Diff for /imach/src/imach.c between versions 1.44 and 1.175

version 1.44, 2002/05/24 13:01:48 version 1.175, 2015/01/03 16:33:42
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.175  2015/01/03 16:33:42  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.174  2015/01/03 16:15:49  brouard
   first survey ("cross") where individuals from different ages are    Summary: Still in cross-compilation
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.173  2015/01/03 12:06:26  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: trying to detect cross-compilation
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.172  2014/12/27 12:07:47  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.171  2014/12/23 13:26:59  brouard
   probability to be observed in state j at the second wave    Summary: Back from Visual C
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Still problem with utsname.h on Windows
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.170  2014/12/23 11:17:12  brouard
   where the markup *Covariates have to be included here again* invites    Summary: Cleaning some \%% back to %%
   you to do it.  More covariates you add, slower the  
   convergence.    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
   The advantage of this computer programme, compared to a simple    Revision 1.169  2014/12/22 23:08:31  brouard
   multinomial logistic model, is clear when the delay between waves is not    Summary: 0.98p
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   account using an interpolation or extrapolation.    
     Revision 1.168  2014/12/22 15:17:42  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: update
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.167  2014/12/22 13:50:56  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Testing uname and compiler version and if compiled 32 or 64
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Testing on Linux 64
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.165  2014/12/16 11:20:36  brouard
      Summary: After compiling on Visual C
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    * imach.c (Module): Merging 1.61 to 1.162
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.164  2014/12/16 10:52:11  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): Merging 1.61 to 1.162
   **********************************************************************/  
      Revision 1.163  2014/12/16 10:30:11  brouard
 #include <math.h>    * imach.c (Module): Merging 1.61 to 1.162
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.162  2014/09/25 11:43:39  brouard
 #include <unistd.h>    Summary: temporary backup 0.99!
   
 #define MAXLINE 256    Revision 1.1  2014/09/16 11:06:58  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Summary: With some code (wrong) for nlopt
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Author:
 /*#define DEBUG*/  
 #define windows    Revision 1.161  2014/09/15 20:41:41  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Summary: Problem with macro SQR on Intel compiler
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.160  2014/09/02 09:24:05  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    *** empty log message ***
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.159  2014/09/01 10:34:10  brouard
 #define NINTERVMAX 8    Summary: WIN32
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Author: Brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.158  2014/08/27 17:11:51  brouard
 #define MAXN 20000    *** empty log message ***
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.157  2014/08/27 16:26:55  brouard
 #define AGEBASE 40    Summary: Preparing windows Visual studio version
     Author: Brouard
   
 int erreur; /* Error number */    In order to compile on Visual studio, time.h is now correct and time_t
 int nvar;    and tm struct should be used. difftime should be used but sometimes I
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    just make the differences in raw time format (time(&now).
 int npar=NPARMAX;    Trying to suppress #ifdef LINUX
 int nlstate=2; /* Number of live states */    Add xdg-open for __linux in order to open default browser.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.156  2014/08/25 20:10:10  brouard
 int popbased=0;    *** empty log message ***
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.155  2014/08/25 18:32:34  brouard
 int maxwav; /* Maxim number of waves */    Summary: New compile, minor changes
 int jmin, jmax; /* min, max spacing between 2 waves */    Author: Brouard
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.154  2014/06/20 17:32:08  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Summary: Outputs now all graphs of convergence to period prevalence
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.153  2014/06/20 16:45:46  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Summary: If 3 live state, convergence to period prevalence on same graph
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Author: Brouard
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.152  2014/06/18 17:54:09  brouard
   char filerese[FILENAMELENGTH];    Summary: open browser, use gnuplot on same dir than imach if not found in the path
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.151  2014/06/18 16:43:30  brouard
  FILE  *ficresvpl;    *** empty log message ***
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.150  2014/06/18 16:42:35  brouard
 #define NR_END 1    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 #define FREE_ARG char*    Author: brouard
 #define FTOL 1.0e-10  
     Revision 1.149  2014/06/18 15:51:14  brouard
 #define NRANSI    Summary: Some fixes in parameter files errors
 #define ITMAX 200    Author: Nicolas Brouard
   
 #define TOL 2.0e-4    Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
 #define CGOLD 0.3819660    Author: Brouard
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Just a new packaging for OS/X version 0.98nS
   
 #define GOLD 1.618034    Revision 1.147  2014/06/16 10:33:11  brouard
 #define GLIMIT 100.0    *** empty log message ***
 #define TINY 1.0e-20  
     Revision 1.146  2014/06/16 10:20:28  brouard
 static double maxarg1,maxarg2;    Summary: Merge
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Author: Brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Merge, before building revised version.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
 static double sqrarg;    Author: Nicolas Brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
 int imx;    improve the code.
 int stepm;    No more memory valgrind error but a lot has to be done in order to
 /* Stepm, step in month: minimum step interpolation*/    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
 int estepm;    optimal. nbcode should be improved. Documentation has been added in
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    the source code.
   
 int m,nb;    Revision 1.143  2014/01/26 09:45:38  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 double dateintmean=0;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
 double *weight;    Revision 1.142  2014/01/26 03:57:36  brouard
 int **s; /* Status */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.141  2014/01/26 02:42:01  brouard
 double ftolhess; /* Tolerance for computing hessian */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 /**************** split *************************/    Revision 1.140  2011/09/02 10:37:54  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Summary: times.h is ok with mingw32 now.
 {  
    char *s;                             /* pointer */    Revision 1.139  2010/06/14 07:50:17  brouard
    int  l1, l2;                         /* length counters */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.138  2010/04/30 18:19:40  brouard
 #ifdef windows    *** empty log message ***
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.137  2010/04/29 18:11:38  brouard
    s = strrchr( path, '/' );            /* find last / */    (Module): Checking covariates for more complex models
 #endif    than V1+V2. A lot of change to be done. Unstable.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.136  2010/04/26 20:30:53  brouard
       extern char       *getwd( );    (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
       if ( getwd( dirc ) == NULL ) {    get same likelihood as if mle=1.
 #else    Some cleaning of code and comments added.
       extern char       *getcwd( );  
     Revision 1.135  2009/10/29 15:33:14  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.134  2009/10/29 13:18:53  brouard
       }    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.133  2009/07/06 10:21:25  brouard
       s++;                              /* after this, the filename */    just nforces
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.132  2009/07/06 08:22:05  brouard
       strcpy( name, s );                /* save file name */    Many tings
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.131  2009/06/20 16:22:47  brouard
    }    Some dimensions resccaled
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.130  2009/05/26 06:44:34  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): Max Covariate is now set to 20 instead of 8. A
 #else    lot of cleaning with variables initialized to 0. Trying to make
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.129  2007/08/31 13:49:27  lievre
    s++;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.128  2006/06/30 13:02:05  brouard
    l2= strlen( s)+1;    (Module): Clarifications on computing e.j
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.127  2006/04/28 18:11:50  brouard
    return( 0 );                         /* we're done */    (Module): Yes the sum of survivors was wrong since
 }    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 /******************************************/    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
 void replace(char *s, char*t)    deviation (needs data from the Hessian matrices) which slows the
 {    computation.
   int i;    In the future we should be able to stop the program is only health
   int lg=20;    expectancies and graph are needed without standard deviations.
   i=0;  
   lg=strlen(t);    Revision 1.126  2006/04/28 17:23:28  brouard
   for(i=0; i<= lg; i++) {    (Module): Yes the sum of survivors was wrong since
     (s[i] = t[i]);    imach-114 because nhstepm was no more computed in the age
     if (t[i]== '\\') s[i]='/';    loop. Now we define nhstepma in the age loop.
   }    Version 0.98h
 }  
     Revision 1.125  2006/04/04 15:20:31  lievre
 int nbocc(char *s, char occ)    Errors in calculation of health expectancies. Age was not initialized.
 {    Forecasting file added.
   int i,j=0;  
   int lg=20;    Revision 1.124  2006/03/22 17:13:53  lievre
   i=0;    Parameters are printed with %lf instead of %f (more numbers after the comma).
   lg=strlen(s);    The log-likelihood is printed in the log file
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.123  2006/03/20 10:52:43  brouard
   }    * imach.c (Module): <title> changed, corresponds to .htm file
   return j;    name. <head> headers where missing.
 }  
     * imach.c (Module): Weights can have a decimal point as for
 void cutv(char *u,char *v, char*t, char occ)    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
   int i,lg,j,p=0;    Modification of warning when the covariates values are not 0 or
   i=0;    1.
   for(j=0; j<=strlen(t)-1; j++) {    Version 0.98g
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   lg=strlen(t);    English (a comma might work with a correct LC_NUMERIC environment,
   for(j=0; j<p; j++) {    otherwise the weight is truncated).
     (u[j] = t[j]);    Modification of warning when the covariates values are not 0 or
   }    1.
      u[p]='\0';    Version 0.98g
   
    for(j=0; j<= lg; j++) {    Revision 1.121  2006/03/16 17:45:01  lievre
     if (j>=(p+1))(v[j-p-1] = t[j]);    * imach.c (Module): Comments concerning covariates added
   }  
 }    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 /********************** nrerror ********************/    not 1 month. Version 0.98f
   
 void nrerror(char error_text[])    Revision 1.120  2006/03/16 15:10:38  lievre
 {    (Module): refinements in the computation of lli if
   fprintf(stderr,"ERREUR ...\n");    status=-2 in order to have more reliable computation if stepm is
   fprintf(stderr,"%s\n",error_text);    not 1 month. Version 0.98f
   exit(1);  
 }    Revision 1.119  2006/03/15 17:42:26  brouard
 /*********************** vector *******************/    (Module): Bug if status = -2, the loglikelihood was
 double *vector(int nl, int nh)    computed as likelihood omitting the logarithm. Version O.98e
 {  
   double *v;    Revision 1.118  2006/03/14 18:20:07  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): varevsij Comments added explaining the second
   if (!v) nrerror("allocation failure in vector");    table of variances if popbased=1 .
   return v-nl+NR_END;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 }    (Module): Function pstamp added
     (Module): Version 0.98d
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.117  2006/03/14 17:16:22  brouard
 {    (Module): varevsij Comments added explaining the second
   free((FREE_ARG)(v+nl-NR_END));    table of variances if popbased=1 .
 }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 /************************ivector *******************************/    (Module): Version 0.98d
 int *ivector(long nl,long nh)  
 {    Revision 1.116  2006/03/06 10:29:27  brouard
   int *v;    (Module): Variance-covariance wrong links and
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    varian-covariance of ej. is needed (Saito).
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.115  2006/02/27 12:17:45  brouard
 }    (Module): One freematrix added in mlikeli! 0.98c
   
 /******************free ivector **************************/    Revision 1.114  2006/02/26 12:57:58  brouard
 void free_ivector(int *v, long nl, long nh)    (Module): Some improvements in processing parameter
 {    filename with strsep.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 /******************* imatrix *******************************/    datafile was not closed, some imatrix were not freed and on matrix
 int **imatrix(long nrl, long nrh, long ncl, long nch)    allocation too.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.112  2006/01/30 09:55:26  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   int **m;  
      Revision 1.111  2006/01/25 20:38:18  brouard
   /* allocate pointers to rows */    (Module): Lots of cleaning and bugs added (Gompertz)
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): Comments can be added in data file. Missing date values
   if (!m) nrerror("allocation failure 1 in matrix()");    can be a simple dot '.'.
   m += NR_END;  
   m -= nrl;    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
    
   /* allocate rows and set pointers to them */    Revision 1.109  2006/01/24 19:37:15  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): Comments (lines starting with a #) are allowed in data.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.108  2006/01/19 18:05:42  lievre
   m[nrl] -= ncl;    Gnuplot problem appeared...
      To be fixed
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.107  2006/01/19 16:20:37  brouard
   /* return pointer to array of pointers to rows */    Test existence of gnuplot in imach path
   return m;  
 }    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.105  2006/01/05 20:23:19  lievre
       int **m;    *** empty log message ***
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.104  2005/09/30 16:11:43  lievre
 {    (Module): sump fixed, loop imx fixed, and simplifications.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    (Module): If the status is missing at the last wave but we know
   free((FREE_ARG) (m+nrl-NR_END));    that the person is alive, then we can code his/her status as -2
 }    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 /******************* matrix *******************************/    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double **matrix(long nrl, long nrh, long ncl, long nch)    the healthy state at last known wave). Version is 0.98
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.103  2005/09/30 15:54:49  lievre
   double **m;    (Module): sump fixed, loop imx fixed, and simplifications.
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.102  2004/09/15 17:31:30  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Add the possibility to read data file including tab characters.
   m += NR_END;  
   m -= nrl;    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.100  2004/07/12 18:29:06  brouard
   m[nrl] += NR_END;    Add version for Mac OS X. Just define UNIX in Makefile
   m[nrl] -= ncl;  
     Revision 1.99  2004/06/05 08:57:40  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    *** empty log message ***
   return m;  
 }    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 /*************************free matrix ************************/    directly from the data i.e. without the need of knowing the health
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    state at each age, but using a Gompertz model: log u =a + b*age .
 {    This is the basic analysis of mortality and should be done before any
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    other analysis, in order to test if the mortality estimated from the
   free((FREE_ARG)(m+nrl-NR_END));    cross-longitudinal survey is different from the mortality estimated
 }    from other sources like vital statistic data.
   
 /******************* ma3x *******************************/    The same imach parameter file can be used but the option for mle should be -3.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Agnès, who wrote this part of the code, tried to keep most of the
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    former routines in order to include the new code within the former code.
   double ***m;  
     The output is very simple: only an estimate of the intercept and of
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    the slope with 95% confident intervals.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Current limitations:
   m -= nrl;    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    B) There is no computation of Life Expectancy nor Life Table.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.97  2004/02/20 13:25:42  lievre
   m[nrl] -= ncl;    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.96  2003/07/15 15:38:55  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    rewritten within the same printf. Workaround: many printfs.
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.95  2003/07/08 07:54:34  brouard
   for (j=ncl+1; j<=nch; j++)    * imach.c (Repository):
     m[nrl][j]=m[nrl][j-1]+nlay;    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.94  2003/06/27 13:00:02  brouard
     for (j=ncl+1; j<=nch; j++)    Just cleaning
       m[i][j]=m[i][j-1]+nlay;  
   }    Revision 1.93  2003/06/25 16:33:55  brouard
   return m;    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Revision 1.92  2003/06/25 16:30:45  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    exist so I changed back to asctime which exists.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 /***************** f1dim *************************/    helps to forecast when convergence will be reached. Elapsed time
 extern int ncom;    is stamped in powell.  We created a new html file for the graphs
 extern double *pcom,*xicom;    concerning matrix of covariance. It has extension -cov.htm.
 extern double (*nrfunc)(double []);  
      Revision 1.90  2003/06/24 12:34:15  brouard
 double f1dim(double x)    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   int j;    of the covariance matrix to be input.
   double f;  
   double *xt;    Revision 1.89  2003/06/24 12:30:52  brouard
      (Module): Some bugs corrected for windows. Also, when
   xt=vector(1,ncom);    mle=-1 a template is output in file "or"mypar.txt with the design
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    of the covariance matrix to be input.
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);    Revision 1.88  2003/06/23 17:54:56  brouard
   return f;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 }  
     Revision 1.87  2003/06/18 12:26:01  brouard
 /*****************brent *************************/    Version 0.96
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    Revision 1.86  2003/06/17 20:04:08  brouard
   int iter;    (Module): Change position of html and gnuplot routines and added
   double a,b,d,etemp;    routine fileappend.
   double fu,fv,fw,fx;  
   double ftemp;    Revision 1.85  2003/06/17 13:12:43  brouard
   double p,q,r,tol1,tol2,u,v,w,x,xm;    * imach.c (Repository): Check when date of death was earlier that
   double e=0.0;    current date of interview. It may happen when the death was just
      prior to the death. In this case, dh was negative and likelihood
   a=(ax < cx ? ax : cx);    was wrong (infinity). We still send an "Error" but patch by
   b=(ax > cx ? ax : cx);    assuming that the date of death was just one stepm after the
   x=w=v=bx;    interview.
   fw=fv=fx=(*f)(x);    (Repository): Because some people have very long ID (first column)
   for (iter=1;iter<=ITMAX;iter++) {    we changed int to long in num[] and we added a new lvector for
     xm=0.5*(a+b);    memory allocation. But we also truncated to 8 characters (left
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    truncation)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    (Repository): No more line truncation errors.
     printf(".");fflush(stdout);  
 #ifdef DEBUG    Revision 1.84  2003/06/13 21:44:43  brouard
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    * imach.c (Repository): Replace "freqsummary" at a correct
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    place. It differs from routine "prevalence" which may be called
 #endif    many times. Probs is memory consuming and must be used with
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    parcimony.
       *xmin=x;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       return fx;  
     }    Revision 1.83  2003/06/10 13:39:11  lievre
     ftemp=fu;    *** empty log message ***
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    Revision 1.82  2003/06/05 15:57:20  brouard
       q=(x-v)*(fx-fw);    Add log in  imach.c and  fullversion number is now printed.
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  */
       if (q > 0.0) p = -p;  /*
       q=fabs(q);     Interpolated Markov Chain
       etemp=e;  
       e=d;    Short summary of the programme:
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    This program computes Healthy Life Expectancies from
       else {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
         d=p/q;    first survey ("cross") where individuals from different ages are
         u=x+d;    interviewed on their health status or degree of disability (in the
         if (u-a < tol2 || b-u < tol2)    case of a health survey which is our main interest) -2- at least a
           d=SIGN(tol1,xm-x);    second wave of interviews ("longitudinal") which measure each change
       }    (if any) in individual health status.  Health expectancies are
     } else {    computed from the time spent in each health state according to a
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    model. More health states you consider, more time is necessary to reach the
     }    Maximum Likelihood of the parameters involved in the model.  The
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    simplest model is the multinomial logistic model where pij is the
     fu=(*f)(u);    probability to be observed in state j at the second wave
     if (fu <= fx) {    conditional to be observed in state i at the first wave. Therefore
       if (u >= x) a=x; else b=x;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       SHFT(v,w,x,u)    'age' is age and 'sex' is a covariate. If you want to have a more
         SHFT(fv,fw,fx,fu)    complex model than "constant and age", you should modify the program
         } else {    where the markup *Covariates have to be included here again* invites
           if (u < x) a=u; else b=u;    you to do it.  More covariates you add, slower the
           if (fu <= fw || w == x) {    convergence.
             v=w;  
             w=u;    The advantage of this computer programme, compared to a simple
             fv=fw;    multinomial logistic model, is clear when the delay between waves is not
             fw=fu;    identical for each individual. Also, if a individual missed an
           } else if (fu <= fv || v == x || v == w) {    intermediate interview, the information is lost, but taken into
             v=u;    account using an interpolation or extrapolation.  
             fv=fu;  
           }    hPijx is the probability to be observed in state i at age x+h
         }    conditional to the observed state i at age x. The delay 'h' can be
   }    split into an exact number (nh*stepm) of unobserved intermediate
   nrerror("Too many iterations in brent");    states. This elementary transition (by month, quarter,
   *xmin=x;    semester or year) is modelled as a multinomial logistic.  The hPx
   return fx;    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 /****************** mnbrak ***********************/  
     Also this programme outputs the covariance matrix of the parameters but also
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    of the life expectancies. It also computes the period (stable) prevalence. 
             double (*func)(double))    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   double ulim,u,r,q, dum;             Institut national d'études démographiques, Paris.
   double fu;    This software have been partly granted by Euro-REVES, a concerted action
      from the European Union.
   *fa=(*func)(*ax);    It is copyrighted identically to a GNU software product, ie programme and
   *fb=(*func)(*bx);    software can be distributed freely for non commercial use. Latest version
   if (*fb > *fa) {    can be accessed at http://euroreves.ined.fr/imach .
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   *cx=(*bx)+GOLD*(*bx-*ax);    
   *fc=(*func)(*cx);    **********************************************************************/
   while (*fb > *fc) {  /*
     r=(*bx-*ax)*(*fb-*fc);    main
     q=(*bx-*cx)*(*fb-*fa);    read parameterfile
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    read datafile
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    concatwav
     ulim=(*bx)+GLIMIT*(*cx-*bx);    freqsummary
     if ((*bx-u)*(u-*cx) > 0.0) {    if (mle >= 1)
       fu=(*func)(u);      mlikeli
     } else if ((*cx-u)*(u-ulim) > 0.0) {    print results files
       fu=(*func)(u);    if mle==1 
       if (fu < *fc) {       computes hessian
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    read end of parameter file: agemin, agemax, bage, fage, estepm
           SHFT(*fb,*fc,fu,(*func)(u))        begin-prev-date,...
           }    open gnuplot file
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    open html file
       u=ulim;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       fu=(*func)(u);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     } else {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       u=(*cx)+GOLD*(*cx-*bx);      freexexit2 possible for memory heap.
       fu=(*func)(u);  
     }    h Pij x                         | pij_nom  ficrestpij
     SHFT(*ax,*bx,*cx,u)     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       SHFT(*fa,*fb,*fc,fu)         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       }         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 }  
          1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 /*************** linmin ************************/         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 int ncom;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 double *pcom,*xicom;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 double (*nrfunc)(double []);  
      forecasting if prevfcast==1 prevforecast call prevalence()
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    health expectancies
 {    Variance-covariance of DFLE
   double brent(double ax, double bx, double cx,    prevalence()
                double (*f)(double), double tol, double *xmin);     movingaverage()
   double f1dim(double x);    varevsij() 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if popbased==1 varevsij(,popbased)
               double *fc, double (*func)(double));    total life expectancies
   int j;    Variance of period (stable) prevalence
   double xx,xmin,bx,ax;   end
   double fx,fb,fa;  */
    
   ncom=n;  #define POWELL /* Instead of NLOPT */
   pcom=vector(1,n);  
   xicom=vector(1,n);  #include <math.h>
   nrfunc=func;  #include <stdio.h>
   for (j=1;j<=n;j++) {  #include <stdlib.h>
     pcom[j]=p[j];  #include <string.h>
     xicom[j]=xi[j];  
   }  #ifdef _WIN32
   ax=0.0;  #include <io.h>
   xx=1.0;  #include <windows.h>
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #include <tchar.h>
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #else
 #ifdef DEBUG  #include <unistd.h>
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #endif
 #endif  
   for (j=1;j<=n;j++) {  #include <limits.h>
     xi[j] *= xmin;  #include <sys/types.h>
     p[j] += xi[j];  
   }  #if defined(__GNUC__)
   free_vector(xicom,1,n);  #include <sys/utsname.h> /* Doesn't work on Windows */
   free_vector(pcom,1,n);  #endif
 }  
   #include <sys/stat.h>
 /*************** powell ************************/  #include <errno.h>
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /* extern int errno; */
             double (*func)(double []))  
 {  /* #ifdef LINUX */
   void linmin(double p[], double xi[], int n, double *fret,  /* #include <time.h> */
               double (*func)(double []));  /* #include "timeval.h" */
   int i,ibig,j;  /* #else */
   double del,t,*pt,*ptt,*xit;  /* #include <sys/time.h> */
   double fp,fptt;  /* #endif */
   double *xits;  
   pt=vector(1,n);  #include <time.h>
   ptt=vector(1,n);  
   xit=vector(1,n);  #ifdef GSL
   xits=vector(1,n);  #include <gsl/gsl_errno.h>
   *fret=(*func)(p);  #include <gsl/gsl_multimin.h>
   for (j=1;j<=n;j++) pt[j]=p[j];  #endif
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  
     ibig=0;  #ifdef NLOPT
     del=0.0;  #include <nlopt.h>
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  typedef struct {
     for (i=1;i<=n;i++)    double (* function)(double [] );
       printf(" %d %.12f",i, p[i]);  } myfunc_data ;
     printf("\n");  #endif
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /* #include <libintl.h> */
       fptt=(*fret);  /* #define _(String) gettext (String) */
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 #endif  
       printf("%d",i);fflush(stdout);  #define GNUPLOTPROGRAM "gnuplot"
       linmin(p,xit,n,fret,func);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       if (fabs(fptt-(*fret)) > del) {  #define FILENAMELENGTH 132
         del=fabs(fptt-(*fret));  
         ibig=i;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       for (j=1;j<=n;j++) {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  #define NINTERVMAX 8
       }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       for(j=1;j<=n;j++)  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         printf(" p=%.12e",p[j]);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       printf("\n");  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
 #endif  #define MAXN 20000
     }  #define YEARM 12. /**< Number of months per year */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define AGESUP 130
 #ifdef DEBUG  #define AGEBASE 40
       int k[2],l;  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       k[0]=1;  #ifdef _WIN32
       k[1]=-1;  #define DIRSEPARATOR '\\'
       printf("Max: %.12e",(*func)(p));  #define CHARSEPARATOR "\\"
       for (j=1;j<=n;j++)  #define ODIRSEPARATOR '/'
         printf(" %.12e",p[j]);  #else
       printf("\n");  #define DIRSEPARATOR '/'
       for(l=0;l<=1;l++) {  #define CHARSEPARATOR "/"
         for (j=1;j<=n;j++) {  #define ODIRSEPARATOR '\\'
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #endif
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  /* $Id$ */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /* $State$ */
       }  
 #endif  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
   char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
       free_vector(xit,1,n);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       free_vector(xits,1,n);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       free_vector(ptt,1,n);  int nvar=0, nforce=0; /* Number of variables, number of forces */
       free_vector(pt,1,n);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       return;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
     }  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     for (j=1;j<=n;j++) {  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       ptt[j]=2.0*p[j]-pt[j];  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       xit[j]=p[j]-pt[j];  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       pt[j]=p[j];  int cptcov=0; /* Working variable */
     }  int npar=NPARMAX;
     fptt=(*func)(ptt);  int nlstate=2; /* Number of live states */
     if (fptt < fp) {  int ndeath=1; /* Number of dead states */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       if (t < 0.0) {  int popbased=0;
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  int *wav; /* Number of waves for this individuual 0 is possible */
           xi[j][ibig]=xi[j][n];  int maxwav=0; /* Maxim number of waves */
           xi[j][n]=xit[j];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
         }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 #ifdef DEBUG  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);                     to the likelihood and the sum of weights (done by funcone)*/
         for(j=1;j<=n;j++)  int mle=1, weightopt=0;
           printf(" %.12e",xit[j]);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         printf("\n");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #endif  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     }  int countcallfunc=0;  /* Count the number of calls to func */
   }  double jmean=1; /* Mean space between 2 waves */
 }  double **matprod2(); /* test */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /**** Prevalence limit ****************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /*FILE *fic ; */ /* Used in readdata only */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  int globpr=0; /* Global variable for printing or not */
      matrix by transitions matrix until convergence is reached */  double fretone; /* Only one call to likelihood */
   long ipmx=0; /* Number of contributions */
   int i, ii,j,k;  double sw; /* Sum of weights */
   double min, max, maxmin, maxmax,sumnew=0.;  char filerespow[FILENAMELENGTH];
   double **matprod2();  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double **out, cov[NCOVMAX], **pmij();  FILE *ficresilk;
   double **newm;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double agefin, delaymax=50 ; /* Max number of years to converge */  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
   for (ii=1;ii<=nlstate+ndeath;ii++)  FILE *ficreseij;
     for (j=1;j<=nlstate+ndeath;j++){  char filerese[FILENAMELENGTH];
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  FILE *ficresstdeij;
     }  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
    cov[1]=1.;  char filerescve[FILENAMELENGTH];
    FILE  *ficresvij;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char fileresv[FILENAMELENGTH];
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  FILE  *ficresvpl;
     newm=savm;  char fileresvpl[FILENAMELENGTH];
     /* Covariates have to be included here again */  char title[MAXLINE];
      cov[2]=agefin;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       for (k=1; k<=cptcovn;k++) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char command[FILENAMELENGTH];
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  int  outcmd=0;
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  char fileregp[FILENAMELENGTH];
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  char popfile[FILENAMELENGTH];
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
     savm=oldm;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     oldm=newm;  /* struct timezone tzp; */
     maxmax=0.;  /* extern int gettimeofday(); */
     for(j=1;j<=nlstate;j++){  struct tm tml, *gmtime(), *localtime();
       min=1.;  
       max=0.;  extern time_t time();
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
         prlim[i][j]= newm[i][j]/(1-sumnew);  struct tm tm;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  char strcurr[80], strfor[80];
       }  
       maxmin=max-min;  char *endptr;
       maxmax=FMAX(maxmax,maxmin);  long lval;
     }  double dval;
     if(maxmax < ftolpl){  
       return prlim;  #define NR_END 1
     }  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /*************** transition probabilities ***************/  #define ITMAX 200 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #define TOL 2.0e-4 
 {  
   double s1, s2;  #define CGOLD 0.3819660 
   /*double t34;*/  #define ZEPS 1.0e-10 
   int i,j,j1, nc, ii, jj;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
     for(i=1; i<= nlstate; i++){  #define GOLD 1.618034 
     for(j=1; j<i;j++){  #define GLIMIT 100.0 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define TINY 1.0e-20 
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  static double maxarg1,maxarg2;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       ps[i][j]=s2;    
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     }  #define rint(a) floor(a+0.5)
     for(j=i+1; j<=nlstate+ndeath;j++){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /* #define mytinydouble 1.0e-16 */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
       }  /* static double dsqrarg; */
       ps[i][j]=s2;  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     }  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     /*ps[3][2]=1;*/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   for(i=1; i<= nlstate; i++){  
      s1=0;  int imx; 
     for(j=1; j<i; j++)  int stepm=1;
       s1+=exp(ps[i][j]);  /* Stepm, step in month: minimum step interpolation*/
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  int estepm;
     ps[i][i]=1./(s1+1.);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int m,nb;
     for(j=i+1; j<=nlstate+ndeath; j++)  long *num;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   } /* end i */  double **pmmij, ***probs;
   double *ageexmed,*agecens;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double dateintmean=0;
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  double *weight;
       ps[ii][ii]=1;  int **s; /* Status */
     }  double *agedc;
   }  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
                     * covar=matrix(0,NCOVMAX,1,n); 
                     * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  double  idx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
      printf("%lf ",ps[ii][jj]);  int *Ndum; /** Freq of modality (tricode */
    }  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     printf("\n ");  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     }  double *lsurv, *lpop, *tpop;
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  double ftolhess; /**< Tolerance for computing hessian */
   goto end;*/  
     return ps;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /**************** Product of 2 matrices ******************/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    */ 
 {    char  *ss;                            /* pointer */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    int   l1, l2;                         /* length counters */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized    l1 = strlen(path );                   /* length of path */
      before: only the contents of out is modified. The function returns    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      a pointer to pointers identical to out */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   long i, j, k;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   for(i=nrl; i<= nrh; i++)      strcpy( name, path );               /* we got the fullname name because no directory */
     for(k=ncolol; k<=ncoloh; k++)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         out[i][k] +=in[i][j]*b[j][k];      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
   return out;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
       /* got dirc from getcwd*/
 /************* Higher Matrix Product ***************/      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
      duration (i.e. until      strcpy( name, ss );         /* save file name */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      strncpy( dirc, path, l1 - l2 );     /* now the directory */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      dirc[l1-l2] = 0;                    /* add zero */
      (typically every 2 years instead of every month which is too big).      printf(" DIRC2 = %s \n",dirc);
      Model is determined by parameters x and covariates have to be    }
      included manually here.    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
      */    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
   int i, j, d, h, k;      dirc[l1+1] = 0; 
   double **out, cov[NCOVMAX];      printf(" DIRC3 = %s \n",dirc);
   double **newm;    }
     ss = strrchr( name, '.' );            /* find last / */
   /* Hstepm could be zero and should return the unit matrix */    if (ss >0){
   for (i=1;i<=nlstate+ndeath;i++)      ss++;
     for (j=1;j<=nlstate+ndeath;j++){      strcpy(ext,ss);                     /* save extension */
       oldm[i][j]=(i==j ? 1.0 : 0.0);      l1= strlen( name);
       po[i][j][0]=(i==j ? 1.0 : 0.0);      l2= strlen(ss)+1;
     }      strncpy( finame, name, l1-l2);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      finame[l1-l2]= 0;
   for(h=1; h <=nhstepm; h++){    }
     for(d=1; d <=hstepm; d++){  
       newm=savm;    return( 0 );                          /* we're done */
       /* Covariates have to be included here again */  }
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /******************************************/
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void replace_back_to_slash(char *s, char*t)
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int i;
     int lg=0;
     i=0;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    lg=strlen(t);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    for(i=0; i<= lg; i++) {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      (s[i] = t[i]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      if (t[i]== '\\') s[i]='/';
       savm=oldm;    }
       oldm=newm;  }
     }  
     for(i=1; i<=nlstate+ndeath; i++)  char *trimbb(char *out, char *in)
       for(j=1;j<=nlstate+ndeath;j++) {  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         po[i][j][h]=newm[i][j];    char *s;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    s=out;
          */    while (*in != '\0'){
       }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   } /* end h */        in++;
   return po;      }
 }      *out++ = *in++;
     }
     *out='\0';
 /*************** log-likelihood *************/    return s;
 double func( double *x)  }
 {  
   int i, ii, j, k, mi, d, kk;  char *cutl(char *blocc, char *alocc, char *in, char occ)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   double sw; /* Sum of weights */       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double lli; /* Individual log likelihood */       gives blocc="abcdef2ghi" and alocc="j".
   long ipmx;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   /*extern weight */    */
   /* We are differentiating ll according to initial status */    char *s, *t;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    t=in;s=in;
   /*for(i=1;i<imx;i++)    while ((*in != occ) && (*in != '\0')){
     printf(" %d\n",s[4][i]);      *alocc++ = *in++;
   */    }
   cov[1]=1.;    if( *in == occ){
       *(alocc)='\0';
   for(k=1; k<=nlstate; k++) ll[k]=0.;      s=++in;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];   
     for(mi=1; mi<= wav[i]-1; mi++){    if (s == t) {/* occ not found */
       for (ii=1;ii<=nlstate+ndeath;ii++)      *(alocc-(in-s))='\0';
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      in=s;
       for(d=0; d<dh[mi][i]; d++){    }
         newm=savm;    while ( *in != '\0'){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      *blocc++ = *in++;
         for (kk=1; kk<=cptcovage;kk++) {    }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }    *blocc='\0';
            return t;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  char *cutv(char *blocc, char *alocc, char *in, char occ)
         savm=oldm;  {
         oldm=newm;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
               and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
               gives blocc="abcdef2ghi" and alocc="j".
       } /* end mult */       If occ is not found blocc is null and alocc is equal to in. Returns alocc
          */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    char *s, *t;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    t=in;s=in;
       ipmx +=1;    while (*in != '\0'){
       sw += weight[i];      while( *in == occ){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        *blocc++ = *in++;
     } /* end of wave */        s=in;
   } /* end of individual */      }
       *blocc++ = *in++;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    if (s == t) /* occ not found */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      *(blocc-(in-s))='\0';
   return -l;    else
 }      *(blocc-(in-s)-1)='\0';
     in=s;
     while ( *in != '\0'){
 /*********** Maximum Likelihood Estimation ***************/      *alocc++ = *in++;
     }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {    *alocc='\0';
   int i,j, iter;    return s;
   double **xi,*delti;  }
   double fret;  
   xi=matrix(1,npar,1,npar);  int nbocc(char *s, char occ)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++)    int i,j=0;
       xi[i][j]=(i==j ? 1.0 : 0.0);    int lg=20;
   printf("Powell\n");    i=0;
   powell(p,xi,npar,ftol,&iter,&fret,func);    lg=strlen(s);
     for(i=0; i<= lg; i++) {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    if  (s[i] == occ ) j++;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    }
     return j;
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /* void cutv(char *u,char *v, char*t, char occ) */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /* { */
 {  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   double  **a,**y,*x,pd;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   double **hess;  /*      gives u="abcdef2ghi" and v="j" *\/ */
   int i, j,jk;  /*   int i,lg,j,p=0; */
   int *indx;  /*   i=0; */
   /*   lg=strlen(t); */
   double hessii(double p[], double delta, int theta, double delti[]);  /*   for(j=0; j<=lg-1; j++) { */
   double hessij(double p[], double delti[], int i, int j);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*   } */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /*   for(j=0; j<p; j++) { */
   hess=matrix(1,npar,1,npar);  /*     (u[j] = t[j]); */
   /*   } */
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*      u[p]='\0'; */
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /*    for(j=0; j<= lg; j++) { */
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     /*printf(" %f ",p[i]);*/  /*   } */
     /*printf(" %lf ",hess[i][i]);*/  /* } */
   }  
    #ifdef _WIN32
   for (i=1;i<=npar;i++) {  char * strsep(char **pp, const char *delim)
     for (j=1;j<=npar;j++)  {  {
       if (j>i) {    char *p, *q;
         printf(".%d%d",i,j);fflush(stdout);           
         hess[i][j]=hessij(p,delti,i,j);    if ((p = *pp) == NULL)
         hess[j][i]=hess[i][j];          return 0;
         /*printf(" %lf ",hess[i][j]);*/    if ((q = strpbrk (p, delim)) != NULL)
       }    {
     }      *pp = q + 1;
   }      *q = '\0';
   printf("\n");    }
     else
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      *pp = 0;
      return p;
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  #endif
   x=vector(1,npar);  
   indx=ivector(1,npar);  /********************** nrerror ********************/
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  void nrerror(char error_text[])
   ludcmp(a,npar,indx,&pd);  {
     fprintf(stderr,"ERREUR ...\n");
   for (j=1;j<=npar;j++) {    fprintf(stderr,"%s\n",error_text);
     for (i=1;i<=npar;i++) x[i]=0;    exit(EXIT_FAILURE);
     x[j]=1;  }
     lubksb(a,npar,indx,x);  /*********************** vector *******************/
     for (i=1;i<=npar;i++){  double *vector(int nl, int nh)
       matcov[i][j]=x[i];  {
     }    double *v;
   }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   printf("\n#Hessian matrix#\n");    return v-nl+NR_END;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
     printf("\n");  {
   }    free((FREE_ARG)(v+nl-NR_END));
   }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /************************ivector *******************************/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  int *ivector(long nl,long nh)
   ludcmp(a,npar,indx,&pd);  {
     int *v;
   /*  printf("\n#Hessian matrix recomputed#\n");    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   for (j=1;j<=npar;j++) {    return v-nl+NR_END;
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  
     lubksb(a,npar,indx,x);  /******************free ivector **************************/
     for (i=1;i<=npar;i++){  void free_ivector(int *v, long nl, long nh)
       y[i][j]=x[i];  {
       printf("%.3e ",y[i][j]);    free((FREE_ARG)(v+nl-NR_END));
     }  }
     printf("\n");  
   }  /************************lvector *******************************/
   */  long *lvector(long nl,long nh)
   {
   free_matrix(a,1,npar,1,npar);    long *v;
   free_matrix(y,1,npar,1,npar);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   free_vector(x,1,npar);    if (!v) nrerror("allocation failure in ivector");
   free_ivector(indx,1,npar);    return v-nl+NR_END;
   free_matrix(hess,1,npar,1,npar);  }
   
   /******************free lvector **************************/
 }  void free_lvector(long *v, long nl, long nh)
   {
 /*************** hessian matrix ****************/    free((FREE_ARG)(v+nl-NR_END));
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  /******************* imatrix *******************************/
   int l=1, lmax=20;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double k1,k2;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double p2[NPARMAX+1];  { 
   double res;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    int **m; 
   double fx;    
   int k=0,kmax=10;    /* allocate pointers to rows */ 
   double l1;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
   fx=func(x);    m += NR_END; 
   for (i=1;i<=npar;i++) p2[i]=x[i];    m -= nrl; 
   for(l=0 ; l <=lmax; l++){    
     l1=pow(10,l);    
     delts=delt;    /* allocate rows and set pointers to them */ 
     for(k=1 ; k <kmax; k=k+1){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       delt = delta*(l1*k);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       p2[theta]=x[theta] +delt;    m[nrl] += NR_END; 
       k1=func(p2)-fx;    m[nrl] -= ncl; 
       p2[theta]=x[theta]-delt;    
       k2=func(p2)-fx;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    /* return pointer to array of pointers to rows */ 
          return m; 
 #ifdef DEBUG  } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif  /****************** free_imatrix *************************/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  void free_imatrix(m,nrl,nrh,ncl,nch)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        int **m;
         k=kmax;        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  { 
         k=kmax; l=lmax*10.;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       }    free((FREE_ARG) (m+nrl-NR_END)); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  } 
         delts=delt;  
       }  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
   }  {
   delti[theta]=delts;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   return res;    double **m;
    
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 double hessij( double x[], double delti[], int thetai,int thetaj)    m += NR_END;
 {    m -= nrl;
   int i;  
   int l=1, l1, lmax=20;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double k1,k2,k3,k4,res,fx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double p2[NPARMAX+1];    m[nrl] += NR_END;
   int k;    m[nrl] -= ncl;
   
   fx=func(x);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (k=1; k<=2; k++) {    return m;
     for (i=1;i<=npar;i++) p2[i]=x[i];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     p2[thetai]=x[thetai]+delti[thetai]/k;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     k1=func(p2)-fx;     */
    }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*************************free matrix ************************/
     k2=func(p2)-fx;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    free((FREE_ARG)(m+nrl-NR_END));
     k3=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /******************* ma3x *******************************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     k4=func(p2)-fx;  {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #ifdef DEBUG    double ***m;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
   return res;    m += NR_END;
 }    m -= nrl;
   
 /************** Inverse of matrix **************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 void ludcmp(double **a, int n, int *indx, double *d)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   int i,imax,j,k;    m[nrl] -= ncl;
   double big,dum,sum,temp;  
   double *vv;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
   vv=vector(1,n);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   *d=1.0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for (i=1;i<=n;i++) {    m[nrl][ncl] += NR_END;
     big=0.0;    m[nrl][ncl] -= nll;
     for (j=1;j<=n;j++)    for (j=ncl+1; j<=nch; j++) 
       if ((temp=fabs(a[i][j])) > big) big=temp;      m[nrl][j]=m[nrl][j-1]+nlay;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    
     vv[i]=1.0/big;    for (i=nrl+1; i<=nrh; i++) {
   }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (j=1;j<=n;j++) {      for (j=ncl+1; j<=nch; j++) 
     for (i=1;i<j;i++) {        m[i][j]=m[i][j-1]+nlay;
       sum=a[i][j];    }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    return m; 
       a[i][j]=sum;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     big=0.0;    */
     for (i=j;i<=n;i++) {  }
       sum=a[i][j];  
       for (k=1;k<j;k++)  /*************************free ma3x ************************/
         sum -= a[i][k]*a[k][j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       a[i][j]=sum;  {
       if ( (dum=vv[i]*fabs(sum)) >= big) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         big=dum;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         imax=i;    free((FREE_ARG)(m+nrl-NR_END));
       }  }
     }  
     if (j != imax) {  /*************** function subdirf ***********/
       for (k=1;k<=n;k++) {  char *subdirf(char fileres[])
         dum=a[imax][k];  {
         a[imax][k]=a[j][k];    /* Caution optionfilefiname is hidden */
         a[j][k]=dum;    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       *d = -(*d);    strcat(tmpout,fileres);
       vv[imax]=vv[j];    return tmpout;
     }  }
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*************** function subdirf2 ***********/
     if (j != n) {  char *subdirf2(char fileres[], char *preop)
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
   free_vector(vv,1,n);  /* Doesn't work */    strcat(tmpout,"/");
 ;    strcat(tmpout,preop);
 }    strcat(tmpout,fileres);
     return tmpout;
 void lubksb(double **a, int n, int *indx, double b[])  }
 {  
   int i,ii=0,ip,j;  /*************** function subdirf3 ***********/
   double sum;  char *subdirf3(char fileres[], char *preop, char *preop2)
    {
   for (i=1;i<=n;i++) {    
     ip=indx[i];    /* Caution optionfilefiname is hidden */
     sum=b[ip];    strcpy(tmpout,optionfilefiname);
     b[ip]=b[i];    strcat(tmpout,"/");
     if (ii)    strcat(tmpout,preop);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    strcat(tmpout,preop2);
     else if (sum) ii=i;    strcat(tmpout,fileres);
     b[i]=sum;    return tmpout;
   }  }
   for (i=n;i>=1;i--) {  
     sum=b[i];  char *asc_diff_time(long time_sec, char ascdiff[])
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  {
     b[i]=sum/a[i][i];    long sec_left, days, hours, minutes;
   }    days = (time_sec) / (60*60*24);
 }    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 /************ Frequencies ********************/    sec_left = (sec_left) %(60*60);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    minutes = (sec_left) /60;
 {  /* Some frequencies */    sec_left = (sec_left) % (60);
      sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    return ascdiff;
   double ***freq; /* Frequencies */  }
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  /***************** f1dim *************************/
   FILE *ficresp;  extern int ncom; 
   char fileresp[FILENAMELENGTH];  extern double *pcom,*xicom;
    extern double (*nrfunc)(double []); 
   pp=vector(1,nlstate);   
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  double f1dim(double x) 
   strcpy(fileresp,"p");  { 
   strcat(fileresp,fileres);    int j; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double f;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double *xt; 
     exit(0);   
   }    xt=vector(1,ncom); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   j1=0;    f=(*nrfunc)(xt); 
      free_vector(xt,1,ncom); 
   j=cptcoveff;    return f; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  } 
    
   for(k1=1; k1<=j;k1++){  /*****************brent *************************/
     for(i1=1; i1<=ncodemax[k1];i1++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       j1++;  { 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    int iter; 
         scanf("%d", i);*/    double a,b,d,etemp;
       for (i=-1; i<=nlstate+ndeath; i++)      double fu=0,fv,fw,fx;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double ftemp=0.;
           for(m=agemin; m <= agemax+3; m++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
             freq[i][jk][m]=0;    double e=0.0; 
         
       dateintsum=0;    a=(ax < cx ? ax : cx); 
       k2cpt=0;    b=(ax > cx ? ax : cx); 
       for (i=1; i<=imx; i++) {    x=w=v=bx; 
         bool=1;    fw=fv=fx=(*f)(x); 
         if  (cptcovn>0) {    for (iter=1;iter<=ITMAX;iter++) { 
           for (z1=1; z1<=cptcoveff; z1++)      xm=0.5*(a+b); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
               bool=0;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         }      printf(".");fflush(stdout);
         if (bool==1) {      fprintf(ficlog,".");fflush(ficlog);
           for(m=firstpass; m<=lastpass; m++){  #ifdef DEBUGBRENT
             k2=anint[m][i]+(mint[m][i]/12.);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
               if(agev[m][i]==0) agev[m][i]=agemax+1;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
               if(agev[m][i]==1) agev[m][i]=agemax+2;  #endif
               if (m<lastpass) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        *xmin=x; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        return fx; 
               }      } 
                    ftemp=fu;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      if (fabs(e) > tol1) { 
                 dateintsum=dateintsum+k2;        r=(x-w)*(fx-fv); 
                 k2cpt++;        q=(x-v)*(fx-fw); 
               }        p=(x-v)*q-(x-w)*r; 
             }        q=2.0*(q-r); 
           }        if (q > 0.0) p = -p; 
         }        q=fabs(q); 
       }        etemp=e; 
                e=d; 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       if  (cptcovn>0) {        else { 
         fprintf(ficresp, "\n#********** Variable ");          d=p/q; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          u=x+d; 
         fprintf(ficresp, "**********\n#");          if (u-a < tol2 || b-u < tol2) 
       }            d=SIGN(tol1,xm-x); 
       for(i=1; i<=nlstate;i++)        } 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      } else { 
       fprintf(ficresp, "\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
            } 
       for(i=(int)agemin; i <= (int)agemax+3; i++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         if(i==(int)agemax+3)      fu=(*f)(u); 
           printf("Total");      if (fu <= fx) { 
         else        if (u >= x) a=x; else b=x; 
           printf("Age %d", i);        SHFT(v,w,x,u) 
         for(jk=1; jk <=nlstate ; jk++){          SHFT(fv,fw,fx,fu) 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          } else { 
             pp[jk] += freq[jk][m][i];            if (u < x) a=u; else b=u; 
         }            if (fu <= fw || w == x) { 
         for(jk=1; jk <=nlstate ; jk++){              v=w; 
           for(m=-1, pos=0; m <=0 ; m++)              w=u; 
             pos += freq[jk][m][i];              fv=fw; 
           if(pp[jk]>=1.e-10)              fw=fu; 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            } else if (fu <= fv || v == x || v == w) { 
           else              v=u; 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              fv=fu; 
         }            } 
           } 
         for(jk=1; jk <=nlstate ; jk++){    } 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    nrerror("Too many iterations in brent"); 
             pp[jk] += freq[jk][m][i];    *xmin=x; 
         }    return fx; 
   } 
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  /****************** mnbrak ***********************/
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              double (*func)(double)) 
           else  { 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double ulim,u,r,q, dum;
           if( i <= (int) agemax){    double fu; 
             if(pos>=1.e-5){   
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    *fa=(*func)(*ax); 
               probs[i][jk][j1]= pp[jk]/pos;    *fb=(*func)(*bx); 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    if (*fb > *fa) { 
             }      SHFT(dum,*ax,*bx,dum) 
             else        SHFT(dum,*fb,*fa,dum) 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        } 
           }    *cx=(*bx)+GOLD*(*bx-*ax); 
         }    *fc=(*func)(*cx); 
            while (*fb > *fc) { /* Declining fa, fb, fc */
         for(jk=-1; jk <=nlstate+ndeath; jk++)      r=(*bx-*ax)*(*fb-*fc); 
           for(m=-1; m <=nlstate+ndeath; m++)      q=(*bx-*cx)*(*fb-*fa); 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         if(i <= (int) agemax)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           fprintf(ficresp,"\n");      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
         printf("\n");      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
       }        fu=(*func)(u); 
     }  #ifdef DEBUG
   }        /* f(x)=A(x-u)**2+f(u) */
   dateintmean=dateintsum/k2cpt;        double A, fparabu; 
          A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
   fclose(ficresp);        fparabu= *fa - A*(*ax-u)*(*ax-u);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
   free_vector(pp,1,nlstate);        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
    #endif 
   /* End of Freq */      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 }        fu=(*func)(u); 
         if (fu < *fc) { 
 /************ Prevalence ********************/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            SHFT(*fb,*fc,fu,(*func)(u)) 
 {  /* Some frequencies */            } 
        } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        u=ulim; 
   double ***freq; /* Frequencies */        fu=(*func)(u); 
   double *pp;      } else { 
   double pos, k2;        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   pp=vector(1,nlstate);      } 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      SHFT(*ax,*bx,*cx,u) 
          SHFT(*fa,*fb,*fc,fu) 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } 
   j1=0;  } 
    
   j=cptcoveff;  /*************** linmin ************************/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
    resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   for(k1=1; k1<=j;k1++){  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
     for(i1=1; i1<=ncodemax[k1];i1++){  the value of func at the returned location p . This is actually all accomplished by calling the
       j1++;  routines mnbrak and brent .*/
        int ncom; 
       for (i=-1; i<=nlstate+ndeath; i++)    double *pcom,*xicom;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double (*nrfunc)(double []); 
           for(m=agemin; m <= agemax+3; m++)   
             freq[i][jk][m]=0;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
        { 
       for (i=1; i<=imx; i++) {    double brent(double ax, double bx, double cx, 
         bool=1;                 double (*f)(double), double tol, double *xmin); 
         if  (cptcovn>0) {    double f1dim(double x); 
           for (z1=1; z1<=cptcoveff; z1++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                double *fc, double (*func)(double)); 
               bool=0;    int j; 
         }    double xx,xmin,bx,ax; 
         if (bool==1) {    double fx,fb,fa;
           for(m=firstpass; m<=lastpass; m++){   
             k2=anint[m][i]+(mint[m][i]/12.);    ncom=n; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    pcom=vector(1,n); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    xicom=vector(1,n); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    nrfunc=func; 
               if (m<lastpass) {    for (j=1;j<=n;j++) { 
                 if (calagedate>0)      pcom[j]=p[j]; 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      xicom[j]=xi[j]; 
                 else    } 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    ax=0.0; 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    xx=1.0; 
               }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
             }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
           }  #ifdef DEBUG
         }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for(i=(int)agemin; i <= (int)agemax+3; i++){  #endif
         for(jk=1; jk <=nlstate ; jk++){    for (j=1;j<=n;j++) { 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      xi[j] *= xmin; 
             pp[jk] += freq[jk][m][i];      p[j] += xi[j]; 
         }    } 
         for(jk=1; jk <=nlstate ; jk++){    free_vector(xicom,1,n); 
           for(m=-1, pos=0; m <=0 ; m++)    free_vector(pcom,1,n); 
             pos += freq[jk][m][i];  } 
         }  
          
         for(jk=1; jk <=nlstate ; jk++){  /*************** powell ************************/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*
             pp[jk] += freq[jk][m][i];  Minimization of a function func of n variables. Input consists of an initial starting point
         }  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
          rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  such that failure to decrease by more than this amount on one iteration signals doneness. On
          output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         for(jk=1; jk <=nlstate ; jk++){      function value at p , and iter is the number of iterations taken. The routine linmin is used.
           if( i <= (int) agemax){   */
             if(pos>=1.e-5){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               probs[i][jk][j1]= pp[jk]/pos;              double (*func)(double [])) 
             }  { 
           }    void linmin(double p[], double xi[], int n, double *fret, 
         }                double (*func)(double [])); 
            int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
   }    double *xits;
     int niterf, itmp;
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    pt=vector(1,n); 
   free_vector(pp,1,nlstate);    ptt=vector(1,n); 
      xit=vector(1,n); 
 }  /* End of Freq */    xits=vector(1,n); 
     *fret=(*func)(p); 
 /************* Waves Concatenation ***************/    for (j=1;j<=n;j++) pt[j]=p[j]; 
       rcurr_time = time(NULL);  
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    for (*iter=1;;++(*iter)) { 
 {      fp=(*fret); 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      ibig=0; 
      Death is a valid wave (if date is known).      del=0.0; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      rlast_time=rcurr_time;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      /* (void) gettimeofday(&curr_time,&tzp); */
      and mw[mi+1][i]. dh depends on stepm.      rcurr_time = time(NULL);  
      */      curr_time = *localtime(&rcurr_time);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
   int i, mi, m;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
      double sum=0., jmean=0.;*/     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   int j, k=0,jk, ju, jl;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double sum=0.;        fprintf(ficrespow," %.12lf", p[i]);
   jmin=1e+5;      }
   jmax=-1;      printf("\n");
   jmean=0.;      fprintf(ficlog,"\n");
   for(i=1; i<=imx; i++){      fprintf(ficrespow,"\n");fflush(ficrespow);
     mi=0;      if(*iter <=3){
     m=firstpass;        tml = *localtime(&rcurr_time);
     while(s[m][i] <= nlstate){        strcpy(strcurr,asctime(&tml));
       if(s[m][i]>=1)        rforecast_time=rcurr_time; 
         mw[++mi][i]=m;        itmp = strlen(strcurr);
       if(m >=lastpass)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         break;          strcurr[itmp-1]='\0';
       else        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         m++;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     }/* end while */        for(niterf=10;niterf<=30;niterf+=10){
     if (s[m][i] > nlstate){          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
       mi++;     /* Death is another wave */          forecast_time = *localtime(&rforecast_time);
       /* if(mi==0)  never been interviewed correctly before death */          strcpy(strfor,asctime(&forecast_time));
          /* Only death is a correct wave */          itmp = strlen(strfor);
       mw[mi][i]=m;          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     wav[i]=mi;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     if(mi==0)        }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      }
   }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(i=1; i<=imx; i++){        fptt=(*fret); 
     for(mi=1; mi<wav[i];mi++){  #ifdef DEBUG
       if (stepm <=0)            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         dh[mi][i]=1;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       else{  #endif
         if (s[mw[mi+1][i]][i] > nlstate) {        printf("%d",i);fflush(stdout);
           if (agedc[i] < 2*AGESUP) {        fprintf(ficlog,"%d",i);fflush(ficlog);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        linmin(p,xit,n,fret,func); 
           if(j==0) j=1;  /* Survives at least one month after exam */        if (fabs(fptt-(*fret)) > del) { 
           k=k+1;          del=fabs(fptt-(*fret)); 
           if (j >= jmax) jmax=j;          ibig=i; 
           if (j <= jmin) jmin=j;        } 
           sum=sum+j;  #ifdef DEBUG
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        printf("%d %.12e",i,(*fret));
           }        fprintf(ficlog,"%d %.12e",i,(*fret));
         }        for (j=1;j<=n;j++) {
         else{          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          printf(" x(%d)=%.12e",j,xit[j]);
           k=k+1;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           if (j >= jmax) jmax=j;        }
           else if (j <= jmin)jmin=j;        for(j=1;j<=n;j++) {
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          printf(" p(%d)=%.12e",j,p[j]);
           sum=sum+j;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
         }        }
         jk= j/stepm;        printf("\n");
         jl= j -jk*stepm;        fprintf(ficlog,"\n");
         ju= j -(jk+1)*stepm;  #endif
         if(jl <= -ju)      } /* end i */
           dh[mi][i]=jk;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         else  #ifdef DEBUG
           dh[mi][i]=jk+1;        int k[2],l;
         if(dh[mi][i]==0)        k[0]=1;
           dh[mi][i]=1; /* At least one step */        k[1]=-1;
       }        printf("Max: %.12e",(*func)(p));
     }        fprintf(ficlog,"Max: %.12e",(*func)(p));
   }        for (j=1;j<=n;j++) {
   jmean=sum/k;          printf(" %.12e",p[j]);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          fprintf(ficlog," %.12e",p[j]);
  }        }
 /*********** Tricode ****************************/        printf("\n");
 void tricode(int *Tvar, int **nbcode, int imx)        fprintf(ficlog,"\n");
 {        for(l=0;l<=1;l++) {
   int Ndum[20],ij=1, k, j, i;          for (j=1;j<=n;j++) {
   int cptcode=0;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   cptcoveff=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
              fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (k=0; k<19; k++) Ndum[k]=0;          }
   for (k=1; k<=7; k++) ncodemax[k]=0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        }
     for (i=1; i<=imx; i++) {  #endif
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        free_vector(xit,1,n); 
       if (ij > cptcode) cptcode=ij;        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
     for (i=0; i<=cptcode; i++) {        return; 
       if(Ndum[i]!=0) ncodemax[j]++;      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     ij=1;      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
         ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
     for (i=1; i<=ncodemax[j]; i++) {        pt[j]=p[j]; 
       for (k=0; k<=19; k++) {      } 
         if (Ndum[k] != 0) {      fptt=(*func)(ptt); 
           nbcode[Tvar[j]][ij]=k;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
                  /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
           ij++;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         }        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         if (ij > ncodemax[j]) break;        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       }          /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
     }        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
   }          /* Thus we compare delta(2h) with observed f1-f3 */
         /* or best gain on one ancient line 'del' with total  */
  for (k=0; k<19; k++) Ndum[k]=0;        /* gain f1-f2 = f1 - f2 - 'del' with del  */
         /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
       Ndum[ij]++;        t= t- del*SQR(fp-fptt);
     }        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
  ij=1;  #ifdef DEBUG
  for (i=1; i<=10; i++) {        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
    if((Ndum[i]!=0) && (i<=ncovcol)){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
      Tvaraff[ij]=i;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
      ij++;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
    }        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
  }        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
    #endif
     cptcoveff=ij-1;        if (t < 0.0) { /* Then we use it for last direction */
 }          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
           for (j=1;j<=n;j++) { 
 /*********** Health Expectancies ****************/            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
             xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          }
           printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 {          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  #ifdef DEBUG
   double age, agelim, hf;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double ***p3mat,***varhe;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double **dnewm,**doldm;          for(j=1;j<=n;j++){
   double *xp;            printf(" %.12e",xit[j]);
   double **gp, **gm;            fprintf(ficlog," %.12e",xit[j]);
   double ***gradg, ***trgradg;          }
   int theta;          printf("\n");
           fprintf(ficlog,"\n");
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  #endif
   xp=vector(1,npar);        } /* end of t negative */
   dnewm=matrix(1,nlstate*2,1,npar);      } /* end if (fptt < fp)  */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    } 
    } 
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  /**** Prevalence limit (stable or period prevalence)  ****************/
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  {
   fprintf(ficreseij,"\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);    int i, ii,j,k;
   }    double min, max, maxmin, maxmax,sumnew=0.;
   else  hstepm=estepm;      /* double **matprod2(); */ /* test */
   /* We compute the life expectancy from trapezoids spaced every estepm months    double **out, cov[NCOVMAX+1], **pmij();
    * This is mainly to measure the difference between two models: for example    double **newm;
    * if stepm=24 months pijx are given only every 2 years and by summing them    double agefin, delaymax=50 ; /* Max number of years to converge */
    * we are calculating an estimate of the Life Expectancy assuming a linear    
    * progression inbetween and thus overestimating or underestimating according    for (ii=1;ii<=nlstate+ndeath;ii++)
    * to the curvature of the survival function. If, for the same date, we      for (j=1;j<=nlstate+ndeath;j++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * to compare the new estimate of Life expectancy with the same linear      }
    * hypothesis. A more precise result, taking into account a more precise    
    * curvature will be obtained if estepm is as small as stepm. */    cov[1]=1.;
     
   /* For example we decided to compute the life expectancy with the smallest unit */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      nhstepm is the number of hstepm from age to agelim      newm=savm;
      nstepm is the number of stepm from age to agelin.      /* Covariates have to be included here again */
      Look at hpijx to understand the reason of that which relies in memory size      cov[2]=agefin;
      and note for a fixed period like estepm months */      
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (k=1; k<=cptcovn;k++) {
      survival function given by stepm (the optimization length). Unfortunately it        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      means that if the survival funtion is printed only each two years of age and if        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      }
      results. So we changed our mind and took the option of the best precision.      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   */      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       
   agelim=AGESUP;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     /* nhstepm age range expressed in number of stepm */      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     /* if (stepm >= YEARM) hstepm=1;*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      savm=oldm;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      oldm=newm;
     gp=matrix(0,nhstepm,1,nlstate*2);      maxmax=0.;
     gm=matrix(0,nhstepm,1,nlstate*2);      for(j=1;j<=nlstate;j++){
         min=1.;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        max=0.;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for(i=1; i<=nlstate; i++) {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           max=FMAX(max,prlim[i][j]);
     /* Computing Variances of health expectancies */          min=FMIN(min,prlim[i][j]);
         }
      for(theta=1; theta <=npar; theta++){        maxmin=max-min;
       for(i=1; i<=npar; i++){        maxmax=FMAX(maxmax,maxmin);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* j loop */
       }      if(maxmax < ftolpl){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          return prlim;
        }
       cptj=0;    } /* age loop */
       for(j=1; j<= nlstate; j++){    return prlim; /* should not reach here */
         for(i=1; i<=nlstate; i++){  }
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  /*************** transition probabilities ***************/ 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         }  {
       }    /* According to parameters values stored in x and the covariate's values stored in cov,
             computes the probability to be observed in state j being in state i by appying the
             model to the ncovmodel covariates (including constant and age).
       for(i=1; i<=npar; i++)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         ncth covariate in the global vector x is given by the formula:
             j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
       cptj=0;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       for(j=1; j<= nlstate; j++){       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
         for(i=1;i<=nlstate;i++){       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
           cptj=cptj+1;       Outputs ps[i][j] the probability to be observed in j being in j according to
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    */
           }    double s1, lnpijopii;
         }    /*double t34;*/
       }    int i,j, nc, ii, jj;
        
          for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
       for(j=1; j<= nlstate*2; j++)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         for(h=0; h<=nhstepm-1; h++){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         }  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }
      }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
      /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 /* End theta */        }
         for(j=i+1; j<=nlstate+ndeath;j++){
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
      for(h=0; h<=nhstepm-1; h++)            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       for(j=1; j<=nlstate*2;j++)  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         for(theta=1; theta <=npar; theta++)          }
         trgradg[h][j][theta]=gradg[h][theta][j];          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }
       }
      for(i=1;i<=nlstate*2;i++)      
       for(j=1;j<=nlstate*2;j++)      for(i=1; i<= nlstate; i++){
         varhe[i][j][(int)age] =0.;        s1=0;
         for(j=1; j<i; j++){
      printf("%d|",(int)age);fflush(stdout);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     for(h=0;h<=nhstepm-1;h++){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(k=0;k<=nhstepm-1;k++){        }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        for(j=i+1; j<=nlstate+ndeath; j++){
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(i=1;i<=nlstate*2;i++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           for(j=1;j<=nlstate*2;j++)        }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       }        ps[i][i]=1./(s1+1.);
     }        /* Computing other pijs */
         for(j=1; j<i; j++)
                ps[i][j]= exp(ps[i][j])*ps[i][i];
     /* Computing expectancies */        for(j=i+1; j<=nlstate+ndeath; j++)
     for(i=1; i<=nlstate;i++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=1; j<=nlstate;j++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      } /* end i */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      
                for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
         }          ps[ii][ii]=1;
         }
     fprintf(ficreseij,"%3.0f",age );      }
     cptj=0;      
     for(i=1; i<=nlstate;i++)      
       for(j=1; j<=nlstate;j++){      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         cptj++;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       }      /*   } */
     fprintf(ficreseij,"\n");      /*   printf("\n "); */
          /* } */
     free_matrix(gm,0,nhstepm,1,nlstate*2);      /* printf("\n ");printf("%lf ",cov[2]);*/
     free_matrix(gp,0,nhstepm,1,nlstate*2);      /*
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        goto end;*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      return ps;
   }  }
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);  /**************** Product of 2 matrices ******************/
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 /************ Variance ******************/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    /* in, b, out are matrice of pointers which should have been initialized 
 {       before: only the contents of out is modified. The function returns
   /* Variance of health expectancies */       a pointer to pointers identical to out */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i, j, k;
   double **newm;    for(i=nrl; i<= nrh; i++)
   double **dnewm,**doldm;      for(k=ncolol; k<=ncoloh; k++){
   int i, j, nhstepm, hstepm, h, nstepm ;        out[i][k]=0.;
   int k, cptcode;        for(j=ncl; j<=nch; j++)
   double *xp;          out[i][k] +=in[i][j]*b[j][k];
   double **gp, **gm;      }
   double ***gradg, ***trgradg;    return out;
   double ***p3mat;  }
   double age,agelim, hf;  
   int theta;  
   /************* Higher Matrix Product ***************/
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    /* Computes the transition matrix starting at age 'age' over 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       'nhstepm*hstepm*stepm' months (i.e. until
   fprintf(ficresvij,"\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   xp=vector(1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   dnewm=matrix(1,nlstate,1,npar);       (typically every 2 years instead of every month which is too big 
   doldm=matrix(1,nlstate,1,nlstate);       for the memory).
         Model is determined by parameters x and covariates have to be 
   if(estepm < stepm){       included manually here. 
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }       */
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */    int i, j, d, h, k;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double **out, cov[NCOVMAX+1];
      nhstepm is the number of hstepm from age to agelim    double **newm;
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    /* Hstepm could be zero and should return the unit matrix */
      and note for a fixed period like k years */    for (i=1;i<=nlstate+ndeath;i++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (j=1;j<=nlstate+ndeath;j++){
      survival function given by stepm (the optimization length). Unfortunately it        oldm[i][j]=(i==j ? 1.0 : 0.0);
      means that if the survival funtion is printed only each two years of age and if        po[i][j][0]=(i==j ? 1.0 : 0.0);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      }
      results. So we changed our mind and took the option of the best precision.    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   */    for(h=1; h <=nhstepm; h++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for(d=1; d <=hstepm; d++){
   agelim = AGESUP;        newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /* Covariates have to be included here again */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        cov[1]=1.;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=1; k<=cptcovn;k++) 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     gp=matrix(0,nhstepm,1,nlstate);        for (k=1; k<=cptcovage;k++)
     gm=matrix(0,nhstepm,1,nlstate);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
     for(theta=1; theta <=npar; theta++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (popbased==1) {        savm=oldm;
         for(i=1; i<=nlstate;i++)        oldm=newm;
           prlim[i][i]=probs[(int)age][i][ij];      }
       }      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
       for(j=1; j<= nlstate; j++){          po[i][j][h]=newm[i][j];
         for(h=0; h<=nhstepm; h++){          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      /*printf("h=%d ",h);*/
         }    } /* end h */
       }  /*     printf("\n H=%d \n",h); */
        return po;
       for(i=1; i<=npar; i++) /* Computes gradient */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #ifdef NLOPT
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
      double fret;
       if (popbased==1) {    double *xt;
         for(i=1; i<=nlstate;i++)    int j;
           prlim[i][i]=probs[(int)age][i][ij];    myfunc_data *d2 = (myfunc_data *) pd;
       }  /* xt = (p1-1); */
     xt=vector(1,n); 
       for(j=1; j<= nlstate; j++){    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
         }    printf("Function = %.12lf ",fret);
       }    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     printf("\n");
       for(j=1; j<= nlstate; j++)   free_vector(xt,1,n);
         for(h=0; h<=nhstepm; h++){    return fret;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  }
         }  #endif
     } /* End theta */  
   /*************** log-likelihood *************/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  double func( double *x)
   {
     for(h=0; h<=nhstepm; h++)    int i, ii, j, k, mi, d, kk;
       for(j=1; j<=nlstate;j++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         for(theta=1; theta <=npar; theta++)    double **out;
           trgradg[h][j][theta]=gradg[h][theta][j];    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int s1, s2;
     for(i=1;i<=nlstate;i++)    double bbh, survp;
       for(j=1;j<=nlstate;j++)    long ipmx;
         vareij[i][j][(int)age] =0.;    /*extern weight */
     /* We are differentiating ll according to initial status */
     for(h=0;h<=nhstepm;h++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(k=0;k<=nhstepm;k++){    /*for(i=1;i<imx;i++) 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      printf(" %d\n",s[4][i]);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    */
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    ++countcallfunc;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }    cov[1]=1.;
     }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    if(mle==1){
       for(j=1; j<=nlstate;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        /* Computes the values of the ncovmodel covariates of the model
       }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     fprintf(ficresvij,"\n");           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     free_matrix(gp,0,nhstepm,1,nlstate);           to be observed in j being in i according to the model.
     free_matrix(gm,0,nhstepm,1,nlstate);         */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   } /* End age */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
             is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   free_vector(xp,1,npar);           has been calculated etc */
   free_matrix(doldm,1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   free_matrix(dnewm,1,nlstate,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance of prevlim ******************/            }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   /* Variance of prevalence limit */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for (kk=1; kk<=cptcovage;kk++) {
   double **newm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   double **dnewm,**doldm;            }
   int i, j, nhstepm, hstepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int k, cptcode;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *xp;            savm=oldm;
   double *gp, *gm;            oldm=newm;
   double **gradg, **trgradg;          } /* end mult */
   double age,agelim;        
   int theta;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
              /* But now since version 0.9 we anticipate for bias at large stepm.
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   fprintf(ficresvpl,"# Age");           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for(i=1; i<=nlstate;i++)           * the nearest (and in case of equal distance, to the lowest) interval but now
       fprintf(ficresvpl," %1d-%1d",i,i);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   fprintf(ficresvpl,"\n");           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   xp=vector(1,npar);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   dnewm=matrix(1,nlstate,1,npar);           * -stepm/2 to stepm/2 .
   doldm=matrix(1,nlstate,1,nlstate);           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   hstepm=1*YEARM; /* Every year of age */           */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          s1=s[mw[mi][i]][i];
   agelim = AGESUP;          s2=s[mw[mi+1][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          bbh=(double)bh[mi][i]/(double)stepm; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          /* bias bh is positive if real duration
     if (stepm >= YEARM) hstepm=1;           * is higher than the multiple of stepm and negative otherwise.
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */           */
     gradg=matrix(1,npar,1,nlstate);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     gp=vector(1,nlstate);          if( s2 > nlstate){ 
     gm=vector(1,nlstate);            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
     for(theta=1; theta <=npar; theta++){               die between last step unit time and current  step unit time, 
       for(i=1; i<=npar; i++){ /* Computes gradient */               which is also equal to probability to die before dh 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);               minus probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          as if date of death was unknown. Death was treated as any other
       for(i=1;i<=nlstate;i++)          health state: the date of the interview describes the actual state
         gp[i] = prlim[i][i];          and not the date of a change in health state. The former idea was
              to consider that at each interview the state was recorded
       for(i=1; i<=npar; i++) /* Computes gradient */          (healthy, disable or death) and IMaCh was corrected; but when we
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          introduced the exact date of death then we should have modified
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          the contribution of an exact death to the likelihood. This new
       for(i=1;i<=nlstate;i++)          contribution is smaller and very dependent of the step unit
         gm[i] = prlim[i][i];          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
       for(i=1;i<=nlstate;i++)          interview up to one month before death multiplied by the
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          probability to die within a month. Thanks to Chris
     } /* End theta */          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
     trgradg =matrix(1,nlstate,1,npar);          which slows down the processing. The difference can be up to 10%
           lower mortality.
     for(j=1; j<=nlstate;j++)            */
       for(theta=1; theta <=npar; theta++)            lli=log(out[s1][s2] - savm[s1][s2]);
         trgradg[j][theta]=gradg[theta][j];  
   
     for(i=1;i<=nlstate;i++)          } else if  (s2==-2) {
       varpl[i][(int)age] =0.;            for (j=1,survp=0. ; j<=nlstate; j++) 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            /*survp += out[s1][j]; */
     for(i=1;i<=nlstate;i++)            lli= log(survp);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          }
           
     fprintf(ficresvpl,"%.0f ",age );          else if  (s2==-4) { 
     for(i=1; i<=nlstate;i++)            for (j=3,survp=0. ; j<=nlstate; j++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fprintf(ficresvpl,"\n");            lli= log(survp); 
     free_vector(gp,1,nlstate);          } 
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);          else if  (s2==-5) { 
     free_matrix(trgradg,1,nlstate,1,npar);            for (j=1,survp=0. ; j<=2; j++)  
   } /* End age */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   free_vector(xp,1,npar);          } 
   free_matrix(doldm,1,nlstate,1,npar);          
   free_matrix(dnewm,1,nlstate,1,nlstate);          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
 /************ Variance of one-step probabilities  ******************/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          /*if(lli ==000.0)*/
 {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int i, j, i1, k1, j1, z1;          ipmx +=1;
   int k=0, cptcode;          sw += weight[i];
   double **dnewm,**doldm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *xp;        } /* end of wave */
   double *gp, *gm;      } /* end of individual */
   double **gradg, **trgradg;    }  else if(mle==2){
   double age,agelim, cov[NCOVMAX];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int theta;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char fileresprob[FILENAMELENGTH];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   strcpy(fileresprob,"prob");            for (j=1;j<=nlstate+ndeath;j++){
   strcat(fileresprob,fileres);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with resultfile: %s\n", fileresprob);            }
   }          for(d=0; d<=dh[mi][i]; d++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresprob,"# Age");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=nlstate;i++)            }
     for(j=1; j<=(nlstate+ndeath);j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
   fprintf(ficresprob,"\n");          } /* end mult */
         
           s1=s[mw[mi][i]][i];
   xp=vector(1,npar);          s2=s[mw[mi+1][i]][i];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            ipmx +=1;
   cov[1]=1;          sw += weight[i];
   j=cptcoveff;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        } /* end of wave */
   j1=0;      } /* end of individual */
   for(k1=1; k1<=1;k1++){    }  else if(mle==3){  /* exponential inter-extrapolation */
     for(i1=1; i1<=ncodemax[k1];i1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     j1++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     if  (cptcovn>0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficresprob, "\n#********** Variable ");            for (j=1;j<=nlstate+ndeath;j++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresprob, "**********\n#");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
              for(d=0; d<dh[mi][i]; d++){
       for (age=bage; age<=fage; age ++){            newm=savm;
         cov[2]=age;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) {            for (kk=1; kk<=cptcovage;kk++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                      }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (k=1; k<=cptcovprod;k++)            savm=oldm;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            oldm=newm;
                  } /* end mult */
         gradg=matrix(1,npar,1,9);        
         trgradg=matrix(1,9,1,npar);          s1=s[mw[mi][i]][i];
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          s2=s[mw[mi+1][i]][i];
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          bbh=(double)bh[mi][i]/(double)stepm; 
              lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(theta=1; theta <=npar; theta++){          ipmx +=1;
           for(i=1; i<=npar; i++)          sw += weight[i];
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  } /* end of wave */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      } /* end of individual */
              }else if (mle==4){  /* ml=4 no inter-extrapolation */
           k=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(i=1; i<= (nlstate+ndeath); i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             for(j=1; j<=(nlstate+ndeath);j++){        for(mi=1; mi<= wav[i]-1; mi++){
               k=k+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
               gp[k]=pmmij[i][j];            for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                      }
           for(i=1; i<=npar; i++)          for(d=0; d<dh[mi][i]; d++){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
           k=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(i=1; i<=(nlstate+ndeath); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){          
               k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               gm[k]=pmmij[i][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             }            savm=oldm;
           }            oldm=newm;
                } /* end mult */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            lli=log(out[s1][s2] - savm[s1][s2]);
           for(theta=1; theta <=npar; theta++)          }else{
             trgradg[j][theta]=gradg[theta][j];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                  }
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          ipmx +=1;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         pmij(pmmij,cov,ncovmodel,x,nlstate);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                } /* end of wave */
         k=0;      } /* end of individual */
         for(i=1; i<=(nlstate+ndeath); i++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           for(j=1; j<=(nlstate+ndeath);j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             k=k+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             gm[k]=pmmij[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      /*printf("\n%d ",(int)age);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(d=0; d<dh[mi][i]; d++){
      }*/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficresprob,"\n%d ",(int)age);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            }
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            oldm=newm;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          } /* end mult */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   free_vector(xp,1,npar);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fclose(ficresprob);          ipmx +=1;
            sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 /******************* Printing html file ***********/        } /* end of wave */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      } /* end of individual */
                   int lastpass, int stepm, int weightopt, char model[],\    } /* End of if */
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   char version[], int popforecast, int estepm ,/* \ */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   double jprev1, double mprev1,double anprev1, \    return -l;
                   double jprev2, double mprev2,double anprev2){  }
   int jj1, k1, i1, cpt;  
   FILE *fichtm;  /*************** log-likelihood *************/
   /*char optionfilehtm[FILENAMELENGTH];*/  double funcone( double *x)
   {
   strcpy(optionfilehtm,optionfile);    /* Same as likeli but slower because of a lot of printf and if */
   strcat(optionfilehtm,".htm");    int i, ii, j, k, mi, d, kk;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     printf("Problem with %s \n",optionfilehtm), exit(0);    double **out;
   }    double lli; /* Individual log likelihood */
     double llt;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    int s1, s2;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    double bbh, survp;
 \n    /*extern weight */
 Total number of observations=%d <br>\n    /* We are differentiating ll according to initial status */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 <hr  size=\"2\" color=\"#EC5E5E\">    /*for(i=1;i<imx;i++) 
  <ul><li>Parameter files<br>\n      printf(" %d\n",s[4][i]);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    cov[1]=1.;
   
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    for(k=1; k<=nlstate; k++) ll[k]=0.;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  - Life expectancies by age and initial health status (estepm=%2d months):      for(mi=1; mi<= wav[i]-1; mi++){
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        for (ii=1;ii<=nlstate+ndeath;ii++)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n            savm[ii][j]=(ii==j ? 1.0 : 0.0);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        for(d=0; d<dh[mi][i]; d++){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          newm=savm;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  if(popforecast==1) fprintf(fichtm,"\n          }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         <br>",fileres,fileres,fileres,fileres);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  else          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 fprintf(fichtm," <li>Graphs</li><p>");          savm=oldm;
           oldm=newm;
  m=cptcoveff;        } /* end mult */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        
         s1=s[mw[mi][i]][i];
  jj1=0;        s2=s[mw[mi+1][i]][i];
  for(k1=1; k1<=m;k1++){        bbh=(double)bh[mi][i]/(double)stepm; 
    for(i1=1; i1<=ncodemax[k1];i1++){        /* bias is positive if real duration
        jj1++;         * is higher than the multiple of stepm and negative otherwise.
        if (cptcovn > 0) {         */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
          for (cpt=1; cpt<=cptcoveff;cpt++)          lli=log(out[s1][s2] - savm[s1][s2]);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        } else if  (s2==-2) {
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for (j=1,survp=0. ; j<=nlstate; j++) 
        }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
        /* Pij */          lli= log(survp);
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        }else if (mle==1){
 <img src=\"pe%s%d1.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        /* Quasi-incidences */        } else if(mle==2){
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 <img src=\"pe%s%d2.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);            } else if(mle==3){  /* exponential inter-extrapolation */
        /* Stable prevalence in each health state */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
        for(cpt=1; cpt<nlstate;cpt++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          lli=log(out[s1][s2]); /* Original formula */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        } else{  /* mle=0 back to 1 */
        }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(cpt=1; cpt<=nlstate;cpt++) {          /*lli=log(out[s1][s2]); */ /* Original formula */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        } /* End of if */
 interval) in state (%d): v%s%d%d.png <br>        ipmx +=1;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          sw += weight[i];
      }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      for(cpt=1; cpt<=nlstate;cpt++) {        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        if(globpr){
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
      }   %11.6f %11.6f %11.6f ", \
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 health expectancies in states (1) and (2): e%s%d.png<br>                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 fprintf(fichtm,"\n</body>");            llt +=ll[k]*gipmx/gsw;
    }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
    }          }
 fclose(fichtm);          fprintf(ficresilk," %10.6f\n", -llt);
 }        }
       } /* end of wave */
 /******************* Gnuplot file **************/    } /* end of individual */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int ng;    if(globpr==0){ /* First time we count the contributions and weights */
   strcpy(optionfilegnuplot,optionfilefiname);      gipmx=ipmx;
   strcat(optionfilegnuplot,".gp.txt");      gsw=sw;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    }
     printf("Problem with file %s",optionfilegnuplot);    return -l;
   }  }
   
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);  /*************** function likelione ***********/
 #endif  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 m=pow(2,cptcoveff);  {
      /* This routine should help understanding what is done with 
  /* 1eme*/       the selection of individuals/waves and
   for (cpt=1; cpt<= nlstate ; cpt ++) {       to check the exact contribution to the likelihood.
    for (k1=1; k1<= m ; k1 ++) {       Plotting could be done.
      */
 #ifdef windows    int k;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    if(*globpri !=0){ /* Just counts and sums, no printings */
 #endif      strcpy(fileresilk,"ilk"); 
 #ifdef unix      strcat(fileresilk,fileres);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        printf("Problem with resultfile: %s\n", fileresilk);
 #endif        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
 for (i=1; i<= nlstate ; i ++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 }      for(k=1; k<=nlstate; k++) 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for (i=1; i<= nlstate ; i ++) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    *fretone=(*funcone)(p);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    if(*globpri !=0){
      for (i=1; i<= nlstate ; i ++) {      fclose(ficresilk);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fflush(fichtm); 
 }      } 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    return;
 #ifdef unix  }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif  
    }  /*********** Maximum Likelihood Estimation ***************/
   }  
   /*2 eme*/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
   for (k1=1; k1<= m ; k1 ++) {    int i,j, iter=0;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    double **xi;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    double fret;
        double fretone; /* Only one call to likelihood */
     for (i=1; i<= nlstate+1 ; i ++) {    /*  char filerespow[FILENAMELENGTH];*/
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  #ifdef NLOPT
       for (j=1; j<= nlstate+1 ; j ++) {    int creturn;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    nlopt_opt opt;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 }      double *lb;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double minf; /* the minimum objective value, upon return */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double * p1; /* Shifted parameters from 0 instead of 1 */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    myfunc_data dinst, *d = &dinst;
       for (j=1; j<= nlstate+1 ; j ++) {  #endif
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      xi=matrix(1,npar,1,npar);
       fprintf(ficgp,"\" t\"\" w l 0,");    for (i=1;i<=npar;i++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      for (j=1;j<=npar;j++)
       for (j=1; j<= nlstate+1 ; j ++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(filerespow,"pow"); 
 }      strcat(filerespow,fileres);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       else fprintf(ficgp,"\" t\"\" w l 0,");      printf("Problem with resultfile: %s\n", filerespow);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }    }
      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   /*3eme*/    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
   for (k1=1; k1<= m ; k1 ++) {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficrespow,"\n");
       k=2+nlstate*(2*cpt-2);  #ifdef POWELL
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    powell(p,xi,npar,ftol,&iter,&fret,func);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  #endif
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  #ifdef NLOPT
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  #ifdef NEWUOA
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  #else
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   #endif
 */    lb=vector(0,npar-1);
       for (i=1; i< nlstate ; i ++) {    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    nlopt_set_lower_bounds(opt, lb);
     nlopt_set_initial_step1(opt, 0.1);
       }    
     }    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   }    d->function = func;
      printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   /* CV preval stat */    nlopt_set_min_objective(opt, myfunc, d);
     for (k1=1; k1<= m ; k1 ++) {    nlopt_set_xtol_rel(opt, ftol);
     for (cpt=1; cpt<nlstate ; cpt ++) {    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       k=3;      printf("nlopt failed! %d\n",creturn); 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    else {
       printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       for (i=1; i< nlstate ; i ++)      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
         fprintf(ficgp,"+$%d",k+i+1);      iter=1; /* not equal */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          nlopt_destroy(opt);
       l=3+(nlstate+ndeath)*cpt;  #endif
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    free_matrix(xi,1,npar,1,npar);
       for (i=1; i< nlstate ; i ++) {    fclose(ficrespow);
         l=3+(nlstate+ndeath)*cpt;    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         fprintf(ficgp,"+$%d",l+i+1);    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       }    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
     }  }
   }    
    /**** Computes Hessian and covariance matrix ***/
   /* proba elementaires */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    for(i=1,jk=1; i <=nlstate; i++){  {
     for(k=1; k <=(nlstate+ndeath); k++){    double  **a,**y,*x,pd;
       if (k != i) {    double **hess;
         for(j=1; j <=ncovmodel; j++){    int i, j;
            int *indx;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           fprintf(ficgp,"\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         }    void lubksb(double **a, int npar, int *indx, double b[]) ;
       }    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }    double gompertz(double p[]);
    }    hess=matrix(1,npar,1,npar);
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    printf("\nCalculation of the hessian matrix. Wait...\n");
      for(jk=1; jk <=m; jk++) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    for (i=1;i<=npar;i++){
        if (ng==2)      printf("%d",i);fflush(stdout);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
        else     
          fprintf(ficgp,"\nset title \"Probability\"\n");       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      
        i=1;      /*  printf(" %f ",p[i]);
        for(k2=1; k2<=nlstate; k2++) {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
          k3=i;    }
          for(k=1; k<=(nlstate+ndeath); k++) {    
            if (k != k2){    for (i=1;i<=npar;i++) {
              if(ng==2)      for (j=1;j<=npar;j++)  {
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);        if (j>i) { 
              else          printf(".%d%d",i,j);fflush(stdout);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
              ij=1;          hess[i][j]=hessij(p,delti,i,j,func,npar);
              for(j=3; j <=ncovmodel; j++) {          
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          hess[j][i]=hess[i][j];    
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          /*printf(" %lf ",hess[i][j]);*/
                  ij++;        }
                }      }
                else    }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    printf("\n");
              }    fprintf(ficlog,"\n");
              fprintf(ficgp,")/(1");  
                  printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
              for(k1=1; k1 <=nlstate; k1++){      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    
                ij=1;    a=matrix(1,npar,1,npar);
                for(j=3; j <=ncovmodel; j++){    y=matrix(1,npar,1,npar);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    x=vector(1,npar);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    indx=ivector(1,npar);
                    ij++;    for (i=1;i<=npar;i++)
                  }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                  else    ludcmp(a,npar,indx,&pd);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }    for (j=1;j<=npar;j++) {
                fprintf(ficgp,")");      for (i=1;i<=npar;i++) x[i]=0;
              }      x[j]=1;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      lubksb(a,npar,indx,x);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for (i=1;i<=npar;i++){ 
              i=i+ncovmodel;        matcov[i][j]=x[i];
            }      }
          }    }
        }  
      }    printf("\n#Hessian matrix#\n");
    }    fprintf(ficlog,"\n#Hessian matrix#\n");
    fclose(ficgp);    for (i=1;i<=npar;i++) { 
 }  /* end gnuplot */      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
 /*************** Moving average **************/      }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      printf("\n");
       fprintf(ficlog,"\n");
   int i, cpt, cptcod;    }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)    /* Recompute Inverse */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    for (i=1;i<=npar;i++)
           mobaverage[(int)agedeb][i][cptcod]=0.;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
        ludcmp(a,npar,indx,&pd);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){    /*  printf("\n#Hessian matrix recomputed#\n");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){    for (j=1;j<=npar;j++) {
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for (i=1;i<=npar;i++) x[i]=0;
           }      x[j]=1;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
       }        y[i][j]=x[i];
     }        printf("%.3e ",y[i][j]);
            fprintf(ficlog,"%.3e ",y[i][j]);
 }      }
       printf("\n");
       fprintf(ficlog,"\n");
 /************** Forecasting ******************/    }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    */
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    free_matrix(a,1,npar,1,npar);
   int *popage;    free_matrix(y,1,npar,1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_vector(x,1,npar);
   double *popeffectif,*popcount;    free_ivector(indx,1,npar);
   double ***p3mat;    free_matrix(hess,1,npar,1,npar);
   char fileresf[FILENAMELENGTH];  
   
  agelim=AGESUP;  }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
   /*************** hessian matrix ****************/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
      int i;
   strcpy(fileresf,"f");    int l=1, lmax=20;
   strcat(fileresf,fileres);    double k1,k2;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double p2[MAXPARM+1]; /* identical to x */
     printf("Problem with forecast resultfile: %s\n", fileresf);    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double fx;
     int k=0,kmax=10;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double l1;
   
   if (mobilav==1) {    fx=func(x);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=1;i<=npar;i++) p2[i]=x[i];
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   }      l1=pow(10,l);
       delts=delt;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(k=1 ; k <kmax; k=k+1){
   if (stepm<=12) stepsize=1;        delt = delta*(l1*k);
          p2[theta]=x[theta] +delt;
   agelim=AGESUP;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
          p2[theta]=x[theta]-delt;
   hstepm=1;        k2=func(p2)-fx;
   hstepm=hstepm/stepm;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   yp1=modf(dateintmean,&yp);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   anprojmean=yp;        
   yp2=modf((yp1*12),&yp);  #ifdef DEBUGHESS
   mprojmean=yp;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   yp1=modf((yp2*30.5),&yp);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   jprojmean=yp;  #endif
   if(jprojmean==0) jprojmean=1;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   if(mprojmean==0) jprojmean=1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            k=kmax;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        }
          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   for(cptcov=1;cptcov<=i2;cptcov++){          k=kmax; l=lmax*10;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       fprintf(ficresf,"\n#******");          delts=delt;
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       }    }
       fprintf(ficresf,"******\n");    delti[theta]=delts;
       fprintf(ficresf,"# StartingAge FinalAge");    return res; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    
        }
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         fprintf(ficresf,"\n");  {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      int i;
     int l=1, lmax=20;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double k1,k2,k3,k4,res,fx;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double p2[MAXPARM+1];
           nhstepm = nhstepm/hstepm;    int k;
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fx=func(x);
           oldm=oldms;savm=savms;    for (k=1; k<=2; k++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (i=1;i<=npar;i++) p2[i]=x[i];
              p2[thetai]=x[thetai]+delti[thetai]/k;
           for (h=0; h<=nhstepm; h++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             if (h==(int) (calagedate+YEARM*cpt)) {      k1=func(p2)-fx;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    
             }      p2[thetai]=x[thetai]+delti[thetai]/k;
             for(j=1; j<=nlstate+ndeath;j++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               kk1=0.;kk2=0;      k2=func(p2)-fx;
               for(i=1; i<=nlstate;i++) {                  
                 if (mobilav==1)      p2[thetai]=x[thetai]-delti[thetai]/k;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                 else {      k3=func(p2)-fx;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }      p2[thetai]=x[thetai]-delti[thetai]/k;
                      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               }      k4=func(p2)-fx;
               if (h==(int)(calagedate+12*cpt)){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                 fprintf(ficresf," %.3f", kk1);  #ifdef DEBUG
                              printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             }  #endif
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return res;
         }  }
       }  
     }  /************** Inverse of matrix **************/
   }  void ludcmp(double **a, int n, int *indx, double *d) 
          { 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i,imax,j,k; 
     double big,dum,sum,temp; 
   fclose(ficresf);    double *vv; 
 }   
 /************** Forecasting ******************/    vv=vector(1,n); 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    *d=1.0; 
      for (i=1;i<=n;i++) { 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      big=0.0; 
   int *popage;      for (j=1;j<=n;j++) 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   double *popeffectif,*popcount;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double ***p3mat,***tabpop,***tabpopprev;      vv[i]=1.0/big; 
   char filerespop[FILENAMELENGTH];    } 
     for (j=1;j<=n;j++) { 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1;i<j;i++) { 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        sum=a[i][j]; 
   agelim=AGESUP;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        a[i][j]=sum; 
        } 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      big=0.0; 
        for (i=j;i<=n;i++) { 
          sum=a[i][j]; 
   strcpy(filerespop,"pop");        for (k=1;k<j;k++) 
   strcat(filerespop,fileres);          sum -= a[i][k]*a[k][j]; 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        a[i][j]=sum; 
     printf("Problem with forecast resultfile: %s\n", filerespop);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   }          big=dum; 
   printf("Computing forecasting: result on file '%s' \n", filerespop);          imax=i; 
         } 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      } 
       if (j != imax) { 
   if (mobilav==1) {        for (k=1;k<=n;k++) { 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          dum=a[imax][k]; 
     movingaverage(agedeb, fage, ageminpar, mobaverage);          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
         } 
   stepsize=(int) (stepm+YEARM-1)/YEARM;        *d = -(*d); 
   if (stepm<=12) stepsize=1;        vv[imax]=vv[j]; 
        } 
   agelim=AGESUP;      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   hstepm=1;      if (j != n) { 
   hstepm=hstepm/stepm;        dum=1.0/(a[j][j]); 
          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   if (popforecast==1) {      } 
     if((ficpop=fopen(popfile,"r"))==NULL) {    } 
       printf("Problem with population file : %s\n",popfile);exit(0);    free_vector(vv,1,n);  /* Doesn't work */
     }  ;
     popage=ivector(0,AGESUP);  } 
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);  void lubksb(double **a, int n, int *indx, double b[]) 
      { 
     i=1;      int i,ii=0,ip,j; 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double sum; 
       
     imx=i;    for (i=1;i<=n;i++) { 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      ip=indx[i]; 
   }      sum=b[ip]; 
       b[ip]=b[i]; 
   for(cptcov=1;cptcov<=i2;cptcov++){      if (ii) 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       k=k+1;      else if (sum) ii=i; 
       fprintf(ficrespop,"\n#******");      b[i]=sum; 
       for(j=1;j<=cptcoveff;j++) {    } 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
       fprintf(ficrespop,"******\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficrespop,"# Age");      b[i]=sum/a[i][i]; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    } 
       if (popforecast==1)  fprintf(ficrespop," [Population]");  } 
        
       for (cpt=0; cpt<=0;cpt++) {  void pstamp(FILE *fichier)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    {
            fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  /************ Frequencies ********************/
            void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {  /* Some frequencies */
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int i, m, jk, j1, bool, z1,j;
            int first;
           for (h=0; h<=nhstepm; h++){    double ***freq; /* Frequencies */
             if (h==(int) (calagedate+YEARM*cpt)) {    double *pp, **prop;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             }    char fileresp[FILENAMELENGTH];
             for(j=1; j<=nlstate+ndeath;j++) {    
               kk1=0.;kk2=0;    pp=vector(1,nlstate);
               for(i=1; i<=nlstate;i++) {                  prop=matrix(1,nlstate,iagemin,iagemax+3);
                 if (mobilav==1)    strcpy(fileresp,"p");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    strcat(fileresp,fileres);
                 else {    if((ficresp=fopen(fileresp,"w"))==NULL) {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      printf("Problem with prevalence resultfile: %s\n", fileresp);
                 }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
               }      exit(0);
               if (h==(int)(calagedate+12*cpt)){    }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
                   /*fprintf(ficrespop," %.3f", kk1);    j1=0;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    
               }    j=cptcoveff;
             }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             for(i=1; i<=nlstate;i++){  
               kk1=0.;    first=1;
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
                 }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /*    j1++; */
             }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          scanf("%d", i);*/
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        for (i=-5; i<=nlstate+ndeath; i++)  
           }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=iagemin; m <= iagemax+3; m++)
         }              freq[i][jk][m]=0;
       }        
          for (i=1; i<=nlstate; i++)  
   /******/          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          dateintsum=0;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        k2cpt=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for (i=1; i<=imx; i++) {
           nhstepm = nhstepm/hstepm;          bool=1;
                    if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (z1=1; z1<=cptcoveff; z1++)       
           oldm=oldms;savm=savms;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                    /* Tests if the value of each of the covariates of i is equal to filter j1 */
           for (h=0; h<=nhstepm; h++){                bool=0;
             if (h==(int) (calagedate+YEARM*cpt)) {                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
             }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
             for(j=1; j<=nlstate+ndeath;j++) {                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
               kk1=0.;kk2=0;              } 
               for(i=1; i<=nlstate;i++) {                        }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       
               }          if (bool==1){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            for(m=firstpass; m<=lastpass; m++){
             }              k2=anint[m][i]+(mint[m][i]/12.);
           }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
    }                if (m<lastpass) {
   }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                    freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                }
                 
   if (popforecast==1) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     free_ivector(popage,0,AGESUP);                  dateintsum=dateintsum+k2;
     free_vector(popeffectif,0,AGESUP);                  k2cpt++;
     free_vector(popcount,0,AGESUP);                }
   }                /*}*/
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   fclose(ficrespop);        } /* end i */
 }         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 /***********************************************/        pstamp(ficresp);
 /**************** Main Program *****************/        if  (cptcovn>0) {
 /***********************************************/          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 int main(int argc, char *argv[])          fprintf(ficresp, "**********\n#");
 {          fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          fprintf(ficlog, "**********\n#");
   double agedeb, agefin,hf;        }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double fret;        fprintf(ficresp, "\n");
   double **xi,tmp,delta;        
         for(i=iagemin; i <= iagemax+3; i++){
   double dum; /* Dummy variable */          if(i==iagemax+3){
   double ***p3mat;            fprintf(ficlog,"Total");
   int *indx;          }else{
   char line[MAXLINE], linepar[MAXLINE];            if(first==1){
   char title[MAXLINE];              first=0;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];              printf("See log file for details...\n");
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            }
              fprintf(ficlog,"Age %d", i);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          }
           for(jk=1; jk <=nlstate ; jk++){
   char filerest[FILENAMELENGTH];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   char fileregp[FILENAMELENGTH];              pp[jk] += freq[jk][m][i]; 
   char popfile[FILENAMELENGTH];          }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          for(jk=1; jk <=nlstate ; jk++){
   int firstobs=1, lastobs=10;            for(m=-1, pos=0; m <=0 ; m++)
   int sdeb, sfin; /* Status at beginning and end */              pos += freq[jk][m][i];
   int c,  h , cpt,l;            if(pp[jk]>=1.e-10){
   int ju,jl, mi;              if(first==1){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              }
   int mobilav=0,popforecast=0;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int hstepm, nhstepm;            }else{
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double bage, fage, age, agelim, agebase;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double ftolpl=FTOL;            }
   double **prlim;          }
   double *severity;  
   double ***param; /* Matrix of parameters */          for(jk=1; jk <=nlstate ; jk++){
   double  *p;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double **matcov; /* Matrix of covariance */              pp[jk] += freq[jk][m][i];
   double ***delti3; /* Scale */          }       
   double *delti; /* Scale */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double ***eij, ***vareij;            pos += pp[jk];
   double **varpl; /* Variances of prevalence limits by age */            posprop += prop[jk][i];
   double *epj, vepp;          }
   double kk1, kk2;          for(jk=1; jk <=nlstate ; jk++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            if(pos>=1.e-5){
                if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   char version[80]="Imach version 0.8e, May 2002, INED-EUROREVES ";              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   char *alph[]={"a","a","b","c","d","e"}, str[4];            }else{
               if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   char z[1]="c", occ;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 #include <sys/time.h>            }
 #include <time.h>            if( i <= iagemax){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              if(pos>=1.e-5){
                  fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   /* long total_usecs;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   struct timeval start_time, end_time;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              else
   getcwd(pathcd, size);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
   printf("\n%s",version);          }
   if(argc <=1){          
     printf("\nEnter the parameter file name: ");          for(jk=-1; jk <=nlstate+ndeath; jk++)
     scanf("%s",pathtot);            for(m=-1; m <=nlstate+ndeath; m++)
   }              if(freq[jk][m][i] !=0 ) {
   else{              if(first==1)
     strcpy(pathtot,argv[1]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/              }
   /*cygwin_split_path(pathtot,path,optionfile);          if(i <= iagemax)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            fprintf(ficresp,"\n");
   /* cutv(path,optionfile,pathtot,'\\');*/          if(first==1)
             printf("Others in log...\n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          fprintf(ficlog,"\n");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        }
   chdir(path);        /*}*/
   replace(pathc,path);    }
     dateintmean=dateintsum/k2cpt; 
 /*-------- arguments in the command line --------*/   
     fclose(ficresp);
   strcpy(fileres,"r");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   strcat(fileres, optionfilefiname);    free_vector(pp,1,nlstate);
   strcat(fileres,".txt");    /* Other files have txt extension */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   /*---------arguments file --------*/  }
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /************ Prevalence ********************/
     printf("Problem with optionfile %s\n",optionfile);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     goto end;  {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcpy(filereso,"o");       We still use firstpass and lastpass as another selection.
   strcat(filereso,fileres);    */
   if((ficparo=fopen(filereso,"w"))==NULL) {   
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    int i, m, jk, j1, bool, z1,j;
   }  
     double **prop;
   /* Reads comments: lines beginning with '#' */    double posprop; 
   while((c=getc(ficpar))=='#' && c!= EOF){    double  y2; /* in fractional years */
     ungetc(c,ficpar);    int iagemin, iagemax;
     fgets(line, MAXLINE, ficpar);    int first; /** to stop verbosity which is redirected to log file */
     puts(line);  
     fputs(line,ficparo);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   ungetc(c,ficpar);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    j1=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    
 while((c=getc(ficpar))=='#' && c!= EOF){    /*j=cptcoveff;*/
     ungetc(c,ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fgets(line, MAXLINE, ficpar);    
     puts(line);    first=1;
     fputs(line,ficparo);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   }      /*for(i1=1; i1<=ncodemax[k1];i1++){
   ungetc(c,ficpar);        j1++;*/
          
            for (i=1; i<=nlstate; i++)  
   covar=matrix(0,NCOVMAX,1,n);          for(m=iagemin; m <= iagemax+3; m++)
   cptcovn=0;            prop[i][m]=0.0;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       
         for (i=1; i<=imx; i++) { /* Each individual */
   ncovmodel=2+cptcovn;          bool=1;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++) 
   /* Read guess parameters */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /* Reads comments: lines beginning with '#' */                bool=0;
   while((c=getc(ficpar))=='#' && c!= EOF){          } 
     ungetc(c,ficpar);          if (bool==1) { 
     fgets(line, MAXLINE, ficpar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     puts(line);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     fputs(line,ficparo);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   ungetc(c,ficpar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     for(i=1; i <=nlstate; i++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     for(j=1; j <=nlstate+ndeath-1; j++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fscanf(ficpar,"%1d%1d",&i1,&j1);                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficparo,"%1d%1d",i1,j1);                } 
       printf("%1d%1d",i,j);              }
       for(k=1; k<=ncovmodel;k++){            } /* end selection of waves */
         fscanf(ficpar," %lf",&param[i][j][k]);          }
         printf(" %lf",param[i][j][k]);        }
         fprintf(ficparo," %lf",param[i][j][k]);        for(i=iagemin; i <= iagemax+3; i++){  
       }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       fscanf(ficpar,"\n");            posprop += prop[jk][i]; 
       printf("\n");          } 
       fprintf(ficparo,"\n");          
     }          for(jk=1; jk <=nlstate ; jk++){     
              if( i <=  iagemax){ 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   p=param[1][1];              } else{
                  if(first==1){
   /* Reads comments: lines beginning with '#' */                  first=0;
   while((c=getc(ficpar))=='#' && c!= EOF){                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     ungetc(c,ficpar);                }
     fgets(line, MAXLINE, ficpar);              }
     puts(line);            } 
     fputs(line,ficparo);          }/* end jk */ 
   }        }/* end i */ 
   ungetc(c,ficpar);      /*} *//* end i1 */
     } /* end j1 */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   for(i=1; i <=nlstate; i++){    /*free_vector(pp,1,nlstate);*/
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fscanf(ficpar,"%1d%1d",&i1,&j1);  }  /* End of prevalence */
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);  /************* Waves Concatenation ***************/
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         printf(" %le",delti3[i][j][k]);  {
         fprintf(ficparo," %le",delti3[i][j][k]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
       fscanf(ficpar,"\n");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       printf("\n");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       fprintf(ficparo,"\n");       and mw[mi+1][i]. dh depends on stepm.
     }       */
   }  
   delti=delti3[1][1];    int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   /* Reads comments: lines beginning with '#' */       double sum=0., jmean=0.;*/
   while((c=getc(ficpar))=='#' && c!= EOF){    int first;
     ungetc(c,ficpar);    int j, k=0,jk, ju, jl;
     fgets(line, MAXLINE, ficpar);    double sum=0.;
     puts(line);    first=0;
     fputs(line,ficparo);    jmin=100000;
   }    jmax=-1;
   ungetc(c,ficpar);    jmean=0.;
      for(i=1; i<=imx; i++){
   matcov=matrix(1,npar,1,npar);      mi=0;
   for(i=1; i <=npar; i++){      m=firstpass;
     fscanf(ficpar,"%s",&str);      while(s[m][i] <= nlstate){
     printf("%s",str);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     fprintf(ficparo,"%s",str);          mw[++mi][i]=m;
     for(j=1; j <=i; j++){        if(m >=lastpass)
       fscanf(ficpar," %le",&matcov[i][j]);          break;
       printf(" %.5le",matcov[i][j]);        else
       fprintf(ficparo," %.5le",matcov[i][j]);          m++;
     }      }/* end while */
     fscanf(ficpar,"\n");      if (s[m][i] > nlstate){
     printf("\n");        mi++;     /* Death is another wave */
     fprintf(ficparo,"\n");        /* if(mi==0)  never been interviewed correctly before death */
   }           /* Only death is a correct wave */
   for(i=1; i <=npar; i++)        mw[mi][i]=m;
     for(j=i+1;j<=npar;j++)      }
       matcov[i][j]=matcov[j][i];  
          wav[i]=mi;
   printf("\n");      if(mi==0){
         nbwarn++;
         if(first==0){
     /*-------- Rewriting paramater file ----------*/          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
      strcpy(rfileres,"r");    /* "Rparameterfile */          first=1;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }
      strcat(rfileres,".");    /* */        if(first==1){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     if((ficres =fopen(rfileres,"w"))==NULL) {        }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      } /* end mi==0 */
     }    } /* End individuals */
     fprintf(ficres,"#%s\n",version);  
        for(i=1; i<=imx; i++){
     /*-------- data file ----------*/      for(mi=1; mi<wav[i];mi++){
     if((fic=fopen(datafile,"r"))==NULL)    {        if (stepm <=0)
       printf("Problem with datafile: %s\n", datafile);goto end;          dh[mi][i]=1;
     }        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     n= lastobs;            if (agedc[i] < 2*AGESUP) {
     severity = vector(1,maxwav);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     outcome=imatrix(1,maxwav+1,1,n);              if(j==0) j=1;  /* Survives at least one month after exam */
     num=ivector(1,n);              else if(j<0){
     moisnais=vector(1,n);                nberr++;
     annais=vector(1,n);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     moisdc=vector(1,n);                j=1; /* Temporary Dangerous patch */
     andc=vector(1,n);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     agedc=vector(1,n);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     cod=ivector(1,n);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     weight=vector(1,n);              }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              k=k+1;
     mint=matrix(1,maxwav,1,n);              if (j >= jmax){
     anint=matrix(1,maxwav,1,n);                jmax=j;
     s=imatrix(1,maxwav+1,1,n);                ijmax=i;
     adl=imatrix(1,maxwav+1,1,n);                  }
     tab=ivector(1,NCOVMAX);              if (j <= jmin){
     ncodemax=ivector(1,8);                jmin=j;
                 ijmin=i;
     i=1;              }
     while (fgets(line, MAXLINE, fic) != NULL)    {              sum=sum+j;
       if ((i >= firstobs) && (i <=lastobs)) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                      /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for (j=maxwav;j>=1;j--){            }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          }
           strcpy(line,stra);          else{
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         }  
                    k=k+1;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            if (j >= jmax) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              jmax=j;
               ijmax=i;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            else if (j <= jmin){
               jmin=j;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              ijmin=i;
         for (j=ncovcol;j>=1;j--){            }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         num[i]=atol(stra);            if(j<0){
                      nberr++;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
         i=i+1;            sum=sum+j;
       }          }
     }          jk= j/stepm;
     /* printf("ii=%d", ij);          jl= j -jk*stepm;
        scanf("%d",i);*/          ju= j -(jk+1)*stepm;
   imx=i-1; /* Number of individuals */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
   /* for (i=1; i<=imx; i++){              dh[mi][i]=jk;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              bh[mi][i]=0;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            }else{ /* We want a negative bias in order to only have interpolation ie
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                    * to avoid the price of an extra matrix product in likelihood */
     }*/              dh[mi][i]=jk+1;
    /*  for (i=1; i<=imx; i++){              bh[mi][i]=ju;
      if (s[4][i]==9)  s[4][i]=-1;            }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          }else{
              if(jl <= -ju){
                dh[mi][i]=jk;
   /* Calculation of the number of parameter from char model*/              bh[mi][i]=jl;       /* bias is positive if real duration
   Tvar=ivector(1,15);                                   * is higher than the multiple of stepm and negative otherwise.
   Tprod=ivector(1,15);                                   */
   Tvaraff=ivector(1,15);            }
   Tvard=imatrix(1,15,1,2);            else{
   Tage=ivector(1,15);                    dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
   if (strlen(model) >1){            }
     j=0, j1=0, k1=1, k2=1;            if(dh[mi][i]==0){
     j=nbocc(model,'+');              dh[mi][i]=1; /* At least one step */
     j1=nbocc(model,'*');              bh[mi][i]=ju; /* At least one step */
     cptcovn=j+1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     cptcovprod=j1;            }
              } /* end if mle */
     strcpy(modelsav,model);        }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      } /* end wave */
       printf("Error. Non available option model=%s ",model);    }
       goto end;    jmean=sum/k;
     }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     for(i=(j+1); i>=1;i--){   }
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  /*********** Tricode ****************************/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
       /*scanf("%d",i);*/  {
       if (strchr(strb,'*')) {    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
         cutv(strd,strc,strb,'*');    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         if (strcmp(strc,"age")==0) {     * Boring subroutine which should only output nbcode[Tvar[j]][k]
           cptcovprod--;     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
           cutv(strb,stre,strd,'V');     * nbcode[Tvar[j]][1]= 
           Tvar[i]=atoi(stre);    */
           cptcovage++;  
             Tage[cptcovage]=i;    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
             /*printf("stre=%s ", stre);*/    int modmaxcovj=0; /* Modality max of covariates j */
         }    int cptcode=0; /* Modality max of covariates j */
         else if (strcmp(strd,"age")==0) {    int modmincovj=0; /* Modality min of covariates j */
           cptcovprod--;  
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    cptcoveff=0; 
           cptcovage++;   
           Tage[cptcovage]=i;    for (k=-1; k < maxncov; k++) Ndum[k]=0;
         }    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         else {  
           cutv(strb,stre,strc,'V');    /* Loop on covariates without age and products */
           Tvar[i]=ncovcol+k1;    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
           cutv(strb,strc,strd,'V');      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
           Tprod[k1]=i;                                 modality of this covariate Vj*/ 
           Tvard[k1][1]=atoi(strc);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
           Tvard[k1][2]=atoi(stre);                                      * If product of Vn*Vm, still boolean *:
           Tvar[cptcovn+k2]=Tvard[k1][1];                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
           for (k=1; k<=lastobs;k++)        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                                        modality of the nth covariate of individual i. */
           k1++;        if (ij > modmaxcovj)
           k2=k2+2;          modmaxcovj=ij; 
         }        else if (ij < modmincovj) 
       }          modmincovj=ij; 
       else {        if ((ij < -1) && (ij > NCOVMAX)){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
        /*  scanf("%d",i);*/          exit(1);
       cutv(strd,strc,strb,'V');        }else
       Tvar[i]=atoi(strc);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
       }        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
       strcpy(modelsav,stra);          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        /* getting the maximum value of the modality of the covariate
         scanf("%d",i);*/           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     }           female is 1, then modmaxcovj=1.*/
 }      }
        printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      cptcode=modmaxcovj;
   printf("cptcovprod=%d ", cptcovprod);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   scanf("%d ",i);*/     /*for (i=0; i<=cptcode; i++) {*/
     fclose(fic);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
         printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     /*  if(mle==1){*/        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     if (weightopt != 1) { /* Maximisation without weights*/          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
       for(i=1;i<=n;i++) weight[i]=1.0;        }
     }        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     /*-calculation of age at interview from date of interview and age at death -*/           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     agev=matrix(1,maxwav,1,imx);      } /* Ndum[-1] number of undefined modalities */
   
     for (i=1; i<=imx; i++) {      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       for(m=2; (m<= maxwav); m++) {      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
          anint[m][i]=9999;         modmincovj=3; modmaxcovj = 7;
          s[m][i]=-1;         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
        }         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;         variables V1_1 and V1_2.
       }         nbcode[Tvar[j]][ij]=k;
     }         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
     for (i=1; i<=imx; i++)  {         nbcode[Tvar[j]][3]=2;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      */
       for(m=1; (m<= maxwav); m++){      ij=1; /* ij is similar to i but can jumps over null modalities */
         if(s[m][i] >0){      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
           if (s[m][i] >= nlstate+1) {        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
             if(agedc[i]>0)          /*recode from 0 */
               if(moisdc[i]!=99 && andc[i]!=9999)          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
                 agev[m][i]=agedc[i];            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                                       k is a modality. If we have model=V1+V1*sex 
            else {                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
               if (andc[i]!=9999){            ij++;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          }
               agev[m][i]=-1;          if (ij > ncodemax[j]) break; 
               }        }  /* end of loop on */
             }      } /* end of loop on modality */ 
           }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
           else if(s[m][i] !=9){ /* Should no more exist */    
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
             if(mint[m][i]==99 || anint[m][i]==9999)    
               agev[m][i]=1;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
             else if(agev[m][i] <agemin){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
               agemin=agev[m][i];     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/     Ndum[ij]++; 
             }   } 
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];   ij=1;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
             }     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
             /*agev[m][i]=anint[m][i]-annais[i];*/     if((Ndum[i]!=0) && (i<=ncovcol)){
             /*   agev[m][i] = age[i]+2*m;*/       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
           }       Tvaraff[ij]=i; /*For printing (unclear) */
           else { /* =9 */       ij++;
             agev[m][i]=1;     }else
             s[m][i]=-1;         Tvaraff[ij]=0;
           }   }
         }   ij--;
         else /*= 0 Unknown */   cptcoveff=ij; /*Number of total covariates*/
           agev[m][i]=1;  
       }  }
      
     }  
     for (i=1; i<=imx; i++)  {  /*********** Health Expectancies ****************/
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;  {
         }    /* Health expectancies, no variances */
       }    int i, j, nhstepm, hstepm, h, nstepm;
     }    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double ***p3mat;
     double eip;
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);    pstamp(ficreseij);
     free_vector(moisnais,1,n);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     free_vector(annais,1,n);    fprintf(ficreseij,"# Age");
     /* free_matrix(mint,1,maxwav,1,n);    for(i=1; i<=nlstate;i++){
        free_matrix(anint,1,maxwav,1,n);*/      for(j=1; j<=nlstate;j++){
     free_vector(moisdc,1,n);        fprintf(ficreseij," e%1d%1d ",i,j);
     free_vector(andc,1,n);      }
       fprintf(ficreseij," e%1d. ",i);
        }
     wav=ivector(1,imx);    fprintf(ficreseij,"\n");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    
        if(estepm < stepm){
     /* Concatenates waves */      printf ("Problem %d lower than %d\n",estepm, stepm);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
       Tcode=ivector(1,100);     * This is mainly to measure the difference between two models: for example
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     * if stepm=24 months pijx are given only every 2 years and by summing them
       ncodemax[1]=1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);     * progression in between and thus overestimating or underestimating according
           * to the curvature of the survival function. If, for the same date, we 
    codtab=imatrix(1,100,1,10);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    h=0;     * to compare the new estimate of Life expectancy with the same linear 
    m=pow(2,cptcoveff);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){    /* For example we decided to compute the life expectancy with the smallest unit */
        for(j=1; j <= ncodemax[k]; j++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){       nhstepm is the number of hstepm from age to agelim 
            h++;       nstepm is the number of stepm from age to agelin. 
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;       Look at hpijx to understand the reason of that which relies in memory size
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       and note for a fixed period like estepm months */
          }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        }       survival function given by stepm (the optimization length). Unfortunately it
      }       means that if the survival funtion is printed only each two years of age and if
    }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       results. So we changed our mind and took the option of the best precision.
       codtab[1][2]=1;codtab[2][2]=2; */    */
    /* for(i=1; i <=m ;i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    agelim=AGESUP;
       }    /* If stepm=6 months */
       printf("\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       scanf("%d",i);*/      
      /* nhstepm age range expressed in number of stepm */
    /* Calculates basic frequencies. Computes observed prevalence at single age    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        and prints on file fileres'p'. */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (age=bage; age<=fage; age ++){ 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      /* if (stepm >= YEARM) hstepm=1;*/
            nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      /* If stepm=6 months */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     if(mle==1){      
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     }      
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /*--------- results files --------------*/      
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
    jk=1;      /* Computing expectancies */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for(i=1; i<=nlstate;i++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(j=1; j<=nlstate;j++)
    for(i=1,jk=1; i <=nlstate; i++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      for(k=1; k <=(nlstate+ndeath); k++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        if (k != i)            
          {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);      fprintf(ficreseij,"%3.0f",age );
              fprintf(ficres,"%f ",p[jk]);      for(i=1; i<=nlstate;i++){
              jk++;        eip=0;
            }        for(j=1; j<=nlstate;j++){
            printf("\n");          eip +=eij[i][j][(int)age];
            fprintf(ficres,"\n");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          }        }
      }        fprintf(ficreseij,"%9.4f", eip );
    }      }
  if(mle==1){      fprintf(ficreseij,"\n");
     /* Computing hessian and covariance matrix */      
     ftolhess=ftol; /* Usually correct */    }
     hesscov(matcov, p, npar, delti, ftolhess, func);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  }    printf("\n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficlog,"\n");
     printf("# Scales (for hessian or gradient estimation)\n");    
      for(i=1,jk=1; i <=nlstate; i++){  }
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);  {
           for(k=1; k<=ncovmodel;k++){    /* Covariances of health expectancies eij and of total life expectancies according
             printf(" %.5e",delti[jk]);     to initial status i, ei. .
             fprintf(ficres," %.5e",delti[jk]);    */
             jk++;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
           }    int nhstepma, nstepma; /* Decreasing with age */
           printf("\n");    double age, agelim, hf;
           fprintf(ficres,"\n");    double ***p3matp, ***p3matm, ***varhe;
         }    double **dnewm,**doldm;
       }    double *xp, *xm;
      }    double **gp, **gm;
        double ***gradg, ***trgradg;
     k=1;    int theta;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double eip, vip;
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       i1=(i-1)/(ncovmodel*nlstate)+1;    xp=vector(1,npar);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    xm=vector(1,npar);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficres,"%3d",i);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       printf("%3d",i);    
       for(j=1; j<=i;j++){    pstamp(ficresstdeij);
         fprintf(ficres," %.5e",matcov[i][j]);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         printf(" %.5e",matcov[i][j]);    fprintf(ficresstdeij,"# Age");
       }    for(i=1; i<=nlstate;i++){
       fprintf(ficres,"\n");      for(j=1; j<=nlstate;j++)
       printf("\n");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       k++;      fprintf(ficresstdeij," e%1d. ",i);
     }    }
        fprintf(ficresstdeij,"\n");
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);    pstamp(ficrescveij);
       fgets(line, MAXLINE, ficpar);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       puts(line);    fprintf(ficrescveij,"# Age");
       fputs(line,ficparo);    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);        cptj= (j-1)*nlstate+i;
     estepm=0;        for(i2=1; i2<=nlstate;i2++)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          for(j2=1; j2<=nlstate;j2++){
     if (estepm==0 || estepm < stepm) estepm=stepm;            cptj2= (j2-1)*nlstate+i2;
     if (fage <= 2) {            if(cptj2 <= cptj)
       bage = ageminpar;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       fage = agemaxpar;          }
     }      }
        fprintf(ficrescveij,"\n");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    if(estepm < stepm){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
     while((c=getc(ficpar))=='#' && c!= EOF){    else  hstepm=estepm;   
     ungetc(c,ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
     fgets(line, MAXLINE, ficpar);     * This is mainly to measure the difference between two models: for example
     puts(line);     * if stepm=24 months pijx are given only every 2 years and by summing them
     fputs(line,ficparo);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
   ungetc(c,ficpar);     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);     * to compare the new estimate of Life expectancy with the same linear 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     * hypothesis. A more precise result, taking into account a more precise
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     * curvature will be obtained if estepm is as small as stepm. */
        
   while((c=getc(ficpar))=='#' && c!= EOF){    /* For example we decided to compute the life expectancy with the smallest unit */
     ungetc(c,ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     fgets(line, MAXLINE, ficpar);       nhstepm is the number of hstepm from age to agelim 
     puts(line);       nstepm is the number of stepm from age to agelin. 
     fputs(line,ficparo);       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
   ungetc(c,ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       results. So we changed our mind and took the option of the best precision.
     */
   fscanf(ficpar,"pop_based=%d\n",&popbased);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);      /* If stepm=6 months */
      /* nhstepm age range expressed in number of stepm */
   while((c=getc(ficpar))=='#' && c!= EOF){    agelim=AGESUP;
     ungetc(c,ficpar);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     fgets(line, MAXLINE, ficpar);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     puts(line);    /* if (stepm >= YEARM) hstepm=1;*/
     fputs(line,ficparo);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }    
   ungetc(c,ficpar);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
 while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ 
     ungetc(c,ficpar);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     fgets(line, MAXLINE, ficpar);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     puts(line);      /* if (stepm >= YEARM) hstepm=1;*/
     fputs(line,ficparo);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   }  
   ungetc(c,ficpar);      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 /*------------ gnuplot -------------*/         decrease memory allocation */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
 /*------------ free_vector  -------------*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  chdir(path);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
          }
  free_ivector(wav,1,imx);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      
  free_ivector(num,1,n);        for(j=1; j<= nlstate; j++){
  free_vector(agedc,1,n);          for(i=1; i<=nlstate; i++){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            for(h=0; h<=nhstepm-1; h++){
  fclose(ficparo);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
  fclose(ficres);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
 /*--------- index.htm --------*/          }
         }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);       
         for(ij=1; ij<= nlstate*nlstate; ij++)
            for(h=0; h<=nhstepm-1; h++){
   /*--------------- Prevalence limit --------------*/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
            }
   strcpy(filerespl,"pl");      }/* End theta */
   strcat(filerespl,fileres);      
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for(h=0; h<=nhstepm-1; h++)
   }        for(j=1; j<=nlstate*nlstate;j++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for(theta=1; theta <=npar; theta++)
   fprintf(ficrespl,"#Prevalence limit\n");            trgradg[h][j][theta]=gradg[h][theta][j];
   fprintf(ficrespl,"#Age ");      
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");       for(ij=1;ij<=nlstate*nlstate;ij++)
          for(ji=1;ji<=nlstate*nlstate;ji++)
   prlim=matrix(1,nlstate,1,nlstate);          varhe[ij][ji][(int)age] =0.;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       printf("%d|",(int)age);fflush(stdout);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(h=0;h<=nhstepm-1;h++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(k=0;k<=nhstepm-1;k++){
   k=0;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   agebase=ageminpar;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   agelim=agemaxpar;          for(ij=1;ij<=nlstate*nlstate;ij++)
   ftolpl=1.e-10;            for(ji=1;ji<=nlstate*nlstate;ji++)
   i1=cptcoveff;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   if (cptcovn < 1){i1=1;}        }
       }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* Computing expectancies */
         k=k+1;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      for(i=1; i<=nlstate;i++)
         fprintf(ficrespl,"\n#******");        for(j=1; j<=nlstate;j++)
         for(j=1;j<=cptcoveff;j++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         fprintf(ficrespl,"******\n");            
                    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          }
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)      fprintf(ficresstdeij,"%3.0f",age );
           fprintf(ficrespl," %.5f", prlim[i][i]);      for(i=1; i<=nlstate;i++){
           fprintf(ficrespl,"\n");        eip=0.;
         }        vip=0.;
       }        for(j=1; j<=nlstate;j++){
     }          eip += eij[i][j][(int)age];
   fclose(ficrespl);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   /*------------- h Pij x at various ages ------------*/          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
          }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      fprintf(ficresstdeij,"\n");
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);      fprintf(ficrescveij,"%3.0f",age );
        for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1; j<=nlstate;j++){
   /*if (stepm<=24) stepsize=2;*/          cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
   agelim=AGESUP;            for(j2=1; j2<=nlstate;j2++){
   hstepm=stepsize*YEARM; /* Every year of age */              cptj2= (j2-1)*nlstate+i2;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              if(cptj2 <= cptj)
                  fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   k=0;            }
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficrescveij,"\n");
       k=k+1;     
         fprintf(ficrespij,"\n#****** ");    }
         for(j=1;j<=cptcoveff;j++)    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficrespij,"******\n");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
            free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    printf("\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n");
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_vector(xm,1,npar);
           fprintf(ficrespij,"# Age");    free_vector(xp,1,npar);
           for(i=1; i<=nlstate;i++)    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
             for(j=1; j<=nlstate+ndeath;j++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               fprintf(ficrespij," %1d-%1d",i,j);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           fprintf(ficrespij,"\n");  }
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /************ Variance ******************/
             for(i=1; i<=nlstate;i++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
               for(j=1; j<=nlstate+ndeath;j++)  {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* Variance of health expectancies */
             fprintf(ficrespij,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
              }    /* double **newm;*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
           fprintf(ficrespij,"\n");    
         }    int movingaverage();
     }    double **dnewm,**doldm;
   }    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    int k;
     double *xp;
   fclose(ficrespij);    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   /*---------- Forecasting ------------------*/    double *gpp, *gmp; /* for var p point j */
   if((stepm == 1) && (strcmp(model,".")==0)){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    double ***p3mat;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double age,agelim, hf;
   }    double ***mobaverage;
   else{    int theta;
     erreur=108;    char digit[4];
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    char digitp[25];
   }  
      char fileresprobmorprev[FILENAMELENGTH];
   
   /*---------- Health expectancies and variances ------------*/    if(popbased==1){
       if(mobilav!=0)
   strcpy(filerest,"t");        strcpy(digitp,"-populbased-mobilav-");
   strcat(filerest,fileres);      else strcpy(digitp,"-populbased-nomobil-");
   if((ficrest=fopen(filerest,"w"))==NULL) {    }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    else 
   }      strcpy(digitp,"-stablbased-");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerese,"e");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcat(filerese,fileres);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      }
   }    }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     strcpy(fileresprobmorprev,"prmorprev"); 
  strcpy(fileresv,"v");    sprintf(digit,"%-d",ij);
   strcat(fileresv,fileres);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   }    strcat(fileresprobmorprev,fileres);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   calagedate=-1;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   k=0;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   for(cptcov=1;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       k=k+1;    pstamp(ficresprobmorprev);
       fprintf(ficrest,"\n#****** ");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficrest,"******\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"\n#****** ");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for(j=1;j<=cptcoveff;j++)    }  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobmorprev,"\n");
       fprintf(ficreseij,"******\n");    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       fprintf(ficresvij,"\n#****** ");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   } */
       fprintf(ficresvij,"******\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       oldm=oldms;savm=savms;    if(popbased==1)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       oldm=oldms;savm=savms;    fprintf(ficresvij,"# Age");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    xp=vector(1,npar);
       fprintf(ficrest,"\n");    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
       epj=vector(1,nlstate+1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       for(age=bage; age <=fage ;age++){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           for(i=1; i<=nlstate;i++)    gpp=vector(nlstate+1,nlstate+ndeath);
             prlim[i][i]=probs[(int)age][i][k];    gmp=vector(nlstate+1,nlstate+ndeath);
         }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
            
         fprintf(ficrest," %4.0f",age);    if(estepm < stepm){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    else  hstepm=estepm;   
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    /* For example we decided to compute the life expectancy with the smallest unit */
           }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           epj[nlstate+1] +=epj[j];       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
         for(i=1, vepp=0.;i <=nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for(j=1;j <=nlstate;j++)       survival function given by stepm (the optimization length). Unfortunately it
             vepp += vareij[i][j][(int)age];       means that if the survival funtion is printed every two years of age and if
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         for(j=1;j <=nlstate;j++){       results. So we changed our mind and took the option of the best precision.
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficrest,"\n");    agelim = AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 free_matrix(mint,1,maxwav,1,n);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     free_vector(weight,1,n);      gp=matrix(0,nhstepm,1,nlstate);
   fclose(ficreseij);      gm=matrix(0,nhstepm,1,nlstate);
   fclose(ficresvij);  
   fclose(ficrest);  
   fclose(ficpar);      for(theta=1; theta <=npar; theta++){
   free_vector(epj,1,nlstate+1);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /*------- Variance limit prevalence------*/          }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(fileresvpl,"vpl");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        if (popbased==1) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          if(mobilav ==0){
     exit(0);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   k=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
   for(cptcov=1;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;    
       fprintf(ficresvpl,"\n#****** ");        for(j=1; j<= nlstate; j++){
       for(j=1;j<=cptcoveff;j++)          for(h=0; h<=nhstepm; h++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficresvpl,"******\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;        /* This for computing probability of death (h=1 means
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);           computed over hstepm matrices product = hstepm*stepm months) 
     }           as a weighted average of prlim.
  }        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fclose(ficresvpl);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
   /*---------- End : free ----------------*/        }    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        /* end probability of death */
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        if (popbased==1) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          if(mobilav ==0){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   free_matrix(matcov,1,npar,1,npar);          }else{ /* mobilav */ 
   free_vector(delti,1,npar);            for(i=1; i<=nlstate;i++)
   free_matrix(agev,1,maxwav,1,imx);              prlim[i][i]=mobaverage[(int)age][i][ij];
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          }
         }
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   else   printf("End of Imach\n");          for(h=0; h<=nhstepm; h++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          }
   /*printf("Total time was %d uSec.\n", total_usecs);*/        }
   /*------ End -----------*/        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
  end:        */
 #ifdef windows        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /* chdir(pathcd);*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 #endif           gmp[j] += prlim[i][i]*p3mat[i][j][1];
  /*system("wgnuplot graph.plt");*/        }    
  /*system("../gp37mgw/wgnuplot graph.plt");*/        /* end probability of death */
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        for(j=1; j<= nlstate; j++) /* vareij */
  strcpy(plotcmd,GNUPLOTPROGRAM);          for(h=0; h<=nhstepm; h++){
  strcat(plotcmd," ");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  strcat(plotcmd,optionfilegnuplot);          }
  system(plotcmd);  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 #ifdef windows          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   while (z[0] != 'q') {        }
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      } /* End theta */
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);      for(h=0; h<=nhstepm; h++) /* veij */
     else if (z[0] == 'q') exit(0);        for(j=1; j<=nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
 #endif            trgradg[h][j][theta]=gradg[h][theta][j];
 }  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
   #if defined(__GNUC__) 
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
   
   #include <stdint.h>
      int cross = CROSS;
      if (cross){
        printf("Cross-");
        fprintf(ficlog,"Cross-");
      }
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   /* struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
             */
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version()); 
   
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compile for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (ie 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bits windows).\n");
              frintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bits windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.44  
changed lines
  Added in v.1.175


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>