != '\0'){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      *alocc++ = *in++;
     } /* end of wave */    }
   } /* end of individual */  
     *alocc='\0';
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    return s;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
     int lg=20;
 /*********** Maximum Likelihood Estimation ***************/    i=0;
     lg=strlen(s);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   int i,j, iter;    }
   double **xi,*delti;    return j;
   double fret;  }
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  /* void cutv(char *u,char *v, char*t, char occ) */
     for (j=1;j<=npar;j++)  /* { */
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   printf("Powell\n");  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*      gives u="abcdef2ghi" and v="j" *\/ */
   /*   int i,lg,j,p=0; */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /*   i=0; */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*   lg=strlen(t); */
   /*   for(j=0; j<=lg-1; j++) { */
 }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*   for(j=0; j<p; j++) { */
 {  /*     (u[j] = t[j]); */
   double  **a,**y,*x,pd;  /*   } */
   double **hess;  /*      u[p]='\0'; */
   int i, j,jk;  
   int *indx;  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   double hessii(double p[], double delta, int theta, double delti[]);  /*   } */
   double hessij(double p[], double delti[], int i, int j);  /* } */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #ifdef _WIN32
   char * strsep(char **pp, const char *delim)
   hess=matrix(1,npar,1,npar);  {
     char *p, *q;
   printf("\nCalculation of the hessian matrix. Wait...\n");           
   for (i=1;i<=npar;i++){    if ((p = *pp) == NULL)
     printf("%d",i);fflush(stdout);      return 0;
     hess[i][i]=hessii(p,ftolhess,i,delti);    if ((q = strpbrk (p, delim)) != NULL)
     /*printf(" %f ",p[i]);*/    {
     /*printf(" %lf ",hess[i][i]);*/      *pp = q + 1;
   }      *q = '\0';
      }
   for (i=1;i<=npar;i++) {    else
     for (j=1;j<=npar;j++)  {      *pp = 0;
       if (j>i) {    return p;
         printf(".%d%d",i,j);fflush(stdout);  }
         hess[i][j]=hessij(p,delti,i,j);  #endif
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  /********************** nrerror ********************/
       }  
     }  void nrerror(char error_text[])
   }  {
   printf("\n");    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    exit(EXIT_FAILURE);
    }
   a=matrix(1,npar,1,npar);  /*********************** vector *******************/
   y=matrix(1,npar,1,npar);  double *vector(int nl, int nh)
   x=vector(1,npar);  {
   indx=ivector(1,npar);    double *v;
   for (i=1;i<=npar;i++)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    if (!v) nrerror("allocation failure in vector");
   ludcmp(a,npar,indx,&pd);    return v-nl+NR_END;
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /************************ free vector ******************/
     x[j]=1;  void free_vector(double*v, int nl, int nh)
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    free((FREE_ARG)(v+nl-NR_END));
       matcov[i][j]=x[i];  }
     }  
   }  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   printf("\n#Hessian matrix#\n");  {
   for (i=1;i<=npar;i++) {    int *v;
     for (j=1;j<=npar;j++) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       printf("%.3e ",hess[i][j]);    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     printf("\n");  }
   }  
   /******************free ivector **************************/
   /* Recompute Inverse */  void free_ivector(int *v, long nl, long nh)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    free((FREE_ARG)(v+nl-NR_END));
   ludcmp(a,npar,indx,&pd);  }
   
   /*  printf("\n#Hessian matrix recomputed#\n");  /************************lvector *******************************/
   long *lvector(long nl,long nh)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    long *v;
     x[j]=1;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     lubksb(a,npar,indx,x);    if (!v) nrerror("allocation failure in ivector");
     for (i=1;i<=npar;i++){    return v-nl+NR_END;
       y[i][j]=x[i];  }
       printf("%.3e ",y[i][j]);  
     }  /******************free lvector **************************/
     printf("\n");  void free_lvector(long *v, long nl, long nh)
   }  {
   */    free((FREE_ARG)(v+nl-NR_END));
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /******************* imatrix *******************************/
   free_vector(x,1,npar);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   free_ivector(indx,1,npar);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_matrix(hess,1,npar,1,npar);  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 }    
     /* allocate pointers to rows */ 
 /*************** hessian matrix ****************/    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 double hessii( double x[], double delta, int theta, double delti[])    if (!m) nrerror("allocation failure 1 in matrix()"); 
 {    m += NR_END; 
   int i;    m -= nrl; 
   int l=1, lmax=20;    
   double k1,k2;    
   double p2[NPARMAX+1];    /* allocate rows and set pointers to them */ 
   double res;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double fx;    m[nrl] += NR_END; 
   int k=0,kmax=10;    m[nrl] -= ncl; 
   double l1;    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   fx=func(x);    
   for (i=1;i<=npar;i++) p2[i]=x[i];    /* return pointer to array of pointers to rows */ 
   for(l=0 ; l <=lmax; l++){    return m; 
     l1=pow(10,l);  } 
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  /****************** free_imatrix *************************/
       delt = delta*(l1*k);  void free_imatrix(m,nrl,nrh,ncl,nch)
       p2[theta]=x[theta] +delt;        int **m;
       k1=func(p2)-fx;        long nch,ncl,nrh,nrl; 
       p2[theta]=x[theta]-delt;       /* free an int matrix allocated by imatrix() */ 
       k2=func(p2)-fx;  { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    free((FREE_ARG) (m+nrl-NR_END)); 
        } 
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /******************* matrix *******************************/
 #endif  double **matrix(long nrl, long nrh, long ncl, long nch)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         k=kmax;    double **m;
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         k=kmax; l=lmax*10.;    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    m -= nrl;
         delts=delt;  
       }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
   delti[theta]=delts;    m[nrl] -= ncl;
   return res;  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 double hessij( double x[], double delti[], int thetai,int thetaj)  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 {  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   int i;     */
   int l=1, l1, lmax=20;  }
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  /*************************free matrix ************************/
   int k;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   fx=func(x);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (k=1; k<=2; k++) {    free((FREE_ARG)(m+nrl-NR_END));
     for (i=1;i<=npar;i++) p2[i]=x[i];  }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /******************* ma3x *******************************/
     k1=func(p2)-fx;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    {
     p2[thetai]=x[thetai]+delti[thetai]/k;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double ***m;
     k2=func(p2)-fx;  
      m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     p2[thetai]=x[thetai]-delti[thetai]/k;    if (!m) nrerror("allocation failure 1 in matrix()");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    m += NR_END;
     k3=func(p2)-fx;    m -= nrl;
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     k4=func(p2)-fx;    m[nrl] += NR_END;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    m[nrl] -= ncl;
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif  
   }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   return res;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 }    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
 /************** Inverse of matrix **************/    for (j=ncl+1; j<=nch; j++) 
 void ludcmp(double **a, int n, int *indx, double *d)      m[nrl][j]=m[nrl][j-1]+nlay;
 {    
   int i,imax,j,k;    for (i=nrl+1; i<=nrh; i++) {
   double big,dum,sum,temp;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double *vv;      for (j=ncl+1; j<=nch; j++) 
          m[i][j]=m[i][j-1]+nlay;
   vv=vector(1,n);    }
   *d=1.0;    return m; 
   for (i=1;i<=n;i++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     big=0.0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for (j=1;j<=n;j++)    */
       if ((temp=fabs(a[i][j])) > big) big=temp;  }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  /*************************free ma3x ************************/
   }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (j=1;j<=n;j++) {  {
     for (i=1;i<j;i++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       sum=a[i][j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    free((FREE_ARG)(m+nrl-NR_END));
       a[i][j]=sum;  }
     }  
     big=0.0;  /*************** function subdirf ***********/
     for (i=j;i<=n;i++) {  char *subdirf(char fileres[])
       sum=a[i][j];  {
       for (k=1;k<j;k++)    /* Caution optionfilefiname is hidden */
         sum -= a[i][k]*a[k][j];    strcpy(tmpout,optionfilefiname);
       a[i][j]=sum;    strcat(tmpout,"/"); /* Add to the right */
       if ( (dum=vv[i]*fabs(sum)) >= big) {    strcat(tmpout,fileres);
         big=dum;    return tmpout;
         imax=i;  }
       }  
     }  /*************** function subdirf2 ***********/
     if (j != imax) {  char *subdirf2(char fileres[], char *preop)
       for (k=1;k<=n;k++) {  {
         dum=a[imax][k];    
         a[imax][k]=a[j][k];    /* Caution optionfilefiname is hidden */
         a[j][k]=dum;    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
       *d = -(*d);    strcat(tmpout,preop);
       vv[imax]=vv[j];    strcat(tmpout,fileres);
     }    return tmpout;
     indx[j]=imax;  }
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  /*************** function subdirf3 ***********/
       dum=1.0/(a[j][j]);  char *subdirf3(char fileres[], char *preop, char *preop2)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  {
     }    
   }    /* Caution optionfilefiname is hidden */
   free_vector(vv,1,n);  /* Doesn't work */    strcpy(tmpout,optionfilefiname);
 ;    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 void lubksb(double **a, int n, int *indx, double b[])    strcat(tmpout,fileres);
 {    return tmpout;
   int i,ii=0,ip,j;  }
   double sum;  
    char *asc_diff_time(long time_sec, char ascdiff[])
   for (i=1;i<=n;i++) {  {
     ip=indx[i];    long sec_left, days, hours, minutes;
     sum=b[ip];    days = (time_sec) / (60*60*24);
     b[ip]=b[i];    sec_left = (time_sec) % (60*60*24);
     if (ii)    hours = (sec_left) / (60*60) ;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    sec_left = (sec_left) %(60*60);
     else if (sum) ii=i;    minutes = (sec_left) /60;
     b[i]=sum;    sec_left = (sec_left) % (60);
   }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   for (i=n;i>=1;i--) {    return ascdiff;
     sum=b[i];  }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /***************** f1dim *************************/
   }  extern int ncom; 
 }  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 /************ Frequencies ********************/   
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  double f1dim(double x) 
 {  /* Some frequencies */  { 
      int j; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double f;
   double ***freq; /* Frequencies */    double *xt; 
   double *pp;   
   double pos, k2, dateintsum=0,k2cpt=0;    xt=vector(1,ncom); 
   FILE *ficresp;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   char fileresp[FILENAMELENGTH];    f=(*nrfunc)(xt); 
      free_vector(xt,1,ncom); 
   pp=vector(1,nlstate);    return f; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  } 
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  /*****************brent *************************/
   if((ficresp=fopen(fileresp,"w"))==NULL) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  { 
     exit(0);    int iter; 
   }    double a,b,d,etemp;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double fu=0,fv,fw,fx;
   j1=0;    double ftemp=0.;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   j=cptcoveff;    double e=0.0; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}   
     a=(ax < cx ? ax : cx); 
   for(k1=1; k1<=j;k1++){    b=(ax > cx ? ax : cx); 
    for(i1=1; i1<=ncodemax[k1];i1++){    x=w=v=bx; 
        j1++;    fw=fv=fx=(*f)(x); 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    for (iter=1;iter<=ITMAX;iter++) { 
          scanf("%d", i);*/      xm=0.5*(a+b); 
         for (i=-1; i<=nlstate+ndeath; i++)        tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
          for (jk=-1; jk<=nlstate+ndeath; jk++)        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
            for(m=agemin; m <= agemax+3; m++)      printf(".");fflush(stdout);
              freq[i][jk][m]=0;      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUGBRENT
         dateintsum=0;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         k2cpt=0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        for (i=1; i<=imx; i++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
          bool=1;  #endif
          if  (cptcovn>0) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
            for (z1=1; z1<=cptcoveff; z1++)        *xmin=x; 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        return fx; 
                bool=0;      } 
          }      ftemp=fu;
          if (bool==1) {      if (fabs(e) > tol1) { 
            for(m=firstpass; m<=lastpass; m++){        r=(x-w)*(fx-fv); 
              k2=anint[m][i]+(mint[m][i]/12.);        q=(x-v)*(fx-fw); 
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        p=(x-v)*q-(x-w)*r; 
                if(agev[m][i]==0) agev[m][i]=agemax+1;        q=2.0*(q-r); 
                if(agev[m][i]==1) agev[m][i]=agemax+2;        if (q > 0.0) p = -p; 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        q=fabs(q); 
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        etemp=e; 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        e=d; 
                  dateintsum=dateintsum+k2;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                  k2cpt++;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                }        else { 
           d=p/q; 
              }          u=x+d; 
            }          if (u-a < tol2 || b-u < tol2) 
          }            d=SIGN(tol1,xm-x); 
        }        } 
              } else { 
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
         if  (cptcovn>0) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
          fprintf(ficresp, "\n#********** Variable ");      fu=(*f)(u); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (fu <= fx) { 
        fprintf(ficresp, "**********\n#");        if (u >= x) a=x; else b=x; 
         }        SHFT(v,w,x,u) 
        for(i=1; i<=nlstate;i++)          SHFT(fv,fw,fx,fu) 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          } else { 
        fprintf(ficresp, "\n");            if (u < x) a=u; else b=u; 
                    if (fu <= fw || w == x) { 
   for(i=(int)agemin; i <= (int)agemax+3; i++){              v=w; 
     if(i==(int)agemax+3)              w=u; 
       printf("Total");              fv=fw; 
     else              fw=fu; 
       printf("Age %d", i);            } else if (fu <= fv || v == x || v == w) { 
     for(jk=1; jk <=nlstate ; jk++){              v=u; 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              fv=fu; 
         pp[jk] += freq[jk][m][i];            } 
     }          } 
     for(jk=1; jk <=nlstate ; jk++){    } 
       for(m=-1, pos=0; m <=0 ; m++)    nrerror("Too many iterations in brent"); 
         pos += freq[jk][m][i];    *xmin=x; 
       if(pp[jk]>=1.e-10)    return fx; 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  } 
       else  
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /****************** mnbrak ***********************/
     }  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      for(jk=1; jk <=nlstate ; jk++){              double (*func)(double)) 
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  { 
         pp[jk] += freq[jk][m][i];    double ulim,u,r,q, dum;
      }    double fu; 
    
     for(jk=1,pos=0; jk <=nlstate ; jk++)    *fa=(*func)(*ax); 
       pos += pp[jk];    *fb=(*func)(*bx); 
     for(jk=1; jk <=nlstate ; jk++){    if (*fb > *fa) { 
       if(pos>=1.e-5)      SHFT(dum,*ax,*bx,dum) 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        SHFT(dum,*fb,*fa,dum) 
       else        } 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    *cx=(*bx)+GOLD*(*bx-*ax); 
       if( i <= (int) agemax){    *fc=(*func)(*cx); 
         if(pos>=1.e-5){    while (*fb > *fc) { /* Declining fa, fb, fc */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      r=(*bx-*ax)*(*fb-*fc); 
           probs[i][jk][j1]= pp[jk]/pos;      q=(*bx-*cx)*(*fb-*fa); 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       else      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
       }        fu=(*func)(u); 
     }  #ifdef DEBUG
     for(jk=-1; jk <=nlstate+ndeath; jk++)        /* f(x)=A(x-u)**2+f(u) */
       for(m=-1; m <=nlstate+ndeath; m++)        double A, fparabu; 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
     if(i <= (int) agemax)        fparabu= *fa - A*(*ax-u)*(*ax-u);
       fprintf(ficresp,"\n");        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
     printf("\n");        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
     }  #endif 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
  }        fu=(*func)(u); 
   dateintmean=dateintsum/k2cpt;        if (fu < *fc) { 
            SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   fclose(ficresp);            SHFT(*fb,*fc,fu,(*func)(u)) 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            } 
   free_vector(pp,1,nlstate);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         u=ulim; 
   /* End of Freq */        fu=(*func)(u); 
 }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 /************ Prevalence ********************/        fu=(*func)(u); 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      } 
 {  /* Some frequencies */      SHFT(*ax,*bx,*cx,u) 
          SHFT(*fa,*fb,*fc,fu) 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        } 
   double ***freq; /* Frequencies */  } 
   double *pp;  
   double pos, k2;  /*************** linmin ************************/
   /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   pp=vector(1,nlstate);  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
    the value of func at the returned location p . This is actually all accomplished by calling the
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  routines mnbrak and brent .*/
   j1=0;  int ncom; 
    double *pcom,*xicom;
   j=cptcoveff;  double (*nrfunc)(double []); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}   
    void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  for(k1=1; k1<=j;k1++){  { 
     for(i1=1; i1<=ncodemax[k1];i1++){    double brent(double ax, double bx, double cx, 
       j1++;                 double (*f)(double), double tol, double *xmin); 
      double f1dim(double x); 
       for (i=-1; i<=nlstate+ndeath; i++)      void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         for (jk=-1; jk<=nlstate+ndeath; jk++)                  double *fc, double (*func)(double)); 
           for(m=agemin; m <= agemax+3; m++)    int j; 
             freq[i][jk][m]=0;    double xx,xmin,bx,ax; 
          double fx,fb,fa;
       for (i=1; i<=imx; i++) {   
         bool=1;    ncom=n; 
         if  (cptcovn>0) {    pcom=vector(1,n); 
           for (z1=1; z1<=cptcoveff; z1++)    xicom=vector(1,n); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    nrfunc=func; 
               bool=0;    for (j=1;j<=n;j++) { 
         }      pcom[j]=p[j]; 
         if (bool==1) {      xicom[j]=xi[j]; 
           for(m=firstpass; m<=lastpass; m++){    } 
             k2=anint[m][i]+(mint[m][i]/12.);    ax=0.0; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    xx=1.0; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  #ifdef DEBUG
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           }  #endif
         }    for (j=1;j<=n;j++) { 
       }      xi[j] *= xmin; 
         for(i=(int)agemin; i <= (int)agemax+3; i++){      p[j] += xi[j]; 
           for(jk=1; jk <=nlstate ; jk++){    } 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    free_vector(xicom,1,n); 
               pp[jk] += freq[jk][m][i];    free_vector(pcom,1,n); 
           }  } 
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  /*************** powell ************************/
         }  /*
          Minimization of a function func of n variables. Input consists of an initial starting point
          for(jk=1; jk <=nlstate ; jk++){  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
              pp[jk] += freq[jk][m][i];  such that failure to decrease by more than this amount on one iteration signals doneness. On
          }  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
            function value at p , and iter is the number of iterations taken. The routine linmin is used.
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];   */
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
          for(jk=1; jk <=nlstate ; jk++){                        double (*func)(double [])) 
            if( i <= (int) agemax){  { 
              if(pos>=1.e-5){    void linmin(double p[], double xi[], int n, double *fret, 
                probs[i][jk][j1]= pp[jk]/pos;                double (*func)(double [])); 
              }    int i,ibig,j; 
            }    double del,t,*pt,*ptt,*xit;
          }    double fp,fptt;
              double *xits;
         }    int niterf, itmp;
     }  
   }    pt=vector(1,n); 
      ptt=vector(1,n); 
      xit=vector(1,n); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    xits=vector(1,n); 
   free_vector(pp,1,nlstate);    *fret=(*func)(p); 
      for (j=1;j<=n;j++) pt[j]=p[j]; 
 }  /* End of Freq */      rcurr_time = time(NULL);  
     for (*iter=1;;++(*iter)) { 
 /************* Waves Concatenation ***************/      fp=(*fret); 
       ibig=0; 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      del=0.0; 
 {      rlast_time=rcurr_time;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      /* (void) gettimeofday(&curr_time,&tzp); */
      Death is a valid wave (if date is known).      rcurr_time = time(NULL);  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      curr_time = *localtime(&rcurr_time);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
      and mw[mi+1][i]. dh depends on stepm.      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
      */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
      for (i=1;i<=n;i++) {
   int i, mi, m;        printf(" %d %.12f",i, p[i]);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        fprintf(ficlog," %d %.12lf",i, p[i]);
      double sum=0., jmean=0.;*/        fprintf(ficrespow," %.12lf", p[i]);
       }
   int j, k=0,jk, ju, jl;      printf("\n");
   double sum=0.;      fprintf(ficlog,"\n");
   jmin=1e+5;      fprintf(ficrespow,"\n");fflush(ficrespow);
   jmax=-1;      if(*iter <=3){
   jmean=0.;        tml = *localtime(&rcurr_time);
   for(i=1; i<=imx; i++){        strcpy(strcurr,asctime(&tml));
     mi=0;        rforecast_time=rcurr_time; 
     m=firstpass;        itmp = strlen(strcurr);
     while(s[m][i] <= nlstate){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       if(s[m][i]>=1)          strcurr[itmp-1]='\0';
         mw[++mi][i]=m;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       if(m >=lastpass)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         break;        for(niterf=10;niterf<=30;niterf+=10){
       else          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         m++;          forecast_time = *localtime(&rforecast_time);
     }/* end while */          strcpy(strfor,asctime(&forecast_time));
     if (s[m][i] > nlstate){          itmp = strlen(strfor);
       mi++;     /* Death is another wave */          if(strfor[itmp-1]=='\n')
       /* if(mi==0)  never been interviewed correctly before death */          strfor[itmp-1]='\0';
          /* Only death is a correct wave */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       mw[mi][i]=m;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     }        }
       }
     wav[i]=mi;      for (i=1;i<=n;i++) { 
     if(mi==0)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        fptt=(*fret); 
   }  #ifdef DEBUG
             printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   for(i=1; i<=imx; i++){            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     for(mi=1; mi<wav[i];mi++){  #endif
       if (stepm <=0)        printf("%d",i);fflush(stdout);
         dh[mi][i]=1;        fprintf(ficlog,"%d",i);fflush(ficlog);
       else{        linmin(p,xit,n,fret,func); 
         if (s[mw[mi+1][i]][i] > nlstate) {        if (fabs(fptt-(*fret)) > del) { 
           if (agedc[i] < 2*AGESUP) {          del=fabs(fptt-(*fret)); 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ibig=i; 
           if(j==0) j=1;  /* Survives at least one month after exam */        } 
           k=k+1;  #ifdef DEBUG
           if (j >= jmax) jmax=j;        printf("%d %.12e",i,(*fret));
           if (j <= jmin) jmin=j;        fprintf(ficlog,"%d %.12e",i,(*fret));
           sum=sum+j;        for (j=1;j<=n;j++) {
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           }          printf(" x(%d)=%.12e",j,xit[j]);
         }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         else{        }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for(j=1;j<=n;j++) {
           k=k+1;          printf(" p(%d)=%.12e",j,p[j]);
           if (j >= jmax) jmax=j;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
           else if (j <= jmin)jmin=j;        }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        printf("\n");
           sum=sum+j;        fprintf(ficlog,"\n");
         }  #endif
         jk= j/stepm;      } /* end i */
         jl= j -jk*stepm;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         ju= j -(jk+1)*stepm;  #ifdef DEBUG
         if(jl <= -ju)        int k[2],l;
           dh[mi][i]=jk;        k[0]=1;
         else        k[1]=-1;
           dh[mi][i]=jk+1;        printf("Max: %.12e",(*func)(p));
         if(dh[mi][i]==0)        fprintf(ficlog,"Max: %.12e",(*func)(p));
           dh[mi][i]=1; /* At least one step */        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
   }        }
   jmean=sum/k;        printf("\n");
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        fprintf(ficlog,"\n");
  }        for(l=0;l<=1;l++) {
 /*********** Tricode ****************************/          for (j=1;j<=n;j++) {
 void tricode(int *Tvar, int **nbcode, int imx)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int Ndum[20],ij=1, k, j, i;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int cptcode=0;          }
   cptcoveff=0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (k=0; k<19; k++) Ndum[k]=0;        }
   for (k=1; k<=7; k++) ncodemax[k]=0;  #endif
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {        free_vector(xit,1,n); 
       ij=(int)(covar[Tvar[j]][i]);        free_vector(xits,1,n); 
       Ndum[ij]++;        free_vector(ptt,1,n); 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        free_vector(pt,1,n); 
       if (ij > cptcode) cptcode=ij;        return; 
     }      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (i=0; i<=cptcode; i++) {      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
       if(Ndum[i]!=0) ncodemax[j]++;        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
     ij=1;        pt[j]=p[j]; 
       } 
       fptt=(*func)(ptt); 
     for (i=1; i<=ncodemax[j]; i++) {      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       for (k=0; k<=19; k++) {        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         if (Ndum[k] != 0) {        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
           nbcode[Tvar[j]][ij]=k;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
           ij++;        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
         }        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         if (ij > ncodemax[j]) break;        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
       }          /* Thus we compare delta(2h) with observed f1-f3 */
     }        /* or best gain on one ancient line 'del' with total  */
   }          /* gain f1-f2 = f1 - f2 - 'del' with del  */
         /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
  for (k=0; k<19; k++) Ndum[k]=0;  
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
  for (i=1; i<=ncovmodel-2; i++) {        t= t- del*SQR(fp-fptt);
       ij=Tvar[i];        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
       Ndum[ij]++;        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
     }  #ifdef DEBUG
         printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
  ij=1;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
  for (i=1; i<=10; i++) {        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
    if((Ndum[i]!=0) && (i<=ncov)){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
      Tvaraff[ij]=i;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
      ij++;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
    }  #endif
  }        if (t < 0.0) { /* Then we use it for last direction */
            linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
     cptcoveff=ij-1;          for (j=1;j<=n;j++) { 
 }            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
             xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
 /*********** Health Expectancies ****************/          }
           printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 {  
   /* Health expectancies */  #ifdef DEBUG
   int i, j, nhstepm, hstepm, h, nstepm, k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double age, agelim,hf;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double ***p3mat;          for(j=1;j<=n;j++){
              printf(" %.12e",xit[j]);
   fprintf(ficreseij,"# Health expectancies\n");            fprintf(ficlog," %.12e",xit[j]);
   fprintf(ficreseij,"# Age");          }
   for(i=1; i<=nlstate;i++)          printf("\n");
     for(j=1; j<=nlstate;j++)          fprintf(ficlog,"\n");
       fprintf(ficreseij," %1d-%1d",i,j);  #endif
   fprintf(ficreseij,"\n");        } /* end of t negative */
       } /* end if (fptt < fp)  */
   k=1;             /* For example stepm=6 months */    } 
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */  } 
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /**** Prevalence limit (stable or period prevalence)  ****************/
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      Look at hpijx to understand the reason of that which relies in memory size  {
      and note for a fixed period like k years */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       matrix by transitions matrix until convergence is reached */
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed only each two years of age and if    int i, ii,j,k;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double min, max, maxmin, maxmax,sumnew=0.;
      results. So we changed our mind and took the option of the best precision.    /* double **matprod2(); */ /* test */
   */    double **out, cov[NCOVMAX+1], **pmij();
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   agelim=AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (ii=1;ii<=nlstate+ndeath;ii++)
     /* nhstepm age range expressed in number of stepm */      for (j=1;j<=nlstate+ndeath;j++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      }
     /* if (stepm >= YEARM) hstepm=1;*/    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    cov[1]=1.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        newm=savm;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      /* Covariates have to be included here again */
     for(i=1; i<=nlstate;i++)      cov[2]=agefin;
       for(j=1; j<=nlstate;j++)      
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      for (k=1; k<=cptcovn;k++) {
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
         }      }
     fprintf(ficreseij,"%3.0f",age );      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     for(i=1; i<=nlstate;i++)      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       for(j=1; j<=nlstate;j++){      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);      
       }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     fprintf(ficreseij,"\n");      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 }      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 /************ Variance ******************/      
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      savm=oldm;
 {      oldm=newm;
   /* Variance of health expectancies */      maxmax=0.;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(j=1;j<=nlstate;j++){
   double **newm;        min=1.;
   double **dnewm,**doldm;        max=0.;
   int i, j, nhstepm, hstepm, h;        for(i=1; i<=nlstate; i++) {
   int k, cptcode;          sumnew=0;
   double *xp;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double **gp, **gm;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double ***gradg, ***trgradg;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   double ***p3mat;          max=FMAX(max,prlim[i][j]);
   double age,agelim;          min=FMIN(min,prlim[i][j]);
   int theta;        }
         maxmin=max-min;
    fprintf(ficresvij,"# Covariances of life expectancies\n");        maxmax=FMAX(maxmax,maxmin);
   fprintf(ficresvij,"# Age");      } /* j loop */
   for(i=1; i<=nlstate;i++)      if(maxmax < ftolpl){
     for(j=1; j<=nlstate;j++)        return prlim;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      }
   fprintf(ficresvij,"\n");    } /* age loop */
     return prlim; /* should not reach here */
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  /*************** transition probabilities ***************/ 
    
   hstepm=1*YEARM; /* Every year of age */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  {
   agelim = AGESUP;    /* According to parameters values stored in x and the covariate's values stored in cov,
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       computes the probability to be observed in state j being in state i by appying the
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       model to the ncovmodel covariates (including constant and age).
     if (stepm >= YEARM) hstepm=1;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       ncth covariate in the global vector x is given by the formula:
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     gp=matrix(0,nhstepm,1,nlstate);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
     gm=matrix(0,nhstepm,1,nlstate);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     for(theta=1; theta <=npar; theta++){       Outputs ps[i][j] the probability to be observed in j being in j according to
       for(i=1; i<=npar; i++){ /* Computes gradient */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    */
       }    double s1, lnpijopii;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /*double t34;*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,j, nc, ii, jj;
   
       if (popbased==1) {      for(i=1; i<= nlstate; i++){
         for(i=1; i<=nlstate;i++)        for(j=1; j<i;j++){
           prlim[i][i]=probs[(int)age][i][ij];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
              lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
       for(j=1; j<= nlstate; j++){  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }        }
       }        for(j=i+1; j<=nlstate+ndeath;j++){
              for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       for(i=1; i<=npar; i++) /* Computes gradient */            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
            ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)      }
           prlim[i][i]=probs[(int)age][i][ij];      
       }      for(i=1; i<= nlstate; i++){
         s1=0;
       for(j=1; j<= nlstate; j++){        for(j=1; j<i; j++){
         for(h=0; h<=nhstepm; h++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
       }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(j=1; j<= nlstate; j++)        }
         for(h=0; h<=nhstepm; h++){        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        ps[i][i]=1./(s1+1.);
         }        /* Computing other pijs */
     } /* End theta */        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(h=0; h<=nhstepm; h++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(j=1; j<=nlstate;j++)      } /* end i */
         for(theta=1; theta <=npar; theta++)      
           trgradg[h][j][theta]=gradg[h][theta][j];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
     for(i=1;i<=nlstate;i++)          ps[ii][jj]=0;
       for(j=1;j<=nlstate;j++)          ps[ii][ii]=1;
         vareij[i][j][(int)age] =0.;        }
     for(h=0;h<=nhstepm;h++){      }
       for(k=0;k<=nhstepm;k++){      
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         for(i=1;i<=nlstate;i++)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           for(j=1;j<=nlstate;j++)      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
             vareij[i][j][(int)age] += doldm[i][j];      /*   } */
       }      /*   printf("\n "); */
     }      /* } */
     h=1;      /* printf("\n ");printf("%lf ",cov[2]);*/
     if (stepm >= YEARM) h=stepm/YEARM;      /*
     fprintf(ficresvij,"%.0f ",age );        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for(i=1; i<=nlstate;i++)        goto end;*/
       for(j=1; j<=nlstate;j++){      return ps;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  }
       }  
     fprintf(ficresvij,"\n");  /**************** Product of 2 matrices ******************/
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   } /* End age */    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
   free_vector(xp,1,npar);       a pointer to pointers identical to out */
   free_matrix(doldm,1,nlstate,1,npar);    int i, j, k;
   free_matrix(dnewm,1,nlstate,1,nlstate);    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++){
 }        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
 /************ Variance of prevlim ******************/          out[i][k] +=in[i][j]*b[j][k];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {    return out;
   /* Variance of prevalence limit */  }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  
   double **dnewm,**doldm;  /************* Higher Matrix Product ***************/
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double *xp;  {
   double *gp, *gm;    /* Computes the transition matrix starting at age 'age' over 
   double **gradg, **trgradg;       'nhstepm*hstepm*stepm' months (i.e. until
   double age,agelim;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int theta;       nhstepm*hstepm matrices. 
           Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");       (typically every 2 years instead of every month which is too big 
   fprintf(ficresvpl,"# Age");       for the memory).
   for(i=1; i<=nlstate;i++)       Model is determined by parameters x and covariates have to be 
       fprintf(ficresvpl," %1d-%1d",i,i);       included manually here. 
   fprintf(ficresvpl,"\n");  
        */
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    int i, j, d, h, k;
   doldm=matrix(1,nlstate,1,nlstate);    double **out, cov[NCOVMAX+1];
      double **newm;
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    /* Hstepm could be zero and should return the unit matrix */
   agelim = AGESUP;    for (i=1;i<=nlstate+ndeath;i++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (j=1;j<=nlstate+ndeath;j++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        oldm[i][j]=(i==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     gradg=matrix(1,npar,1,nlstate);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     gp=vector(1,nlstate);    for(h=1; h <=nhstepm; h++){
     gm=vector(1,nlstate);      for(d=1; d <=hstepm; d++){
         newm=savm;
     for(theta=1; theta <=npar; theta++){        /* Covariates have to be included here again */
       for(i=1; i<=npar; i++){ /* Computes gradient */        cov[1]=1.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       }        for (k=1; k<=cptcovn;k++) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovage;k++)
         gp[i] = prlim[i][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
       for(i=1; i<=npar; i++) /* Computes gradient */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         gm[i] = prlim[i][i];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for(i=1;i<=nlstate;i++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        savm=oldm;
     } /* End theta */        oldm=newm;
       }
     trgradg =matrix(1,nlstate,1,npar);      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
     for(j=1; j<=nlstate;j++)          po[i][j][h]=newm[i][j];
       for(theta=1; theta <=npar; theta++)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         trgradg[j][theta]=gradg[theta][j];        }
       /*printf("h=%d ",h);*/
     for(i=1;i<=nlstate;i++)    } /* end h */
       varpl[i][(int)age] =0.;  /*     printf("\n H=%d \n",h); */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    return po;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     fprintf(ficresvpl,"%.0f ",age );    double fret;
     for(i=1; i<=nlstate;i++)    double *xt;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int j;
     fprintf(ficresvpl,"\n");    myfunc_data *d2 = (myfunc_data *) pd;
     free_vector(gp,1,nlstate);  /* xt = (p1-1); */
     free_vector(gm,1,nlstate);    xt=vector(1,n); 
     free_matrix(gradg,1,npar,1,nlstate);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   free_vector(xp,1,npar);    printf("Function = %.12lf ",fret);
   free_matrix(doldm,1,nlstate,1,npar);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   free_matrix(dnewm,1,nlstate,1,nlstate);    printf("\n");
    free_vector(xt,1,n);
 }    return fret;
   }
 /************ Variance of one-step probabilities  ******************/  #endif
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  
 {  /*************** log-likelihood *************/
   int i, j;  double func( double *x)
   int k=0, cptcode;  {
   double **dnewm,**doldm;    int i, ii, j, k, mi, d, kk;
   double *xp;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double *gp, *gm;    double **out;
   double **gradg, **trgradg;    double sw; /* Sum of weights */
   double age,agelim, cov[NCOVMAX];    double lli; /* Individual log likelihood */
   int theta;    int s1, s2;
   char fileresprob[FILENAMELENGTH];    double bbh, survp;
     long ipmx;
   strcpy(fileresprob,"prob");    /*extern weight */
   strcat(fileresprob,fileres);    /* We are differentiating ll according to initial status */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     printf("Problem with resultfile: %s\n", fileresprob);    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    */
    
     ++countcallfunc;
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    cov[1]=1.;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   cov[1]=1;  
   for (age=bage; age<=fage; age ++){    if(mle==1){
     cov[2]=age;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gradg=matrix(1,npar,1,9);        /* Computes the values of the ncovmodel covariates of the model
     trgradg=matrix(1,9,1,npar);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));           to be observed in j being in i according to the model.
             */
     for(theta=1; theta <=npar; theta++){        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       for(i=1; i<=npar; i++)          cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
              /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
               has been calculated etc */
       k=0;        for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<= (nlstate+ndeath); i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(j=1; j<=(nlstate+ndeath);j++){            for (j=1;j<=nlstate+ndeath;j++){
            k=k+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           gp[k]=pmmij[i][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
       for(i=1; i<=npar; i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       k=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=(nlstate+ndeath); i++){            savm=oldm;
         for(j=1; j<=(nlstate+ndeath);j++){            oldm=newm;
           k=k+1;          } /* end mult */
           gm[k]=pmmij[i][j];        
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias at large stepm.
                 * If stepm is larger than one month (smallest stepm) and if the exact delay 
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];             * the nearest (and in case of equal distance, to the lowest) interval but now
     }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)           * probability in order to take into account the bias as a fraction of the way
       for(theta=1; theta <=npar; theta++)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       trgradg[j][theta]=gradg[theta][j];           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);           * For stepm > 1 the results are less biased than in previous versions. 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);           */
           s1=s[mw[mi][i]][i];
      pmij(pmmij,cov,ncovmodel,x,nlstate);          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
      k=0;          /* bias bh is positive if real duration
      for(i=1; i<=(nlstate+ndeath); i++){           * is higher than the multiple of stepm and negative otherwise.
        for(j=1; j<=(nlstate+ndeath);j++){           */
          k=k+1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
          gm[k]=pmmij[i][j];          if( s2 > nlstate){ 
         }            /* i.e. if s2 is a death state and if the date of death is known 
      }               then the contribution to the likelihood is the probability to 
                     die between last step unit time and current  step unit time, 
      /*printf("\n%d ",(int)age);               which is also equal to probability to die before dh 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){               minus probability to die before dh-stepm . 
                       In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          health state: the date of the interview describes the actual state
      }*/          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
   fprintf(ficresprob,"\n%d ",(int)age);          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          the contribution of an exact death to the likelihood. This new
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          contribution is smaller and very dependent of the step unit
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          stepm. It is no more the probability to die between last interview
   }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          probability to die within a month. Thanks to Chris
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          Jackson for correcting this bug.  Former versions increased
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          mortality artificially. The bad side is that we add another loop
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          which slows down the processing. The difference can be up to 10%
 }          lower mortality.
  free_vector(xp,1,npar);            */
 fclose(ficresprob);            lli=log(out[s1][s2] - savm[s1][s2]);
   
 }  
           } else if  (s2==-2) {
 /******************* Printing html file ***********/            for (j=1,survp=0. ; j<=nlstate; j++) 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[],char rfileres[] ){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int jj1, k1, i1, cpt;            /*survp += out[s1][j]; */
   FILE *fichtm;            lli= log(survp);
   /*char optionfilehtm[FILENAMELENGTH];*/          }
           
   strcpy(optionfilehtm,optionfile);          else if  (s2==-4) { 
   strcat(optionfilehtm,".htm");            for (j=3,survp=0. ; j<=nlstate; j++)  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     printf("Problem with %s \n",optionfilehtm), exit(0);            lli= log(survp); 
   }          } 
   
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.71e </font> <hr size=\"2\" color=\"#EC5E5E\">          else if  (s2==-5) { 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 Total number of observations=%d <br>            lli= log(survp); 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          } 
 <hr  size=\"2\" color=\"#EC5E5E\">          
 <li>Outputs files<br><br>\n          else{
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          } 
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          /*if(lli ==000.0)*/
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>          ipmx +=1;
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          sw += weight[i];
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>        } /* end of wave */
         - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>      } /* end of individual */
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 fprintf(fichtm," <li>Graphs</li><p>");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  m=cptcoveff;          for (ii=1;ii<=nlstate+ndeath;ii++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  jj1=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  for(k1=1; k1<=m;k1++){            }
    for(i1=1; i1<=ncodemax[k1];i1++){          for(d=0; d<=dh[mi][i]; d++){
        jj1++;            newm=savm;
        if (cptcovn > 0) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for (kk=1; kk<=cptcovage;kk++) {
          for (cpt=1; cpt<=cptcoveff;cpt++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
        }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            savm=oldm;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                oldm=newm;
        for(cpt=1; cpt<nlstate;cpt++){          } /* end mult */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          s1=s[mw[mi][i]][i];
        }          s2=s[mw[mi+1][i]][i];
     for(cpt=1; cpt<=nlstate;cpt++) {          bbh=(double)bh[mi][i]/(double)stepm; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 interval) in state (%d): v%s%d%d.gif <br>          ipmx +=1;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            sw += weight[i];
      }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      for(cpt=1; cpt<=nlstate;cpt++) {        } /* end of wave */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      } /* end of individual */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }  else if(mle==3){  /* exponential inter-extrapolation */
      }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 health expectancies in states (1) and (2): e%s%d.gif<br>        for(mi=1; mi<= wav[i]-1; mi++){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for (ii=1;ii<=nlstate+ndeath;ii++)
 fprintf(fichtm,"\n</body>");            for (j=1;j<=nlstate+ndeath;j++){
    }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 fclose(fichtm);            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /******************* Gnuplot file **************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemaxpar, double fage , char pathc[], double p[]){            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcpy(optionfilegnuplot,optionfilefiname);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcat(optionfilegnuplot,".plt");            savm=oldm;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            oldm=newm;
     printf("Problem with file %s",optionfilegnuplot);          } /* end mult */
   }        
           s1=s[mw[mi][i]][i];
 #ifdef windows          s2=s[mw[mi+1][i]][i];
     fprintf(ficgp,"cd \"%s\" \n",pathc);          bbh=(double)bh[mi][i]/(double)stepm; 
 #endif          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 m=pow(2,cptcoveff);          ipmx +=1;
            sw += weight[i];
  /* 1eme*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (cpt=1; cpt<= nlstate ; cpt ++) {        } /* end of wave */
    for (k1=1; k1<= m ; k1 ++) {      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 #ifdef windows      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 #endif        for(mi=1; mi<= wav[i]-1; mi++){
 #ifdef unix          for (ii=1;ii<=nlstate+ndeath;ii++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            for (j=1;j<=nlstate+ndeath;j++){
 #endif              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(d=0; d<dh[mi][i]; d++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1; i<= nlstate ; i ++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      for (i=1; i<= nlstate ; i ++) {            savm=oldm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            oldm=newm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          } /* end mult */
 }          
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          s1=s[mw[mi][i]][i];
 #ifdef unix          s2=s[mw[mi+1][i]][i];
 fprintf(ficgp,"\nset ter gif small size 400,300");          if( s2 > nlstate){ 
 #endif            lli=log(out[s1][s2] - savm[s1][s2]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }else{
    }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          }
   /*2 eme*/          ipmx +=1;
           sw += weight[i];
   for (k1=1; k1<= m ; k1 ++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            } /* end of wave */
     for (i=1; i<= nlstate+1 ; i ++) {      } /* end of individual */
       k=2*i;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (j=1; j<= nlstate+1 ; j ++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(mi=1; mi<= wav[i]-1; mi++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for (ii=1;ii<=nlstate+ndeath;ii++)
 }              for (j=1;j<=nlstate+ndeath;j++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          for(d=0; d<dh[mi][i]; d++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            newm=savm;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }              for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficgp,"\" t\"\" w l 0,");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   else fprintf(ficgp," \%%*lf (\%%*lf)");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }              savm=oldm;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            oldm=newm;
       else fprintf(ficgp,"\" t\"\" w l 0,");          } /* end mult */
     }        
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /*3eme*/          ipmx +=1;
           sw += weight[i];
   for (k1=1; k1<= m ; k1 ++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (cpt=1; cpt<= nlstate ; cpt ++) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       k=2+nlstate*(cpt-1);        } /* end of wave */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      } /* end of individual */
       for (i=1; i< nlstate ; i ++) {    } /* End of if */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     }    return -l;
     }  }
    
   /* CV preval stat */  /*************** log-likelihood *************/
     for (k1=1; k1<= m ; k1 ++) {  double funcone( double *x)
     for (cpt=1; cpt<nlstate ; cpt ++) {  {
       k=3;    /* Same as likeli but slower because of a lot of printf and if */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemaxpar,fileres,k1,k+cpt+1,k+1);    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       for (i=1; i< nlstate ; i ++)    double **out;
         fprintf(ficgp,"+$%d",k+i+1);    double lli; /* Individual log likelihood */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double llt;
          int s1, s2;
       l=3+(nlstate+ndeath)*cpt;    double bbh, survp;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /*extern weight */
       for (i=1; i< nlstate ; i ++) {    /* We are differentiating ll according to initial status */
         l=3+(nlstate+ndeath)*cpt;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         fprintf(ficgp,"+$%d",l+i+1);    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    cov[1]=1.;
     }  
   }      for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   /* proba elementaires */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    for(i=1,jk=1; i <=nlstate; i++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(k=1; k <=(nlstate+ndeath); k++){      for(mi=1; mi<= wav[i]-1; mi++){
       if (k != i) {        for (ii=1;ii<=nlstate+ndeath;ii++)
         for(j=1; j <=ncovmodel; j++){          for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           jk++;          }
           fprintf(ficgp,"\n");        for(d=0; d<dh[mi][i]; d++){
         }          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }          for (kk=1; kk<=cptcovage;kk++) {
     }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
     for(jk=1; jk <=m; jk++) {          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemaxpar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    i=1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    for(k2=1; k2<=nlstate; k2++) {          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
      k3=i;          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
      for(k=1; k<=(nlstate+ndeath); k++) {          savm=oldm;
        if (k != k2){          oldm=newm;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        } /* end mult */
 ij=1;        
         for(j=3; j <=ncovmodel; j++) {        s1=s[mw[mi][i]][i];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        s2=s[mw[mi+1][i]][i];
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        bbh=(double)bh[mi][i]/(double)stepm; 
             ij++;        /* bias is positive if real duration
           }         * is higher than the multiple of stepm and negative otherwise.
           else         */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
           fprintf(ficgp,")/(1");        } else if  (s2==-2) {
                  for (j=1,survp=0. ; j<=nlstate; j++) 
         for(k1=1; k1 <=nlstate; k1++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          lli= log(survp);
 ij=1;        }else if (mle==1){
           for(j=3; j <=ncovmodel; j++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        } else if(mle==2){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             ij++;        } else if(mle==3){  /* exponential inter-extrapolation */
           }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           else        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          lli=log(out[s1][s2]); /* Original formula */
           }        } else{  /* mle=0 back to 1 */
           fprintf(ficgp,")");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }          /*lli=log(out[s1][s2]); */ /* Original formula */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        } /* End of if */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        ipmx +=1;
         i=i+ncovmodel;        sw += weight[i];
        }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    }        if(globpr){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    }   %11.6f %11.6f %11.6f ", \
                      num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fclose(ficgp);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 }  /* end gnuplot */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 /*************** Moving average **************/          }
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){          fprintf(ficresilk," %10.6f\n", -llt);
         }
   int i, cpt, cptcod;      } /* end of wave */
     for (agedeb=agemin; agedeb<=fage; agedeb++)    } /* end of individual */
       for (i=1; i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           mobaverage[(int)agedeb][i][cptcod]=0.;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        if(globpr==0){ /* First time we count the contributions and weights */
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){      gipmx=ipmx;
       for (i=1; i<=nlstate;i++){      gsw=sw;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
           for (cpt=0;cpt<=4;cpt++){    return -l;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  }
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }  /*************** function likelione ***********/
       }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     }  {
        /* This routine should help understanding what is done with 
 }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
        Plotting could be done.
 /************** Forecasting ******************/     */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int k;
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    if(*globpri !=0){ /* Just counts and sums, no printings */
   int *popage;      strcpy(fileresilk,"ilk"); 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      strcat(fileresilk,fileres);
   double *popeffectif,*popcount;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double ***p3mat;        printf("Problem with resultfile: %s\n", fileresilk);
   char fileresf[FILENAMELENGTH];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
  agelim=AGESUP;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
        fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   strcpy(fileresf,"f");    }
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {    *fretone=(*funcone)(p);
     printf("Problem with forecast resultfile: %s\n", fileresf);    if(*globpri !=0){
   }      fclose(ficresilk);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    } 
     return;
   if (mobilav==1) {  }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, agemin, mobaverage);  
   }  /*********** Maximum Likelihood Estimation ***************/
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   if (stepm<=12) stepsize=1;  {
      int i,j, iter=0;
   agelim=AGESUP;    double **xi;
      double fret;
   hstepm=1;    double fretone; /* Only one call to likelihood */
   hstepm=hstepm/stepm;    /*  char filerespow[FILENAMELENGTH];*/
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;  #ifdef NLOPT
   yp2=modf((yp1*12),&yp);    int creturn;
   mprojmean=yp;    nlopt_opt opt;
   yp1=modf((yp2*30.5),&yp);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   jprojmean=yp;    double *lb;
   if(jprojmean==0) jprojmean=1;    double minf; /* the minimum objective value, upon return */
   if(mprojmean==0) jprojmean=1;    double * p1; /* Shifted parameters from 0 instead of 1 */
      myfunc_data dinst, *d = &dinst;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  #endif
    
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    xi=matrix(1,npar,1,npar);
       k=k+1;    for (i=1;i<=npar;i++)
       fprintf(ficresf,"\n#******");      for (j=1;j<=npar;j++)
       for(j=1;j<=cptcoveff;j++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       }    strcpy(filerespow,"pow"); 
       fprintf(ficresf,"******\n");    strcat(filerespow,fileres);
       fprintf(ficresf,"# StartingAge FinalAge");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      printf("Problem with resultfile: %s\n", filerespow);
            fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
          }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         fprintf(ficresf,"\n");    for (i=1;i<=nlstate;i++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    fprintf(ficrespow,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  #ifdef POWELL
           nhstepm = nhstepm/hstepm;    powell(p,xi,npar,ftol,&iter,&fret,func);
            #endif
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  #ifdef NLOPT
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    #ifdef NEWUOA
            opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
           for (h=0; h<=nhstepm; h++){  #else
             if (h==(int) (calagedate+YEARM*cpt)) {    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);  #endif
             }    lb=vector(0,npar-1);
             for(j=1; j<=nlstate+ndeath;j++) {    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
               kk1=0.;kk2=0;    nlopt_set_lower_bounds(opt, lb);
               for(i=1; i<=nlstate;i++) {                  nlopt_set_initial_step1(opt, 0.1);
                 if (mobilav==1)    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                 else {    d->function = func;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                 }    nlopt_set_min_objective(opt, myfunc, d);
                    nlopt_set_xtol_rel(opt, ftol);
               }    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
               if (h==(int)(calagedate+12*cpt)){      printf("nlopt failed! %d\n",creturn); 
                 fprintf(ficresf," %.3f", kk1);    }
                            else {
               }      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
             }      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
           }      iter=1; /* not equal */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    nlopt_destroy(opt);
       }  #endif
     }    free_matrix(xi,1,npar,1,npar);
   }    fclose(ficrespow);
            printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   fclose(ficresf);  
 }  }
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  {
   int *popage;    double  **a,**y,*x,pd;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double **hess;
   double *popeffectif,*popcount;    int i, j;
   double ***p3mat,***tabpop,***tabpopprev;    int *indx;
   char filerespop[FILENAMELENGTH];  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   agelim=AGESUP;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    double gompertz(double p[]);
      hess=matrix(1,npar,1,npar);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      printf("\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   strcpy(filerespop,"pop");    for (i=1;i<=npar;i++){
   strcat(filerespop,fileres);      printf("%d",i);fflush(stdout);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      fprintf(ficlog,"%d",i);fflush(ficlog);
     printf("Problem with forecast resultfile: %s\n", filerespop);     
   }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);      
       /*  printf(" %f ",p[i]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=1;i<=npar;i++) {
     movingaverage(agedeb, fage, agemin, mobaverage);      for (j=1;j<=npar;j++)  {
   }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   if (stepm<=12) stepsize=1;          hess[i][j]=hessij(p,delti,i,j,func,npar);
            
   agelim=AGESUP;          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
   hstepm=1;        }
   hstepm=hstepm/stepm;      }
      }
   if (popforecast==1) {    printf("\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {    fprintf(ficlog,"\n");
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     popage=ivector(0,AGESUP);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     popeffectif=vector(0,AGESUP);    
     popcount=vector(0,AGESUP);    a=matrix(1,npar,1,npar);
        y=matrix(1,npar,1,npar);
     i=1;      x=vector(1,npar);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    indx=ivector(1,npar);
        for (i=1;i<=npar;i++)
     imx=i;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    ludcmp(a,npar,indx,&pd);
   }  
     for (j=1;j<=npar;j++) {
   for(cptcov=1;cptcov<=i2;cptcov++){      for (i=1;i<=npar;i++) x[i]=0;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      x[j]=1;
       k=k+1;      lubksb(a,npar,indx,x);
       fprintf(ficrespop,"\n#******");      for (i=1;i<=npar;i++){ 
       for(j=1;j<=cptcoveff;j++) {        matcov[i][j]=x[i];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       }    }
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");    printf("\n#Hessian matrix#\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    fprintf(ficlog,"\n#Hessian matrix#\n");
       if (popforecast==1)  fprintf(ficrespop," [Population]");    for (i=1;i<=npar;i++) { 
            for (j=1;j<=npar;j++) { 
       for (cpt=0; cpt<=0;cpt++) {        printf("%.3e ",hess[i][j]);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          fprintf(ficlog,"%.3e ",hess[i][j]);
              }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){      printf("\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficlog,"\n");
           nhstepm = nhstepm/hstepm;    }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Recompute Inverse */
           oldm=oldms;savm=savms;    for (i=1;i<=npar;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
            ludcmp(a,npar,indx,&pd);
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    /*  printf("\n#Hessian matrix recomputed#\n");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    for (j=1;j<=npar;j++) {
             for(j=1; j<=nlstate+ndeath;j++) {      for (i=1;i<=npar;i++) x[i]=0;
               kk1=0.;kk2=0;      x[j]=1;
               for(i=1; i<=nlstate;i++) {                    lubksb(a,npar,indx,x);
                 if (mobilav==1)      for (i=1;i<=npar;i++){ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        y[i][j]=x[i];
                 else {        printf("%.3e ",y[i][j]);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        fprintf(ficlog,"%.3e ",y[i][j]);
                 }      }
               }      printf("\n");
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficlog,"\n");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    }
                   /*fprintf(ficrespop," %.3f", kk1);    */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }    free_matrix(a,1,npar,1,npar);
             }    free_matrix(y,1,npar,1,npar);
             for(i=1; i<=nlstate;i++){    free_vector(x,1,npar);
               kk1=0.;    free_ivector(indx,1,npar);
                 for(j=1; j<=nlstate;j++){    free_matrix(hess,1,npar,1,npar);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  }
             }  
   /*************** hessian matrix ****************/
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  {
           }    int i;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int l=1, lmax=20;
         }    double k1,k2;
       }    double p2[MAXPARM+1]; /* identical to x */
      double res;
   /******/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    int k=0,kmax=10;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double l1;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fx=func(x);
           nhstepm = nhstepm/hstepm;    for (i=1;i<=npar;i++) p2[i]=x[i];
              for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      l1=pow(10,l);
           oldm=oldms;savm=savms;      delts=delt;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(k=1 ; k <kmax; k=k+1){
           for (h=0; h<=nhstepm; h++){        delt = delta*(l1*k);
             if (h==(int) (calagedate+YEARM*cpt)) {        p2[theta]=x[theta] +delt;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
             }        p2[theta]=x[theta]-delt;
             for(j=1; j<=nlstate+ndeath;j++) {        k2=func(p2)-fx;
               kk1=0.;kk2=0;        /*res= (k1-2.0*fx+k2)/delt/delt; */
               for(i=1; i<=nlstate;i++) {                      res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            
               }  #ifdef DEBUGHESS
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           }  #endif
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       }          k=kmax;
    }        }
   }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   if (popforecast==1) {          delts=delt;
     free_ivector(popage,0,AGESUP);        }
     free_vector(popeffectif,0,AGESUP);      }
     free_vector(popcount,0,AGESUP);    }
   }    delti[theta]=delts;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    return res; 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   fclose(ficrespop);  }
 }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 /***********************************************/  {
 /**************** Main Program *****************/    int i;
 /***********************************************/    int l=1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 int main(int argc, char *argv[])    double p2[MAXPARM+1];
 {    int k;
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fx=func(x);
   double agedeb, agefin,hf;    for (k=1; k<=2; k++) {
   double agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   double fret;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double **xi,tmp,delta;      k1=func(p2)-fx;
     
   double dum; /* Dummy variable */      p2[thetai]=x[thetai]+delti[thetai]/k;
   double ***p3mat;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int *indx;      k2=func(p2)-fx;
   char line[MAXLINE], linepar[MAXLINE];    
   char title[MAXLINE];      p2[thetai]=x[thetai]-delti[thetai]/k;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      k3=func(p2)-fx;
      
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   char filerest[FILENAMELENGTH];      k4=func(p2)-fx;
   char fileregp[FILENAMELENGTH];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   char popfile[FILENAMELENGTH];  #ifdef DEBUG
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int firstobs=1, lastobs=10;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int sdeb, sfin; /* Status at beginning and end */  #endif
   int c,  h , cpt,l;    }
   int ju,jl, mi;    return res;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;  /************** Inverse of matrix **************/
   int hstepm, nhstepm;  void ludcmp(double **a, int n, int *indx, double *d) 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;  { 
     int i,imax,j,k; 
   double bage, fage, age, agelim, agebase;    double big,dum,sum,temp; 
   double ftolpl=FTOL;    double *vv; 
   double **prlim;   
   double *severity;    vv=vector(1,n); 
   double ***param; /* Matrix of parameters */    *d=1.0; 
   double  *p;    for (i=1;i<=n;i++) { 
   double **matcov; /* Matrix of covariance */      big=0.0; 
   double ***delti3; /* Scale */      for (j=1;j<=n;j++) 
   double *delti; /* Scale */        if ((temp=fabs(a[i][j])) > big) big=temp; 
   double ***eij, ***vareij;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double **varpl; /* Variances of prevalence limits by age */      vv[i]=1.0/big; 
   double *epj, vepp;    } 
   double kk1, kk2;    for (j=1;j<=n;j++) { 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for (i=1;i<j;i++) { 
          sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   char version[80]="Imach version 0.71e, March 2002, INED-EUROREVES ";        a[i][j]=sum; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];      } 
       big=0.0; 
       for (i=j;i<=n;i++) { 
   char z[1]="c", occ;        sum=a[i][j]; 
 #include <sys/time.h>        for (k=1;k<j;k++) 
 #include <time.h>          sum -= a[i][k]*a[k][j]; 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /* long total_usecs;          big=dum; 
   struct timeval start_time, end_time;          imax=i; 
          } 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      } 
       if (j != imax) { 
         for (k=1;k<=n;k++) { 
   printf("\n%s",version);          dum=a[imax][k]; 
   if(argc <=1){          a[imax][k]=a[j][k]; 
     printf("\nEnter the parameter file name: ");          a[j][k]=dum; 
     scanf("%s",pathtot);        } 
   }        *d = -(*d); 
   else{        vv[imax]=vv[j]; 
     strcpy(pathtot,argv[1]);      } 
   }      indx[j]=imax; 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      if (a[j][j] == 0.0) a[j][j]=TINY; 
   /*cygwin_split_path(pathtot,path,optionfile);      if (j != n) { 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        dum=1.0/(a[j][j]); 
   /* cutv(path,optionfile,pathtot,'\\');*/        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    } 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_vector(vv,1,n);  /* Doesn't work */
   chdir(path);  ;
   replace(pathc,path);  } 
   
 /*-------- arguments in the command line --------*/  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   strcpy(fileres,"r");    int i,ii=0,ip,j; 
   strcat(fileres, optionfilefiname);    double sum; 
   strcat(fileres,".txt");    /* Other files have txt extension */   
     for (i=1;i<=n;i++) { 
   /*---------arguments file --------*/      ip=indx[i]; 
       sum=b[ip]; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      b[ip]=b[i]; 
     printf("Problem with optionfile %s\n",optionfile);      if (ii) 
     goto end;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   }      else if (sum) ii=i; 
       b[i]=sum; 
   strcpy(filereso,"o");    } 
   strcat(filereso,fileres);    for (i=n;i>=1;i--) { 
   if((ficparo=fopen(filereso,"w"))==NULL) {      sum=b[i]; 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
     } 
   /* Reads comments: lines beginning with '#' */  } 
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  void pstamp(FILE *fichier)
     fgets(line, MAXLINE, ficpar);  {
     puts(line);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  {  /* Some frequencies */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    int i, m, jk, j1, bool, z1,j;
 while((c=getc(ficpar))=='#' && c!= EOF){    int first;
     ungetc(c,ficpar);    double ***freq; /* Frequencies */
     fgets(line, MAXLINE, ficpar);    double *pp, **prop;
     puts(line);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fputs(line,ficparo);    char fileresp[FILENAMELENGTH];
   }    
   ungetc(c,ficpar);    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
        strcpy(fileresp,"p");
   covar=matrix(0,NCOVMAX,1,n);    strcat(fileresp,fileres);
   cptcovn=0;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   ncovmodel=2+cptcovn;      exit(0);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
      freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   /* Read guess parameters */    j1=0;
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    j=cptcoveff;
     ungetc(c,ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fgets(line, MAXLINE, ficpar);  
     puts(line);    first=1;
     fputs(line,ficparo);  
   }    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
   ungetc(c,ficpar);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
      /*    j1++; */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     for(i=1; i <=nlstate; i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for(j=1; j <=nlstate+ndeath-1; j++){          scanf("%d", i);*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for (i=-5; i<=nlstate+ndeath; i++)  
       fprintf(ficparo,"%1d%1d",i1,j1);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       printf("%1d%1d",i,j);            for(m=iagemin; m <= iagemax+3; m++)
       for(k=1; k<=ncovmodel;k++){              freq[i][jk][m]=0;
         fscanf(ficpar," %lf",&param[i][j][k]);        
         printf(" %lf",param[i][j][k]);        for (i=1; i<=nlstate; i++)  
         fprintf(ficparo," %lf",param[i][j][k]);          for(m=iagemin; m <= iagemax+3; m++)
       }            prop[i][m]=0;
       fscanf(ficpar,"\n");        
       printf("\n");        dateintsum=0;
       fprintf(ficparo,"\n");        k2cpt=0;
     }        for (i=1; i<=imx; i++) {
            bool=1;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             for (z1=1; z1<=cptcoveff; z1++)       
   p=param[1][1];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                    /* Tests if the value of each of the covariates of i is equal to filter j1 */
   /* Reads comments: lines beginning with '#' */                bool=0;
   while((c=getc(ficpar))=='#' && c!= EOF){                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
     ungetc(c,ficpar);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
     fgets(line, MAXLINE, ficpar);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
     puts(line);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     fputs(line,ficparo);              } 
   }          }
   ungetc(c,ficpar);   
           if (bool==1){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            for(m=firstpass; m<=lastpass; m++){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */              k2=anint[m][i]+(mint[m][i]/12.);
   for(i=1; i <=nlstate; i++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     for(j=1; j <=nlstate+ndeath-1; j++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       printf("%1d%1d",i,j);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficparo,"%1d%1d",i1,j1);                if (m<lastpass) {
       for(k=1; k<=ncovmodel;k++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         fscanf(ficpar,"%le",&delti3[i][j][k]);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         printf(" %le",delti3[i][j][k]);                }
         fprintf(ficparo," %le",delti3[i][j][k]);                
       }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fscanf(ficpar,"\n");                  dateintsum=dateintsum+k2;
       printf("\n");                  k2cpt++;
       fprintf(ficparo,"\n");                }
     }                /*}*/
   }            }
   delti=delti3[1][1];          }
          } /* end i */
   /* Reads comments: lines beginning with '#' */         
   while((c=getc(ficpar))=='#' && c!= EOF){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     ungetc(c,ficpar);        pstamp(ficresp);
     fgets(line, MAXLINE, ficpar);        if  (cptcovn>0) {
     puts(line);          fprintf(ficresp, "\n#********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresp, "**********\n#");
   ungetc(c,ficpar);          fprintf(ficlog, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   matcov=matrix(1,npar,1,npar);          fprintf(ficlog, "**********\n#");
   for(i=1; i <=npar; i++){        }
     fscanf(ficpar,"%s",&str);        for(i=1; i<=nlstate;i++) 
     printf("%s",str);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficparo,"%s",str);        fprintf(ficresp, "\n");
     for(j=1; j <=i; j++){        
       fscanf(ficpar," %le",&matcov[i][j]);        for(i=iagemin; i <= iagemax+3; i++){
       printf(" %.5le",matcov[i][j]);          if(i==iagemax+3){
       fprintf(ficparo," %.5le",matcov[i][j]);            fprintf(ficlog,"Total");
     }          }else{
     fscanf(ficpar,"\n");            if(first==1){
     printf("\n");              first=0;
     fprintf(ficparo,"\n");              printf("See log file for details...\n");
   }            }
   for(i=1; i <=npar; i++)            fprintf(ficlog,"Age %d", i);
     for(j=i+1;j<=npar;j++)          }
       matcov[i][j]=matcov[j][i];          for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   printf("\n");              pp[jk] += freq[jk][m][i]; 
           }
           for(jk=1; jk <=nlstate ; jk++){
     /*-------- Rewriting paramater file ----------*/            for(m=-1, pos=0; m <=0 ; m++)
      strcpy(rfileres,"r");    /* "Rparameterfile */              pos += freq[jk][m][i];
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            if(pp[jk]>=1.e-10){
      strcat(rfileres,".");    /* */              if(first==1){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     if((ficres =fopen(rfileres,"w"))==NULL) {              }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }            }else{
     fprintf(ficres,"#%s\n",version);              if(first==1)
                    printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     /*-------- data file ----------*/              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     if((fic=fopen(datafile,"r"))==NULL)    {            }
       printf("Problem with datafile: %s\n", datafile);goto end;          }
     }  
           for(jk=1; jk <=nlstate ; jk++){
     n= lastobs;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     severity = vector(1,maxwav);              pp[jk] += freq[jk][m][i];
     outcome=imatrix(1,maxwav+1,1,n);          }       
     num=ivector(1,n);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     moisnais=vector(1,n);            pos += pp[jk];
     annais=vector(1,n);            posprop += prop[jk][i];
     moisdc=vector(1,n);          }
     andc=vector(1,n);          for(jk=1; jk <=nlstate ; jk++){
     agedc=vector(1,n);            if(pos>=1.e-5){
     cod=ivector(1,n);              if(first==1)
     weight=vector(1,n);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     mint=matrix(1,maxwav,1,n);            }else{
     anint=matrix(1,maxwav,1,n);              if(first==1)
     s=imatrix(1,maxwav+1,1,n);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     adl=imatrix(1,maxwav+1,1,n);                  fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     tab=ivector(1,NCOVMAX);            }
     ncodemax=ivector(1,8);            if( i <= iagemax){
               if(pos>=1.e-5){
     i=1;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     while (fgets(line, MAXLINE, fic) != NULL)    {                /*probs[i][jk][j1]= pp[jk]/pos;*/
       if ((i >= firstobs) && (i <=lastobs)) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                      }
         for (j=maxwav;j>=1;j--){              else
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           strcpy(line,stra);            }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          
         }          for(jk=-1; jk <=nlstate+ndeath; jk++)
                    for(m=-1; m <=nlstate+ndeath; m++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              if(freq[jk][m][i] !=0 ) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              }
           if(i <= iagemax)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficresp,"\n");
         for (j=ncov;j>=1;j--){          if(first==1)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            printf("Others in log...\n");
         }          fprintf(ficlog,"\n");
         num[i]=atol(stra);        }
                /*}*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    dateintmean=dateintsum/k2cpt; 
    
         i=i+1;    fclose(ficresp);
       }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     }    free_vector(pp,1,nlstate);
     /* printf("ii=%d", ij);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        scanf("%d",i);*/    /* End of Freq */
   imx=i-1; /* Number of individuals */  }
   
   /* for (i=1; i<=imx; i++){  /************ Prevalence ********************/
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  {  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     for (i=1; i<=imx; i++)    */
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/   
     int i, m, jk, j1, bool, z1,j;
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);    double **prop;
   Tprod=ivector(1,15);    double posprop; 
   Tvaraff=ivector(1,15);    double  y2; /* in fractional years */
   Tvard=imatrix(1,15,1,2);    int iagemin, iagemax;
   Tage=ivector(1,15);          int first; /** to stop verbosity which is redirected to log file */
      
   if (strlen(model) >1){    iagemin= (int) agemin;
     j=0, j1=0, k1=1, k2=1;    iagemax= (int) agemax;
     j=nbocc(model,'+');    /*pp=vector(1,nlstate);*/
     j1=nbocc(model,'*');    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     cptcovn=j+1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     cptcovprod=j1;    j1=0;
        
        /*j=cptcoveff;*/
     strcpy(modelsav,model);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    
       printf("Error. Non available option model=%s ",model);    first=1;
       goto end;    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     }      /*for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;*/
     for(i=(j+1); i>=1;i--){        
       cutv(stra,strb,modelsav,'+');        for (i=1; i<=nlstate; i++)  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          for(m=iagemin; m <= iagemax+3; m++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            prop[i][m]=0.0;
       /*scanf("%d",i);*/       
       if (strchr(strb,'*')) {        for (i=1; i<=imx; i++) { /* Each individual */
         cutv(strd,strc,strb,'*');          bool=1;
         if (strcmp(strc,"age")==0) {          if  (cptcovn>0) {
           cptcovprod--;            for (z1=1; z1<=cptcoveff; z1++) 
           cutv(strb,stre,strd,'V');              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           Tvar[i]=atoi(stre);                bool=0;
           cptcovage++;          } 
             Tage[cptcovage]=i;          if (bool==1) { 
             /*printf("stre=%s ", stre);*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         else if (strcmp(strd,"age")==0) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           cptcovprod--;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           cutv(strb,stre,strc,'V');                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           Tvar[i]=atoi(stre);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           cptcovage++;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           Tage[cptcovage]=i;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         else {                  prop[s[m][i]][iagemax+3] += weight[i]; 
           cutv(strb,stre,strc,'V');                } 
           Tvar[i]=ncov+k1;              }
           cutv(strb,strc,strd,'V');            } /* end selection of waves */
           Tprod[k1]=i;          }
           Tvard[k1][1]=atoi(strc);        }
           Tvard[k1][2]=atoi(stre);        for(i=iagemin; i <= iagemax+3; i++){  
           Tvar[cptcovn+k2]=Tvard[k1][1];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            posprop += prop[jk][i]; 
           for (k=1; k<=lastobs;k++)          } 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          
           k1++;          for(jk=1; jk <=nlstate ; jk++){     
           k2=k2+2;            if( i <=  iagemax){ 
         }              if(posprop>=1.e-5){ 
       }                probs[i][jk][j1]= prop[jk][i]/posprop;
       else {              } else{
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                if(first==1){
        /*  scanf("%d",i);*/                  first=0;
       cutv(strd,strc,strb,'V');                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
       Tvar[i]=atoi(strc);                }
       }              }
       strcpy(modelsav,stra);              } 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          }/* end jk */ 
         scanf("%d",i);*/        }/* end i */ 
     }      /*} *//* end i1 */
 }    } /* end j1 */
      
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   printf("cptcovprod=%d ", cptcovprod);    /*free_vector(pp,1,nlstate);*/
   scanf("%d ",i);*/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     fclose(fic);  }  /* End of prevalence */
   
     /*  if(mle==1){*/  /************* Waves Concatenation ***************/
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
     /*-calculation of age at interview from date of interview and age at death -*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     agev=matrix(1,maxwav,1,imx);       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    for (i=1; i<=imx; i++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      for(m=2; (m<= maxwav); m++)       and mw[mi+1][i]. dh depends on stepm.
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       */
          anint[m][i]=9999;  
          s[m][i]=-1;    int i, mi, m;
        }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           double sum=0., jmean=0.;*/
     for (i=1; i<=imx; i++)  {    int first;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    int j, k=0,jk, ju, jl;
       for(m=1; (m<= maxwav); m++){    double sum=0.;
         if(s[m][i] >0){    first=0;
           if (s[m][i] == nlstate+1) {    jmin=100000;
             if(agedc[i]>0)    jmax=-1;
               if(moisdc[i]!=99 && andc[i]!=9999)    jmean=0.;
               agev[m][i]=agedc[i];    for(i=1; i<=imx; i++){
             else {      mi=0;
               if (andc[i]!=9999){      m=firstpass;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      while(s[m][i] <= nlstate){
               agev[m][i]=-1;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
               }          mw[++mi][i]=m;
             }        if(m >=lastpass)
           }          break;
           else if(s[m][i] !=9){ /* Should no more exist */        else
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          m++;
             if(mint[m][i]==99 || anint[m][i]==9999)      }/* end while */
               agev[m][i]=1;      if (s[m][i] > nlstate){
             else if(agev[m][i] <agemin){        mi++;     /* Death is another wave */
               agemin=agev[m][i];        /* if(mi==0)  never been interviewed correctly before death */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/           /* Only death is a correct wave */
             }        mw[mi][i]=m;
             else if(agev[m][i] >agemax){      }
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      wav[i]=mi;
             }      if(mi==0){
             /*agev[m][i]=anint[m][i]-annais[i];*/        nbwarn++;
             /*   agev[m][i] = age[i]+2*m;*/        if(first==0){
           }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           else { /* =9 */          first=1;
             agev[m][i]=1;        }
             s[m][i]=-1;        if(first==1){
           }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }        }
         else /*= 0 Unknown */      } /* end mi==0 */
           agev[m][i]=1;    } /* End individuals */
       }  
        for(i=1; i<=imx; i++){
     }      for(mi=1; mi<wav[i];mi++){
     for (i=1; i<=imx; i++)  {        if (stepm <=0)
       for(m=1; (m<= maxwav); m++){          dh[mi][i]=1;
         if (s[m][i] > (nlstate+ndeath)) {        else{
           printf("Error: Wrong value in nlstate or ndeath\n");            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           goto end;            if (agedc[i] < 2*AGESUP) {
         }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       }              if(j==0) j=1;  /* Survives at least one month after exam */
     }              else if(j<0){
                 nberr++;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
     free_vector(severity,1,maxwav);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_imatrix(outcome,1,maxwav+1,1,n);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(moisnais,1,n);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_vector(annais,1,n);              }
     /* free_matrix(mint,1,maxwav,1,n);              k=k+1;
        free_matrix(anint,1,maxwav,1,n);*/              if (j >= jmax){
     free_vector(moisdc,1,n);                jmax=j;
     free_vector(andc,1,n);                ijmax=i;
               }
                  if (j <= jmin){
     wav=ivector(1,imx);                jmin=j;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                ijmin=i;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              }
                  sum=sum+j;
     /* Concatenates waves */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
       Tcode=ivector(1,100);          else{
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       ncodemax[1]=1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
                  k=k+1;
    codtab=imatrix(1,100,1,10);            if (j >= jmax) {
    h=0;              jmax=j;
    m=pow(2,cptcoveff);              ijmax=i;
              }
    for(k=1;k<=cptcoveff; k++){            else if (j <= jmin){
      for(i=1; i <=(m/pow(2,k));i++){              jmin=j;
        for(j=1; j <= ncodemax[k]; j++){              ijmin=i;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            }
            h++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
            if (h>m) h=1;codtab[h][k]=j;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
          }            if(j<0){
        }              nberr++;
      }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
    /*for(i=1; i <=m ;i++){          }
      for(k=1; k <=cptcovn; k++){          jk= j/stepm;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);          jl= j -jk*stepm;
      }          ju= j -(jk+1)*stepm;
      printf("\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
    }            if(jl==0){
    scanf("%d",i);*/              dh[mi][i]=jk;
                  bh[mi][i]=0;
    /* Calculates basic frequencies. Computes observed prevalence at single age            }else{ /* We want a negative bias in order to only have interpolation ie
        and prints on file fileres'p'. */                    * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
                }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }else{
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(jl <= -ju){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              bh[mi][i]=jl;       /* bias is positive if real duration
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                                   * is higher than the multiple of stepm and negative otherwise.
                                         */
     /* For Powell, parameters are in a vector p[] starting at p[1]            }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            else{
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
     if(mle==1){            }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            if(dh[mi][i]==0){
     }              dh[mi][i]=1; /* At least one step */
                  bh[mi][i]=ju; /* At least one step */
     /*--------- results files --------------*/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, weightopt,model);            }
            } /* end if mle */
         }
    jk=1;      } /* end wave */
    fprintf(ficres,"# Parameters\n");    }
    printf("# Parameters\n");    jmean=sum/k;
    for(i=1,jk=1; i <=nlstate; i++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
        if (k != i)   }
          {  
            printf("%d%d ",i,k);  /*********** Tricode ****************************/
            fprintf(ficres,"%1d%1d ",i,k);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
            for(j=1; j <=ncovmodel; j++){  {
              printf("%f ",p[jk]);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
              fprintf(ficres,"%f ",p[jk]);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
              jk++;     * Boring subroutine which should only output nbcode[Tvar[j]][k]
            }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
            printf("\n");     * nbcode[Tvar[j]][1]= 
            fprintf(ficres,"\n");    */
          }  
      }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
    }    int modmaxcovj=0; /* Modality max of covariates j */
  if(mle==1){    int cptcode=0; /* Modality max of covariates j */
     /* Computing hessian and covariance matrix */    int modmincovj=0; /* Modality min of covariates j */
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }    cptcoveff=0; 
     fprintf(ficres,"# Scales\n");   
     printf("# Scales\n");    for (k=-1; k < maxncov; k++) Ndum[k]=0;
      for(i=1,jk=1; i <=nlstate; i++){    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {    /* Loop on covariates without age and products */
           fprintf(ficres,"%1d%1d",i,j);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
           printf("%1d%1d",i,j);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
           for(k=1; k<=ncovmodel;k++){                                 modality of this covariate Vj*/ 
             printf(" %.5e",delti[jk]);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
             fprintf(ficres," %.5e",delti[jk]);                                      * If product of Vn*Vm, still boolean *:
             jk++;                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
           }                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
           printf("\n");        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
           fprintf(ficres,"\n");                                        modality of the nth covariate of individual i. */
         }        if (ij > modmaxcovj)
       }          modmaxcovj=ij; 
      }        else if (ij < modmincovj) 
              modmincovj=ij; 
     k=1;        if ((ij < -1) && (ij > NCOVMAX)){
     fprintf(ficres,"# Covariance\n");          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     printf("# Covariance\n");          exit(1);
     for(i=1;i<=npar;i++){        }else
       /*  if (k>nlstate) k=1;        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
       i1=(i-1)/(ncovmodel*nlstate)+1;        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/        /* getting the maximum value of the modality of the covariate
       fprintf(ficres,"%3d",i);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
       printf("%3d",i);           female is 1, then modmaxcovj=1.*/
       for(j=1; j<=i;j++){      }
         fprintf(ficres," %.5e",matcov[i][j]);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
         printf(" %.5e",matcov[i][j]);      cptcode=modmaxcovj;
       }      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       fprintf(ficres,"\n");     /*for (i=0; i<=cptcode; i++) {*/
       printf("\n");      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
       k++;        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     }        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
              ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
       fgets(line, MAXLINE, ficpar);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       puts(line);      } /* Ndum[-1] number of undefined modalities */
       fputs(line,ficparo);  
     }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     ungetc(c,ficpar);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
        /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemaxpar, &bage, &fage);         modmincovj=3; modmaxcovj = 7;
             There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     if (fage <= 2) {         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
       bage = agemin;         variables V1_1 and V1_2.
       fage = agemaxpar;         nbcode[Tvar[j]][ij]=k;
     }         nbcode[Tvar[j]][1]=0;
             nbcode[Tvar[j]][2]=1;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");         nbcode[Tvar[j]][3]=2;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);      */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);      ij=1; /* ij is similar to i but can jumps over null modalities */
        for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
     while((c=getc(ficpar))=='#' && c!= EOF){        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
     ungetc(c,ficpar);          /*recode from 0 */
     fgets(line, MAXLINE, ficpar);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
     puts(line);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
     fputs(line,ficparo);                                       k is a modality. If we have model=V1+V1*sex 
   }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   ungetc(c,ficpar);            ij++;
            }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          if (ij > ncodemax[j]) break; 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }  /* end of loop on */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      } /* end of loop on modality */ 
          } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     fgets(line, MAXLINE, ficpar);    
     puts(line);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
     fputs(line,ficparo);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   ungetc(c,ficpar);     Ndum[ij]++; 
     } 
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   ij=1;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   fscanf(ficpar,"pop_based=%d\n",&popbased);     if((Ndum[i]!=0) && (i<=ncovcol)){
   fprintf(ficparo,"pop_based=%d\n",popbased);         /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   fprintf(ficres,"pop_based=%d\n",popbased);         Tvaraff[ij]=i; /*For printing (unclear) */
         ij++;
   while((c=getc(ficpar))=='#' && c!= EOF){     }else
     ungetc(c,ficpar);         Tvaraff[ij]=0;
     fgets(line, MAXLINE, ficpar);   }
     puts(line);   ij--;
     fputs(line,ficparo);   cptcoveff=ij; /*Number of total covariates*/
   }  
   ungetc(c,ficpar);  }
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*********** Health Expectancies ****************/
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
 while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    /* Health expectancies, no variances */
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm;
     puts(line);    int nhstepma, nstepma; /* Decreasing with age */
     fputs(line,ficparo);    double age, agelim, hf;
   }    double ***p3mat;
   ungetc(c,ficpar);    double eip;
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    pstamp(ficreseij);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
 /*------------ gnuplot -------------*/      }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemaxpar,fage, pathc,p);      fprintf(ficreseij," e%1d. ",i);
      }
 /*------------ free_vector  -------------*/    fprintf(ficreseij,"\n");
  chdir(path);  
      
  free_ivector(wav,1,imx);    if(estepm < stepm){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      printf ("Problem %d lower than %d\n",estepm, stepm);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      }
  free_ivector(num,1,n);    else  hstepm=estepm;   
  free_vector(agedc,1,n);    /* We compute the life expectancy from trapezoids spaced every estepm months
  /*free_matrix(covar,1,NCOVMAX,1,n);*/     * This is mainly to measure the difference between two models: for example
  fclose(ficparo);     * if stepm=24 months pijx are given only every 2 years and by summing them
  fclose(ficres);     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
 /*--------- index.htm --------*/     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres);     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   /*--------------- Prevalence limit --------------*/  
      /* For example we decided to compute the life expectancy with the smallest unit */
   strcpy(filerespl,"pl");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcat(filerespl,fileres);       nhstepm is the number of hstepm from age to agelim 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficrespl,"#Prevalence limit\n");       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficrespl,"#Age ");       means that if the survival funtion is printed only each two years of age and if
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fprintf(ficrespl,"\n");       results. So we changed our mind and took the option of the best precision.
      */
   prlim=matrix(1,nlstate,1,nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agelim=AGESUP;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* If stepm=6 months */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   k=0;      
   agebase=agemin;  /* nhstepm age range expressed in number of stepm */
   agelim=agemaxpar;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   ftolpl=1.e-10;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   i1=cptcoveff;    /* if (stepm >= YEARM) hstepm=1;*/
   if (cptcovn < 1){i1=1;}    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for (age=bage; age<=fage; age ++){ 
         k=k+1;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficrespl,"\n#******");      /* if (stepm >= YEARM) hstepm=1;*/
         for(j=1;j<=cptcoveff;j++)      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");      /* If stepm=6 months */
              /* Computed by stepm unit matrices, product of hstepma matrices, stored
         for (age=agebase; age<=agelim; age++){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      
           fprintf(ficrespl,"%.0f",age );      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           for(i=1; i<=nlstate;i++)      
           fprintf(ficrespl," %.5f", prlim[i][i]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficrespl,"\n");      
         }      printf("%d|",(int)age);fflush(stdout);
       }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }      
   fclose(ficrespl);      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   /*------------- h Pij x at various ages ------------*/        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);          }
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficreseij,"%3.0f",age );
   /*if (stepm<=24) stepsize=2;*/      for(i=1; i<=nlstate;i++){
         eip=0;
   agelim=AGESUP;        for(j=1; j<=nlstate;j++){
   hstepm=stepsize*YEARM; /* Every year of age */          eip +=eij[i][j][(int)age];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          }
   k=0;        fprintf(ficreseij,"%9.4f", eip );
   for(cptcov=1;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficreseij,"\n");
       k=k+1;      
         fprintf(ficrespij,"\n#****** ");    }
         for(j=1;j<=cptcoveff;j++)    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("\n");
         fprintf(ficrespij,"******\n");    fprintf(ficlog,"\n");
            
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Covariances of health expectancies eij and of total life expectancies according
           fprintf(ficrespij,"# Age");     to initial status i, ei. .
           for(i=1; i<=nlstate;i++)    */
             for(j=1; j<=nlstate+ndeath;j++)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
               fprintf(ficrespij," %1d-%1d",i,j);    int nhstepma, nstepma; /* Decreasing with age */
           fprintf(ficrespij,"\n");    double age, agelim, hf;
           for (h=0; h<=nhstepm; h++){    double ***p3matp, ***p3matm, ***varhe;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    double **dnewm,**doldm;
             for(i=1; i<=nlstate;i++)    double *xp, *xm;
               for(j=1; j<=nlstate+ndeath;j++)    double **gp, **gm;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double ***gradg, ***trgradg;
             fprintf(ficrespij,"\n");    int theta;
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double eip, vip;
           fprintf(ficrespij,"\n");  
         }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     }    xp=vector(1,npar);
   }    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   fclose(ficrespij);    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
   /*---------- Forecasting ------------------*/    for(i=1; i<=nlstate;i++){
   if((stepm == 1) && (strcmp(model,".")==0)){      for(j=1; j<=nlstate;j++)
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      fprintf(ficresstdeij," e%1d. ",i);
     free_matrix(mint,1,maxwav,1,n);    }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficresstdeij,"\n");
     free_vector(weight,1,n);}  
   else{    pstamp(ficrescveij);
     erreur=108;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    fprintf(ficrescveij,"# Age");
   }    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
   /*---------- Health expectancies and variances ------------*/        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
   strcpy(filerest,"t");            cptj2= (j2-1)*nlstate+i2;
   strcat(filerest,fileres);            if(cptj2 <= cptj)
   if((ficrest=fopen(filerest,"w"))==NULL) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          }
   }      }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
   strcpy(filerese,"e");      printf ("Problem %d lower than %d\n",estepm, stepm);
   strcat(filerese,fileres);    }
   if((ficreseij=fopen(filerese,"w"))==NULL) {    else  hstepm=estepm;   
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /* We compute the life expectancy from trapezoids spaced every estepm months
   }     * This is mainly to measure the difference between two models: for example
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
  strcpy(fileresv,"v");     * progression in between and thus overestimating or underestimating according
   strcat(fileresv,fileres);     * to the curvature of the survival function. If, for the same date, we 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     * curvature will be obtained if estepm is as small as stepm. */
   
   k=0;    /* For example we decided to compute the life expectancy with the smallest unit */
   for(cptcov=1;cptcov<=i1;cptcov++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       nhstepm is the number of hstepm from age to agelim 
       k=k+1;       nstepm is the number of stepm from age to agelin. 
       fprintf(ficrest,"\n#****** ");       Look at hpijx to understand the reason of that which relies in memory size
       for(j=1;j<=cptcoveff;j++)       and note for a fixed period like estepm months */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficrest,"******\n");       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
       fprintf(ficreseij,"\n#****** ");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for(j=1;j<=cptcoveff;j++)       results. So we changed our mind and took the option of the best precision.
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    */
       fprintf(ficreseij,"******\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
       fprintf(ficresvij,"\n#****** ");    /* If stepm=6 months */
       for(j=1;j<=cptcoveff;j++)    /* nhstepm age range expressed in number of stepm */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    agelim=AGESUP;
       fprintf(ficresvij,"******\n");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* if (stepm >= YEARM) hstepm=1;*/
       oldm=oldms;savm=savms;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       oldm=oldms;savm=savms;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    for (age=bage; age<=fage; age ++){ 
       fprintf(ficrest,"\n");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       epj=vector(1,nlstate+1);      /* if (stepm >= YEARM) hstepm=1;*/
       for(age=bage; age <=fage ;age++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {      /* If stepm=6 months */
           for(i=1; i<=nlstate;i++)      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             prlim[i][i]=probs[(int)age][i][k];         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         }      
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      /* Computing  Variances of health expectancies */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         decrease memory allocation */
           }      for(theta=1; theta <=npar; theta++){
           epj[nlstate+1] +=epj[j];        for(i=1; i<=npar; i++){ 
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for(i=1, vepp=0.;i <=nlstate;i++)          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           for(j=1;j <=nlstate;j++)        }
             vepp += vareij[i][j][(int)age];        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         for(j=1;j <=nlstate;j++){    
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));        for(j=1; j<= nlstate; j++){
         }          for(i=1; i<=nlstate; i++){
         fprintf(ficrest,"\n");            for(h=0; h<=nhstepm-1; h++){
       }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   }            }
           }
   fclose(ficreseij);        }
   fclose(ficresvij);       
   fclose(ficrest);        for(ij=1; ij<= nlstate*nlstate; ij++)
   fclose(ficpar);          for(h=0; h<=nhstepm-1; h++){
   free_vector(epj,1,nlstate+1);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
            }
   /*------- Variance limit prevalence------*/        }/* End theta */
       
   strcpy(fileresvpl,"vpl");      
   strcat(fileresvpl,fileres);      for(h=0; h<=nhstepm-1; h++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        for(j=1; j<=nlstate*nlstate;j++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          for(theta=1; theta <=npar; theta++)
     exit(0);            trgradg[h][j][theta]=gradg[h][theta][j];
   }      
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
        for(ij=1;ij<=nlstate*nlstate;ij++)
   k=0;        for(ji=1;ji<=nlstate*nlstate;ji++)
   for(cptcov=1;cptcov<=i1;cptcov++){          varhe[ij][ji][(int)age] =0.;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficresvpl,"\n#****** ");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(j=1;j<=cptcoveff;j++)       for(h=0;h<=nhstepm-1;h++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficresvpl,"******\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          for(ij=1;ij<=nlstate*nlstate;ij++)
       oldm=oldms;savm=savms;            for(ji=1;ji<=nlstate*nlstate;ji++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     }        }
  }      }
   
   fclose(ficresvpl);      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /*---------- End : free ----------------*/      for(i=1; i<=nlstate;i++)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            
              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresstdeij,"%3.0f",age );
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(i=1; i<=nlstate;i++){
          eip=0.;
   free_matrix(matcov,1,npar,1,npar);        vip=0.;
   free_vector(delti,1,npar);        for(j=1; j<=nlstate;j++){
   free_matrix(agev,1,maxwav,1,imx);          eip += eij[i][j][(int)age];
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   if(erreur >0)          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     printf("End of Imach with error %d\n",erreur);        }
   else   printf("End of Imach\n");        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      }
        fprintf(ficresstdeij,"\n");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/      fprintf(ficrescveij,"%3.0f",age );
   /*------ End -----------*/      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
  end:          for(i2=1; i2<=nlstate;i2++)
 #ifdef windows            for(j2=1; j2<=nlstate;j2++){
   /* chdir(pathcd);*/              cptj2= (j2-1)*nlstate+i2;
 #endif              if(cptj2 <= cptj)
  /*system("wgnuplot graph.plt");*/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
  /*system("../gp37mgw/wgnuplot graph.plt");*/            }
  /*system("cd ../gp37mgw");*/        }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      fprintf(ficrescveij,"\n");
  strcpy(plotcmd,GNUPLOTPROGRAM);     
  strcat(plotcmd," ");    }
  strcat(plotcmd,optionfilegnuplot);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  system(plotcmd);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 #ifdef windows    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   while (z[0] != 'q') {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     chdir(path);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    printf("\n");
     scanf("%s",z);    fprintf(ficlog,"\n");
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') {    free_vector(xm,1,npar);
       chdir(path);    free_vector(xp,1,npar);
       system(optionfilehtm);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     else if (z[0] == 'q') exit(0);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }  }
 #endif  
 }  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* #include <gnu/libc-version.h> */ /* Only on gnu */
   #include <stdint.h>
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(". ");fprintf(ficlog,". ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
   #elif __unix__ // all unices, not all compilers
       // Unix
   #elif __linux__
       // linux
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit.\n"); fprintf(ficlog," 32-bit.\n");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit.\n"); fprintf(ficlog," 64-bit.\n");/* 64-bit */
   #else
      printf(" wtf-bit.\n"); fprintf(ficlog," wtf-bit.\n");/* wtf */
   #endif
   
   /* struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
             */
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf("GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, "GNU C version %d.\n", __GNUC_VERSION__);
   #endif
   #if defined(_MSC_VER)
      /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
      /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   #endif
      
     /* printf("GNU libc version: %s\n", gnu_get_libc_version()); */
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.33  
changed lines
  Added in v.1.171


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>